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OPTIMAL NONLINEAR FEEDBACK CONTROL OF SPACECRAFT 

ATTITUDE MANEUVERS 

by 

Connie Kay Carrington 

(ABSTRACT) 

Polynomial feedback controls are developed for large angle, 

nonlinear spacecraft attitude maneuvers. Scalar and two-state systems 

are presented as simple examples to demonstrate the method, and 

several systems of state variables to parameterize spacecraft motion 

are consfdered. Both external and internal control torques are 

treated; in the latter, attention is restricted to momentum transfer 

maneuvers that permit several order reductions. Several stability 

theorems with their application to polynomial feedback systems are 

discussed. 



ACKNOWLEDGMENTS 

The author would like to acknowledge the support and encourage-

ment of her advisor, Dr. John L. Junkins, and the special help pro-

vided by her second advisor, 

and 1 deserve special thanks for 

their early encouragement to pursue a Ph.D. 

Credit goes to for her excellent typing of the 

manuscript. 

Finally, the author would like to acknowledge 

for his support and understanding throughout this endeavor. 

iii 



TABLE OF CONTENTS 

ACKNOWLEDGMENTS 

LIST OF FIGURES 

LIST OF TABLES 

CHAPTER 

I. INTRODUCTION 

II. GENERAL FORMULATION . 

2.1 State Equations With Linear Terms 

2.2 State Equations Without Linear Terms . 

2.3 Feedback Control from Lyapunov Functions .. 

2.4 Conclusions 

III. SCALAR AND TWO STATE SYSTEMS 

3.1 State Equations With Linear Terms 

3.2 State Equations Without Linear Terms 

3.3 Conclusions 

IV. EXTERNAL TORQUE MANEUVERS . 

4.1 System Model and Optimal Control Problem 

4.1.1 Spacecraft Orientation 

4.1.2 Equations of Motion .. 

4.1.3 State Space Formulation 

4.1.4 Formulation of the Optimal Control 
Problem ..... 

4.2 Single Axis Maneuvers 

4.2.1 State Equations 

iv 

iii 

vii 

ix 

, 
I 

4 

4 

8 

9 

10 

12 

12 

15 

24 

25 

25 

25 

28 

29 

30 

32 

32 



4.2.2 The Optimal Control Problem 

4.2.3 Simulation Results 

4.3 Three-Axis Maneuvers . 

4.3.1 State Equations and Optimal Control 

Page 

32 

34 

45 

Problem . . . . . . . . . . 45 

4.3.2 Simulation Results 

4.4 Conclusions .... 

V. INTERNAL TORQUE MANEUVERS . 

5.1 System Model and Optimal Control Problem 

5.1.1 Spacecraft Orientation 

5.1.2 Spacecraft and Reaction Wheel Dynamics 

5.1.3 State Equations ... 

5.1.4 Performance Indices 

5.1.5 Feedback Control 

5.2 Numerical Examples • 

5.3 Conclusions 

VI. GENERALIZED MOMENTA FEEDBACK 

6.1 Generalized Momentum Variables and Equations 
of Motion ........... . 

6.2 Optimal Control Problem 

6.3 Single-Axis Maneuvers 

6.4 Lyapunov Control for Single-Axis Maneuvers 

6.5 Three-Axis Maneuvers 

6.6 Conclusions 

VII. STABILITY ..... 

VI I I. CONCLUSIONS, COMMENTS, AND RECOMMENDATIONS 

v 

. . . . 

45 

58 

60 

60 

60 

64 

67 

69 

69 

70 

92 

93 

93 

94 

97 

101 

109 

110 

112 

116 



REFERENCES . . . . . . . 

APPENDIX 

A. CONJUGATE ANGULAR MOMENTA 

B. POTTER'S METHOD . 

VITA 

vi 

Page 

120 

123 

128 

132 



LIST OF FIGURES 

Figure 

3.1 State variable and control histories for scalar 
example . . . . . . . . . . . . . . . 17 

3.2 Time dependent feedback gains for scalar example 18 

4.1 Initial and final Euler parameter boundary conditions 36 

4.2 Case 4A single-axis rest-to-rest maneuver 39 

4.3 Case 48 single-axis rest-to-rest maneuver 41 

4.4 Case 4C single-axis spin-down maneuver 43 

4.S Case 40 three-axis maneuver Sl 

4.6 Case 40 three-axis maneuver . S2 

4.7 Case 4E three-axis maneuver S3 

4.8 Case 4E three-axis maneuver S4 

4.9 Case 4F three-axis maneuver . . S6 

4.10 Case 4F three-axis maneuver S7 

S. 1 Angular momentum inertial frame of reference 62 

S.2 NASA standard four-reaction-wheel attitude control 
sys tern . . . . . . . . . . . . . . . . . . . . 65 

S.3 Case SA spacecraft and wheel angular velocities 7S 

S.4 Case SA control torques . . . . . . . . . . . . 76 

5.5 Case SA spacecraft and wheel angular velocities . 77 

5.6 Case SA wheel angular velocities (first wheel off) 78 

S.7 Case SA wheel angular velocities (second wheel off) 79 

S.8 Case SA wheel angular velocities (third wheel off) 80 

S.9 Case SB spacecraft and wheel angular velocities 83 

5. 10 Case 58 Euler parameter histories 84 

vii 



Figure 

5. 11 Case 58 control torques .. 

