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SUMMARY

Although blocking or pairing before randomization is a basic principle of experimental design, the
principle is almost invariably applied to at most one or two blocking variables. Here, we discuss the
use of optimal multivariate matching prior to randomization to improve covariate balance for many
variables at the same time, presenting an algorithm and a case-study of its performance. The method
is useful when all subjects, or large groups of subjects, are randomized at the same time. Optimal
matching divides a single group of 2n subjects inton pairs to minimize covariate differences within
pairs—the so-called nonbipartite matching problem—then one subject in each pair is picked at random
for treatment, the other being assigned to control. Using the baseline covariate data for 132 patients from
an actual, unmatched, randomized experiment, we construct 66 pairs matching for 14 covariates. We
then create 10 000 unmatched and 10 000 matched randomized experiments by repeatedly randomizing
the 132 patients, and compare the covariate balance with and without matching. By every measure,
every one of the 14 covariates was substantially better balanced when randomization was performed
within matched pairs. Even after covariance adjustment for chance imbalances in the 14 covariates,
matched randomizations provided more accurate estimates than unmatched randomizations, the increase
in accuracy being equivalent to, on average, a 7% increase in sample size. In randomization tests of no
treatment effect, matched randomizations using the signed rank test had substantially higher power than
unmatched randomizations using the rank sum test, even when only 2 of 14 covariates were relevant
to a simulated response. Unmatched randomizations experienced rare disasters which were consistently
avoided by matched randomizations.
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264 R. GREEVY ET AL.

1. GAINS FROM BLOCKING IN RANDOMIZED EXPERIMENTS

In a stratified-block randomized experiment, subjects are grouped into blocks of equal size, and a fixed
fraction of each block is randomly assigned to each treatment under study. In the simplest case, there are
two treatments, blocks are pairs of two subjects, and one subject is picked at random in each pair to receive
each treatment.

Blocking on relevant covariates before randomization can increase balance on these covariates,
increase the efficiency of estimation and the power of hypothesis tests, and reduce the required sample size
for fixed precision or power (Fisher, 1935, Chapter 4; Cochran and Cox, 1957, Section 4.26; Cox, 1958,
Chapter 2; Palta, 1985; Matts and Lachin, 1988; Piantadosi, 1997, Section 9.3). Even when covariance
adjustment is used to control chance imbalances in covariates in randomized experiments, the adjusted
estimate is more precise if the covariates are more nearly balanced (Snedecor and Cochran, 1980,
Section 18.2, p. 368, expression 18.2.3). What if the covariates are irrelevant? Blocking or pairing on
irrelevant covariates wastes a small amount of computer time but does not harm statistical efficiency or
power (Cochran and Cox, 1957, Section 4.26; Chase, 1968).

In experiments, pairing has typically been based on one or two covariates divided into coarse
categories. In contrast, in nonrandomized observational studies, optimal multivariate matching on many
covariates at once is, nowadays, quite common. See Rosenbaum and Rubin (1985) for a case-study of
multivariate matching on 20 covariates in an observational study, Rosenbaum (1989) for discussion of
optimal matching, Gu and Rosenbaum (1993) for an evaluation by simulation. Here, we discuss an
algorithm for optimal multivariate matching before randomization in experiments and illustrate it by
comparing unpaired with paired randomization using baseline covariates from an experiment.

The method we describe is useful when all subjects (or large groups of subjects) are randomized
at the same time. For instance, it will often be applicable to group-randomized designs in which whole
communities are randomly assigned to treatment or control (e.g. Greenet al., 1995; Christianet al., 2000).
With a little planning, the method is applicable to many studies that induce brief but interesting effects,
such as pain or headache, by randomizing healthy volunteers or patients with chronic symptoms that pose
no urgent danger (e.g. Ashinaet al., 2000). The method may be used in randomized PET and fMRI studies
(e.g. Ernstet al., 2001; Sperlinget al., 2002) and randomized studies of the effects of drugs on nonhuman
primates (e.g. Loriet al., 2000). Also, the method is applicable to most studies in experimental psychology
or experimental economics that randomly assign interesting but harmless treatments to undergraduates
(e.g. Thaleret al., 1997).

