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Optimal Noise Filtering in the Chemotactic
Response of Escherichia coli
Burton W. Andrews
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Information-carrying signals in the real world are often obscured by noise. A challenge for any system is to filter the
signal from the corrupting noise. This task is particularly acute for the signal transduction network that mediates
bacterial chemotaxis, because the signals are subtle, the noise arising from stochastic fluctuations is substantial, and
the system is effectively acting as a differentiator which amplifies noise. Here, we investigated the filtering properties
of this biological system. Through simulation, we first show that the cutoff frequency has a dramatic effect on the
chemotactic efficiency of the cell. Then, using a mathematical model to describe the signal, noise, and system, we
formulated and solved an optimal filtering problem to determine the cutoff frequency that bests separates the low-
frequency signal from the high-frequency noise. There was good agreement between the theory, simulations, and
published experimental data. Finally, we propose that an elegant implementation of the optimal filter in combination
with a differentiator can be achieved via an integral control system. This paper furnishes a simple quantitative
framework for interpreting many of the key notions about bacterial chemotaxis, and, more generally, it highlights the
constraints on biological systems imposed by noise.

Citation: Andrews BW, Yi TM, Iglesias PA (2006) Optimal noise filtering in the chemotactic response of Escherichia coli. PLoS Comput Biol 2(11): e154. doi:10.1371/
journal.pcbi.0020154

Introduction

One of the thrusts of the new area of systems biology is the
understanding that biological systems can be studied with
many of the tools and theory that are used to analyze man-
made systems [1,2]. Biological and engineered systems share
many of the same features. One of these is the need to make
decisions based on imperfect information about the environ-
ment, because the cell relies on noisy sensing [3–7]. The
chemotaxis signaling pathway of Escherichia coli serves as an
ideal vehicle for studying how biology copes with this form of
uncertainty.

Bacteria traverse up gradients of chemical attractants in an
efficient manner. This chemotactic behavior is universal in
living organisms. Two basic chemotaxis strategies are spatial

and temporal sensing [8]. In spatial sensing, cells compare
spatial differences in chemical concentration (e.g., front
versus back) to determine the direction of the gradient. In
temporal sensing, cells detect temporal changes in chemical
concentration as they move, thereby providing information
about whether the course is favorable.

The classic work of Berg and colleagues, along with others,
have conclusively demonstrated that E. coli employ a temporal
sensing mechanism, engaging in a biased random walk
consisting of alternating periods of straight runs and random
tumbles (Figure 1A, [9]). When the concentration of chemo-
attractant (L) is increasing in time (dL/dt . 0), the bacteria
tend to have longer runs (i.e., the probability of a tumble
decreases), thus allowing the bacteria to move up the
gradient. If the chemoattractant concentration is decreasing
(dL/dt , 0), then the bacteria are more likely to reorient their
direction by tumbling.

The sensing of the chemoeffectors in E. coli is performed by
a two-component signal transduction pathway consisting of
transmembrane receptors (MCPs, methyl-accepting proteins),

receptor methylases (CheR), and demethylases (CheB) that

regulate receptor activity, signal transducing histidine

kinases, and downstream effectors (e.g., CheY) (Figure 1B,

[10,11]). One hallmark of this signaling system is perfect or

near-perfect adaptation to a persistent input stimulus, which

is a consequence of the temporal differentiation effected by

the signaling pathway [12]. It has been demonstrated that this

perfect adaptation is robust to dramatic changes in compo-

nent levels of the pathway, a robustness that can only be

achieved through a special type of feedback control, integral

feedback [12,13]. However, the adaptation time is quite

sensitive to changes in component levels such as concen-

trations of CheB and CheR [13,14].

A major challenge of temporal sensing is accurately

measuring changes in chemoattractant concentration (dL/dt)

in the presence of noise. Fluctuations, such as those intrinsic

to the ligand–receptor binding process, are amplified by this

temporal differentiation. A traditional fix in engineering is to

use a low-pass filter to remove the high-frequency noise from

the lower-frequency signal; the E. coli signaling network

implements such a mechanism (Figure 2). The key design

criterion is to determine the appropriate cutoff frequency for

the filter. In the time domain, this roughly corresponds to
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selecting the optimal time over which to measure, and
average, chemoattractant. The length of time over which

the signal is averaged is inversely proportional to the filter-
cutoff frequency and determines the adaptation time of a
differentiating system to step inputs. This averaging time may

also be thought of as a memory length because the cell must
‘‘remember’’ previous values of the input to compute the
average. If the averaging or adaptation time is too short, then
the noise is not filtered out; alternatively, if the time is too

long, then the bacteria cannot detect real changes in the
gradient [15,16].

In this paper, we use theoretical tools to study the effects of

noise on the ability of a cell to chemotax and, more
specifically, on how bacteria cope. We first use simulations
to show that adaptation time (filter-cutoff frequency) affects
the chemotactic performance of the cell and that there exists

an optimal adaptation time that allows cells to chemotax the
farthest. Having shown that the adaptation time can make a
difference to chemotactic efficiency, we conjecture that this

effect is predicated on the ability of the cell to estimate its
environment accurately in the presence of noise. To test this,
we use theoretical tools to determine which filter-cutoff
frequency leads to optimal detection of temporal changes in

chemoattractant concentration. The signal to be estimated is
ligand concentration, and noise arises from the discrete
nature of ligand–receptor interactions during binding. We

demonstrate that the theoretically obtained cutoff frequency
for optimal estimation has the same dependence on external
parameters (e.g., noise and rotational diffusions levels) as the
adaptation time that achieves optimal chemotaxis in simu-

lation, implying that optimal ligand estimation is necessary
for optimal chemotaxis. Finally, we illustrate how integral
feedback control, a known characteristic of the bacterial

signaling network [12], implements robust temporal differ-
entiation in which a first-order filter is in series with the
differentiator. Thus, we show that the signal transduction
pathway found in E. coli is an implementation of the optimal

sensing mechanism we derive theoretically. This fact is further

verified by quantitative comparison of our results with

published models of the signaling network and experimental

data.