Page 

85 

5. 12 Case 5C, o0 not constrained by performance index 87 

5.13 Case 5C, o0 constrained by performance index 88 

5.14 Case 5C, linearized state equations with linear 
control . . . . . . . . . . . . . . . 89 

6. 1 Single-axis angular momenta and Euler parameters 102 

6.2 Single-axis maneuver angle, angular momentum, and 
control torque . . . . . . . . . . 103 

6.3 Lyapunov control with K1 = l and several values of K2 • 105 

6.4 

6.5 

"Critically damped" Lyapunov control (K2 = 1.5) 

"Critically damped" Lyapunov control (K2 = 1.5) 

viii 

106 

107 



LIST OF TABLES 

Table 

3.1 Performance Indices for Scalar Equation ... 

4.1 Boundary Conditions for Single Axis Maneuvers 

4.2 Single Axis Gains . 

4.3 Performance Indices for Cases 4A and 4B 

4.4 Performance Indices for Case 4C . 

4.5 Spacecraft Inertia 

4.6 Cases 40 and 4E Boundary Conditions 

4.7 Case 4F Boundary Conditions 

4.8 Linear Gains for Three-Axis Maneuvers 

4.9 Quadratic Gains for Three-Axis Maneuvers 

4.10 Performance Indices for Cases 40 and 4E 

4.11 Performance Indices for Case 4F 

5. 1 Moments of Inertia 

5.2 Inertia and Wheel Geometry Matrices 

5.3 Case SA Boundary Conditions 

5.4 Case SA Performance Indices . 

5.5 Case 58 Boundary Conditions 

5.6 Case SB Performance Indices . 

5.7 Case 5C Boundary Conditions 

6.1 Single Axis Boundary Conditions 

6.2 Single Axis Performance Indices 

6.3 Performance Indices for Lyapunov Control 

ix 

Page 

16 

37 

38 

42 

42 

46 

46 

48 

. . . . 49 

50 

55 

55 

71 

71 

73 

74 

82 

82 

86 

100 

100 

108 



Chapter I 

INTRODUCTION 

Rapid large angle attitude maneuvers have become increasingly im-

portant to the success of many current and future spacecraft missions. 

These maneuvers are characterized by nonlinear behavior, however, 

resulting in a control problem that is likewise nonlinear. 

Feedback control of nonlinear systems has traditionally been 

attempted to linearization. A nonlinear, open loop, "nominal" maneuver 

is first determined by integration, and then linear feedback control is 

used on the departure motion. Such an approach is rather difficult to 

implement within the constraints of on-board, real-time computation; 

each feedback controlled maneuver must be preceded by calculation of a 

nonlinear open loop control history to define the nominal motion. Other 

linearizing methods for feedback control of nonlinear motion include 

"gain scheduling" in which the control history is divided into segments, 

each determined by its own set of linear gains. A more attractive 

approach is control of the entire nonlinear maneuver by a single set 

of gains. 

An early formulation of the nonlinear control problem for nonlinear 
.. 

state equations is presented by Lukes [l], in which the Hamilton-Jacobi-

Bellman equation is derived in partial differential form. Solution 

methods have been presented by Rhoten and Mulholland [2], Willemstein 

[3], Dabbous and Ahmed [4], and Dwyer [5]-[7]. In these approaches the 

cost-to-go functional is expanded as a polynomial in the states, and the· 

1 
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Hamilton-Jacobi-Bellman equation solved recursively, as summarized in 

[8]. Other solution methods include transforming the nonlinear problem 

to a linear one, as in [9], or development of nonoptimal but stable 

control laws as in [10] and [36]. For certain nonlinear systems and 

performance indices, the optimal control may be linear, as shown by 

Debs and Athans in [11]. 

In the approach presented here [12], [13], the costates are ex-

panded as polynomials in the states and substituted into the costate 

equations. The polynomial coefficients are determined by equating co-

efficients of like powers, with linear terms providing the familiar 

Riccati equation of linear feedback analysis. The higher order coef-

ficients are determined recursively, and a suboptimal control law is 

generated by truncation. 

Chapter II presents a general formulation of polynomial feedback, 

with a discussion of solution methods for state equations without linear 

terms. A discussion of nonlinear feedback control via Lyapunov func-

tions is also included, which will be used in Chapter VI to generate 

stable control laws. 

The next four chapters provide examples to demonstrate the methods 

presented in Chapter II. Chapter III presents simple scalar and two-

state systems which can be formulated and solved without an algebraic 

manipulator. Spacecraft attitude control systems are treated in 

Chapters IV through VI. The choice of Euler parameters as state 

variables provide polynomial state equations that make polynomial feed-

back control feasible; Euler angle kinematics produce transcendental 

equations for which this method is not suitable. Euler parameters and 
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the conjugate angular momenta of Chapter VI are redundant variables, how-

ever, that pose a particular challenge to polynomial feedback laws. 

Chapter IV treats single and three-axis maneuvers of a spacecraft 

using external control torques. Attitude a~d angular velocity equations 

are presented, and the optimal control problem is formulated. Numerical 

examples are provided for both single and three-axis maneuvers, with a 

discussion of Euler parameter boundary conditions. 

