OPTIMAL MULTIPLE STOPPING AND VALUATION OF SWING OPTIONS

RENE CARMONA AND NIZAR TOUZI

ABSTRACT. The connection between optimal stopping of random systems and the theory of the Snell
envelope is well understood, and its application to the pricing of American contingent claims is well
known. Motivated by the pricing of swing contracts (whose recall components can be viewed as contin-
gent claims with multiple exercises of American type) we investigate the mathematical generalization
of these results to the case of possible multiple stopping. We prove existence of the multiple exercise
policies in a fairly general set-up. We then concentrate on the Black-Scholes model for which we give
a constructive solution in the perpetual case, and an approximation procedure in the finite horizon case.
The last two sections of the paper are devoted to numerical results. We illustrate the theoretical results
of the perpetual case, and in the finite horizon case, we introduce numerical approximation algorithms
based on ideas of the Malliavin calculus.

1. INTRODUCTION

The motivation for the present study comes from the commodity markets, and especially the energy
markets where the lack of standardization and the complexity of many contracts has attracted our
attention. Commodity contracts can be extremely involved and many energy structured products are
truffled with embedded options which are too often neither identified nor priced appropriately.

In this paper we concentrate on the mathematical analysis of options with multiple exercises of
the American type. When embedded in base delivery contracts, these options are sometimes called
swingoptions. In a vibrant industry sector with a multitude of tailor made contracts negotiated over
the counter, the term swing has been used for many different things, and it is important to specify
what we do have in mind when we use this terminology. The types of contracts containing the swing
options we are considering are described in detall in [2] and [16], and they are slightly different
from the gas sale agreements (GSA) discussed in [10]. These contracts for the covenants are not the
same for the buyer and the seller. The continuous time finance problems considered in this paper, are
addressing the pricing and optimal exercises challenges of the recall options contained in the buyer
side of the swing contracts. To keep things at a reasonable level of complexity, we assume the purpose
of this paper, that the holder of a swing option is given the opportunity to exercise several rights, and
that she has total freedom in the choice of the timing of these exercises. This outstanding feature
of the embedded options is reminiscent of American contingent claims with multiple exercises, and
despite the existence of several numerical pricing algorithms such as [24], [16], [10], or [2] to name
a few, it seems that a rigorous mathematical analysis of the valuation of this specific form of multiple
optionality has not been provided in the existing literature. The purpose of this paper is to fill this gap
by offering a first mathematical analysis of these options with multiple American exercises.
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The optimal stopping problem is a "classic” whose solution had far reaching applications in many
different fields. In its most general form, its mathematical solution is provided by the elegant theory
of the so-called Snell envelope. See for example [23] for a clear presentation in the discrete case,
and [12] for a thorough discussion in the context of optimal control of continuous time stochastic
processes. The reader mostly interested in the application to the pricing of contingent claims with
American exercise is referred to the appendices A and D of [17] for a self containeceexipihe
continuous time theory. Practical applications requiring a generalization of the optimal stopping
problem to possibly multiple stops are plentiful. A version of such a generalization in the discrete
time case goes back to [14] and can be found in the book of Cairoli and Dalang [6].

After a short review of the standard results from optimal stopping which are used in the analysis
of single American exercises, we introduce the inductive hierarchy of Snell envelopes needed in
the multiple exercise case, and we give results on the existence and the characterization of a set of
optimal stopping/exercise times under an assumption which guarantees that all these Snell envelopes
have continuous paths. These results are straightforward generalizations of the classical theory. They
are included for the sake of completeness as a way to introduce the notation. We deliberately excluded
the case where the Snell envelope may present a discontinuity in order to avoid technical difficulties
which are beyond the scope of this paper.

We then concentrate on the geometric Brownian motion framework of the Black-Scholes theory,
and we identify explicitly the solution in the case of perpetual swings generalizing the classical prob-
lem of the exercise of a perpetual American put option. In this case the optimal exercise regions form
a strictly decreasing sequence of intervals and the exercise times are given by the hitting times of
the ordered set of their boundaries which we identify. See also [7] for the case of one dimensional
diffusions.

The final section of this paper applies the Monte Carlo approximation method suggested in Lions
and Regnier [19] and further developed by Bouchard and Touzi [5] to our context of multiple stopping.
The above papers make an extensive use of the Malliavin calculus. This is obviously an overkill in
the situation considered in this paper. Indeed, the price process is log-normal in the Black-Scholes
framework, and explicit computations are possible. We review this approach while streamlining its
dependence upon the sophisticated tools of the Malliavin calculus, and by providing a direct and
self-contained account of the various steps.

After this paper was completed, we learned of the existence of [22] where the authors derive
Monte Carlo upper and lower bounds by extending Rogers’ duality strategy to American options with
multiple exercises. Motivated by the pricing of chooser flexible caps, they study what could be viewed
as the buyer side of a swing option.

2. OPTIMAL STOPPING AND AMERICAN OPTIONS

Let (2, F,P) be a complete probability space, dihe= {F;}+>( be a filtration satisfying the usual
assumptions, i.e. an increasing right continuous family of sulagebras ofF such thatF, contains
all the P-null sets. We also assume thag contains only sets of probability zero or one, and we
denote bysS the set of all theF-stopping times. LefX = {X;};>¢ be a non-negativ&—adapted
process satisfying the following properties:

D) the processy is continuous a.s
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and

(2) E{X} < oo whereX isdefinedby X = supX;.

>0
Each random variabl&; has the interpretation of a reward or payoff if we stop the process or if
we use one exercise right at time We also fix a timel" € (0, co] which has the interpretation of
maturity, i.e. the time of expiration of our right to stop the process or exercise. In order to include
both the cases of finite and infinite horizon stopping problems in the same framework, we assume
that:

3 X. =0 on(T,00).
In the infinite horizon cas& = +o00, we set

foo = U{U0§t<ooft} and Xoo = limsupXt .
t—o0
We denote bySr the collection of all théf—stopping times with values if), 7']. Given a stopping
time# € Sr, we denote bys, 7 the subset of7 consisting of all the stopping times> 6 a.s.

We now review the notation and the results of the classical treatment of the optimal stopping
problem which we will need in our analysis of the optimal multiple stopping problem associated to
the valuation of swing options. The interested reader can find a more general treatment in [12] and
[17]. In particular, the presentation of [12] avoids the continuity condition (1) used here. In any case,
the classical optimal stopping problem consists in the computation of the supremum
4) X, = sup E{X,}.

TEST

together with the possible characterization of the stopping times at which the supremum is attained.

2.1. Snell Envelope and Optimal Stopping Tin]es.The solution of the optimal stopping problem
(4) is best understood by introducing the famijli{y; ¢ € S} of random variables defined by:

(5) Xy = esssup.s, E{X;|Fp}
These random variables satisfies the dynamic programming principle:
(6) Xy = esssupg,, E {XT|]-“9} ,

for all § € Sy. TheF—adapted proces¥ = {Xt}tzo is a super-martingale, which is continuous in
expectation, i.eE{ X, } — E{X,} for all sequenceér,),>0 C S with 7,, — 7 a.s because of (1)
and (2), and hence has ad#g modification of the proces§ which we still denoteX. It is called

the Snell envelope of the proce&s It can be characterized as the smallest super- martmgale which
dominatesX. Moreover, each random variah#, coincides with the evaluation of the proce¥sat

the stopping timd, i.e.