The method we describe is not useful for clinical trials that gradually accrue patients over a period of
years. A sequential strategy useful for such trials was proposed by Pocock and Simon (1975); their method
makes assignment decisions one at a time, looking only at the covariate data for previously assigned
patients. That method would not typically be used if all subjects were randomized at once, because in
this situation, there is no need to accept a suboptimal assignment by limiting the covariate information to
previously assigned subjects. Randomization inference for Pocock–Simon randomizations is substantially
more complex than for the randomized paired designs we develop.

2. OPTIMAL DIVISION OF A SINGLE GROUP INTO PAIRS

Matching before randomization in an experiment differs from matching in an observational study. In
an observational study, existing treated and control groups are matched—one searches for the best control
for a treated subject—whereas in a randomized experiment, subjects are divided into pairs before they
are assigned to treatment or control. That is, for an observational study, one seeks the best pairing of two
existing groups—an algorithmic problem called optimal bipartite (i.e. two part) matching—whereas in an
experiment, one seeks the best pairing of subjects from a single group—an algorithmic problem called
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Optimal multivariate matching before randomization 265

optimal nonbipartite matching; see Papadimitriou and Steiglitz, (1998, Sections 11.2 and 11.3). For this
reason, we use an algorithm and Fortran code due to Derigs (1988) for optimal nonbipartite matching.

Optimal nonbipartite matching of 2n subjects begins with an(2n)× (2n) distance matrix, which gives
the distance between every pair of subjects in terms of their baseline covariates. One distance for matching
is the Mahalanobis distance (Rubin, 1979), which may be applied to the covariates themselves, or else to
their ranks to limit the impact of a few extreme observations. In nonbipartite matching, the covariance
matrix in the Mahalanobis distance is computed from all 2n subjects.

If desired, certain pairings can be forbidden by defining an infinite distance between two subjects who
must not be paired. Infinite distances between individuals of different gender require men to be matched to
men, women to women. Infinite distances are more flexible than nonoverlapping strata. One can insist that
matched subjects differ by no more than five years in age by setting an infinite distance between subjects
who differ in age by more than five years. In this case, a 40 year old could be matched to either a 37 year
old or a 44 year old, but there would be an infinite distance between the 37 year old and the 44 year old, so
they could not be matched. The Mahalanobis distance may still incorporate age, so in addition to absolute
requirement that age not differ by more than five years, the 37 year old would be judged slightly better
than the 44 year old as a match for the 40 year old.

An optimal nonbipartite matching divides the 2n subjects inton pairs of two subjects to minimize
the sum of then distances within pairs. A naive approach is to pair the two people with the smallest
distance, set them aside, pair the two remaining people with the smallest distance, etc., a so-calledgreedy
algorithm. Greedy algorithms do not produce optimal nonbipartite matchings. Suppose there were eight
people with ages 24, 35, 39, 40, 40, 41, 45, 56, so the distribution is symmetric about 40, and is most dense
near its center, as is true, for example, of the Normal distribution. Greedy would first pair (40, 40), then
(39, 41), then (35, 45), then (24, 56), so the total absolute difference within pairs is 0+ 2+ 10+ 32 = 44.
In contrast, an optimal matching would pair(24, 35), (39, 40), (40, 41), (45, 56), so the total absolute
difference within pairs is 11+ 1 + 1 + 11 = 24. Multivariate matching is more complex, but the same
problem arises: by not looking ahead, greedy ends by producing many poorly matched pairs.

3. METHODS USED IN THE CASE-STUDY

3.1 Logic of the comparison

To illustrate the performance of the matching procedure, we compare the probabilities of covariate
imbalance with complete randomization and with optimal matching followed by randomization within
pairs. We start with an actual, unmatched randomized experiment using nine continuous and five binary
baseline covariates for 2n = 132 subjects from the experiment, and optimally match the subjects into
n = 66 pairs. We repeatedly randomize the subjects, producing 10 000 unmatched experiments and 10 000
matched experiments, and compare covariate balance. The experiment is just a source for a distribution of
baseline covariates.