Results

Adaptation Times Affect Chemotaxis
We first examined the effect of adaptation time on

chemotaxis through simulation. To this end, we developed a

model of the signal transduction network of E. coli (Materials

and Methods). This model is based on the receptor-

modification model of [17] and other more recent models

that include receptor clustering and recreate the experimen-

tally observed chemotactic behavior faithfully [18,19]. A

simplified system consisting of a differentiator coupled to a

first-order filter captures the primary features of this model:

the cell averages the measurement of ligand over a period of

Figure 1. Bacterial Chemotaxis

(A) E. coli swim towards nutrients via alternating running and tumbling
movements. During each running period, the cell is aligned with the
chemoattractant gradient with angle hi. These angles change abruptly
after each tumble. However, rotational diffusion hinders the ability to
swim in straight paths, so that the alignment angle varies stochastically.
(B) Chemotactic system. Chemoreceptor complexes contain the proteins
CheA and CheW. Ligand–receptor interactions, stochastic in nature,
affect the autophosphorylation of the kinase CheA (A), which is capable
of transferring its phosphoryl group (P) to the protein CheY (Y). The
phosphorylated form of CheY induces clockwise rotation of the flagella,
causing tumbling. CheA also transfers phosphoryl groups to CheB (B), an
enzyme responsible for demethylation of the receptor complex.
Adaptation is achieved via the methylation of the receptor complex by
CheR (R). Clockwise rotation of the flagella induces tumbling and a
reorientation of the cell while CCW rotation propels the cell forward in a
run. Swimming, affected by rotational and translational diffusion, leads
the cell to new ligand concentrations in the environment.
doi:10.1371/journal.pcbi.0020154.g001
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Synopsis

Bacterial motility involves successive periods of relatively straight
runs, interspersed by tumbles—periods in which the bacteria are
reoriented randomly. To move in the direction of chemical
gradients—a process known as chemotaxis—cells modulate the
duration of the runs. To ascertain whether the direction of the
current run is desirable, cells continuously monitor temporal
changes in the chemoattractant concentration. However, the
decisions can only be based on imperfect information about the
environment because binding noise implies that receptor occu-
pancy is a limited measure of the chemoattractant concentration.
Bacteria cope by filtering the sensed signal to reduce the effect of
this binding noise. Through simulations, Andrews, Yi, and Iglesias
demonstrate that there is a particular filter cutoff frequency that
achieves optimal chemotaxis. Moreover, using a model of the
sensing mechanism, the authors also compute the theoretically
optimal system for estimating the chemoattractant concentration
from the noisy receptor-occupancy signal. Andrews and colleagues
show that these two filtering systems are closely matched, and that
their frequency-dependent behavior corresponds to published
experimental data. Their results highlight the constraints that noise
places on cellular performance as well as demonstrating how cells
have evolved to deal with this uncertainty in an optimal fashion.

Noise Filtering in Chemotaxis



time, and then differentiates to determine the quality of the

current run direction (Figure 2, Materials and Methods). This

approximation of the signaling pathway allows us to adjust

the filter’s cutoff frequency, mimicking the effect of changes

in the concentrations of signaling components on adaptation

time, while keeping other signaling characteristics constant

(Figure 2B). The system’s gain was selected to reflect the gain

of a model of the system. The simulations are 2-D and include

the run/tumble decision, the motion of the bacterium, as well

as the physical implementation of diffusion and noisy

signaling. A 1-D linear gradient of attractant was applied,

and the chemotactic performance was measured by the

average migration distance up the gradient over a period of

time. Other key parameters in our simulations were the

rotational diffusion constant and the measurement noise

variance (Materials and Methods).

Our simulations indicate a biphasic response: cells with a

particular filter-cutoff frequency move farther up the chemo-

attractant gradient than cells with either higher or lower

frequency cutoffs (Figure 3A). Moreover, the range of

frequencies for which optimal chemotaxis efficiency is

observed was narrow (Figure 3B). For example, an approx-

imately 2-fold increase in cutoff frequency from the optimal

(from 3.4 to 7.0 rad/s) significantly decreased the distance
traveled (249 6 13 versus 169 6 10 lm, SEM, p , 10�5 using
Student’s t-test). Similarly, a 4-fold decrease in the cutoff
frequency (from 3.4 to 0.8 rad/s) also reduced the distance
traveled, though less significantly (213 6 15 lm, SEM, p ,

0.04). These trends are also observed in signaling models that
included higher order rolloff (Figure S1). These data illustrate
that to achieve optimal chemotaxis, it is necessary to have
optimal or near-optimal noise-filtering capabilities.
To determine how external parameters affect the optimal

filtering conditions and how they relate to chemotaxis
performance, we repeated our simulations for a wide range
of binding noise levels and rotational diffusion coefficients
(Figure 4A and 4B). In all cases the cells exhibited the same
biphasic frequency dependence, indicating that the existence
of an optimal filter-cutoff frequency was a robust feature of
the network. However, the specific cutoff frequency at which
optimal chemotaxis was achieved was parameter-dependent
(see below).

Optimal Filtering in E. coli
The simulations above indicated the existence of specific

adaptation times that lead to optimal chemotaxis, and that
these adaptation times are dictated by the cutoff frequency of

Figure 2. Effect of Adaptation Time on Filtering Capabilities

(A) When subjected to an abrupt change in chemoattractant concentration (x(t)), the output (A(t)) of the model of the E. coli signaling pathway
(Materials and Methods) responds with an initial transient burst which decays exponentially. The adaptation time depends on the component levels of
the signaling pathway such as the methylation rate cR [13,14]. Faster methylation rates (cR) yield shorter adaptation times but result in noisier activity
levels. Thus, the filtering capabilities of E. coli are determined by the time it takes to adapt to step inputs of ligand.
(B) The adaptation response of E. coli is representative of a system consisting of a low-pass filter (k/(sþ k)) coupled with a differentiator (s) (inset). A
negative gain is used here to mimic the activity response of E. coli to positive changes in ligand [38]. As in the case of the E. colimodel, the output of the
low-pass filter plus differentiator (y(t)) is a filtered version of the derivative of the input signal. Smaller filter cutoff frequencies (smaller k), which
correspond to longer averaging times, yield less noisy outputs. Red dashed lines indicate the time it takes the mean output of the filter to reach 95% of
its steady state level. Although longer averaging times help reduce noise, they result in a slower response: the output takes longer to approach zero
after the step.
doi:10.1371/journal.pcbi.0020154.g002
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a low-pass filter. To investigate this further, we used tools
from estimation theory to deduce the optimal filter that best
separates the true ligand concentration from the noise
induced by ligand–receptor binding. We assumed that E. coli
is swimming in an environment in which the concentration of
the chemoattractant at point z is L(z). Moreover, the move-
ment of the bacterium leads to a time-varying change in
concentration in its neighborhood: L(z(t)). The bacterium
must track how L(z(t))—the ‘‘signal’’ of the system—changes
over time to determine whether the current swimming
direction is favorable (dL/dt . 0) or unfavorable (dL/dt , 0).
This determination and its effect on cell movement, achieved
via the signal transduction network [20,21], leads the cell to
new ligand concentrations L(z(t)), thus completing the feed-
back loop between the cell and its environment (Materials
and Methods).