Three-axis momentum-transfer maneuvers are considered in Chapter 

V, in which internal control torques are provided by four reaction 

wheels. A special inertial angular momentum frame of reference is 

introduced to reduce the number of feedback states, and corresponding 

equations of motion are derived. The numerical examples progress from 

state equations with negligible gyroscopic terms to those with dominant 

nonlinearities. A comparison is made of maneuvers using several combi-

nations of wheels, and the problems associated with redundant state 

variables are discussed. 

Chapter VI treats polynomial feedback control using the generalized 

angular momentum variables recently developed by Morton [14]. The 

problems of two redundant variables are discussed, and a time-dependent 

polynomial feedbakc law is developed that circumvents these difficulties. 

Stable nonlinear control laws are derived from Lyapunov functions, which 

can be made optimal by adjusting constants. 

Several stability theorems and their applications to certain 

polynomial feedback systems are discussed in Chapter VII. Chapter VIII 

summarizes the results and makes recommendations for future study. 



Chapter II 

GENERAL FORMULATION 

2.1 State Equations with Linear Terms 

Consider nonlinear state equations of the form 

x = A~ + £:.(~) + B_!! (2.1) 

where ~is the state vector, A is a constant coefficient matrix form-

ing the linear part of the state equations,£:.(~) is the nonlinear 

part, and.!! is the control vector to be determined. If£:.(~) can be 

expressed as a polynomial in~' then the state equations may be written 

in indicial notation as 

ii = aijxj + cijkxjxk + ... + bijuj (i = 1 ,2, ... ,n) (2.2) 

We consider. the optimal control problem of finding a feedback control 

law that brings the states to zero while minimizing a quadratic per-

formance index 

1 f tf J =?I"' {q .. x.x. + r .. u.u.}dt 
~ t 1J 1 J lJ 1 J 

0 

(2.3) 

The Hamiltonian for this system is 

II 1 • = 2'" {qijxixj + rijuiuj} + t-ixi , (2.4) 

where it is understood that xi is symbolic for the right-hand side of 

Eq. (2.1). The necessary conditions for a minimum provide the state 

equations, Eq. (2.1) 

(2.5) 

4 



and the costate equations 

For unbounded control 

'dH = 0 au. 
1 

which implies 

-1 ui = - rij bkj"k 

where -1 rij represents the elements 

5 

of the matrix inverse of rij' 

terminal boundary conditions for the costates are 

(2.6) 

(2. 7) 

(2.8) 

The 

(2.9) 

By assuminq the costates can be expressed as a polynomial in the 

states, 

>-; = k;jxj + dijkxjxk + ... (2.10) 

a nonlinear feedback control law is determined in which the k .. (t), lJ 
dijk(t) are the control gains we seek. The terminal boundary condi-

tions on the costates, Eq. (2.9), are satisfied since the states go to 

zero at tf. By substituting Eq. (2.10) into Eq. (2.6) and carrying 

out the ensuing algebra, we are led to n homogeneous polynomial equa-

tions of the form 

[a]x. + [s]x.xk + J J = 0 (2.11) 

where 

[a] = function(A,B,Q,R,~,K) (2.12) 
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. 
[s] = function(A,B,C.R,K,D,D) (2.13) 

and K and D are arrays whose elements are the gains k .. and d .. k. lJ lJ 
Since Eq. (2.11) must hold at every point in the state space, we con-

clude that the functions in brackets must vanish independently, so we 

obtain 

[a(A,B,Q,R,K,K)] = O (2.14) 
. 

[s(A,B,C,R,K,D,D)] = 0 (2.15) 

Eqs. (2.14) are differential equations determining the linear feedback 

gains; upon carrying through the details, we find that the scalar 

equations of Eqs. (2.14) are precisely the elements of the matrix 

Riccati equation [15], [16], which generates the optimal feedback con-

trol if all nonlinear terms in the state equation are absent. The solu-

tion of the matrix Riccati equation can be determined by Potter's 

method [17], [18], or Turner's method [19], in which an associated 

eigenvalue problem is solved and matrix exponentials are used. (See 

Appendix B.) 
The quadratic feedback gains are determined by Eqs. (2.15), which 

can be rearranged into a set of linear differential equations of the 

form 
. 
dijk = [n]dlmr + [y] (2.16) 

where 

[n] = function(A,B,C,R,K) (2.17) 

[y] = function(A,B,C,R,K) (2.18) 
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The boundary condition for Eq. (2.16) is 

{2;19) 

which is obtained from the transversality condition for a quadratic 

performance index. Upon solving the Riccati equation for the linear 

gains k0 {t), Eqs. (2.16) provide nonautonomous, nonhomogeneous, but )(,m 

linear equations which determine the quadratic gains dijk(t). For the 

steady state case we can solve Eqs. (2.14) and (2.16) algebraically 

for the constant feedback gains, subject to 

(2.20) 

The ktm are solutions of the algebraic Riccati equation, and the dtmr . 
are obtained by setting d .. k = 0 in Eq. (2.16) and solving the linear lJ 
algebraic system. In the numerical examples with linear terms in the 

state equations we will restrict our attention to the constant gain 

case. , 

Since, for n states, there are n2(n+l)/2 equations in Eqs. (2.16), 

we will include the algebra for only the simplest systems considered. 

