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Abstract— When employing multibit data converters the ne-
cessity arises to compensate for Digital to Analog Converter
(DAC) element mismatch. The most widespread compensation
techniques are based on Digital Element Matching (DEM) and,
if properly designed, these can achieve almost arbitrary DAC
mismatch noise shaping. This paper gives a closed form expres-
sion for the optimal DEM noise shaping profile. It depends upon
the spectrum of the analog signal to be quantized and may also
include a frequency weighting filter which reflects perceptual
criteria.

I. INTRODUCTION

Analog to digital conversion is essential for the efficient
storage and transmission of signals [1], [2]. Of particular inter-
est are feedback based quantization schemes (or simply, feed-
back quantizers). Examples of feedback quantizers are Sigma-
Delta converters [2]–[4], DPCM converters [5] and their many
variants. The main advantage of feedback quantizers, when
compared to pulse coded modulation based schemes, is that
they can attain high performance at moderate oversampling
ratios and with low bit scalar quantizers [2], [3], [6]. This
is a consequence of the fact that a well designed feedback
quantizer pushes the effects of quantization to frequencies that
are outside the band of interest [3], [4], [6]. The resulting
signal can then be filtered and decimated to the Nyquist
frequency to eliminate much of the quantization effect, and
to recover a low processing bit rate [3], [4].

When designing a feedback quantizer there exist, at least,
three tuning parameters: the number of bits in the quantizer,
the oversampling ratio (OSR) and the noise shaping filter
[3], [4], [6]. Increasing either the number of bits, the OSR
or the filter complexity may lead to improved quantizer
performance. However, there are several limitations. Firstly,
for high speed applications an increase in the OSR can lead
to processing rates far beyond those sensible given standard
circuit technology [7], [8]. Secondly, it is well known that the
use of low bit quantizers and high complexity noise shaping
filters may lead to stability problems in feedback quantizers
[3], [9]. To obtain less stringent stability conditions, as well
as to reduce quantization noise without having to use excesive
OSRs, it is useful to consider multibit quantizers [2], [4], [6].

Multibit feedback quantizers may give good performance
with moderate OSR and with less stability problems. There
is, however, a significant disadvantage. The feedback path in
a feedback quantizer comprises a Digital to Analog Converter
(DAC). Whilst it can be regarded as ideal in the case of single-
bit quantization (see, e.g., [3], [4], [6]), this is not so in the

case of multibit quantization. The quality of the DAC depends
strongly on the matching of discrete elements such as current
sources or capacitors [3], [10]. With element mismatch, which
is unavoidable, the resulting performance of the data converter
may be seriously affected1. This is a consequence of the fact
that the component mismatch appears as a noise source added
to the signal to be quantized. This noise source is usually
referred to as DAC mismatch noise.

There exist two main groups of techniques aimed at dealing
with DAC component mismatch [2]. These have been devel-
oped not only for feedback quantization schemes, but also
for more general situations. The first one relies on special
fabrication processes or on individual trimming of the DAC
components (see [3] and the references therein). These tech-
niques are, usually, too expensive to become standard solutions
to the mismatch problem. The second group of techniques
relies on signal processing strategies. These, in turn, can be
classified as calibration techniques (using analog or digital
signal processing) [11]–[14] and as Dynamic Element Match-
ing (DEM) based techniques [8], [10], [15]–[20]. Perhaps, the
most simple and effective techniques are DEM based.

The basic principle behind DEM schemes is to use the
DAC elements in such a way that the mismatch is averaged
out and, therefore, has only a small effect on the converter
output. The most basic DEM technique uses random access
to the DAC elements [17], yielding a mismatch noise that can
be regarded as white [16]. Another popular DEM technique
is data weighted averaging (DWA), which uses the DAC
elements in a cyclic fashion [10]. This leads to first order
mismatch noise shaping [16], thus improving the signal to
noise ratio at low frequencies. The main drawback of DWA
is that it may originate tones [10], [16]. To reduce these
tones several modifications to the basic DWA algorithm have
been proposed, including bi-directional DWA [21], pseudo
DWA [8], randomized DWA [15], [22], partitioned DWA [23],
rotated DWA [24], [25], incremental DWA [26], etc. All these
techniques try to maintain the noise shaping principle of
DWA, but lower the likelihood of tones through appropriate
modifications. More general schemes that have the potential to
achieve almost arbitrary noise shaping profiles have also been
proposed in, e.g., [19], [27].