We next define the stopping time

0 = inf{tZO; Xt:Xt} .
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By right continuity of the sample paths we ha¥e = X7, sof; < T a.s., and using the properties

(1)-(2) of the proces, it can be proved that the stopped proc&$s = {X;g; }¢>0 is a martingale.
As a consequence we see that

Xo = E{Xyp;} = E{Xg:},
which shows thafj is an optimal stopping time for the problem (4). More generally, foramySr,
the random variable

@) 0r = inf {t > X, = Xt}

T

is less than or equal t6 a.s. becaus&; = X1 whenT < co. So it defines a stopping time & 7
and, by continuity ofX, it follows that the stopped proce$§me¢}t27 is a martingale. Therefore:
XT = E{X@:‘f}} = E{Xeﬂfr}v
and #* is an optimal stopping time for the problem (5) in the sense that the essential supremum
appearing in (5) is attained for= 6*.

2.2. Doob-Meyer Decomposition and Maximal LP—Inequality. Since the Snell envelopé’ of
the processX is a @dlag supermartingale, it follows from the Doob-Meyer decomposition theorem
together with condition (2) that it admits the representation

Xt = Mt—At for OStST,

whereM is a uniformly integrable &adiag martingale, andl is a non-decreasing—adapted process
with Ap = 0, andE{Ar} < co. SinceX is continuous, we also have thatis continuous and

T
/0 1{Xt>Xt}dAt — 0,

See Karatzas and Shreve [17], Theorem D13. A consequence of this result is that a sample path of
the Snell envelopeX is continuous if and only if the corresponding sample path of the martingale
part M is continuous. This remark implies that the sample paths of the Snell envelope are almost
surely continuous when the filtratidf is generated by a Brownian motion. Indeed, in this case
every martingale has continuous sample paths since it can be represented as a stochastic integral with
respect to the Brownian motion. We shall make use of this result later in the paper.

Whenever the reward proce&Ssatisfies the integrability condition:
(8) E{X?} < oo forsome p>1

(which is stronger than condition (2)) we can define the uniform integrable martingalg X; fo<i<r
by X; = E{X|F;} for 0 <t < T, and use Doob’s maximal inequality in if& form

— p —
ES sup XPp < ES sup XV ) < <p> E{X?} < 0.
0<t<T 0<t<T p—1
Hence, the Snell envelop inherits theL?-integrability of the maximum from the underlying pro-

cessX. As a consequence we see that

9) the process X is left-continuous in expectation.
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Indeed, if{7,, }»,>0 is @n increasing sequence of stopping times wijth” 7 € S, then,XTn — X,
a.s. by continuity ofX'. Now, observe that

0<t<T

E{X2} < E{ sup Xf} < oo,

so that the sequem{e‘i’m }n>0 is uniformly integrable, and (9) follows.

2.3. Optimal Multiple Stopping. From now on, we assume that the filtratiBrsatisfies the addi-
tional requirements:

(10) { The filtrationF is left continuous and

everylF—adapted martingale has continuous sample paths.

This condition guarantees that the Snell envelop of a continuous process is continuous. This property

will be needed in the subsequent analysis which involves a composition of Snell envelopes. The case

of discontinuous processes leads to technical problems which are beyond the scope of this paper.
Let X be a non-negativE—adapted process satisfying conditions (1), (2) and (8). Recall that the

finite maturity framework is captured by our convention (3). WeSgtbe the set of alF—stopping

times valued if0, 7] U {T+}, and set

(11) XT+ = 0.

Remark 1. In the caséf = FX of the completion of the canonical filtration generated by a process
X, FX is left-continuous whenever the proce$sas left-continuous sample paths.

We fix an intege¥ > 1 and a positive constant Here,¢ represents the number of recall rights we
can exercise, whilé is the length of the refracting time interval which needs to separate two succes-
sive exercises. This assumption on the separation of the exercise times prevents them from bunching
up together on top of the optimal stopping time for the classical case reviewed in the previous section.
But it is important to emphasize that we do not make this assumption for mathematical convenience.
As reported in [16] the existence of such a refracting time period is part of the actual swing contracts

traded in the energy markets. We shall denotéfngl the collection of all vectors of stopping times
7 = (71,...,7p) such that

(12) n<Tas.and; —7,_1 > d on{r_y <T}as.forall i=2,...,¢.

Motivated by the valuation of swing options with multiple American exercises, we define the optimal
multiple stopping problem by:

¢
(13) Zy = sup E{Xz} where Xz = ) X .
7eS®) i=1

In the above multiple stopping problem, the holder of the option is allowed to exercise her rights to
the reward/payoff given by the proce&sat ¢ different times of her choosing. Notice that the holder

of the option can decide not to use all her exercise rights by setting the last stopping tifiies to
Such strategies could be desirable in this context because of the presence of the refracting period
which may lead the investor to sacrifice an exercise right in order to benefit from a potential better
future exercise.
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In order to characterize this multiple optimal stopping problem, we introduce the sequence of Snell
envelopes :

—

Y® =0 and Y® = X&) for i=1,...,¢,
where, for each integer= 1, ..., /, thei-exercise reward process(®) is defined by:

X = i +E{y;VR}, foro<t<T-34,

and, whenevel" < oo,

xY = X, for T—6<t<T.
In order to apply the results of the single optimal stopping theory in this context, we need to ensure
that the iterated reward processés) inherit conditions (1), (2) and (8).

Lemma 1. Let us assume that conditighO) holds and that the process is continuous and satisfies

condition(8). Then, foralli = 1,-- - , ¢, the processy () is continuous in expectation, and satisfies
E {X(i)p} < oo where X = sup X
0<t<T

Proof. SinceX(!) = X, the statement of the lemma holds trivially foe= 1. Using the properties
of the Snell envelope recalled in Subsection 2.2, and the properties of the filtration, we see that the
processes (9 and X () inherit the pathwise continuity frotX and X (-1 for everyi > 1.

We now prove thaE { X"} < co. We proceed by induction. Fer= 1, the result is just a re-

statement of condition (8). So we assume B&tX ~1"} < oo, and we prove thak { X"} < cc.
The martingale inequality implies that:

E{ sup Yt(il)p} < E{ sup E{X(i_l)p]]-}}p} < <p )E{X(i—l)”} < 00
0<t<T 0<t<T p—1

from which we conclude that

1/p
. 1 _ .
E {X(Z)p} P S U { sup Yt(HW} < 0.0
0<t<T
Next we identify a set of optimal stopping times for the multiple stopping problem. Let us set:
7 = iof {t >0, v, = Xt(@}
Observe that; < T. Nextfor2 < i < ¢, we define

. . . —it1 (—it1
(14) 77 = inf {t =047y Y;t( = Xt( " )} Lisire <y + (TH) 150 >3

Clearly,7* = (..., 7) € 559. We are now ready to prove the main result of this section.
Theorem 1. If we assume that conditiofi0) holds and that the process satisfieq1), (2) and (8),
then