The emphasis of the present discussion is the following generalization: 

After solving the Riccati equation for the linear gains, one is led to 

sets of linear differential equations, of the functional form shawm in 

Eqs. (2.16), which can be solved sequentially to obtain the quadratic 

gains, the cubic gains, and so on, up to any desired order. The dif-

ferential equations for the gains of each order are linear in those 

gains, and the coefficients at each order depend upon the lower order 

gains. To illustrate the above, we will consider one and two dimen-

sional examples in detail. 
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2.2 State Equations Without Linear Terms 

When no linear terms are present in the state equations, the 

algebraic Riccati equation may in some instances be degenerate, so 

that no solution can be found for the constant gain case. Such a 

situation has been found to occur if there are fewer controls than 

states and no linear terms in the state equations. When the Riccati 

equation becomes degenerate, two remedies can be considered. The first 

is to transform the system equations into state equations containing 

linear terms. This may be done if the final states are not all zero by 

using departure motion differences as state variables. If z is the 

state vector in which there are no linear terms in the state equations, 

then we can define a new state vector~=~ - ~(tf)' and linear terms 

involving the constant coefficient ~(tf) are introduced into the new 

state equations. Constant linear gains may now be determined from the 

algebraic Riccati equation, and higher order gains from the subsequent 

linear algebraic equations. 

The other remedy is to determine time-dependent gains for the 

original nonlinear state equations. The differential equations deter-

mining the linear and zeroth order gains are in general simple when 

there are no linear terms in the state equations, so that closed-form 

solutions may be found by integration. When the desired final states 

are not all zero, the performance index should minimize the difference 

between the current state and the desired final state, and a final 

state penalty can be imposed. The boundary conditions specified by 

this performance index are now satisfied by the time-dependent gains 

in the polynomial expansion for the costates. 
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Both of these methods will be used, since the state equations 

of Chapter IV have only quadratic terms, those of Chapter V are 

quadratic and cubic, and those of Chapter VI have only cubic terms 

(i.e., many practical dynamical systems do not have linear terms in 

the state equations). 

2.3 Feedback Control from Lyapunov Functions 

Stable feedback control laws may be determined for autonomous sys-

tems from Lyapunov 1 s second method [20]. To apply this method, we 

first transform the state equations so that the target state is the 

original, which may be accomplished by defining new states~=~ - ~(tf) 

as discussed in the previous section. If we define a scalar function 

V(~) that is positive definite, and find a control law that makes the 

total time derivative of V(~} nonpositive, then that control law is 

stable and drives the system to the origin. Furthermore, if V(~) is 

positive definite and its total time derivative is negative definite, 

then the control law is asymptotically stable. 

Consider the polynomial state equations 

and a Lyapunov function 

V = x2 + x2 + 1 2 
+ x2 

n 

(2.21) 

(2.22) 

Note that V > O for all x 1 0 and V = 0 when x = 0. Now consider the 

total time derivative of V 

(2.23) 
. 

By substituting Eqs. (2.21) into V, we get a polynomial in xi 
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V = 2(a .. x.x. + c .. kx.x.xk + ... + b .. x.u.) 1J 1 J 1J 1 J 1J 1 J (2.24) 
. 

If a control law ui can be determined so that V .:::_ 0 for all xi' the 

ensuing controlled motion is stable. One solution is to define the 

controls so that the nonnegative definite terms in V are cancelled and 

then add a nonpositive function, so that 

uJ. = - b:~ (a.kxk + c.k xkx + ... ) - Kf .(xk) lJ 1 1 g, £ J 
(2.25) 

where K is a positive constant and fJ. is defined so that b .. x.f. > 0. lJ 1 J 
For example, we could define fj as 

f. = b:~ x. (2.26) 
J 1 J 1 

when b .. is positive definite. A suboptimal control could then be lJ 
determined by adjusting the gain K until a given performance index is 

minimized. 

2.4 Conclusions 

When nonlinear state equations can be expressed as polynomials 

in the states, the optimal nonlinear control problem may be solved in 

polynomial feedback form and a suboptimal control law determined by 

truncation. If the state equations contain linear terms, and there is 

at most only one zero eigenvalue, then linear constant gains may be 

determined by Potter's method. Constant higher-order gains are then 

determined recursively from linear algebraic equations. 

If the state equations do not contain linear terms and there are 

more states than control variables, or the linear system has more than 

one zero eigenvalue, then constant 1inear gains cannot be determined 

by Potter's method. In these cases linear terms may be introduced by 
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changing the state variables, or time-dependent gains can be deter-

mined. 

Nonlinear control laws may also be determined by use of a 

Lyapunov function. Polynomial state equations are not required, and 

an asymptotically stable control law is determined. Although the con-

trol is not optimal per se, constant coefficients can be introduced 

which may be adjusted to minimize a specified performance index. 

Several simple examples for scalar and two-state systems will 

now be considered. 



Chapter III 

SCALAR AND TWO-STATE SYSTEMS 

3. 1 State Equations with Linear Terms 

Consider the optimal control problem of minimizing the following 

performance index 

t 
J = l J f {qx2 + ru2}dt 

2 t 
0 

subject to the state equation 

+ a xn + bu n 

The costate equation is 

and the control is 

b u = - - \ r 

Assuming the costate as a polynomial in the state x 

then the coefficient differential equations corresponding to Eqs. 