In practice, the cell can only determine an estimate of
L(z(t)) based on the number of receptor–ligand complexes on
the cell surface. Moreover, this estimate is corrupted by the
presence of noise. Sources of noise include: (i) stochastic
binding dynamics of ligand to receptor (ligand binding noise
[22]), and (ii) counting fluctuations associated with the
diffusion of a small number of ligand molecules into a finite
volume (ligand diffusion noise [15,23,24]). We assume that the
concentration of ligand-bound receptor complexes is C(t) þ
v(t) where C(t) is the concentration of receptor complexes in
the absence of noise and v(t) is a noise term due to ligand–
receptor binding. We now ask the following question: from a
signal processing perspective, what is the optimal filtering
mechanism that best estimates L(z(t)) from the noisy
observation C(t) þ v(t)? To answer this, we first made several
assumptions about the cell’s environment.

We assumed a 2-D environment with linear ligand gradient
g (lM/lm). Then dL/dt¼@L/@z�@z/@t¼ gucos(h(t)), where z is cell
position, u is the magnitude of the cell’s velocity, and h(t) is
the orientation of the cell at time t with respect to the
gradient. We treated h(t) as a zero-mean white random

process with variance 2Drs, where s is an average length of a
bacterial run, and Dr is the rotational diffusion coefficient.
This implies that dL/dt ¼ w(t), where w(t) is a white random
process with variance g2u2var(cos(h(t))). Thus, changes in the
signal L(z(t)) of the system are affected by rotational diffusion:
larger Dr yields greater signal fluctuations.

The optimal estimate of L(t) given the observed signal C(t)þ
v(t) can be found using the Kalman filter, an algorithm
developed to detect and separate signals in the presence of
random, unwanted noise, that is used widely in engineering
navigation and guidance systems [25,26]. We computed the
optimal estimator numerically for the state L(z(t)) under the
assumption that C þ v is observed (Materials and Methods).
The optimal estimator is a low-pass filter: at low frequencies,
the system response does not depend on frequency; at higher
frequencies, a frequency-dependent dropoff, inversely pro-
portional to frequency, and characteristic of a first-order low-
pass filter, is seen (Figure 4C). Moreover, there was good
agreement between the theoretical optimal cutoff frequency
for ligand estimation and the filter-cutoff frequency required
for optimal chemotaxis in the simulations. We repeated this
computation for a range of noise levels and rotational
diffusion coefficients. There was a striking similarity in the
observed trends. For example, the optimal cutoff frequency
for both chemotaxis and ligand estimation decreases as the
level of binding noise in the system increases (Figure 4D). In
contrast, increasing the level of rotational diffusion in the
simulations led to higher optimal cutoff frequencies for
chemotaxis; a trend that was also consistent with the cutoff
frequency of the optimal ligand estimator (Figure 4E). This
consistency between the theory and simulations argues that
optimal ligand concentration estimation as defined by the
Kalman filter is necessary for optimal chemotaxis in our
simulations.

To investigate the dependence of the optimal cutoff
frequency for chemoattractant estimation on environmental
conditions, we repeated our computations for different levels

Figure 3. Effect of Adaptation Time on Chemotactic Efficiency

Chemotaxis was simulated by assuming that the signaling pathway was approximated by the system of Figure 2B.
(A) Different choices of k, and hence different adaptation times, result in varying chemotaxis efficiency. For example, cells with cutoff frequencies of k¼
0.04 rad/s and k¼14 rad/s moved approximately 90 lm and 70 lm along the chemoattractant gradient. In contrast, a cell with a cutoff frequency of 3.4
rad/s moved approximately 250 lm along the gradient.
(B) These simulations were repeated for a large range of cutoff frequencies. The resulting frequency-dependent chemotactic performance was fitted
with a Rayleigh function to estimate the optimal cutoff frequency for chemotaxis (red dashed line). Chemotactic performance was based on the final
position along the gradient after 80 s. Each point represents the average of 500 simulation runs, and vertical bars indicate mean plus or minus standard
error of the mean. Rotational and translational diffusion coefficients of 0.16 rad2/s and 2.23 10�1 lm2/s, respectively, were used. Nominal parameters
used: u¼ 20 lm/s, RT ¼ 2.5 lM, Kd ¼ k�/kþ¼ 100 lM, L0 ¼ 0.01 lM, and g ¼ 0.2 lM/ lm.
doi:10.1371/journal.pcbi.0020154.g003
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of mean ligand concentration and varying spatial concen-

tration gradients (Figure 5). In all cases the frequency

response of the optimal filter was that characteristic of a

first-order low-pass filter. However, the cutoff frequencies

varied from one condition to another. In particular, cutoff

frequencies increased with increasing chemoattractant gra-

dients, but decreased as the mean level of ligand increased.

These variations suggest that chemotactic signaling systems

need to be tuned to their environment for optimal estimation

of the environment.