Zy = Y = E{X~}.
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Proof. Let7 = (1,...,7,) be an arbitrary element LﬁT For ease of notation, we sgt:= 7_; 1.
Let us setx () = 0. A straightforward inductive argument can be used to prove
, ¢
(15) E{X;} <ES XY 415 Y X
j=it+1

forall 0 < i < £. Now, using (15), together with the classical optimal stopping theorem, we see that:

1

E{x7} < B{xD} < v = B{xP}| = E{x; + BT VIF; )}

Next, we notice that the stopped sequel{IYAT* ), t > ¢ + 71} is a martingale. We then deduce
from the previous inequality that:

E{X:} < %W < E{X;+E¥IVF
_ (p-1)
- E{x;}+E{vI "}
By repeatedly using the above argument, we see that
E{X:} < V" < E{X+...+X;},
proving the optimality of the vector of stopping times’, . .., 7,;) for the problemZ, together with
the equalityZ, = Yo(p). O

We next introduce the stopping times

Using the definition of; given in (7), we see thal" = 9§+T on{r* ; < T}. Infact, the stopping

time ¢ is the first optimal stopping time for the single exercise/stopping probfem (1) starting

from timed + 77, ,, where;’, , is an optimal stopping time for the exercise of {fe- 1)—th right.

Our next result confirms the intuitive belief that one should exercise earlier if one has more than one
right.

Proposition 1. For any integerz' =1,...,p,we have :

v 9 < vy mySVFEY, 620, and 7 < ¢
Proof. Let us setV;f D= Y(1 + IET{Ythl |F:}. From the supermartingale property of the processes

Y () andY (-1, together with the inequality () > X, we see that’ () is a supermartingale which
dominatesX (V). We then conclude that® < V() whence

x® = x,+ By 5V7) < v < vV 4By R

We getX(’) YC(') as an easy consequence of this inequality, and therefore we can concluge that
< ¢ by def|n|t|on ofr). O
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We conclude this section by examining the case where the reward ptidesssubmartingale. It
is well-known that this implies that the maturifyis an optimal stopping time for the (single) optimal
stopping problem. This applies for instance to call options, and provides the equivalence between
European and American call options, when the underlying asset does not deliver any dividends.

Proposition 2. Assume thak is a submartingale, and I&f < oo be a finite maturity date. Then
‘
X{ = ZE {Xr—is} Li<r—is
=1

Proof. It is sufficient to notice that foi = 1,...,¢ andt < T — i, we haveX,fi) =X +

E{Xff:;l) |F:} inherits the submartingale property &f. [J

3. PERPETUAL SWING OPTIONS IN THE BLACK -SCHOLES FRAMEWORK

In the previous section, we proved the existence of an optimal vector of stopping times, and we
outlined an algorithm to construct such a vector by considering a cascade of Snell envelopes. There is
no hope to get a more explicit characterization in such a generality. In this section, we concentrate on
the problem of the optimal exercise of perpetual (Te= +o00) swing options in the Black-Scholes
framework, and we identify the optimal exercise times as hitting times of a set of thresholds for which
we provide a constructive algorithm.

3.1. The Black-Scholes Set-upLet W be anR-valued Brownian motion on the probability space
(Q, F,P), and denote by = {F;};>o the associated completed filtration. Notice tfiasatisfies
condition (10). Let us fix a reward/payoff functign R, — R and let us consider a reward/payoff
process of the formp(X,;) where the proces& = {X,}, is now defined by:

2

(16) X; = Xgexp Kr—(;)t—kawt} , t>0

wherer ando are two positive parameters standing for the short interest rate and the volatility. Notice
that we changed the notation and that the proééssno longer the reward/payoff process. It is now
the price process from which the reward/payoffX ) is computed. We shall also use the notation

X,?’XO for X; whenever we need to emphasize the dependence of the pr&ceg®n its initial
condition. We now define the value function of the perpetual swing option problem\gitbrcise
rights and refraction timé > 0 by:

4
(17) vVO(Xe) = sup  E {Z em‘qb(XTJ} :
(T1,e-,7e)ES®) i=1
where the ses®) is defined by:
SO — {;: (Tye 1) €85 1 — iy > 5fora||i:2,...,€},

ands is the subset of, of all finite stopping times with values iR . In the following, we restrict
ourselves to the reward function

(18) ¢(x) = (K —z)" for some given parameterk > 0,
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so that our analysis of the optimal exercise of the swing option extends to the multiple exercise case,
classical results proven in the case of an American put option with only one exercise right.

3.2. Perpetual American Puts. When/ = 1 the refracting time parametéris irrelevant. The fol-
lowing explicit solution of the perpetual American put option is well-known. We state it to introduce
the notation we need in the sequel.

Theorem 2. The perpetual American put option value function is given by
i \”
vW(z) = (K —zAab) [1 A <1) ] ,
X

where

The above result states in particular that
vW(z) = K-z = ¢(z) ifandonlyif =<zt .

The perpetual American put option should be exercised whenever the price pfoéeselow the
level 2. In view of this, the interval0, z7] is calledthe exercise regigrand its complemeritr}, o)
is called thethe continuation region

In the subsequent paragraphs, we provide an extension of Theorem 2 to the case of perpetual op-
tions with multiple exercises. We first prove the existence aba-empty andonnected exercise
region [0, 2] for the optimal multiple stopping problem with value functiot!). This region con-
tains the exercise regidn, z7] of the perpetual American put option. We then provide a recursive
characterization of the boundary as the unique zero of some functional involving the value function
v~ As a by-product, this characterization produces a quasi-constructive solution of the problem
of interest, and allows us to prove that the sequén¢ is increasing.

3.3. Single Stopping Time Formulation and ODE Characterization. We first apply the general
characterization result of Theorem 1 to reduce the multiple stopping problem to a caspaqgimial
single stopping problems. So we define inductively the value functiffiisand the reward/payoff
functions¢*) by setting:

19 (k) - E e o) (x02
(19) vP(@) = sup {eqﬁ(T)},

where
6W(@) = o) + e Bt

i.e. the procesge "o (X;)} is the continuous-time Snell envelope of the prodess ¢ (X;)}.

One can then write the dynamic programming principle for the single stopping time problem value
function (19), and derive the so-called Hamilton-Jacobi-Bellman equationfar Using classical
analysis arguments, one can prove that this function is the unique continuous viscosity solution of the
variational inequality

min{ —Lo®) | k) — qb(k)} >0,
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where/ is the linear second order differential operator
ox

1 d?
Lx(z) = 5023328—;2((56) + Txa—x(ac) —rx(x) .

We shall not provide a proof of this claim because we do not use the above PDE characterization of
v*) in what follows.

Since¢ is bounded and is continuous, the reward procegs "¢ (X;)}+>¢ satisfies the condi-
tions (1) and (8), and we can apply the results of the previous section. For later use, we provide the
following well-known result (which obviously holds for more general diffusions), which gives among
other things, the fact that the reward functiei¥ are continuous.

Lemma 2. Letf : [0,00) — R be such thaE{|f(X;)|?} < oo, and let us consider the function
(@) = E{f(xP)}, 2 =0
Theny is continuous or0, oo) and continuously differentiable g0, o).