(2.14) and (2. 16) and higher order terms are 

12 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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• b 
k2 + 3(a, - r kl)k2 = - 3kla2 

• b b 2 
k3 + 4(a, - r kl)k3 = - 4kla3 - 4k2a2 + 2 r k2 

k4 + 5(a1 - % k1)k4 = - 5k1a4 - 5k2a3 - 5k3a2 + 5 % k2k3 

• b 
ks+ 6(a, - r ki)k5 = - 6kla5 - 6k2a4 - 6k3a3 - 6k4a2 

+ 6 ~ k k + 3 ~ k2 
r 2 4 r 3 

+ kn/2 kn/2+1} for n even 
+ 

(3.6) 

l 2 
+ k(n-1)/2 k(n+3)/2 + 2 k{n+l)/2} for n odd 

Making the change of variable from time t to time-to-go 

• = tf - t and assuming a solution of the form 

-1 
k1 = k1ss + z, 

. 
k _ -(n+l) - z1 z n n 

( 3. 7) 
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where k155 is the steady state.solution for k1, we obtain the following 

equations 

b = -r 

dz2 b 3 2 
err-+ J(al - r k1SS)z2 ~ 3a2(k1ssz1 + zl) 

dz3 b 4 3 
err-+ 4(al - r k1ss>z3 = 4a3(k1ssz1 + zl) 

b -2 2 + 4a2z1z2 - 2 r zl z2 

+ a Zn-2 z + + a z z } n-1 1 2 ··· 2 l n-1 

+ zn/2 zn/2+1} for n even 

1 2 
+ z(n-1)/2 z(n+3)/2 + '2" z(n+l)/2} for n odd 

(3.8) 

The vari~ble changes of Eqs. (3.7) are generalizations of and were 

motivated by Refs. [19] and [21]. 
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Eqs. (3.8) are easily ~olved, subject to specification of the 

boundary conditions; e.g., k1(T) = k2{,) = ... = kn(T) = 0 at'= 0. 

Substitution of the solution for zi(T) into Eqs. (3.7) and then Eq. 

(3.5) yields a polynomial feedback control law with time-dependent 

coeffi ci en ts. 

A numerical example is considered for the state equation 

X = - X + EX2 + U 

that minimizes the performance index 

t 
J = l J f {X2 + U2}dt 

2 t 
0 

The costate equation is 

A = - X + A - 2EAX 

and the control is 

u = -A 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

The performance indices are given in Table 3.1, and state variable and 

control histories given in Fig. 3.1 for the values E = .01 and tf = 

5 sec. The time-dependent linear through quintic gains are plotted in 

Fig. 3.2. Fifth order polynomial feedback has essentially converged 

to the optimal control for this scalar problem. 

3.2 State Equations Without Linear Terms 

When no linear terms are present in the state equations, but the 

number of controls is the same as the number of states, then the 

algebraic Ricca'ti equation may be used to determine constant linear 
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Table 3.1 

PERFORMANCE INDICES FOR SCALAR EQUATION 
• 2 
X = - X + EX + U 

Feedback Order Performance Index 

1 4314.8 

2 3796.4 

3 3725.5 

4 3717.2 

5 3716.8 
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STATE VARIABLE X 

x 

TIME CSEC> 

CONTROL TORQUE 

-20 

-'40 

:::J 

-60 

-ea 
3 

-2e0 
0 1 2 3 5 

TIHE CSEC) 

Fig. 3. 1: State variable and control histories for scalar 
example. 

1 linear feedback 
2 linear plus quadratic feedback 
3 linear through cubic feedback 
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Fig. 3.2: Time dependent feedback gai~s for scalar example. 
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gains. Consider the two state, two control system 

(3.13) 

and find the controls that minimize a quadratic performance index 

(3.14) 

The costate equations obtained from the necessary conditions for a 

minimum are 

(3.15) 

with 

(3.16) 

By assuming a polynomial form for the costates 

(3.17) 

and substituting into Eqs. (3.15), the following equations are obtained 

from the linear terms 
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(3.18) 

The last equation in Eqs. (3. 18) has two solutions, either k2 = 0 or 

k1 = - k3. Since the second of these solutions implies q1 = q2, we 

consider the first, so that the following constant linear gains are 

determined 

k - 0 2 -

The quadratic terms that arise from substituting Eqs. (3.17) into 

Eqs. (3. 15) may be written in matrix form 

[nJ~ = - r. 

where 

and 

(3.19) 

(3.20) 

( 3. 21 ) 

(3.22) 
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The matrix [n] is 

3kl k2 0 k 2 0 0 

2k2 2k,+k3 2k2 0 k2 0 

0 k2 2k3+k1 0 0 k2 

k2 0 0 2k,+k3 k2 0 

0 k2 0 2k2 2k3+k1 2k2 
0 0 k2 0 k2 3k 

The linear gains, Eqs. (3.19)' are substituted into 

(3.23), and Eq. (3.20) is then solved for s!_. Matrix 

singular whenever full-state feedback is used. 

Now consider the same two-state system without 

with only one control variable. 

• x2 x2 = - l 

To find the control that minimizes 

(3.23) 

Eqs. (3.22) and 

[n] will be non-

linear terms, but 

(3.24) 

(3.25) 

where here we have included final state penalties, the costate equa-

tions of Eq. (3.15) and the following control are determined 

U = - Al {3.26) 
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We again assume the polynomial expansions for the costates in Eqs. 