3.2 The pretreatment covariates

The ACE-Inhibitor After Anthracycline (AAA) Study (Silberet al., 2001, 2003) concerned children who
had survived at least four years after cancer diagnosis, at least two years after the completion of all cancer
treatment, and who had certain defined forms of decline in cardiac systolic performance after treatment
with an anthracycline. It was hoped that the treatment, enalapril, would improve cardiac function. A total
of 69 children were randomly assigned to enalapril and 66 to placebo. To permit an equitable comparison
of matched and unmatched designs, we discarded three enalapril children using random numbers, leaving
132 subjects, of whom 66 will be randomized to treatment and 66 to control.
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266 R. GREEVY ET AL.

Table 1.Mahalanobis distances before and after matching

Quartile Mean
25% 50% 75%

Before matching(n = 8646) 21.0 27.4 34.7 28.2
After matching(n = 66) 7.0 8.9 12.0 9.9

The nine continuous covariates were: MCI= maximal cardiac index, L/min/m2; WS = left
ventricular end systolic wall stress, gm/cm2; Vcf c = rate adjusted velocity of fiber shortening; SF=
shortening fraction %; EF= ejection fraction %; QTc, milliseconds; ANTDOSE= total anthracycline
dose, mg/m2; BMI = body mass index; AGE= age at baseline. The five binary covariates were: Male,
RADS = heart irradiation, AD= anthracycline dose� 300 mg/m2, Black, and Hispanic. Anthracycline
dose appears twice, as a continuous and as a binary variable. It is common in randomized experiments
to present tables and statistical tests describing subjects at baseline before treatment, as a demonstration
that the randomization succeeded in producing initially comparable groups; see, for instance, Tables 1
and 2 in Silberet al. (2003). Although the randomization in the actual experiment appears to have been
entirely successful by any standard criteria, two of these baseline variables did show some imbalance: race
differed significantly (P = 0.024 in their Table 1) with 1 black on enalapril and 9 on placebo, and QTc

differed somewhat (P = 0.056 in their Table 2). One expects such imbalances from randomization when
many covariates are examined—after all, 1 out of 20 covariates should, by accident, differ significantly at
the 0.05 level—but one hopes for as much covariate balance as possible. Section 4 compares balance in
matched and unmatched experiments.

3.3 Covariate distances between subjects

We replaced each of the nine continuous covariates by their ranks, ranking from 1 to 132, and appended
the five binary covariates, making a 132×14 matrix. We then computed the Mahalanobis distance between
each pair of subjects, yielding a symmetric 132× 132 matrix of distances. If subjects are paired, there are
66 distances within the 66 pairs. The optimal matching minimizes the total of the 66 distances over all
possible ways to pick 66 pairs.

In terms of the Mahalanobis distance, matched children were much more similar than a pair of children
picked at random. Table 1 compares the distances among the

(132
2

) = 8646 possible pairings of two of the
children with the 66 pairings produced by optimal matching. The means and quartiles are about one-third
as large in matched pairs compared to two children picked at random. Whether or not this translates into
something useful is the topic of Section 4.

3.4 Creating and evaluating the experiments

Wecreated 10 000 unmatched randomizations splitting 132 children into two groups of 66, and we created
10 000 matched randomizations in which one child in each of 66 matched pairs was picked at random for
each group. For each experiment, and for each of the 14 covariates,k = 1, . . . , 14, there are 66 values,
say yk1, . . . , yk,66, of the covariate among the 66 treated subjects, and 66 values, sayxk1, . . . , xk,66, of
the covariate among the 66 controls. The merged set of 132 values of thekth covariate never changes; the
experiments differ only in how randomization partitions the 132 children into two groups of 66. Are the
partitions better when formed by randomizing within matched pairs?

We answer this question in various ways. All ways compare the 66 treated children and the 66
control children in terms of the comparability of the two groups with respect to the distributions of the
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Optimal multivariate matching before randomization 267

14 covariates. Some measures focus on the typical imbalance in individual covariates, say the absolute
value of the difference in means (Section 4.1) or odds ratios for binary covariates (Section 4.3). Others in
Section 4.2 focus on significance levels orP-values as in Section 3.2.

A common suggestion is to control imbalances in covariates using a model such as covariance
adjustment; however, theory shows covariance adjustment is more efficient—in the sense of smaller
variance of an unbiased estimate—when the covariate imbalance is smaller. We compare the efficiency
of covariance adjustment estimates in matched and unmatched randomized experiments; see Section 4.4.
Familiar least squares calculations show that relative efficiency is a function of covariate imbalance, and
we calculate this function in our simulated experiments.