Quantitative Comparisons to Experimental Observations
We next determined the degree to which the cutoff

frequencies of the optimal filter for chemoattractant estima-

tion matched the frequency-dependent behavior observed

experimentally. To this end we used published data describ-

ing the behavior of the E. coli chemotactic system [20,27],

adjusted to comprise only the primary filtering component by

removing the differentiator and the phosphorylation cascade

modeled in [28] (Materials and Methods). Additionally, we

used our full model of the E. coli signaling pathway as a proxy
for the wild-type E. coli chemotaxis behavior. We linearized
the model (valid for moderately large step changes in ligand,
Materials and Methods) and computed the corresponding
low-pass filter component to compare with our theoretical
results. Linearizations of other models [17] also revealed
similar low-pass filtering characteristics (Materials and
Methods). Interestingly, the cutoff frequencies observed from
the experimental data and calculated from the model
matched reasonably well the theoretical optimal value for a
particular gradient and ligand concentration (Figure 6A).
This agreement suggests that the chemotaxis signal trans-
duction pathway in E. coli is acting as an optimal filter. It
should also be noted that other experimental evidence
suggests lower cutoff frequencies (adaptation times on the
order of several minutes) [13]. This may be due to strain
differences or saturation of the methylation machinery from
large ligand stimulants.
We computed the cutoff frequencies of the model for a wide

range of chemoattractant gradients and mean concentrations

Figure 4. Noise and Rotational Diffusion Effects on Chemotaxis and the Optimal Filter

(A) The effect of the measurement noise on the optimal cutoff frequency for chemotactic performance was studied by varying the measurement noise
(by multiplying the binding variance by a factor) by several orders of magnitude and determining, as in Figure 3B, the optimal cutoff frequency. All
cases showed a biphasic response. Decreasing the binding noise level results in higher optimal chemotactic cutoff frequencies and improved
chemotaxis.
(B) Similarly, the effect of rotational diffusion on chemotactic performance was studied by varying the diffusion coefficient by several orders of
magnitude. Decreasing rotational diffusion increases the chemotactic efficiency, but decreases the optimal cutoff frequency.
(C) The optimal filter for chemoattractant estimation was computed and its frequency-dependent magnitude plotted for a specific combination of
model parameters. Its shape can be approximated by a first-order filter where the cutoff frequency is the frequency at which the gain is 0.707 (�3dB
point) that of the zero frequency gain.
(D,E) The noise and rotational diffusion dependence of the optimal cutoff frequencies for chemotaxis obtained in A and B was compared with the
optimal cutoff frequencies for chemoattractant estimation predicted by the optimal filter theory. The vertical bars indicate cutoff frequencies that yield
chemotactic performances of 95%–100% of the maximum of the Rayleigh curve fitting (see Figure 3B). Simulation and optimal filter parameter values
were as in Figure 3.
doi:10.1371/journal.pcbi.0020154.g004
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and compared these with the theoretically derived optimal

estimator cutoff frequencies (Figure 6B). We found that the

two sets did not intersect for all ligand-gradient combinations.

However, we did find a range of combinations in which the

model filter matches the optimal cutoff frequency (Figure 6C).
Remarkably, this combination exhibits an approximately
linear dependency (slope 0.184 lm�1, R2 ¼ 0.97), suggesting
that the filtering characteristic of E. coli is optimized for
environments where the relative gradient of chemoattractant
is constant. This dependency on the relative gradient is
reminiscent of earlier results in other organisms, including
amoebae [29–31] and yeast (S. Paliwal et al., unpublished data),
that focused on chemoattractant gradient sensing.

Discussion

Previously, Berg and others have argued that the choice
of a time over which the bacterium integrates the observed
signal to determine the tumbling decision balances the need
to average fluctuations in the measurement of ligand levels
with the ability to track rapid changes in direction caused
by rotational diffusion of the cell [32]. We have constructed
a simple mathematical framework to capture these ideas.
The notion of integration time, or adaptation time, is
captured by the cutoff frequency of the filter that
attenuates stochastic disturbances in the sensing mecha-
nism. Using simulations, we demonstrated that chemotactic
efficiency is quite sensitive to this filter-cutoff frequency
(Figure 3). In particular, we showed that there is a frequency
for which optimal chemotaxis can be achieved, and that this
frequency is dependent on external parameters (Figure 4).
Next, using theoretical tools, we computed the filter that
best estimates the ligand concentration in the face of noisy
ligand–receptor complexes. We found strong agreement
between the cutoff frequencies associated with optimal
chemotaxis and optimal chemoattractant estimation (Figure
4D and 4E).
The optimal cutoff frequency for chemoattractant estima-

tion represents the averaging time that best compromises the
tradeoff between noise attenuation and signal amplification.
This is illustrated in Figure 7A, which highlights the
contributions of the noise and signal power spectral densities
(PSDs) to this tradeoff. As binding noise increases, the noise
PSD shifts upward, and the optimal cutoff frequency (xcf)
decreases, thus yielding a longer time over which to average
ligand measurements so that the additional noise may be
attenuated. This trend was seen in the chemotaxis simulations

Figure 5. Environmental Factors Influence the Optimal Cutoff Frequency for Chemoattractant Estimation

The optimal filter for chemoattractant estimation was computed for a range of gradients (A) and mean concentrations (B). Nominal parameter values
were as in Figure 3.
doi:10.1371/journal.pcbi.0020154.g005

Figure 6. Frequency Dependence of the Signaling Response

(A) The frequency-dependent filtering responses for the optimal filter
(red solid line) and experimental data (green dashed line; [20]). The
experimental data, obtained as the Fourier transform of the response of
cells to an impulse of chemoattractant [20] and adjusted to remove the
differentiator and downstream phosphorylation cascade (Materials and
Methods), also exhibits the characteristics of a low-pass filter. Parameters
used for the theoretical filter shown here are L0¼ 1 lM, g¼ 1.5 lM/lm,
and u¼ 20 lm/s. Also included is the frequency response of the model
(blue dashed line) linearized about a ligand input of L0 ¼ 1 lM. The
dotted black line shows a dependency of (frequency)�1.
(B) The predicted optimal cutoff frequency is compared with that of the
filter for a range of chemoattractant gradients and mean concentrations.
The line through which both surfaces intersect represents the chemo-
attractant profiles for which E. coli filters out disturbances optimally with
respect to the parameters used for the model.
(C) Plot of the concentration gradient against mean concentration for the
points where the surfaces in (B) intersect. The linear dependence
suggests that E. coli is conditioned for optimal filtering in chemo-
attractant concentration profiles of constant relative gradient.
doi:10.1371/journal.pcbi.0020154.g006
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(Figure 4D). As fluctuations of the signal increase (e.g., by
increasing the effect of rotational diffusion), the signal PSD
shifts upward, and xcf increases to yield shorter averaging
times that are necessary for observing the more rapidly
changing signal; see Figure 4E.