An interesting alternative DAC mismatch compensation
technique has been recently proposed in [7]. In that work,

1Note that in single bit feedback quantizers the DAC needs to distinguish
between two levels only. This makes the matching of the discrete components
irrelevant.



DEM is embellished through the use of pre and post filtering.
In principle, the technique in [7] can be applied in conjunction
with any DEM strategy and is aimed at improving its mismatch
noise shaping characteristics.

The above works motivate us to investigate the question of
how to design noise shaping profiles associated with DEM
schemes. In the present work, we will provide an explicit
expression for the DEM noise shaping profile which minimizes
a weighted measure of the data converter reconstruction error.
Furthermore, we will illustrate the performance gains that can
be obtained with optimal DEM noise shaping when compared
to previous schemes documented in the literature.

The remainder of this paper is organized as follows: Section
II describes the general DAC mismatch mitigation problem.
In Section III, we characterize optimal DEM noise shaping
profiles in an explicit fashion. Section IV describes the ap-
plication of our results to the case of feedback quantizer
DACs. An example is provided in Section V. Section VI draws
conclusions.

Notation: We focus on discrete time signals and, without
loss of generality, normalize the sampling interval to unity. We
use standard vector space notation for signals. For example,
x denotes {x(k)}k∈N0 . We also use z as the argument of the
z-transform and also as the forward shift operator, where the
meaning is clear from the context.

All signals in this paper are assumed to be wide sense
stationary stochastic processes with zero mean, finite variance,
and rational power spectral density (PSD). Given a process x,
we denote its variance by σ2

x. We also recall the well known
fact that

σ2
x , E

{
x(k)2

}
=

1
2π

∫ π

−π

∣∣Ωx(ejω)
∣∣2 dω,

where Ωx(z) is a rational transfer function such that∣∣Ωx(ejω)
∣∣2 equals the PSD of x.

II. DAC-DEM ARCHITECTURE

We will first focus on the data conversion scheme shown in
Figure 1. In that figure, r is the (discrete time) analog input
signal, ADC is an analog to digital converter, and DAC-DEM
is a digital to analog converter, realized using unit elements
and equipped with an appropriate DEM strategy (see, e.g.,
[2]–[4]). The signal y corresponds to a quantized (i.e., digital)
version of r and r̂ is a (discrete-time) analog signal which
approximates r.2

The output of the ADC in Figure 1 is modelled via

y = T (z)r + N(z)q, (1)

where T (z) and N(z) are appropriate rational transfer func-
tions and q corresponds to quantization noise3. Usually, T (z)

2We note that our subsequent analysis holds, mutatis mutandis, if one also
considers a reconstruction filter in the scheme of Figure 1 (see also Section
IV).

3It is implicit in (1) that the main source of noise in the ADC output is
quantization. This means that if the ADC is a feedback quantizer, then its
feedback DAC is assumed ideal (as in the case of software based quantizers).
We will study the design of the feedback DAC in Section IV.

DAC-DEM
r̂yr

ADC

Fig. 1. Standard data conversion scheme.

is termed signal transfer function and N(z), noise transfer
function (see, e.g., [4]). Note that (1) describes every ADC
architecture in which an additive noise model is employed to
model quantization (see, e.g., [3]–[6] and also [28], [29]). In
particular, if N(z) = T (z) = 1, then (1) reduces to the output
of a pulse coded modulation scheme (see, e.g., [6]). On the
other hand, if N(z) = 1 − z−1 and T (z) = z−1, then (1)
models the output of a first order Sigma-Delta converter, as
described in, e.g., [2], [3], [6].