Proof. We sketch the proof for the sake of completeness. Observe that:

1 2 /9 2
20 — (r—o2/2)t\ ___* —(lnz—Inz)?/20 td '
(20) x(@) /f (ze ) 20 27?256 ¥

The dominated convergence theorem allows differentiation inside the expectation and the desired
result follows. OJ

3.4. First Properties of Perpetual Swing Options. We first prove that the exercise region for the
optimal stopping problem (19) is not empty.

Lemma 3. Letk > 1 be a given integer and let(z) = (K — z)™. Then
v (z) = ¢®(2) whenever 0 <z <z .

Proof. We only need to prove that*) < 4(*) on [0, z%] as the reverse inequality is trivial. By
definition of(*), we have

(@) = sup BE{eo(Xr) + e TN (X))
T7€S

IN

U(l)(x) +sup E {e_r(7+5)v(k_1)(XT+5)} .
TES

(21)
Notice thatE {e ")y *= (X, 5)} < E{e v*~(X;)} by the supermartingale property of
the procesge"tv*~D(X;) };>0. Sincev™ = (1) = ¢ on [0, x], this provides :

W (z) < gb(x)+E{e‘T5v(k_1)(X5)} — ¢®™(z) for 0<z<azi.O

Our next result shows that the exercise region corresponding to the stopping problem (19) is con-
nected, and defines the exercise boundarjes
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Proposition 3. Let k£ > 1 be a given integer and as above, let us restrict ourselves to the payoff
¢(z) = (K — z)* of the American put option. Then, there exis{sc [z}, K] such that

v®(z) = ¢®(z) ifandonlyif 0 <z <z} .

Proof. Let us assume to the contrary that the exercise region for the praSférs not connected,
and we will establish a contradiction. L&ét< 1 < 9 be such that

(22) v® () = ¢®(z;) while v® > ¢®) on (z1,,) .
Sinceg(z) = 0 for z > K, it follows thatxy < K, and therefore
(23) ¢(x) = K—x for z €z, za].
Setting
=2 —53:27 Sz, = inf{t > 0; X?’i :xi}

it follows from the classical optimal stopping theory that the stopping t‘ﬁmesgg1 A Sz, is optimal
for the problemy(¥)(%). See Subsection 2.1. By (23), we then see that :

oW(@) = E{e56 (x37) )+ E {000 (X071
= ¢ (E{e5X9")) + E {e St (X021
= ¢(@)+E {e*T(SYJr‘S)U(k*l)(ng(S)}

$(&) + E {e—%<k—1> (X(?’i) } — o®)(3),

where the last inequality follows from the super-martingale proper{)eoftv(’f—l)(Xf’i)} o This
>
proves thav(¥) () = ¢(*) (&) contradicting (22).0

IN

(24)

In view of this result, we conclude that the stopping time:
0; = inf{t > 0; X; <a}.}

defines an optimal stopping rule for the problem (19), and that the value function of the problem is
given by:

(25) v¥(@) = E{e_rezqﬁ(k)(Xe;)} = ¢®(z Az} E {e—TGZ}
by the continuity of the procesks.

3.5. Characterization of the Exercise Boundaries of Perpetual Put Swing OptionsSo far, we
have proved that the multiple stopping problem given by the value funefférould be reduced to
a cascade of single optimal stopping problems with value functiéitsk < ¢ in such a way that the
optimal stopping/exercise rules were given by the exit times of the intepwalso). It is therefore
natural to introduce for each (reward) functigrthe functionw]¢] defined by:

26)  w](z,b) = E{e‘TSf@Z)(ng)} where S¢ = inf{tzo; X0 gb} ,
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which we will use foryy = ¢*), and we make the following important observation:

®) (2) f <z
(k) _ o™ (x) for z < xj
(27) vii(@) { w[qS(k)](a:,xZ) = maxp<y w[¢(k)]($,b) for x>} .
In order to compute explicitly the functian[6*)], we use the following well-known property of the
Brownian motion. For each > 0, let us define by:
(28) T, = inf{t >0; ut+ W, =10b}

the first hitting time of the barrielf by the Brownian motion with drifi.. It is well-known that the
Laplace transform of, is given by

29) B{) o b WV
Let )
o 1
po= 5(7—1) and g(b,xz) = gln <m) .
ThenSy =Tp(,2) 12>} @anditfollows from (29) that for any bounded measurable funcatioR , —
R, we have
wil(e,b) = E{e5y (xg7)}
= Y(x) Lgapy +PO)E {e7 00} 10,4
Y
(30) = Y(zAD) [1 A <b> ] .
X

Plugging this equality in (27) and recalling thgt < K, we see that

K—z+e MEIvE-D (X)L for 4 < ¥

x~7 maxp<i b7 (K —b+e ™R {v(kfl)(Xg’b)}) for x > a7 .

In particular, if we use Lemma 2, this shows that the functiéfi is differentiable on(0, z3) U
(x},00). Sinced < z; < K, the boundary; is the solution of the equation given by the first order
condition for the above maximization problem. For the statement of this result, it is convenient to
introduce the function

(32) uP(z) = (144)71 [vv(k) (x) + x%v(k) (:n)} , ©>0.
Observe that(*) can be recovered from(*) by
33) o) = (14 ) [ )y

0

andv(®(0) = ¢(0) Zf;ol e~ as0 is an absorbing boundary for the procéss

Lemma 4. For each integef: > 1, the functionu(®) is non-increasing and continuous. Moreover the
sequencdu ()}, is characterized by the induction formula:

(34) u®(z) = 1ia<ary <x’{ —z+e K {u(k_l)(Xg’I)}) and u® = 0.
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Furthermore, the boundary;; is uniquely defined by the equation:

(35) o —zf +e K {u(k_l)(Xg’m’*“)} = 0.

Proof. The first order condition (35) is obtained by direct differentiation. In order to prove (34), we
use the expression ofk) given in (31). First, forr > 27, itis clear thatu(*) (z) = 0. Next, since

X7* = 2XJ", we see immediately that®) (z) = 2% — = + ¢ ™E {u“‘?‘“(X?’””)} forz < .

The functionu(® is clearly continuous away from the poinf. Recall Lemma 2. Using the first
order condition (35), we see that®) (z;—) = u*) (2 +) = 0.

We now prove by induction that*) is non-increasing. This property holds trivially fof?) = 0.
Assume that.(*~1) is non-decreasing for some> 2, then sinceXg’x is increasing ine, it follows
from (34) that.*) is non-increasing. Finally, we observe that the uniqueness of the exercise boundary
x} follows from the fact that the function(*) is non-increasing

Remark 2. Formula (34) is particularly well suited for numerical computations. Indeed it is plain
to evaluate the expectation by a simple Monte Carlo method. We used this remark to produce the
numerical results reported Section 5. See Figures 1, 2 and 3 for plots of the fundtins

Recall that Proposition 3 says thgt > z7. It is natural to expect that these exercise boundaries
form a monotone sequence. We establish this highly expected increasing property of the sequence
(2} )k>1 in the present context.

Lemma 5. (i) The sequenc@u(®)), is increasing, i.ex®) > u*=1) andu(*) £ *k-1),
(i) The sequencery);>1 is strictly increasing.