It should be noted that while we have considered binding
fluctuations as the measurement noise that results solely from
the stochastic dynamics of ligand–receptor interactions, the
total noise that contributes to uncertainty in ligand measure-
ment also depends on ligand diffusion [15,24]. Diffusion of
ligand molecules in the environment affects their interaction
with receptors positioned on the cellular membrane and
provides a physical limitation to the accuracy of cell
measurements. Estimates of the variance of measurement
uncertainty due to ligand diffusion yield measurement
fluctuations on the order of 10�5 lM2 [15,24]. The variance
in the amount of bound receptor complexes due to binding
dynamics can be quantified at steady state and is on the order
of 0.1 lM2 [4,33]. Thus, the binding-dynamics noise compo-
nent overwhelms any uncertainty from ligand diffusion and
so we only consider noise from ligand–receptor dynamics in
our analysis. However, ligand diffusion provides a limit (the
perfect sensor limit) which restricts the degree to which the
optimal filter cutoff frequency can increase in response to
decreasing binding-dynamics noise (Figure 4D).
We have shown that a low-pass filter is necessary for

optimal chemotactic performance of the bacterial system in
the presence of noise. Integral control provides an important
unifying theme in this work. An integral feedback control
system implements a differentiator in combination with a
first-order low-pass filter (Figure 7B). This implementation is
robust because the central properties of this differentiator
depend only on the integral feedback controller (e.g.,
receptor methylation/demethylation dynamics) and not on
the rest of the system (e.g., phosphorylation dynamics of
cascade, interaction of CheY-P with motor, etc.). Further-
more, in the context of integral feedback control, the
connection between the kinetics of receptor methylation/
demethylation, adaptation time, integration time, and the
filter breakpoint becomes apparent. Indeed, one can view
robust perfect adaptation as a consequence of robust
temporal sensing realized via integral control.
The theory and simulations offer several important

predictions. First, the activities of the receptor methylase
CheR and the demethylase CheB determine the breakpoint
of the chemotactic differentiator. For example, increasing
the level/activity of CheR causes the breakpoint to shift to
larger frequencies and, correspondingly, shorter adaptation
times. This trend is observed in the experimental results of
[13] and the model of [14]. More importantly, if, as we
theorize, E. coli has evolved towards an optimal filter, then
moving the breakpoint by altering the methylation/deme-
thylation dynamics should cause impaired chemotaxis
performance. Based on our results, we predict that these
cells could not chemotax as far up a gradient as cells with
wild-type expressions of CheB and CheR. Second, we expect
the optimal breakpoint to depend on certain environmental/
cellular conditions. In particular, optimal cutoff frequencies
may differ by an order of magnitude depending on mean
chemoattractant concentrations or the gradient steepness.
Also, a larger cell (bacterium) possessing a smaller rotational
diffusion coefficient is expected to have a longer optimal
integration time (all things being equal). Likewise, slowing
the receptor–ligand binding dynamics should increase the
measurement noise, leading again to a longer optimal
integration time. These parameter-dependency issues sug-
gest the need for further experimental data with a focus on

Figure 7. Optimal Filtering Cutoff Frequency Is Determined by the Signal

and Noise

(A) Insight into the relevant features of the optimal estimator can be
obtained by considering a simplified model that assumes the cell
measures Lþ v, where L is the true ligand concentration. The system dL/
dt ¼ w acts as an integrator and has signal PSD dependent on the
rotational diffusion coefficient (blue solid line). The observed signal Lþ v
includes the effect of the binding noise v which is assumed to be a white
noise process (blue dashed line). For this model, the optimal filter for the
estimation of L, given L þ v, is a first-order, low-pass filter with a cutoff
frequency (xcf) related to the covariances of w and v: xcf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½w2�=E½v2�
p

(Protocol S1). Graphically, this is determined by the intersection of the
signal and noise PSDs (point A). Increasing the noise variance (red
dashed line) decreases the optimal cutoff frequency because the filter
must become more restrictive to eliminate the additional noise (point B).
If the signal PSD is then increased (red solid line), for example, by
increasing the effect of rotational diffusion, the cutoff frequency
increases (point C). Parameters used for point A: u ¼ 20 lm/s, Dr ¼
0.16 rad2/s, s ¼ 1 s, RT ¼ 2.5 lM, k�/kþ¼ 100 lM, g ¼ 0.03 lM/lm, and
binding is assumed at steady state with a ligand value of L0 ¼ 1 lM.
(B) Block diagram representation of the chemotactic system. A system
using an integral control feedback mechanism (top) is functionally
equivalent to one consisting of the series connection of a differentiator
and a first-order low-pass filter. In the chemotaxis pathway, this
subsystem is followed by a conversion function of CheYp to the running
bias.
doi:10.1371/journal.pcbi.0020154.g007
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correlating the frequency-dependent responses of both
mutant and wild-type cells under varying environmental
conditions to their chemotactic efficiency. Another issue for
future study is the effect of the filter gain. Because the aim
of this work is establishing the existence of an optimal low-
pass filter for chemoattractant estimation and chemotaxis,
we have focused on frequency dependencies and the optimal

cutoff frequency and neglected optimal filter gains.

Finally, our results also highlight the fragile nature of the
chemotaxis system by demonstrating how sensitive chemo-
tactic performance can be to changes in adaptation times. In
fact, the experiments that definitively showed that the
property of adaptation was robust also demonstrated that
the adaptation times were not: changes in CheB and CheR
expression levels cause significant changes in adaptation time

[13,14]. As stated above, our results predict that these cells
would not chemotax as efficiently, and point towards a
potential fragility of the system [34]. However, recent
experimental results demonstrate that within a population
of cells there is large variability in behavior and that this is
controlled by the methylation process [5]. This variability can
be exploited by the population of cells to ensure that at least
some of the cells would chemotax efficiently, thus providing a

means by which the population of cells can cope with the
fragile nature of the individual’s signaling systems.

Materials and Methods

Model of E. coli signaling network. We developed a model of the E.
coli signal transduction network combining the basic receptor-
modification model of Barkai and Leibler [17] with more recent
models of receptor clustering [19,35]. We assume the cell senses
ligand with a cluster of N receptors, each with M methylation sites. In
general, each receptor in the complex can exist in either an ‘‘on’’ or
‘‘off’’ state and can be either ligand-bound or ligand-unbound. The
probability of a receptor being on depends on the free energy
difference between the on and off states of the receptor and on that
of neighboring receptors. Here, we assume the entire cluster is either
occupied or unoccupied by ligand and that the free energy difference
between the on and off states of each receptor in the cluster is
dictated by the cluster’s occupancy (not the occupancy of the
individual receptors). We treat the cluster as one system with 2(NM
þ 1) states: ligand-unbound with j2f0,1,2,...,NMg sites methylated
(denoted Rj) or ligand-bound with j sites methylated (denoted RLj);
see Figure 8.