We will assume that the DAC consists of M nominally
identical elements whose values are added together in accor-
dance with the input digital code and the employed DEM
scheme (see, e.g., [2]). Each DAC element has a value ei

(i ∈ {1, 2, · · · ,M}), nominally equal to ē. Due to fabrica-
tion imperfections, ei can be modelled as a realization of
an independent Gaussian random variable with mean ē and
variance σ2

e . It is convenient to define M control signals, ci

(i ∈ {1, 2, · · · ,M}), as follows:

ci =
{

1 if the ith element is selected,
0 if the ith element is not selected.

Therefore, the output of the DAC-DEM block in Figure 1 can
be written as

r̂ =
M∑
i=1

ciei.

If the DAC was ideal, i.e., if σ2
e = 0, then r̂ = y (which, in

turn, is designed to resemble r). However, in practice there
always exists DAC element mismatch. Therefore, r̂ differs
from the analog correspondence of y. This difference, say m,
is called DAC mismatch noise and is given by

m , r̂ − y =
M∑
i=1

ci(ei − ē). (2)

An important property of DAC mismatch noise is that many
DEM techniques are such that m can be accurately described
via

m = D(z)η, (3)

where D(z) is a stable rational transfer function and η is a zero
mean white noise sequence, uncorrelated to the input r and to
the quantization noise q. We will refer to D(z) as the DEM
noise shaping profile. For example, if Butterfly randomization
is employed, then D(z) = 1 [16], [17]. In the case of DWA,
we have D(z) = 1 − z−1 [10], [16]. More general DEM
schemes, such as those proposed in [7], [19], [27], allow one
to implement arbitrary DEM noise shaping profiles.

In the remainder of this work we will show how to design
D(z) such as to optimize overall converter performance.



DAC-DEM

D(z)D(z)−1

q

T (z)

N(z)

r y r̂

η

u

ADC

Fig. 2. Linear model for the considered data converter architecture.

III. OPTIMAL DEM NOISE SHAPING DESIGN

According to Section II, the setup in Figure 1 can be
modelled as in Figure 2. Consequently, the output of the
considered data conversion architecture obeys

r̂ = T (z)r + N(z)q + D(z)η. (4)

The signal transfer function T (z) and the noise transfer
function N(z) stem from the ADC design, which is a very
developed research area (see, e.g., [3], [4], [6]). The choice of
D(z) is, however, less well understood.

We will next show how to design the DEM noise shaping
profile having overall data converter performance in mind. For
that purpose we will assume that the ADC is given (i.e., that
T (z) and N(z) are specified) and will derive an expression
for the optimal profile.

We will adopt a model where the variance of η, namely σ2
η,

is proportional to the variance of u (see Figure 2), i.e.,

λ ,
σ2

u

σ2
η

(5)

is a fixed constant. The constant λ depends on the statistics of
u and on the DAC-DEM parameters. For example, if Butterfly
randomization is employed and u is “busy signal”, then

λ ≈ k
M

σe
(6)

for some constant k [2], [16], [17]. In the case of DWA, a
similar expression for λ holds [10], [16].

Remark 1: We note that the scheme in Figure 2 corre-
sponds to the scheme considered in [7], although in that work
D(z) (and also D(z)−1) are actual filters and not only models
of the noise shaping provided by the DEM strategy. Our setting
encompasses both the architecture in [7] and the schemes
considered in [10], [16], [16], [17], [19], [27], as discussed
previously. �

A key element of our approach is that we will focus on the
overall converter performance, i.e., we will concentrate on the
difference between the analog signals r and r̂. To that end,
we define the weighted reconstruction error as

eW , W (z)(r − r̂), (7)

where the weighting filter W (z) is stable and proper. This
filter is application dependant and models the importance
that reconstruction errors have at different frequencies. For
example, in audio applications, W (z) may model the ear

sensitivity to low level noise power (see, e.g., [30])4. We
will measure the data converter performance by means of the
variance of eW , namely

σ2
eW

, E
{
eW (k)2

}
. (8)

To simplify matters we will assume that the ADC and the
number of DAC elements M are such that

σ2
q

λ
≈ 0, (9)

where σ2
q refers to the variance of the quantization noise q.