Proof. Define the functiong(z) = = — z} andg® (z) = e {u(k) (Xg’””)}. We first prove that

(ii) is a direct consequence of (i). Indeed, it follows from (i) th&t (z) > ¢~ (x) for all z > 0.
Sincex}, is the unique intersection point of the graphs of the functioaisdg*—1), we conclude that
Ty > Xy q.

We prove (i) by an induction argument. We first remark th@dt(z) = (z — x)* for all z > 0.
Sinceu(®) = 0, this shows that(") > «(© andu® # (), We next assume that*—1) > ¢(-2)
and thatu*=1) # w(*=2). Observe that this implies tha > z% | by the first part of this proof.
Moreover
o Forz > 2%, we haveu® (z) = u*=1(z) = 0.

e Forz < zj_,, we have

[u(k) _ u(k—l)](x) — R {[u(k—l) _ u(k_g)](Xg,x)} S 0.

e Forz € [z} _,,x}], we haveu*~Y(z) = 0. Furthermore, since/*) is non-increasing and
u®) (z%) = 0, it follows thatu®) (z) > 0. O
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4. PERPETUAL PUT SWING OPTIONS WITH INFINITELY MANY EXERCISE RIGHTS IN THE
BLACK -SCHOLES M ODEL

In this section we study the asymptotic regime obtained when the number of exercise rights in-
creases without bound. In order to do so, we analyze the value function:

(36) v(%) (Xo) = sup E {Z e "o (XTn)} ,

(Tn)nzle’s(oo) n>1

where as before is the payoffs(z) = (K — x)* of an American put option and where the §&t°)
of sequences of stopping times depends upon the refraction parametem the following way:

S(®) — {(Tn)nzl e SN 14— >dforalln > 1} .

Observe that, sincg < K, we have for al(7,),>; € S( that:

Z 6—r7n¢ (X‘rn> < KZ e~ < KZ 6_7%6.

n>1 n>1 n>0

Therefore:
-1
(37) W (Xy) < K (1 - 6—7"5) :
We recast the current problem in the framework of an optimal single stopping problem.

Proposition 4. The value function(*) satisfies:

(38) v (Xo) = sup E{¢(°°)(XT)} where ¢(®)(z) = ¢(z) + ¢ E {v<oo>( ngx)} ,
TES

Proof. 1. Let7 € S and(7;)i>1 € S() and let us define a new sequereg};>; of stopping times
by7‘1 =7, =7T+4+0+ Tit1- Then(n)izl € S(OO) Therefore

i>1

v>(Xo) = E {Z emﬁf’(Xn)}
= E {€TT¢(XT) +e 7R {Z erTz¢(XT+6+n)-7:T+5} } :

i>1

Since the sequencgr; }i>1 € S(>) and the stopping time € S were arbitrary, this gives the
inequality:

v(®)(Xo) > sup E {eiTngS(XT) + efr(TJré)U(oo)(XT_Hg)} .
TES
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2. In order to establish the reverse inequality, we pick 0 and are-optimal stopping rulg7;};>1 €
S, ie.

V(X)) —e < E {Z ETﬁQS(Xﬁ)}

i>1

(39) ) {erﬁ¢ (Xz) + e~ T(F119) Z e~ TTigh (X+1+6+ri>} ’
i>1
where we used the stopping timgdefined by:
T, = Tiq1—T1—0 for i>1.
We now observe that; > 0 and7;.1 — 7; > § a.s. Furthermore, considering the shifted filtration
Fritd = {ff1+5}t>0, we see that; is anF™ 19 —stopping time, and therefore

E { Z e ( Xz 1o47) fﬁ%} < v (X5 40)

i>1
by definition of the value function(°). Plugging this inequality in (39), we deduce that
V(Xo) —e < E{eTMo(Xy) + e TOTNN(X; 1))

< sup E {eim—gﬁ (Xr) + ey () (XT+5)} .
TES

Next, we proceed exactly as in the proofs of Lemma 3 and Proposition 3 to obtain the following
result.

Proposition 5. There exists’ € [z}, K| such that
v (z) = ¢(*)(z) ifandonlyif 0 < z < =¥ .
Consequently, the stopping time
(40) 0 = inf{t>0: X, <z}

defines an optimal stopping rule for the problem (36). In order to characterize further the boundary
x5, we proceed as in the previous section by observing that

Sy = [ O for <
wlp](@,2%,) = maxy, wlpO)(,b) for v > o,

which provides by the same computations:
K —x+e¢™E {U(OO)(XS’:”)} for x <%

(41) o) (z) =
(@) 77 maxp<i b7 (K —b+4e R {v(oo)(Xg’b)}> for = > z% .
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Recall from (37) that(>) is bounded. Then the function— E {u(oo)(Xg’I)} is differentiable by

Lemma 2. Therefore, we deduce from (41) th&f) is differentiable or{0, z* ) U (%, 00). Since
0 <z}, < K, the boundary:?  solves the first order condition of the above maximization problem.
As in the previous section, it is convenient to introduce the function:

d
u®(z) = (1+4)7" [’yv(o") (x) + x%v(“) (m)] , x>0,

and we observe that>) can be recovered from(® by
v () = o0+ 1+ 7)“’”_7/ ) (y)dy
0

(42) = K (1-e7) 4 @ty /0 ") (y)dy
We now state the first order conditions for the optimality:tf.

Lemma 6. The functionu(>) is continuous and satisfies

(43) w9 (2) = 1ppepe s (af; —2+eE {u(OO> (ngx)}) :

and the boundary’_ solves

(44) z —al, +e "k {u(oo) (Xg’m‘;’)} = 0.

Proof. Except the continuity of,(°°), all claims follow by the same arguments as in the proof of
Lemma 4. Now, since(*) is bounded by (37), observe that the functior— E {v(oo) (Xg’””)} is

continuously differentiable. By (41), this shows th&t®) is continuously differentiable of0, %),
implying the continuity of.(>*) on this set. Sinca(*) = 0 on (z*_, c0), it only remains to check the
continuity ofu(>) at the pointz*_. This is a direct consequence of the first order condition (43).

We are now in a position to characterize the bounddyyin terms of the integer-valued random
variableN;(b) defined as the first crossing time of the geometric Brownian motion samples separated
by the refracting period, i.e. the integer:

(45) Ns(b) := min {n > 1; Xg;sl > b} )
Proposition 6. The functionu(>) is given by:

Ns(23/z)—1
(46) ul™(z) = E{ oo (w*{Xﬁ?)},

n=0

and the the optimal exercise boundary for the prob(86)is :

* * E{Zn Ns(1 e—nr&}
(47) Too = T3 =Tl ),,m; 01y -
E{Zn<N5(1) € X5}
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Proof. Iterating (43), and observing thﬁﬁzo 1{le5,z§m{} = 1< Ns(az, /2)}» WE S€E that

u(z) = E {Z eI (a1 - X557) 1{j<N5<z;;o/x>}}
=0

—(n 7"6 oo O’I

by definition of N5(b). Now, recall that.(*) = 0 outside the compact intervill, z*_] and that it is
continuous by Lemma 6. Theri> is bounded and

lim e~ B {uC) (00 5) Lnanstan o = 0

n—oo

By the dominated convergence theorem, this implies that :

u>)(z) = lim E {Zem (a1 - x35) 1{j<Na<z:;o/z>}}

J=0

= E {Z e Im (a:“{ - Xﬁ’;m) 1{j<Na(x§o/x)}} ’
j=0

completing the proof of (46). We now obtain (47) by writing th&t® (z*_ ) = 0:

Ns(1)—1
0 = IE{ Z e "o (z“{ — ﬂfzngésl)}

n=0

Ns(1)-1 Ns(1)—1
(48) = ZfEqQ Y e b —af Eq Y e X O

n=0 n=0
We conclude this section by proving the convergence of the solution of the perpetual swing option
problem with finitely many rights to the corresponding solution when the number of exercise rights
is infinite.
Proposition 7. We have the following convergence results:

(49) z; — 2’, and (u(k),v(k)) — (u(‘”),v(“)> uniformly on[0, oo) .