The probability of the entire cluster being on when j sites are
methylated must account for each of the possible microstates that
may form this configuration. For example, a cluster of four receptors
with a total of three sites methylated can arise when the individual
receptor methylation levels are either (3,0,0,0) (i.e., one receptor has
three sites methylated and the remaining three receptors have none),
(2,1,0,0), or (1,1,1,0). Note that ordering does not matter. We assume
the probability of the cluster with j methylated sites being on is the
average of the probability of each admissible microstate (one with j
total methylated sites for the cluster) being on:

plonð jÞ ¼ avg 1þ exp
X

n;m
admissible

f lðn;mÞ

0

B
B
B
B
@

1

C
C
C
C
A

0
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B
B
B
@

1

C
C
C
C
A

�1

8

>>>><

>>>>:

9

>>>>=

>>>>;

where the average is over all microstates that consist of j total
methylated sites, l indicates ligand occupancy of the cluster (l¼ u for
ligand-unoccupied or l ¼ o for ligand-occupied), f l(n,m) is the free
energy of receptor n when m of its M sites are methylated, and the
summation in the denominator is over all receptors and individual
receptor methylation levels that form the admissible microstate. In
our example, the probability of the cluster with three methylated sites
being on is

plonð3Þ ¼
1

3

�
1

1þ expðf lð3Þ þ 3f lð0ÞÞ

|{z}

3;0;0;0

þ
1

1þ expðf lð2Þ þ f lð1Þ þ 2f lð0ÞÞ
|{z}

2;1;0;0

þ
1

1þ expð3f lð1Þ þ f lð0ÞÞ

�

|{z}

1;1;1;0

where we have assumed that all of the microstates in the
configuration are equally probable. Moreover, we assume that the
energy difference of each ligand-unbound/bound process is equal
regardless of the receptor, thus allowing us to drop the index n.

Only inactive states may be methylated, and only active states may
be demethylated. Thus, a state with j sites methylated is (further)
methylated at a rate

jlRð jÞ ¼ cR 1� plonð jÞ
� �

where cR is the methylation rate constant. The demethylation rate of
a state with j sites methylated is

jlBð jÞ ¼ cBp
l
onð jÞ:

In general (with obvious exceptions for R0, RL0, RNM, and RLNM),
the differential equations describing the rate of change of concen-
tration of states Rj and RLj are

dRj

dt
¼ �ðkf Lþ juBð jÞ þ juRð jÞÞR

j þ krRL
j þ juRð j � 1ÞRj�1

þjuBð j þ 1ÞRjþ1

dRL j

dt
¼ �ðkr þ joBð jÞ þ joRð jÞÞRL

j þ kf L3Rj þ joRð j � 1ÞRLj�1

þjoBðj þ 1ÞRL jþ1:

Total activity of the cluster is

A ¼
XNM

j¼0

puonð jÞR
j þ poonð jÞRL

j :

Model validation. We compared a variety of different response
characteristics of the model to those observed experimentally (Figure
9). Step increases in chemoattractant induce an initial transient
decrease in receptor activity, corresponding to an increase in the
probability of counterclockwise (CCW) flagella rotation, that decays
exponentially to its pre-stimulus steady-state level (Figure 9A). This
behavior is consistent with responses observed experimentally
[13,20,27] and in previously published models [14,17,21,35–37]. The
response to impulses of chemoattractant exhibit an initial spike in
CCW probability followed by a decrease below the pre-stimulus level
that then increases exponentially back to the pre-stimulus level
(Figure 9B). Step and impulse responses agree closely with exper-
imentally observed responses from [27]. Step-decreases in chemo-
attractant induce a response similar to step-increases with an initial

Figure 8. Model of E. coli Signaling Network

A model of the bacterial signaling network is shown for a cluster of N
receptors with M methylation sites each. The receptor cluster can exist in
a ligand bound or unbound form, each with up to a total of NM sites
methylated. The methylation (demethylation) rate of a particular state is
proportional to the probability of the state being inactive (active).
doi:10.1371/journal.pcbi.0020154.g008
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decrease in CCW probability instead of an increase (Figure 9C). Both
the adaptation time (the time required for the step response to
return to its pre-stimulus level) and response magnitude increase
with increasing step size and are asymmetric with respect to positive
and negative steps (Figure 9C, [17]). The peak activity response to step
inputs exhibits high sensitivity to the size of the step (Figure 9D), as
has been observed experimentally [38,39], and is seen in other

published models [18,19,35,36,40]. Sensitivity of our model closely
matches that of [36].

The model parameters used are N¼4,M¼4, kf¼0.01 lM�1 ms�1, kr
¼ 1 ms�1, cR¼ 1.2 s�1, and cB¼ 2 cR. Free energy differences used are
given in Table 1.

Model linearization and frequency response. We implemented the
model as an S-Function in Matlab, version 7 (Mathworks, http://
www.mathworks.com), and linearized it using the linmod command.
The linearization is valid for even moderately large step changes in
ligand concentration (Figure 10). We compared the frequency
response of the linearization (Figure 9E) as well as the Barkai-Leibler
model [17] (Figure 9F) to experimentally observed frequency
responses [20,27]. All frequency responses exhibited low-pass
characteristics: low-frequency input components are ‘‘passed’’

through the system and high-frequency input components are
attenuated.

For a meaningful quantitative comparison with experimental data,
we need to adjust for the fact that the models include only the
receptor methylation/demethylation dynamics, but the experimental
data measures the system response in terms of motor biases and so
contain the dynamics of the phosphorylated CheA, CheY, CheZ, and
FliM-bound CheY. To determine the contribution of these elements
to the overall frequency response, we used a linearization of the
differential equation model for these elements [28]. Finally, because
we are primarily interested in the low-pass filtering characteristics,
we also accounted for the differentiation. The adjustment was made
by combining a system with the same frequency response as in [20] in
series with an integrator (to remove the differentiator) and the
inverse of the transfer function obtained from a linearization of the
phosphorylation cascade modeled in [28] (to remove the phosphor-
ylation cascade that directly affects motor rotation).