For a b−bit ADC, σ2
q is (roughly) of the order of 2−2b (see,

e.g., [4], [5]). Therefore, to satisfy (9), it is sufficient to have
a large number of bits in the ADC and/or a large number
of elements in the DAC and/or small enough DAC element
mismatch variance (recall (6)). This is resonable in the context
of multibit data converters.

Our result is stated in the following theorem:
Theorem 1: Consider (4) and (5), assume that r, q and η

are uncorrelated, and suppose that (9) holds with equality. If
T (z) and N(z) are given, then the DEM noise shaping profile
that minimizes σ2

eW
, say Dopt(z), satisfies∣∣Dopt(ejω)

∣∣2 = β
∣∣W (ejω)−1T (ejω)Ωr(ejω)

∣∣ , (10)

∀ω ∈ [−π, π]. In (10), β is an arbitrary positive constant.
Proof: Using (4) and (7) it is immediate to see that

eW = W (z)(1− T (z))r −W (z)N(z)q −W (z)D(z)η.

This leads to5

σ2
eW

= ||W (z)(1− T (z))Ωr(z)||22 +

σ2
q ||W (z)N(z)||22 + σ2

η ||W (z)D(z)||22 , (11)

where
∣∣Ωr(ejω)

∣∣2 is the PSD of r. Since (5) holds, σ2
η is not

pre-specified. It depends on the variance of u.
From Figure 2 it follows that

u = D(z)−1T (z)r + D(z)−1N(z)q. (12)

Using (5) in (12) leads to

σ2
η =

∣∣∣∣D(z)−1T (z)Ωr(z)
∣∣∣∣2

2

λ
+ σ2

q

∣∣∣∣D(z)−1N(z)
∣∣∣∣2

2

λ
. (13)

4Note that W (z) may also be implicit in the choice of T (z) and N(z)
(see, e.g., [30], [31]).

5For every rational H(z), ||H(z)||22 , 1
2π

R π
−π

˛̨
H(ejω)

˛̨2
dω, provided

the integral exists.



Since (9) holds with equality, (11) and (13) lead to

σ2
eW

= ||W (z)(1− T (z))Ωr(z)||22 + σ2
q ||W (z)N(z)||22 +∣∣∣∣D(z)−1T (z)Ωr(z)

∣∣∣∣2
2
||W (z)D(z)||22

λ
. (14)

We recall that both N(z) and T (z) are given. Thus, the
first two terms in the right hand side of (14) are fixed.
Therefore, the optimal D(z) minimizes the third term in (14).
Use of the Cauchy-Schwartz inequality (see also [5], [32])
leads immediately to (10).

The above result provides optimal DEM noise shaping
profiles in terms of the input PSD, the weighting filter
frequency response and the signal transfer function of the
ADC. It is worth noting that the proposed choice for D(z) is
independent of the DAC and quantizer parameters. This allows
us to conjecture that our designs will have good robustness
properties.

It is interesting to note that Theorem 1 implies that choices
for D(z) considered in the literature are optimal for specific
situations. For example,

D(z) = Dn(z) ,

(
z − 1

z

)n

, n ∈ {0, 1, 2},

encompasses Butterfly randomization for n = 0, and so-called
first order and second order DAC mismatch noise shaping for
n = 1 and n = 2, respectively (see, e.g., [4]). Theorem 1
allows us to conclude that Dn(z) is optimal if and only if∣∣W (ejω)

∣∣ =
∣∣∣∣T (ejω)Ωr(ejω)

(ejω − 1)2n

∣∣∣∣ ,∀ω ∈ [−π, π]. (15)

In contrast to (15), our result provides additional flexibility,
tailoring the inclusion of DEM noise shaping to any applica-
tion involving data converters.

To implement an optimal DEM scheme, i.e., one that uses
Dopt(z), one can rely upon the schemes proposed in [19],
[27], where the DAC elements are accessed in such a way that
arbitrary noise shaping can be achieved. Alternatively, and if
available technology allows one to do so, one could also use
the architecture proposed in [7] (see also Remark 1).