Proof. 1. We first prove the convergence pf} }x>; and the uniform convergence ¢fi(%)} .
By Lemma 5, the sequencés; }>1 and{u(®)};>, are increasing. Moreover; < K, andu(®) <
K[1 — e ™]~! as it can be immediately checked from (34). Then there exist K and
[0,00) — R such that

2 — z and u®(2) — a(x) forallz>0.

By dominated convergence, it follows from (34) and (35) that

(50) u(r) = ly<z {:ff —z+e K {ﬂ (Xg’m> }}
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and
(51) rt— 7+ e K {a (Xg»f> } — 0.

Sincew is bounded, this proves thatis continuous. Since, for each> 1, u®) = 0 outside the
compact interval0, K7, it then follows from Dini’s theorem thatu(*) },~, converges tai uniformly

on [0, co).

2. We now show thatz,#) = (z*,,u(>)). To see this, notice that (50) and (51) show tfata)
satisfy the conditions which have been established#r, u(°*)) in Lemma 6. Observing that the
characterization ofz*_, u(>)) in Proposition 6 is obtained by means of these equations, we conclude
that (z, @) = (a7, u(>)).

3. It remains to prove the uniform convergence of sequsﬁn@é)
directly compute by (33) and (42) that :

ko1 towardsv(*). To see this, we

B (z) = 0@ (z)| < [o(0) = & (O)] + (1+7)z /Oxy“]u<k><y>—u<°o><y>]dy

< P90 =0+ 0+ —u ™ [y

= [o9(0) = )] + 7711+ Dl — 1 o

where we used the notatidn - || for the supremum norm of a function. The desired result then
follows from the uniform convergence ¢f:(*)},~, towardsu(>). O

5. NUMERICAL RESULTS FOR THE INFINITE MATURITY PROBLEM

This section contains a small sample of numerical results chosen to illustrate the theoretical results
proven in this paper. The computations reported in this section use a strikdprce, a refraction
periodo = .01, a volatility o = .35, and a short interest rate= .04. These give the values= .653
andzi = .395.

We computed approximations of the functiap over a grid of250 points z regularly spaced
betweerD) and1. We used the valuek 2, - - - , 250 for k. The expectation appearing in the recursive
formula (34) proven in Lemma 4 and giving the valuesu@fin terms ofuy;_; was computed from
20, 000 Monte Carlo random samples of the random variabtjestarting from the valueXy = x of
the grid.

Figure 1 shows the graphs of the fi2§0 functionsu; computed in this way. One clearly sees the
fact that they are increasing. This growthimear the origin could appear in contradiction with the
fact that theuy's were uniformly bounded (i.e. the supremum normugfis bounded irk) which we
proved in the text. So we plotted these supremum norms as functiéns of

Figure 2 is very much consistent with the uniform boundedness of the funetjons

This is confirmed by the surface plot given in Figure 3 which gives a different perspective on the
same data. Finally, Figure 4 plots the values:pfas a function of. After an early sharp increase,
these thresholds level off rapidly toward their limiting valig.
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o] 50 100 150 200 250
250"

FIGURE 1. Time series plots of the graphs of the functiensfor £ = 105 with
j=1,2,---,25. Note that the numerical value of_ would be.725.

Maximum of u_k{x)

o 50 100 150 200 250

FIGURE 2. Time series plot of the values of the sup-norm of the functipfor £ = 1,2, --- | 250.

Figure 5 gives a surface plot af_ as a function of the the two free parametefsando+/5/2.
Notice thatz*_ is found to be decreasing inv/4 /2 and increasing imv/§, both properties being very
natural.
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FIGURE 3. Surface plot of the values;(z) for z € [0,1] and fork = 1,2,--- ,250..

6. NUMERICAL RESULTS FOR THE FINITE HORIZON PROBLEM
In this section, we return to the finite horizon multiple stopping problem, and we set
T=1

without any loss of generality. In other words we consider swing options with maturity one year. Our
objective is to present and implement a Monte Carlo numerical procedure for the computation of the
value function of the multiple stopping problem

(52) o9(0,X0) = sup Y E{eTTé(Xp)}
7eS® i=1
and the associated exercise region. As bef&rés the Black-Scholes price process defined in (6),

is a constant instantaneous interest rate,@nd = (K — )™ is the European put pay-off function
with strike K > 0.

6.1. Discrete Time Approximation. In order to estimate the value functieff), we first need to
define a convenient discrete-time approximation. For each integed, we introduce the partition
T, = {t; := j/n}o<j<n Of the time intervall' := [0, 1], and we use the notatid), for the subset
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x"*_k for k=1

0420 0425

0415

03385 0400 0405 0410

o] 50 100 150 200 250

FIGURE 4. Plot of the values of; computed fok = 1,2, --- ,250.

of S; defined by
S, = {reS; e T,as}.
We use the same notation as in Subsection 2.3. In particuilarstands for the Snell envelope of

the reward process (¢, X;), where the reward function(®) is defined inductively together with the
successive value functions$?) by:

(53) oD (t,z) == ¢(z)+e E {N—U (t 40, Xg»m)} for t<1-—24,
and
(54) oDt z) == ¢p(z) for 1-6<t<1,
while thev(?)’s are given by:
(55) v@(te) = sup E {e‘”cb(i) (T, Xﬁm)} :
T€SuT

Recall the convention(®) = 0. For each integer > 1, we propose a natural discrete time approxi-
mation for the value function of the problem. It is given by

(56) o (te) = swp B[ (1, X))
TESnmSt’T

starting as before With,(LO) = 0, and where:

(57) oW (t,z) = ¢(z) + e R {vﬁf—l) (t +9, X(?I)} for t<1-4,
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xsisr
0250 0.500 0.750 1.000

FIGURE 5. Surface plot of the values af;, as function of the two free parameters
rd andov/6 /2.

and

(58) O(t,z) = ¢p(x) for 1—§<t<1.