The frequency response of the system exhibits characteristics of a
differentiator coupled with a first-order low-pass filter; thus, the
model of the E. coli signaling network may be approximated by a
system with Laplace transform of the form sk/(s þ k) where k is the
bandwidth of the system. The ability of this simple linear system to
recreate the response of the model is further verified in Figure 2.

Environmental model. To study the effect of adaptation time on
chemotaxis, we developed a computational model of a chemotaxing
cell in Simulink version 6.2 by Mathworks, available by contacting the
authors; see Figure 11A. We describe the major components of the
model here.

Environment. Bacteria are assumed to chemotax in a 2-D (x,y)
plane. The ligand concentration at a position z¼ (x,y) is L(z)¼max(gx
þ L0,0) where the gradient changes along the x direction with slope g,
and L0 is a constant initial ligand concentration at x ¼ 0. At each
simulation step, the concentration of ligand at the bacterium’s
current location is calculated as L(z). In the absence of rotational and
translational diffusion, cells are assumed to move at a constant
velocity of 20 lm/sec. Fluctuations in receptor occupancy are
modeled in the simulation by an additive noise term to the ligand
concentration. This contribution is assumed normal with distribution
N(0,RTL(z)KD/(KDþL(z))2) where KD¼ k�/kþ is the binding dissociation
constant, kþ and k� are the on and off rates, respectively, and RT is the
total number of receptors [4,33]. As demonstrated by Berg, even when
running the cell cannot maintain a straight path for long because of
the effects of rotational diffusion [41]. Rotational diffusion is
implemented through an additive stochastic component to the
bacterium’s heading at each simulation step. This component is
assumed normal with distribution N(0,2Drts) where Dr is the rotational
diffusion coefficient and ts is the sample time of the simulation [41].
Translational diffusion is similarly implemented in both the x and y
velocity components with a distribution N(0,2Dt/ts) where Dt is the
translational diffusion coefficient. In the latter, ts appears in the
denominator because translational diffusion affects position with a
variance of 2Dtts and we are adding a velocity component. The
diffusion coefficients used in simulation are Dr¼0.16 radians2/second
and Dt ¼ 2.23 10�1 lm2/second [41].

Signal transduction. The signal transduction pathway in E. coli
takes the form of a differentiator coupled with a low-pass filter (see
above). We therefore implement the signaling network in simulation
with the transfer function aks/(sþ k) with gain a and cutoff frequency
k. We assume the system takes ligand as its input and outputs the
phosphorylated form of CheY (CheYp) and that this is a linearization
of the actual network about a ligand input concentration L0 and a
steady state CheYp concentration of 3 lM [42]. Linearizations of the
model suggest a gain of a ’�0.05, which we used in our simulations.
While other gains were found to potentially affect the cutoff
frequency optimal for chemotaxis, the existence of an optimal cutoff
frequency and the qualitative characteristics of our results, such as

Figure 9. Validation of E. coli Signaling Network Model

(A) Response of the E. coli signaling network model is plotted for a 0.1-
mM step increase in chemoattractant concentration from 0.2 mM at 10 s.
For comparison with experimental data, activity from the model is
converted to the probability of CCW flagella rotation by means of a Hill
function (Materials and Methods). A transient response after an initial
increase in CCW probability adapts to the pre-stimulus level. Adaptation
times are similar to experimentally obtained data [20,27] (red dashed line
shows data from Figure 2 of [27]).
(B) Response to a positive (þ0.2 mM) chemoattractant impulse of width
0.5 s is also consistent with experimentally observed behavior [20,27]
(red dots show data from Figure 1 of [27]).
(C) The initial response to addition (removal) of attractant increases
(decreases) with increasing change in attractant concentration. Adapta-
tion times for attractant addition are longer than that for removal as
observed [17].
(D) For step inputs, normalized peak activity of the model (1 – DA/Ass,
where DA is the change in activity from steady-state level Ass) exhibits
sensitivity to the size of the step (red line with dots is a guide to the eye).
This sensitivity response closely matches data from the ‘‘small lattice’’

model of [36] (blue line with triangles is a fitted sigmoid function). The
blue dashed line indicates experimental data from [27] as plotted in
Figure 4 of [36] (MeAsp input concentration of [27] is adjusted to that of
aspartate that yields an equivalent receptor occupancy). As discussed in
[36], the nonzero baseline of our model for large step inputs is due to a
fraction of receptors in the cluster always having a nonzero probability of
being active.
(E,F) Frequency responses of the E. coli signaling network model and the
model from [17], linearized about a ligand input of L0¼ 1 lM, reveal low-
pass characteristics consistent with observations in [27].
doi:10.1371/journal.pcbi.0020154.g009
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the dependence of the optimal cutoff frequency on external
parameters, was independent of the gain.

Running bias. It is known that the probability of an individual
flagellum rotating clockwise, which induces tumbling, or CCW,
which leads to runs, is a Hill function of CheYp concentration [42].
We calculate the probability b of an individual flagella’s rotation
being CCW as a function of Yp using a Hill function with a Hill
coefficient of 10 [42]. The parameter Km is determined using steady-
state values of CheYp and a CCW flagellar rotation bias of 3 lM
and 0.64, respectively [42]. We assume the majority of a cell’s
flagella must be rotating CCW for running to occur. Thus, we
calculate the probability of running of the entire bacteria as

B ¼
PN

j¼n

N

j

� �

bjð1� bÞN�j ; where N is the total number of flagella

and n is the minimum number of CCW-rotating individual flagella
needed for running [21]. In our simulations, N ¼ 8 and n ¼ 5. The
decision at each simulation step of whether to run or tumble is made
in the ‘‘Run decision’’ simulation block as a function of the current
run/tumble state and the flagellar rotation bias that is output from
the signaling network. This block essentially determines the
probability of running given the current state of the system so that
the overall probability of running is given by the bias and the
expected run and tumble lengths match those seen in the literature.
To achieve this, we use the following analysis. Let p be the run bias, p1
be the run bias given that the cell is already running, and q2 be the
tumble bias given that the cell is already tumbling. The expected run
length in number of simulation steps is:

RL ¼ ð
X

n¼0

ðnþ 1Þpn1Þð1� p1Þ ¼
1

1� p1

Similarly, the expected tumble length is:

TL ¼
1

1� q2

Therefore, the expected run bias is:

p ¼
RL

RLþ TL
,

1
1�p1
1

1�q2

¼
p

1� p

Suppose that p and q2 are fixed. Then, solving for p1 yields: p1¼ 1 –
(1 – q2) (1 – p)/p. The expected tumble length is TLs/Ts steps where TLs
is the expected tumble length in seconds. This can then be converted
to a value of q2: q2 ¼ 1 – Ts/TLs which leads to

p1 ¼ 1� ð1� q2Þ
1� p

p
¼ 1�

Ts

TLs

1� p

p
:

The probabilities p1 and q2 are then used to determine at a given
simulation step whether the next time step should consist of a run or
a tumble.