(3. 17), and substitute them into the costate equations. The linear 

terms give the following equations 

(3.27) 

The last equation of Eqs. (3.27) implies either k1 = 0 or k2 = 0, 

which contradicts the other two equations if q1 and q2 are nonzero. 

Hence the algebraic equations to determine the linear gains are 

degenerate, and either linear terms should be introduced into the state 

equations, or time-dependent gains should be considered. If the final 

states are zero or if the linearized equations still produce a degenerate 

Riccati equation, then the second solution is used. 

For time-dependent coefficients, the costates become 

\l = k1(t)x1 + k2(t)x2 + d 1 (t)x~ + d2(t)x1x2 + d 3 (t)x~ + 
(3.28) 

2 2 A2 = k2(t)x1 + k3(t)x2 + d4(t)x1 + d5(t)x1x2 + d6(t)x2 + 

and substitution into the costate equations give the following Riccati 

equations 

k2 - k1k2 = 0 

2 k3 - k2 = - q2 

To solve these equations, we assume a solution of the form 

(3.29) 
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k = z-1 z 2 1 2 (3.30) 

-1 2 k3 = z1 z2 + z3 

where k155 = /Cil from the steady state solution for k1. By making the 

change of variable from t to T = tf - t where tf is the final time, we 

obtain the following equations 

(3.31) 

dz3 
- - q = 0 dT 2 

These equations are easily solved, and with the boundary conditions 

that k. = h. at t = tf, we obtain the following solutions 
. 1 1 

(3.32) 

where the integration constants are 
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Hence a time-dependent solution may be found for systems with no 

linear terms and fewer control variables than states. 

3.3 Conclusions 

(3.33) 

The polynomial feedback control law proposed in Chapter II has 

been used for scalar and two-state nonlinear systems. A time-dependent 

solution has been presented for an n-th order scalar equation, and 

two-state systems without linear terms are examined. If the number of 

states and control variables is the same, the algebraic Riccati equa-

tions may be solved for constant linear gains. When there are fewer 

controls than state variables, the algebraic equations cannot _be 

solved and time-dependent gains should be used. 



Chapter IV 

EXTERNAL TORQUE MANEUVERS 

4. 1 System Model and Optimal Control Problem 

The attitude control problem for a rigid spacecraft is governed 

by a set of kinematic equations defined from the orientation of the 

body with respect to an inertial frame of reference, and a set of 

dynamic equations representing rotational motion. The latter set is 

defined by equating the time rate of change of angular momentum to the 

external torque on the spacecraft, which may be provided by rockets or 

thrusters, magnets interacting with the earth's magnetic field, or by 

other external means. This external torque is precisely the optimal 

control to be determined, such that the desired orientation and motion 

is achieved· while a particular performance measure is minimized. 

4. 1.1 Spacecraft Orientation 
A 

The orientation of a spcecraft body-fixed reference frame {b} to 

an inertial frame {n} is given by the projection 

(4.1) 

where [C] is the direction cosine matrix. Euler angles may be used to 

parameterize the elements of [C]; the 3-2-1 set of Euler angles are 
A 

defined by a positive rotation$ about the n3-axis, a positive rotation 

e about the new 2-axis, and then a positive rotation ~ about the latest 

1-axis. The direction cosine matrix is then 

25 
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f c;ce s~ice -sej 
[C] = -s¢c¢>+C¢S6S<P CljJCij>+S¢S9S¢> cescp (4.2) 

S¢S<fi+C¢S6C¢> -c1Jis¢+s¢s e e:p C6C¢> 

where c represents cosine and s represents sine. The disadvantage of 

this three parameter system is that if 8 = ± rr/2, the angles w and ¢ 

are undefined, and the attitude computation becomes singular. 

Instead of Euler angles, four variables known as Euler parameters 

or quaternions may be used to describe orientation [22], [23]. They 

can be defined from Euler's Theorem, which states that the orientation 

of a body with respect to a given reference frame can be accomplished 

by a single rotation through an angle ¢ about a principal vector £. 

The Euler parameters are 

(4.3) 
s. = i. sin -21> (i = 1,2,3) 

l l 

Since rotational motion has three degrees of freedom, four parameters 

are once redundant; the Euler parameters satisfy the constraint 

3 
I s~ = 1 

i=O 1 
(4.4) 

The direction cosine matrix can now be parameterized [22] 

s; + si - s~ - s~ 2(s1s2 + s0 s3) 2(s1s3 - s0 s2) 

[C] = 2(s1 s2 - s0 s3) s2 - s2 + s2 - s2 
0 1 2 3 2(s2s3 + S0 S1) (4.5) 

2(s1 s3 + s0 s2) 2(s2s3 - s0 s1) s~ -- si - 8~ + s~ 
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By substituting [CJ into the following kinematic equation for direction 

cosines [23) 
. T [C][C] = - [w] (4.6) 

where 

0 -w3 (J.)2 
[~] = w3 0 -wl (4.7) 

-w2 wl 0 

then we obtain the following equations relating the Euler parameters 

to the body-frame components wi of the spacecraft angular velocity ~ 

(4.8) 

Eqs. (4.8) are the kinematic equations relating orientation to space-

craft motion. Note that the constraint Eq. (4.4) is an integral of 

Eqs. (4.8), and so any set of Euler parameters that satisfy the four 

kinematic equations with admissible boundary conditions automatically 

satisfy the constraint. This will be important later in defining the 

Hamiltonian for the optimal control problem. 
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4.1.2 Equations of Motion 