Because we are interested in a fair comparison of two competing methods of randomization, we
always apply the same measure of covariate imbalance to both types of randomized experiment—i.e.,
if we changed both the measure of imbalance and the method of randomization at the same time, we
would not know whether a difference was produced by a change in method or a change in measure. In
particular, we do not use measures of covariate imbalance for matched pairs, because they cannot be
computed for the unmatched randomizations. This issue is most prominent when computingP-values,
because we compute unmatchedP-values for both matched and unmatched randomizations. This might
be a concern if onlyP-values were used as measures of covariate imbalance. However, all of our measures
end up pointing in the same direction; hence, idiosyncrasies in any one measure cannot explain consistent
results over many measures.

For each randomization, there is an opposite randomization which reverses the roles of they and the
x , making treated subjects into controls and controls into treated subjects. As a consequence, it makes
sense to ask how balanced they andx are, but not in a way that attaches importance to which group is
labeledy and which is labeledx . All measures we report are unchanged by relabeling.

4. MATCHED AND UNMATCHED RANDOMIZATIONS

4.1 Absolute difference in means

The first measure of covariate imbalance for the nine continuous covariates was simply the absolute value

of the difference in means,Mk =
∣∣∣ 1

66

∑66
j=1 yk j − 1

66

∑66
j=1 xk j

∣∣∣, ameasure of the typical difference. As

absolute values are taken,Mk is always nonnegative, whereas, without absolute values,Mk would have
expectation 0 over repeated randomizations. We averageMk over the 10 000 randomizations, and then
compute the ratio of the two averages, matched/unmatched, which is called the ‘bias ratio’ in Table 2.
In Table 2, the absolute difference in means is, on average, 25% to 35% smaller when randomization is
performed within matched pairs than when performed without matching.

4.2 P-values from the rank sum test

Table 2 also describes the two-sidedP-values for Wilcoxon’s two sample rank sum test comparing thex
and they; see Section 3.4 for discussion. Because the rank sum test is a randomization test for a study
with complete (unmatched) randomization, we expect 5% of theseP-values to be less than 0.05 with
unmatched randomization, and Table 2 confirms this, with about 500P-values less than 0.05 in 10 000
randomizations. In the final column of Table 2, the rank sumP-value is used solely as a comparable
measure of covariate imbalance in the matched samples. Here, for all nine covariates, theP-value is less
than 0.05 in substantially less than 0.5% of randomizations, and 0.2% is more nearly typical. The balance
is better with matched randomizations.

In each of the 20 000 randomized experiments, we computed the minimum of the nine two-sidedP-
values from Wilcoxon’s rank sum test applied to the nine continuous covariates. With nineindependent
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Table 2. Comparing covariate balance with matched and
unmatched randomization for nine continuous covariates in

10 000 experiments

Covariate Bias ratio Unmatched: # of Matched: # of
P � 0.05 in 10 000 P � 0.05 in 10 000

randomizations randomizations
MCI 65% 544 21
WS 65% 458 21

Vcf c 79% 512 21
SF 68% 479 12
EF 64% 511 6

QTC 72% 507 17
ANTDOSE 62% 438 2

BMI 75% 503 37
AGE 63% 506 5

Table 3. Minimum P-value over nine continuous covariates for
10 000 unmatched and 10 000 matched randomizations

Median Low quartile #< 0.10 #< 0.05 #< 0.01
Unmatched 0.081 0.034 5829 3416 807

Matched 0.272 0.183 732 139 1

covariates, one would expect 1− (1 − 0.05)9 = 37% of randomizations to yield a minimumP-value
less than 0.05. Table 3 describes the distribution of the minimumP-value. In 34%= 3416/10 000 of
the unmatched randomizations, the minimumP-value was less than 0.05, and in 8%= 807/10, 000
it was less than 0.01, whereas with matched randomizations, the corresponding percentages were 1.4%
instead of 34% and 0.01% instead of 8%. The worst of nine imbalances is much better with matched
randomization compared to unmatched randomization. In fact, the worst imbalance for nine covariates
with matching is smaller than expected for a single covariate without matching, in that only 1.4% of the
minimum P-values with matching was less than 0.05, whereas 5% are expected by chance for a single
covariate without matching.