The tumbling angle h was assumed to follow the probability density
function f ðhÞ ¼ 1

4 cosh=2, �p � h � p [43]. This distribution gives
mean tumbling angles of 658 with standard deviation 438 that match
the experimentally determined angles closely (688 and 388, respec-
tively [9]).

The combined signal transduction and environmental model
exhibits several traits observed in cells. The exponential shape of
the run/tumble distributions is characteristic of a Poisson distribu-
tion and is similar to interval distributions found experimentally [44]
and in previous models [37] (Figure 11B and 11C). Recent results
suggest that, although average run and tumble distributions of a
population may exhibit Poisson characteristics, distributions for
individual cells may adhere to a power law [5]; however, we assume
Poisson characteristics to be a reasonable description of cellular
behavior for our purposes. The ability to navigate up a gradient of

chemoattractant is evident in that cells travel farther along the x-axis
(the direction of the gradient) as time progresses (Figure 11D).
Furthermore, a larger slope in the gradient of ligand concentration
increases the success of the bacteria in swimming in the x direction.

Optimal filter derivation. To determine the optimal filter for
extracting the signal from the noisy measurement, we used Kalman
filter theory. The Kalman filter is an algorithm, used widely in
engineering navigation and guidance systems, developed to detect
and separate signals in the presence of random, unwanted noise
[25,26]. General Kalman filtering theory is provided in Protocol S1,
and here we present a model of bacterial chemotaxis for the purpose
of obtaining accurate chemoattractant estimates using the Kalman
filter. Let the state of the system during chemotaxis be

xðtÞ ¼
x1ðtÞ
x2ðtÞ

� �

¼
LðtÞ
CðtÞ

� �

;

where L(t) is ligand concentration and C(t) is the concentration of
bound receptor complexes resulting from ligand–receptor binding.
The differential equation describing the binding reaction (without
noise) is

dC

dt
¼ �k�C þ kþðRT � CÞL;

which can be linearized about an average ligand concentration L0 and
a steady-state receptor-complex concentration C0 to give

dC

dt
’ACC þ BCL

with AC and BC constant. Because

dL

dt
¼

@L

@z

@z

@t
¼ gu cosðhðtÞÞ ¼ wðtÞ;

and, if we assume the cell measures y(t)¼C(t)þ v(t) where the binding
noise v(t) is a zero-mean, white random process with variance RTL0KD/
(KD þ L0)

2 [4,33], then we have the linear system

dx

dt
¼

0 0
BC AC

� �

xþ
1
0

� �

w

y ¼ ½0 1�xþ v:

For simplicity, we assume h(t) is a white-noise process with variance
2Drs where s is an average run length and Dr is the rotational

Table 1. Free Energy Differences

M 0 1 2 3 4

f u(m) ‘ 1 0 �1 �20

f 8(m) ‘ ‘ 1 0 �20

Shown are the free energy differences (units of kbT) for the signaling model for a receptor
when m of its M sites are methylated, when occupied (o) and unoccupied (u).
doi:10.1371/journal.pcbi.0020154.t001

Figure 10. Step Response of the Linearized Signaling Network

Comparison of the step response of the E. coli signaling network model
to the response of the linearized form of the model shows that the
linearization is valid for even moderately large step changes in attractant.
Response shown is for a step ligand change from L¼ 1 lM to L¼ 2 lM
(A), 10 lM (B), 50 lM (C), and 100 lM (D), with the linearization about the
ligand value L0 ¼ 1 lM. Model parameters are the same as in Figure 9.
doi:10.1371/journal.pcbi.0020154.g010
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Figure 11. Model of Bacterial Chemotaxis

(A) The chemotaxis simulation assumes the following feedback interaction between the bacteria and its environment: 1) the external environment
affects the sensing model through the external ligand concentration L and incorporates the effect of binding noise; 2) ligand concentration is
determined by the location of the cell in the environment (the spatial location z); 3) spatial location is determined by integrating the velocity and angle,
which incorporates the effect of rotational diffusion and the ‘‘run/tumble’’ decisions; and 4) the run/tumble decisions are based on the signaling
mechanism’s response (that is, the filterþ differentiation) to the measured ligand concentration.
(B,C) Validation of chemotaxis model histograms of tumble (B) and run (C) durations for an unstimulated (g¼ L0¼ 0) E. coli with a simulation time of
2,000 s. Both distributions exhibit characteristics of a Poisson process.
(D) Average simulation results of 500 runs of a bacteria swimming in a gradient of ligand concentration with varying chemoattractant slopes.
doi:10.1371/journal.pcbi.0020154.g011
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diffusion coefficient. This means that w is a (nonzero mean) white
noise process with variance g2u2var[cos(h(t))]. The fact that w has
nonzero mean can be accounted for by including an input u(t) and
redefining w; however, this does not affect the cutoff frequency of the
optimal filter.

Our results are obtained by computing the optimal filter for the
above system using the kalman function from the Control System
Toolbox version 6.2 in Matlab. The variance of cos(h) is approximated
numerically in Matlab using an average run length of s ¼ 1 s.

Supporting Information

Figure S1. Effect of Filter Rolloff

Simulations of chemotactic performance for varying cutoff frequen-
cies were repeated for filters with roll-off of first, second, and third
order. Higher-order filters do not affect the existence of an optimal
filter cutoff frequency, although the cutoff frequency does decrease.
Also, performance is greatest with the first-order filter, possibly due
to increased phase delay with the higher-order filters.

Found at doi:10.1371/journal.pcbi.0020154.sg001 (249 KB PDF).

Protocol S1. Kalman Filter Derivation of Optimal Filter

Found at doi:10.1371/journal.pcbi.0020154.sd001 (48 KB PDF).
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