In the discrete-time framework, it is well-known that the Snell envelope is easily computed by the
backward induction

(59) o (b, Xe,) = 69 (tn, X4,)
and

(60) o) (-1, X,,) = max{of) (t-1, X, ) e E [o) (1, X0,)

(n)
)}
Whereﬁ(f) =0 (X, k < j) is the discrete-time filtration. Since the procésss Markov, the latter
conditional expectation reduces to the computation of a regression function :

(61) E {Ur(zi) (tj,th) ‘ '7:;;_1} =E {Ur(zi) (tj’th)

th—l} = pv(zi) (tj—bth—l)'
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6.2. Computation of the Conditional Expectations. As evidenced by the above formulae, the prac-
tical implementation of this backward procedure requires the computation of many conditional expec-
tations, and the numerical implementations will vary according to the choice made for the evaluations
of theseregression functiondiVe briefly review the most obvious of these choices before concentrat-
ing on the method which we choose to develop.

Nonparametric RegressianAt this stage of the analysis, many nonparametric regression procedures
can be brought to bear, but we refrain from attempting to reviewing them all, and we restrict ourselves
to a selected few.

(i) The Kernel MethodThis well-known technique from non-parametric statistics, see e.g. Bosq [3],
has been suggested in the context of the American put option bye@af8]. This method is based

on the observation that for random variables or vectbend B:

E {A0y(B)}

E{&(B)} ’
whereJ;, is the Dirac mass at the poiat Then, given an approximate identity, i.e. a family of
functionsk;, which converges t@é, whenh — 0 (in some sense which we will not make precise
here), it is natural to introduce the approximation
E {Arn(B — b)}

E{xn(B—10b)} ’
and for a sampléA(®), B()), ... of N independent random vectors with the same distribution as
(A, B), the kernel estimator of the regression is given by:

N oy Ay (BY) — )
N il ARy (B —b)

wherehy is a sequence of positive numbers converging to zero. Despite the freedom to choose the
rate of convergence di,, to 0, the bias introduced by the approximation of the Dirac mass by the
kernel function is responsible for the fact that the classi¢al rate of convergence of the central

limit theorem is lost. We refer to [3] for a detailed analysis of the rate of convergence of the kernel
estimator. There the interested reader will find extensions to dependent samples and proofs that this
rate decreases dramatically when the dimension of the random vaHabtzeases.

(62) E{A|B = b}

(63)

(64) E{A|B =b}

(i) The Basis Expansion Method.et us assume momentarily that is a p-dimensional random
vector, and let us denote hyg its distribution inRP. For any square integrable random varialle

the regression functioR? 5 b — E{A|B = b} can be viewed (and characterized) as an element

of L2(RP, up). As such, it can be approximated by the partial sums of its decomposition on any
orthonormal basis of this Hilbert space. Since the coefficients in such an expansion are expectations
of products ofA by functions ofB, they can be estimated from a random sanfgle), B()); < .« v.

This estimation technique is also standard in nonparametric regression. Its use in the context of
American option pricing was suggested by Longstaff and Schwartz [20], and the corresponding price
estimate has been shown to be consistent ®ymeht, Lamberton and Protter [9]. As in the case of

the kernel method, th¢/N —rate of convergence is lost because of the bias introduced by the finite
dimensional approximation. The choice of the orthonormal basis can drastically influence the rate of
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convergence. For example, it was shown by Egloff and Min-oo [11] that the rate of convergence of
this algorithm could be exponentially slow. See for example their Theorem 6.15.

Malliavin Calculus Based Simulation Method The technique which we now consider has been
proposed by Fourgi Lasry, Lebuchoux and Lions [13], and further developed by Bouchard, Ekeland
and Touzi [4]. The asymptotic properties of the resulting numerical algorithm for the computation
of the price of American put options (and more generally, for the expected value of functions of the
solutions of reflected backward stochastic differential equations) have been analyzed by Bouchard
and Touzi [5]. The main idea is to use the Malliavin integration by parts formula in order to get rid of
the Dirac point masses in (62). In doing so one gets:

E{AH,(B)S}
E{H,(B)S}

where Hy(z) = [Ti_; 1p,,00)(2i), andS is some non-negative random variable. An important con-
sequence of this formula is the fact that the associated Monte Carlo estimator:

(65) E{A|B = b} =

. LSV AG Hy(B$)S6)
(66) EAIB=1] = S5y PO
NZS:l Hb(B )S

constructed from an independent samplel®), B() S())},_, .. v of size N, converges at the

v/ N—rate by the classical central limit theorem. The foIIowmg subsection is devoted to a self-
contained derivation of these facts. We use a pedestrian approach based on the log-normality of
our Gaussian framework, without ever appealing to results of the Malliavin calculus.

6.3. Integration-by-Parts based Regression EstimationWe first concentrate on a regression func-
tion of the form:

E{g(Witn)0x(We) }
= E = = .
T‘h(CC) {g(Wt+h)|Wt ‘/I:} E{éz(Wt)}
Integration by Parts Let us denote by the density of the standard one dimensional normal distri-
bution, and let us assume thgits a smooth function with a bounded derivative. By the independence
of the increments of the Brownian motion, we have:

E{g(Wiin)0y // w1 + w2)dg (W) (?}%) © (%) dwidws .
Integrating by parts with respect to the variable, we get :
B wy [ w w2
{9(Wiin)0s g(wr + w2) 15 o) (w1) — g ﬁ 2 ﬁ dwydws

- //g’(w1 + w2) 1 00) (w1)gp (ﬁ) @ (\%) dwydws .
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Next, we compute the second integral by integrating by parts with respectig tveriable. We get:

w2

E{gWign)oo(We)} = // (w1 + w2 1[xoo)(w1) (\/1%> w(\/ﬁ> dwy dws

e et (3) (3o

(67) = E{g Wt—l—h) [xoo)(Wt)Sh}
where the random variable

Wy  Ween — W,

(68) Sp = ; N

is independent of the functiofn. Notice that formula (67) is established for a functigne CZ}.
However, since it does not involve the regularityofve can conclude by a classical density argument
that it is valid wheneveg(W;_ ) € L.

Actual Simulation Let (W(s))lgsgs ben independent samples of the Wiener prodéssThen, the
Monte Carlo estimator suggested by the above formula is defined by

N
“ T 1 s S
y(x) = ZNE]]() where ¢n[g = g t+h (Wt( ))S}(l),

whereS,(f) is computed from the sampi& (*) using formula (68). Its asymptotic properties are di-
rectly deduced from the law of large numbers and the central limit theorem for independent identically
distributed random variables. In particular, the rate of convergence is of the\dpder

The price to pay in order to recover théV rate of convergence is that the variance of the estimator
dn[g](x) explodes a& shrinks to zero since

limsup S, =00 and liminfS;, = —oo.
h\op h o h

Since our objective is to send the time stefd zero, it is necessary to find a remedy to this variance
explosion problem.
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Localization In order to do so, we introduce a localization function. kdbe an arbitrary smooth
function with x(0) = 1. Following the computations leading to formula (67) we get:

E{gWin)oe(We)} = E{g(Win)de(Wi)x(W: — 2)}

- e (3)
12

’
- // (w1 + w2) 1y 00) (w1)x (wﬁx)% (ﬁ)«p(iﬁ%) dwy dws
~ [ 0+ w1 w0t - o) (3%) o (jjﬁ) duyduw