It is important to keep in mind that Tables 2 and 3 hold the two methods of randomization to the same
standard, finding better covariate balance with matched randomization. The picture would, of course, be
different if the two methods were held to different standards; see Section 3.4. If the rank sum test were
applied to unmatched randomizations and the signed rank test were applied to matched randomizations,
then, because both are randomization tests for the corresponding randomizations, theory would lead one
to expect 5% rejections at the 0.05 level. However, the signed rank test for matched pairs examines only
differencesnot controlled by the matching, and so it is not the appropriate way to measure what differences
were controlled by the matching. The signed rank and rank sum tests are compared in Section 4.5.

4.3 Binary covariates

For each of the 20 000 randomizations, for each of the five binary covariates, there is a 2× 2 contingency
table,treatment × covariate. The odds ratio can be computed from a 2× 2 in two ways, so that one
odds ratio is the reciprocal of the other; we select the odds ratio greater than one, which is analogous to
absolute values of mean differences in Section 4.1. For thekth of the five variables, we calculated the
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upper quartileωmk of these odds ratios over the 10 000 matched randomizations, and the upper quartile
ωuk over the 10 000 unmatched randomizations, where by definition,ωmk � 1 andωuk � 1. Balance is
an odds ratio of 1. The five unmatchedωuk ranged from 1.48 to 2.62, while the five matchedωmk ranged
from 1.00 to 1.35, so the matched randomizations were better balanced for all five binary covariates,
1 � max

k
ωmk � min

k
ωuk .

The two-sidedP-value from Fisher’s exact test is twice the smaller of the two one-sidedP-values. For
unmatched randomizations, Fisher’s exact test behaved as statistical theory says it should behave: because
of discreteness, it gaveP-values� 0.05 in slightly fewer than 5% of the 10 000 randomizations for each
variable. In sharp contrast, none of the 5× 10 000P-values for matched randomization was significant at
either 0.10 or 0.05. The binary variables were better balanced by matched randomization.

4.4 An efficiency measure

Whether or not matching has been used, one might adjust for the 14 covariates using covariance
adjustment; see Rubin (1979) who compares several approaches, including conventional unmatched
covariance adjustment applied to both matched and unmatched samples. Covariance adjustment is more
efficient when the covariates are more nearly balanced, and the gain can be measured in a simple way.

Let W be the 132× 15 matrix whose rows correspond to the 132 subjects, and whose columns are
the 14 covariates plus a column of 1’s for a constant term. LetV be the 132× 1 vector which is 1 for
someone assigned to treatment and−1 for someone assigned to control, so

∑132
i=1 Vi = 0 as there are

always 66 treated subjects. Covariance adjustment is a linear least squares regression of some outcome
on the predictors[V, W] with the first of the 16 estimated regression coefficients, that is the coefficient
of V, reported as half the estimated treatment effect. Under Gauss–Markov assumptions—a linear model
with additive errors that are uncorrelated with constant varianceσ 2—the 16 estimated coefficients have
covariance matrix,

σ 2
[

VT V VT W
WT V WT W

]−1

whose(1, 1) element is

σ 2

VT
[
I − W

(
WT W

)−1 WT
]

V
= σ 2

VT QV
with Q = I − W

(
WT W

)−1
WT , (1)

by properties of the inverse of a partitioned matrix (e.g. Rao, 1973, p. 33). The varianceσ 2/VT QV of
the estimated treatment effect in (1) is smallest when the covariates are most nearly balanced: that is,
whenV is orthogonal to the columns ofW so thatWT V = 0. It follows thatVT QV is a measure of
covariate balance directly relevant to the efficiency of covariance adjustment: asVT QV becomes larger,
the sample becomes more balanced, and the standard error of the covariance adjusted estimated treatment
effect becomes smaller. A 5% increase inVT QV is effectively the same as a 5% increase in sample size.
Reversing the group labels makesV into −V, soVT QV is unchanged.