IV. APPLICATION TO THE DESIGN OF FEEDBACK DACS IN
FEEDBACK QUANTIZERS

In this section we specialize our DEM noise shaping results
to feedback quantizers with DAC in the feedback path, such
as Sigma-Delta converters. We will focus on the architecture
depicted in Figure 3. In that figure, r is the analog input, Q is
a b-bit scalar quantizer, DAC-DEM is a DAC equipped with
DEM, as described in Section II, L(z) is the so-called loop
filter, and P (z) is a reconstruction (or interpolation) filter.

In relation to Figure 3, we define the quantization noise
sequence by

q , y − v.

As usual in the feedback quantization literature (see, e.g., [3]–
[6] and also [28], [29]), we adopt a white noise model for q.

DAC-DEM

L(z) Q
r v

−

y
P (z)

r̂

Fig. 3. Feedback quantizer with non ideal DAC in the feedback path.

r̂
L(z)

−

q

Q

v y
P (z)

D(z) D(z)−1

η

u

DAC-DEM

r

Fig. 4. Linear model for feedback quantizer with non ideal DAC in the
feedback path.

More precisely, we assume that q is a zero mean white noise
sequence, uncorrelated to the input r, and whose variance, σ2

q ,
is proportional to the variance of the input to the quantizer v,
i.e.,

γ ,
σ2

v

σ2
q

(16)

is a known (and fixed) constant.
The constant γ depends on the statistics of v and on (half)

the scalar quantizer dynamic range V [5], [33]. For example,
if v is a sequence of identical Gaussian random variables with
variance σ2

v , and V = ασv ,6 then

γ =
3
α2

(2b − 1)2.

The above model, when combined with the linear model for
the DAC presented in Section II, yields the feedback quantizer
model in Figure 4. In this scheme, it holds that

r̂ = P (z)T (z)r + P (z)N(z)q + P (z)T (z)D(z)η, (17)

where T (z) = L(z)(1 + L(z))−1 and N(z) = 1 − T (z)
(compare to (4)).

To simplify subsequent derivations, we will assume that γ
and λ, see (5) and (16), are such that

1
(γ − C)(λ−D)

≈ 0 (18)

for every real C and D such that γ − C > 0 and λ − D >
0. This assumption holds under the same conditions as those
underlying (9).

As in the data conversion architecture examined before, we
will measure the performance of the feedback quantizer by

6α is usually referred to as the quantizer overload factor; α = 4 is a
common choice (see, e.g., [5]).



means of the weighted variance of the reconstruction error
eW defined in (7). In this case, we have the following result:

Theorem 2: Consider (17), (5) and (16), assume that r, q
and η are uncorrelated, and suppose that (18) holds with
equality. If L(z) is given, then the DEM noise shaping profile
that minimizes σ2

eW
, say Dopt(z), satisfies∣∣Dopt(ejω)

∣∣2 = β
∣∣W (ejω)−1P (ejω)−1Ωr(ejω)

∣∣ , (19)

∀ω ∈ [−π, π]. As before, β is an arbitrary positive constant.
Proof: From (17), and assuming that r, q and η are

uncorrelated, it follows that

σ2
eW

= ||W (z)(1− P (z)T (z))Ωr(z)||22 +

σ2
q ||W (z)P (z)N(z)||22 + σ2

η ||W (z)P (z)T (z)D(z)||22 . (20)

Since (16) and (5) hold, σ2
q and σ2

η depend on the variances
of v and u, respectively. A little algebra shows that

σ2
q =

||T (z)Ωr(z)||22
γ − ||T (z)||22

+
σ2

u ||T (z)D(z)||22
λ(γ − ||T (z)||22)

, (21)

σ2
η =

∣∣∣∣D(z)−1T (z)Ωr(z)
∣∣∣∣2

2

λ− ||T (z)||22
+

σ2
v

∣∣∣∣S(z)D(z)−1
∣∣∣∣2

2

γ(λ− ||T (z)||22)
. (22)

Since (18) holds with equality, (20), (21) and (22) lead to

σ2
eW

= ||W (z)(1− P (z)T (z))Ωr(z)||22 +

||T (z)Ωr(z)||22 ||W (z)P (z)N(z)||22
γ − ||T (z)||22

+∣∣∣∣D(z)−1T (z)Ωr(z)
∣∣∣∣2

2
||W (z)P (z)T (z)D(z)||22

λ− ||T (z)||22
.