- [ st o~ ot (51 ) o (22 dwnce

- st 130(5) (5o

A/~

Sl E

~
AS

A/~

SEN

~—
&
S
2
§

// Wi+ w2) 1, 00) (W) x (w1 —:c)T@

— [ st 4 w2t = oo (

= ]E{g Wt+h) 1[:roo)(Wt)ShX}

SiIE
~——
©
TN
Si¢
=
g
U
§

where the random variabls;, , is defined by:

(69) Si = x%—a) (- ) X2

is again independent of the functign For each localization functiog, one can now define a new
Monte Carlo estimator as before. All these estimators share the nice convergence property at the
v/N-rate. Therefore, the natural question is whether one can reduce the variance of the Monte Carlo
estimator by some convenient choice of localization funciion

4. Variance Reduction by Localizatio®etG := g(W;.)?, and let us consider the integrated mean
square error

J(x) = / E{Glw,>:5h } da .
R
We are interested in the integrated mean square error minimization :

(70) V= min{J(x) : x smooth, bounded ang(0) = 1} .
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Using Fubini’s theorem and a path by path substitution, we get:

J(x) = E{G/Wt }X(Wt—m)sh—xl(Wt—ﬂf)‘de}

- E{G / fw\x@)sh—x’(y)\%y} |

Observing thaE{G Sy} = 0, this provides

+00
I = /0 B{GS2} () + E{GHX )] dy -

Hence the integrated mean square error minimization is reduced to a classical problem of calculus of
variations, which can be solved explicitly. The optimal localization function is then given by

E{GS2}\ "/
E{G}) ‘

(71) xn(z) = e ™* where 7, := <

In particular, this shows that
n, = O (h_1/2> .

6.4. Monte Carlo Estimation for the Finite Maturity Problem. We now return to the problem

of the optimal multiple stopping problem, and more precisely to the pricing of swing options in the
framework of the discrete time approximation set up in Subsection 6.1.Nl,ébe some integer
depending on the time step parameteand let{TV(*), 1 < s < N,,} be N,, independent samples of
the Wiener process. For each integewe denote byX (*) the process\ associated to the Brownian
motion W (*) via formula (16). Also, we set:

Rés)(tj,m) = Sf(j))(h(tj>1[xvoo)(wt(3'8)>

= W —a) [ﬁh +h! <2Wt(js) - Wt(ﬁh - Wt(jslh)} 1[55700)(Wt(j8)) ,

whereS,, andy, are defined respectively in (69) and (71). Following the discussion of the previous
paragraph, we define the estimators :

0 ) o Bt (i XEL) R, (5.50)
pPr \tj, At;) = - 7
j ~ Yo Rg/)n (tj, W)

ng(f) (tj,th) = ¢ (th)
O CARR D L U
(&

N%L Zf:l RESS) (tj7 Wta')

of pi¥ (tj, X,) ande! (t;, Xy, ) respectively. These estimators are defined inductively, given the es-

+ 1y,<1-5

timatorss(~1)(_, .) and the previous estimato}’ (th, x¥

s
J+1

) in the backward procedure. Finally,
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we observe thadzﬁf) <iK and¢§f) < iK. Hence, in order to ovoid an explosion of the algorithm, we
define the truncated estimators (see [5]) :

A (15, X1) = GE) A (85, %,) "
) (X)) = GE) NG (15, %)
and
(72) o (45, X,) = max {p) (8, X,,) ) (85, X,) } -

According to the error estimate of [5], in order for the approximation error to be of the order6f,
one has to choose a numhgy, of simulated trajectories such that

N, = O(n7/2> .

The Value Functions The above algorithm was implemented and tested for the swing put option
with the following characteristics: maturi§/ = 1 year, refraction period = 0.1, r = .05, 0 = .30,
maximal number of exercise rights= 5, n = 50.

Monte Carlo Swing Value Functions for One Exercise Right Monte Carlo Swing Value Functions for Three Exercise Rights

FIGURE 6. Graphs of the functionsV (¢, - ) fort = .59, .58, - - - ,.02,.01 (left) and
of the functionsy® (¢, - ) for t = .49, .47, - ,.02, .01 (right).

The left pane of Figure 6 gives the plots of the graphs of the functions v(!) (¢, z) for t =
.59, .58, ---,.02,.01. Two remarks are in order. First, these graphs are not computed over the same
range of values af. Essentially, we computed the valuesud¥ (¢, ) for the values of: which can
be reached by the sample paths of the diffusion proggsand we determined this range of values of
x from the results of our simulations. The second remark concerns the noise in the numerical results.
Obviously, we should expect zero in the right hand side of the plots, and we see quite significant
departures from this expectation. The right pane of the figure gives the plots of the graphs of the
functionsz — v® (¢, 2) fort = .59, .58, --- ,.02,.01. fort = .49, .47, --- ,.02,.01.
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andz. The fact that the range

100, r = .05, 0 = .30, n = 50
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FIGURE 7. Surface plot of the graph of the functiof) when regarded as function

of botht andz. The variable TAU represent®0 « (T — t).

Figure 7 gives the same plot as the left pane of Figure 6, but instead of super-imposing the one-

we use both #ral thex variables to produce surface plots,

dimensional graphs on the same plot

of x varies witht is obvious from this surface plot, and as expected, it is limited by some form of

or to be more specific the scaled time to maturity= 100(7" — ¢)

parabola. Plotting the graphs of the other value functidfswould produce very similar results and

we refrain from producing them.

Number of Monte Carlo ScenariasWe present some partial numerical results to illustrate the effect

of the number of trajectoried’,,. According to the result of [5] which we re-derived above, the

numberN,, should be of the order of’/2. The results collected in the following Table 1 show that a
very high precision can be achieved even with a significantly smaller number of simulated trajectories.

Table 1.Swing put option values for various numbers of simulations

1 year,§ = 0.1 year,Sy

T —
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N =8,192 [ N = 16,384

v [stand. deV.| 9.84 [.22%)] | 9.85 [.12%]
v? [stand. deV.| 19.21 [.56%)] | 19.26 [.30%)]
(3) [stand. deV.| 28.69 [.68%] | 28.80 [.30%)]
(4) [stand. deV.| 38.34 [.57%)] | 38.48 [.27%]
v®) [stand. deV.| 48.17 [.50%) | 48.32 [.30%]

Exercise Regions Next we identify an estimate of the exercise region for each of the value func-
tionsv() considered as a single stopping problem associated to the reward fu@@ii(dnx). The
corresponding exercise boundaries are given by the graphs of the functiens(¢). Estimates

of these boundaries computed with the Monte Carlo method described in this section are plotted in
Figure 8. The computations were performed with the following parameters: matuity 0 months,
refraction period = 2 months;- = .05, o = .30, maximal number of exercise rights= 5, n = 50,

N = 8192. As expected these exercise boundaries are increasing functions of the time-to-maturity
variable. We also verify that}(t) > 27 ,(¢). This property is consistent with the intuition. We
proved rigorously this result in the case of the perpetual put options in Lemma 5, but a proof of this
fact in the finite maturity case is still lacking: this monotonicity remains an interesting open problem.

Multiple Exercise Regions

/ /

95

a0

/
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FIGURE 8. Estimates of the boundaries of the exercise regions of swing options with
¢ = 5 exercise rights, as given by the graphs of the functions z}(¢t) computed
via the Monte Carlo procedure described in the text.
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