For each randomization, we computeVT QV, where larger values are preferred. In Table 4,VT QV
is higher for the matched rather than unmatched randomizations, equivalent to an increase in effective
sample size of about 7% on average. The unmatched randomizations are not only less efficient, but
also less stable in their performance—the interquartile range is more than twice as large—and the worst
performance is much worse. The worst of 10 000 matched randomizations is comparable to the 25%
percentage point of unmatched randomizations.
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Table 4.Effect of matching on the efficiency of covariance adjustment in
10 000 randomizations

Quartile
min 25% 50% 75% Max Mean

Unmatched
randomizations 92.83 114.85 118.46 121.48 129.80 117.87

Matched
randomizations 114.00 124.87 126.50 127.84 131.32 126.20

Gain in efficiency
due to matching 22.8% 8.7% 6.8% 5.2% 1.2% 7.1%

In short, the use of matched rather than unmatched randomization prior to covariance adjustment in
this example is, on average, equivalent to about a 7% increase in sample size with no additional cost. The
average tells only part of the story, however. Matched randomization is much less likely than unmatched
randomization to produce a bad randomization that results in substantial losses in efficiency.

4.5 Power of randomization tests

Does matching affect the power of randomization tests? As a small illustration, we created an artificial
response variableR in the following way. The response is intended to simulate the post-treatment
maximum cardiac index MCI, which was the primary endpoint in the experiment. We cannot use the actual
post-treatment MCI because this is known only for the randomization actually performed, whereas we
need values for every possible randomization. The artificial MCI was equal to the baseline MCI, minus 5
if the subject received heart irradiation prior to the experiment (RADS= 1), plus a treatment effect of
eitherτ = 0 or τ = 2.5 if the subject was randomized to enalapril, plus independent Normal errors with
mean zero and standard deviation 5. Notice that we matched on 14 covariates, but only two were relevant,
and our algorithm did not know which were relevant. Each randomization changes the pattern of treatment
effects, and we drew new Normal errors for each randomization. In each randomization-simulation step,
we tested the null hypothesis of no treatment effect by an appropriate randomization test, the rank sum
test for unmatched randomizations, the signed rank test for matched randomizations, recording whether or
not the null hypothesis was rejected. All tests were two-sided, 0.05 level tests. When the treatment effect
wasτ = 0, the proportion of rejections estimates the levels of tests that aim to have level 0.05. When the
treatment effect wasτ = 2.5, the proportion of rejections estimates the power of the test. We increased
precision using antithetic variables.

Both tests had the correct level: withτ = 0, the fraction of rejections was 5.1% for both the signed
rank test applied to matched randomizations and the rank sum test applied to unmatched randomizations.
The power was higher with matched randomizations: withτ = 2.5, the signed rank test rejected the null
hypothesis for 71.9% of matched randomizations, while the rank sum test rejected the null hypothesis for
58.3% of unmatched randomizations. Standard errors were±0.2%.

5. THEORETICAL COMPARISONS

In the case study in Section 4.4, covariance adjustment of matched experiments was, on average, about
7% more efficient than covariance adjustment of unmatched experiments. Here, we further explore this
comparison in a few tractable theoretical cases. As it turns out, the gain in efficiency from matching before
randomization can be substantially larger or substantially smaller than 7%. In the situations we examine,
the gain in efficiency increases as the number of covariates increases, and it decreases as the sample size
increases.
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In the notation of Section 4.4,E
(
VT QV

) = tr
{

E
(
VVT

)
Q

}
, where the expectation is over the

randomization distribution, so we need to computeE
(
VVT

)
for unmatched and matched randomizations.

BecauseV 2
i = 1, the 2n × 2n matrix E

(
VVT

)
has 1’s along the diagonal. Now consider the off-

diagonal,i �= j , so thatVi × Vj is ±1. For unmatched randomization, an easy counting argument shows
E

(
Vi × Vj

) = −1/ (2n − 1). For matched randomization, number the 2n subjects so adjacent subjects
are matched, 2k − 1 matched to 2k, k = 1, . . . , n; thenV2k−1 = −V2k , so E

(
VVT

)
is block diagonal,

with n blocks, each a 2× 2 matrix with 1’s on the diagonal and−1’s off the diagonal.
Table 5 displays the percentage increase inE

(
VT QV

) = tr
{

E
(
VVT

)
Q

}
due to optimal matching

before randomization for several structured covariate matrices, withk = 3, 7, 11 covariates and 2n =
16, 32, 64, 128 observations. This percent increase inE