Since L(z) is given, the result follows by proceeding as in the
proof of Theorem 1.

Theorem 2 gives a closed form expression for the optimal
DEM filter to be employed in the feedback DAC of feedback
quantizers. As before, the usual DEM filter choices made in
the literature, see, e.g., [4], arise as special cases of our result.

V. EXAMPLE

In this section we illustrate the ideas developed in this paper
via an example. To that end, we use the DEM scheme proposed
in [27] to achieve the noise shaping profile suggested by our
results. In particular, we employ the routines in the Matlab c©
toolbox described in [4]. This simulation tool provides fairly
accurate behaviourial simulations of Sigma-Delta converters
and DEM techniques.

We will consider the setup in Figure 1. The ADC is taken as
a 3-bit first order Sigma-Delta converter, which gives T (z) =
z−1 and N(z) = (z − 1)z−1 (see (1)). The DAC is assumed
to consist of M = 8 elements. To emphasize the effect of
DAC element mismatch, we assume that the variance of each
element is σ2

e = 0.25. The input r is chosen to resemble audio

and with PSD given by∣∣Ωr(ejω)
∣∣2 =∣∣∣∣ 0.26(ejω + 0.51)(ejω − 1)2

(ejω − 0.78)(ejω − 0.82)(ejω − 0.53)(ejω − 0.39)

∣∣∣∣2 ,

while the weighting filter is chosen to be the low pass filter

W (z) =
0.22595

(z − 0.778)(z − 0.8282)
.

To study the benefits of DEM mismatch compensation, we
apply Theorem 1. This gives the optimal filter7

Dopt(z) =
1.0644(z + 0.4284)(z − 0.9998)

(z + 0.1896)(z − 0.4756)
.

We next fix the realization of DAC elements and consider 100
realizations of the input r. Figure 5 shows the (sample) vari-
ance of the weighted error, see (8), for every input realization.
In that figure, “Ideal DAC” refers to a case where σ2

e = 0,
“No DEM” refers to a case where there is DEM mismatch
and no compensation, “Optimal DEM” refers to our proposal;
the other two curves refer to first and second order DAC
mismatch noise shaping. It is appreciated that DEM mismatch
compensation is, as expected, beneficial for reducing σ2

eW
.

Furthermore, the use of first and second order mismatch noise
shaping provides worse performance when compared with the
optimal filter suggested by Theorem 1. Indeed, the average
weighted error variances for each design are as follows:

DAC conversion scheme σ2
eW

Ideal DAC 0.0037
No DEM 0.0085

Optimal DEM 0.0042
1st order DEM 0.0053
2nd order DEM 0.0051

This means that, for the situation studied, optimal DEM
filtering provides a 24.3% reduction in the weighted recon-
struction error variance (relative to the ideal case), when
compared to second order noise shaping. Despite the fact that
in the simulations σ2

e is fairly large, our design achieves a
performance which is only 13.5% far from that of an ideal
DAC with no element mismatch.

VI. CONCLUSIONS

This work has proposed a systematic way to tackle the
problem of DEM mismatch noise shaping profile design.
By adopting a linear DAC mismatch noise model, we have
provided a closed form expression for the optimal noise
shaping profile. This expression is stated in terms of the input
signal spectrum, a weighting filter and the signal transfer
function associated to the ADC generating the signal to be
converted back to analog form. Further work may include the
joint optimization of DEM noise shaping profile and ADC
transfer functions, as well as experimental validations.

7Note that Dopt(z) in (10) is not necessarily rational. Since the method
in [27] requires a rational DEM noise shaping profile specification, we have
used a simple curve fitting routine to adjust a rational filter to the square root
of the right hand side in (10).
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