The rotational equations of motion are derived by equating the 

time rate of change of the angular momentum !:!. to the external torque u 

applied to the spacecraft, all with respect to an inertial frame of 

reference [24], [25]. Given 
. 

u = H (4.9) 

... 
and an inertial frame {n}, body frame {_Q.}, 

(4.10) 
. 

where ~ is the time rate of change of!:!. relative to the body frame, 
" A 

and w is the angular velocity of {_Q.} with respect to {n}. The system 

angular momentum is 

H = Iw ( 4. 11 ) 

where I is the moment of inertia matrix. In the body frame of 

reference, the angular momentum's time derivative is 
. 
~=I~ (4.12) 

and upon choosing a principal axis system for the body frame, 

I= diag £1 1 ,r 2 ,r 3 ~ and we obtain from Eq. (4.10) Euler's equations in 

the classical form 

U3 = I3~3 + (I2 Il)wlw2 

These equations may be rewritten as 

(4.13) 
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. 
11w2w3 + ul/Il wl - -

. 
1~1w3 + u2/I2 (4.14) w2 - -

. 
11"1w2 + U3/I 3 w3 = -

where u1, u2, u3 are the external control torques to be determined, 

and the inertia ratios are defined below. 

(4.15) 

The system model is defined by the four kinematic equations, Eqs. (4.8), 

and the spacecraft dynamic equations, Eqs. (4.14). 

4.1.3 State Space Formulation 

Since we have three controls and seven state variables, linear 

terms need to be introduced into the state equations if constant gains 

are to be determined. To this end, let the Euler parameter differences 

and the angular velocities be the state variables 

(4.16) 

-where the attitude departure variable B· is defined as the difference 
1 

between the current Euler parameter and its desired state at the final 

(i = 0,1,2,3) (4.17) 

The state equations may now be written as 
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• 1 l 
X4 = - 2 (x1B1(tf)+x2B2(tf)+x3S3{tf)) - 2 (x1x5+x2x6+x3x7) 

• 1 l 
X5 = 2 (xlso(tf)-x2S3(tf)+x3B2(tf))+2 (xlx4-x2x7+x3x6) 

• 1 1 
x6 = 2 (x1S3(tf)+x2so(tf)-x3S1(tf))+2 (x1x7+x2x4-X3X5) 

• 1 l 
X7 = - 2 (xl 82 ( tf) - X2 81 ( tf) - X3So ( tf)) - 2 (xl x6 - X2X5 - X3X4) 

(4.18) 

Note that linear terms now appear in the fourth through seventh equa-

tions above. 

4.1.4 Fonnulation of the Optimal Control Problem 

Consider the optimal control problem of finding a feedback 

control law that brings the states to zero, so that the angular 

velocities w; and the attitude differences Si go to zero, while 

minimizing a quadratic performance index 

The Hamiltonian H for this system of equations is 

(4.19) 

(4.20) 
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Note that the Euler pa~ameter constraint, Eq. (4.4), is not 

explicitly included in the Hamiltonian. As discussed before, this 

constraint is an exact integral of the Euler parameter equations, and 

hence is implicitly enforced at each instant of time when the state 

equations are satisfied. Furthermore, differentiation of the 

Hamiltonian with respect to the states is valid even though the Euler 

parameters are not independent, since the constraint is implicitly 

satisfied (see Bryson and Ho [26] for a discussion of dependent states 

with equality constraints). The costates associated with the Euler 

parameters are also redundant, but no similar equality constraint can 

be derived for them when state weights are present in the performance 

index. For a discussion of Euler parameter costate constraints, see 

Vadali, Kraige, and Junkins [27] and Junkins and Turner [28]. 
The necessary conditions for optimality result in the following 

costate equations 

~l = -qljxj + "'2 12x3 + A.3l3X2 + {i\.4~1 (tf) - AS~o(tf} 

-i\.5~3(tf) + A.7~2(tf) + A4X5- A5X4 - i\.5X7 + :\7X5)/2 

~2 = -q2jxJ+:\l/lx3 +ll.3l3x1 + (i\.4~2(tf) +A.5~3(tf) 

-:\6~o(tf) - i\.7~l(tf) + :\4X5 + i\.5X7- i\.5X4 - A.7x5)1 2 

~3 = -q3jxj + i\.l /lx2 + i\.2/2xl + (i\.4~3(tf) - i\.5~2(tf) (4.21°) 

+ i\.6~l~tf) - i\.7~0(tf) + i\.4X7- i\.5X6 + i\.5X5- i\.]X4)/Z 

~4 = -q4jXj - (i\.5Xl + i\.6X2 + A.7X3)/Z 

~5 = -q5j Xj + (A.4Xl + i\.5X3 - i\.7Xz)/ 2 
• ;\.6 = -q6jXj + (i\.4X2 - A5X3 + A.7X1)/ 2 

{7 = -q7jXj + (>.4X3 + A.5X2 - A.6Xl)/Z 
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The costates are assumed to have the form 

A • = k .. X • + d .. kx . X k + •.. 1 lJ J 1J J (4.22) 

and by substituting into costate equations above, ordinary differential 

equations for the gains kij and dijk can be found. With the exception 

of low order systems, however, the algebra to determine these equations 

is extensive. 