(
VT QV

)
is the percentage increase in effective

sample size; see Section 4.4. In all cases, the covariates are±1 and are given by complete or fractional
factorial designs from Boxet al. (1978, p. 410, Table 12.15). A designr × 2k−p is a two-level (fractional)
factorial withk factors, in 2k−p distinct treatment combinations, each combination replicatedr times,
for a total ofr × 2k−p observations. For instance, 8× 23 is a complete factorial in three factors, eight
treatment combinations, replicated eight times, for 64 observations. Similarly, 1× 27−3 is a 1

8 fraction of
a 27 factorial, with seven factors, in 27−3 = 16 observations, with each treatment combination appearing
only once. Whenr � 2 with r even, there are at least two observations with exactly the same covariate
values for all covariates, so an exact matching on the covariates exists, andE

(
VT QV

) = 2n for the
matched experiment. Whenr = 1, no two observations have the same covariate values, and no exact
matching exists. Indeed, whenr = 1, the matching is very poor, because in a good unreplicated fractional
factorial, the treatment combinations are extremely dispersed among corners of the 2k cube with vertices
±1; see the figure in Boxet al. (1978, p. 387, Table 12.4). For example in the 1× 27−2 design with
seven factors in 32 observations, every one of the

(32
2

) = 496 pairs of two observations differ in at least
two covariates. If the±1 had been generated by coin flips, rather than by the fractional factorial, then
covariates would have been closer. For instance, suppose the first subject had covariate values specified
by a particular pattern of seven of the±1. How close would the remaining 31 subjects be to this first
subject if the covariates had been generated by coin flips? Take the pattern for the first subject as given.
From the binomial distribution, the chance that another subject will differ from the first subject by 0/7 or

1/7 covariates is 0.0625=
(

1
2

)7 + 7
(

1
2

)7
. The chance that at least one of the 31 other subjects differs

from the first subject on at most one covariate is then 1− (1 − 0.0625)31 = 0.865. In other words, 86.5%
of the time, coin flips would produce a closer match for the first subject than would the 1× 27−2 design.
In short, whenr � 2, matching is unnaturally easy, but whenr = 1 matching is unnaturally difficult.
Together, the casesr � 2 andr = 1 give an indication of the range of what is possible.

Table 5 exhibits interesting patterns. The case-study in Section 4.4 hadk = 14 covariates and 2n =
132 observations, so it most closely resembles the last two situations in Table 5, withk = 11 covariates
and 2n = 128 observations. The 7.1% average gain in Section 4.4 is just about half-way between the
9.5% gain for the exact match in the 2× 211−5 design in Table 5 and the 4.4% gain for the poor match
1×211−4 design. In Table 5, the gain from matching before randomization is greater when there are more
covariates and when there are fewer observations. With three covariates and 128 observations, the 2.4%
gain is probably not worth the effort, but substantial increases, often above 10%, in effective samples size
are common in Table 5, even in the unnaturally ‘poor match’ situation.

6. HOW MANY COVARIATES?

How many covariates and which covariates should be used in matching? This decision is made
with the covariates in hand, before randomization, before the outcomes are available. Obviously, if the
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Table 5. Gain in efficiency of covariance adjustment from
matched randomization: percentage increase in effective sam-

ple size

Covariates Sample Design Comment Gain in
k size, 2n efficiency (%)
3 16 2× 23 Exact match 25.0
3 32 4× 23 Exact match 10.7
3 64 8× 23 Exact match 5.0
3 128 16× 23 Exact match 2.4
7 16 2× 27−4 Exact match 87.5
7 16 1× 27−3 Poor match 17.2
7 32 2× 27−3 Exact match 29.2
7 32 1× 27−2 Poor match 13.0
11 32 2× 211−7 Exact match 55.0
11 32 1× 211−6 Poor match 16.2
11 64 2× 211−6 Exact match 21.2
11 64 1× 211−5 Poor match 9.8
11 128 2× 211−5 Exact match 9.5
11 128 1× 211−4 Poor match 4.4

experimenter knew with certainty which covariates will matter for the outcomes measured later, and if
there was general scientific consensus about which covariates matter, then matching would focus on these
covariates; however, an experimenter may work in a field in which certainty and consensus are, at times,
unavailable.

In Sections 4.1–4.3, multivariate matching before randomization substantially improved the com-
parability of treated and control groups at baseline for 14 covariates simultaneously. In Sections 4.4
and 5, multivariate matching before randomization meaningfully increased the efficiency of covariance
adjustments, increasing the effective sample size, at no additional cost. In the artificial illustration in
Section 4.5, only two of the 14 covariates mattered for the simulated outcome, and the matching algorithm
had no information about which two were important and which 12 were irrelevant, yet matching on all
14 covariates substantially increased the power of a conventional randomization test while preserving
the level of the test. In this case study, matching on 14 covariates was much better than complete
randomization.

How many covariates should be used in matching? Obviously, there is no one answer for all
contexts, but the case study leads to two relevant suggestions. First, the common practice in randomized
experiments is either complete randomization, without matching, or matching on one or two covariates.
The case study suggests that it is practical to match on substantially more than two covariates, with
substantial benefits.

Second, as our case study exemplifies, the baseline covariates in an experiment may be studied
empirically, before randomization, to decide which of several competing randomized designs has the best
operating characteristics over repeated randomizations. Suppose that an experimenter has the baseline
covariate information for the subjects in an experiment and is about to randomize those subjects to
treatment or control. In principle, this experimenter could use the covariates to carry through the
calculations we performed in our case study to decide whether to use complete randomization or matched
randomization, or alternatively, to decide whether to match on 5 or 25 covariates. (Although the initial
programming of the case study was time-consuming, once programmed, the computer’s calculating effort
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was comparable to many Markov chain Monte Carlo analyses that are, today, performed routinely.) A
less ambitious experimenter might simply construct the optimal match with 5 covariates and with 25
covariates, and, before randomizing, examine the covariates in the resulting two sets of matched pairs. In
short, a general rule is not needed; rather, the experimenter can take a look at the matched pairs before
randomization.

7. ANALYSIS OF A MATCHED RANDOMIZATION

In a matched randomized experiment, a variety of methods of analysis are available. For instance,
Wilcoxon’s signed rank test is a randomization test for the null hypothesis of no treatment effect
(Lehmann, 1998, Section 3.2, p. 123). If the treatment effect is constant, not varying from person to
person, then an exact, randomization based confidence interval for the constant effect may be formed by
inverting the test. Alternatively, if the treatment effect is not constant, then the signed rank test may be
inverted in a different way to obtain exact, randomization based confidence intervals for a measure of the
magnitude of effect attributable to treatment (Rosenbaum, 2003, Section 3).

Multivariate matching reduces covariate imbalances, but the pairs are imperfectly matched. One might
wish to reduce these imperfections with some form of covariance adjustment, and still use randomization
as the ‘reasoned basis for inference,’ in Fisher’s (1935) phrase. That is, one might wish to obtain an
exact, randomization based confidence interval for a constant effect, with covariance adjustment for
imperfections in the matching of covariates, without assuming the covariance adjustment model is true,
and without distributional assumptions. This is possible, and the straightforward steps are described in
Rosenbaum (2002, Section 4).

Subjects may be randomized in pairs, but a few subjects may fail to provide the needed outcome
data, leaving a treated subject with no matching control or a control with no matching treated subject. If
the missing data were missing completely at random, then it is possible to retain the broken pairs using
methods proposed by Wei (1982).

8. SUMMARY

In our case study, by every measure, for every one of the 14 covariates, randomization within optimally
matched pairs produced better covariate balance than did complete randomization. Whether judged by
means, odds ratios orP-values, the improvements in covariate balance were substantial. The power of
conventional randomization tests of no treatment effect was greater with matched randomizations; see
Section 4.5. Although it is possible, under Gauss–Markov assumptions, to remove chance imbalances by
covariance adjustment, those adjustments yield more precise estimates when performed in a matched
experiment. In our case study, the typical reduction in standard error of this adjusted estimate was
equivalent to an increase in sample size of about 7%; see Section 4.4. Moreover, unmatched randomization
produced occasional disasters which were consistently avoided by matched randomizations; e.g., rare
binary variables totally confounded with treatment in Section 4.3 or a 23% loss of efficiency in Section 4.4.
The method entails a small amount of additional computation and is practical when all subjects, or large
groups of subjects, are randomized at the same time.
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