4.2 Single Axis Maneuvers 

4.2.1 State Equations 

For maneuvers that require rotation about only one body axis, 

say the i-th axis, the system model of section 4.1 reduces to the 

following equations 

. 
w. = u/I. 

1 1 

and the state equations can be written as 

where 

. x1 = u/I 

x2 = - ~ {S;(tf)Xl + x1x3} 

X3 = i {So(tf)xl + xlx2} 

X = {w. 
1 

(4.23) 

(4.24) 

(4.25) 
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4.2.2 The Optimal Control Problem 

The single axis maneuver may a1so be parameterized by the angle 

of rotation cj>, in which case the system model becomes 

<I> = u/I (4.26) 

and the state equations become 

( 4 .27) 

where 

1}T x = {cj> 'I' (4.28) 

To minimize a performance index 

(4.29) 

we form the Hamiltonian 

(4.30) 

and from the necessary conditions for optimality we obtain the costate 

equations 

. 
"1 = - q 

( 4.31) 
~ -2 - A.l 

and 

u = - "A2/I (4.32) 
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Parameterization by angle of rotation results in a linear system 

of equations, Eqs. (4.27), so that the optimal feedback control law is 

also linear. Only two gains would be determined, for feedback on ~ 

and ~' so that in practice this choice of variables would be used for 

single axis maneuvers. To examine convergence of the polynomial 

feedback control law, however, we will use Euler parameter kinematics. 

Given state equations Eqs. (4.23), minimize the following per-

formance index 

t 
J =~I f {!TO!+ UT.!!_}dt (4.33) 

to 

where the x above is given by Eq. (4.25). The costate equations are 

~2 - - q2.x. J J 
(4.34) 

and the control is 

(4.35) 

The costates are assumed to include linear through quartic terms in 

the states 

(4.36) 

4.2.3 Simulation Results 

Every orientation of the body has two corresponding points in 

Euler parameter space, either plus or minus Eq. (4.3). Although the 

kinematic equations, Eq. (4.8), do not change with the choice of sign, 
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the feedback control terms involving odd powers of the Euler 

parameters will change sign. Hence there are four possible combina-

tions of boundary conditions corresponding to one physical maneuver, 

two for the initial conditions and two for the final conditions. The 

Euler parameters are points on a four-dimensional unit sphere, and the 

four combinations will give four paths on the surface of this sphere 

(see Fig. 4.1). The proper combination to choose is the one with the 

lowest value for the performance index. 

Two cases were studied for a single-axis rotation about the yaw 

axis. The state penalty weights for both cases was 

.5 0 0 

Q = 0 0 0 ( 4. 37) 

0 0 .5 

and the moment of inertia was I1 1.00 2 = kg.m 

Both cases corresponded to a go 0 rotation about the one-axis with 

initial and final Euler parameter states and angles given in Table 4.1. 

Stea~y-state values determined by Potter 1 s method for the linear gains, 

and solution of the linear algebraic equations for quadratic, cubic 

and quartic gains, are given in Table 4.2, where the final states were 

p 1 us s0 and s1 . 

Cases 4A and 48 

A 11 rest-to-rest 11 maneuver with a go 0 rotation about the one axis 

is considered, corresponding to zero initial and final angular velocity. 

Fig. 4.2, case 4A, shows the response using linear, quadratic and cubic 

feedback control and positive initial and final Euler parameter values 



36 

Fig. 4. 1: Initial and final Euler parameter boundary 
conditions. 
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Table 4.1 

BOUNDARY CONDITIONS FOR SINGLE AXIS MANEUVERS 

Initfal State Final State 

Bo 1 -1 0.707107 -0.707107 
or or 

81 0 0 0.707107 -0. 707107 

<I> 0 7T/2 
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. 
Table 4.2 

SINGLE AXIS GAINS 

Li near Quadratic {x10-2) 

kl 1 1.000 dll 1 -5.556 

kl2 0 d112 35.355 

k13 0.707 d113 3.928 

d122 0 

d123 0 

d133 0 

cubic (xio-2) Quartic (x10-2) 

f 1111 - 1 . 321 fl233 0 h11111 -0.226 hll223 4.253 

f1112 4.365 f1333 0 hll 112 0.970 h11233 -3.430 

fll 13 -5.538 hl 1113 -0.752 h11333 -1.492 

f1122 -6.250 . h11122 -3.429 h12222 0 

fll23 -4.475 hl 1123 3.180 h12223 0 

f1133 3.839 hl 1133 1 .896 h12233 0 

f 1222 0 h11222 2.210 hl2333 0 

h13333 0 



:::1 
.... 
: ' c: I - a.s 
x a. 

lt.4 

•.. ~ 
a.:i 

:.; 

'·' t 
loJ en 
' ::: c: 
°' -
:: 

a. t 

a 
9 

a.s 

e.4 

a.J -T; 

z El.2 -
~ a.1 

' ,,; 

39 

Mf;NC:L.iVE:R ANGLE 

:§;~.!rn~~ 

-•- !..INEFiR 
- -- QUPORAiIC 
- c..;src 

5 ta 15 

ANGULAR VELOCITY 

T!:'1S: CSE:C) 

:§;~~§es~ 

-•- l-!NE:FiR 
- - - CUADPAiIC 
- C:JS!C 

ta 

CONTROL roRaue: 

t:~§;~§e9:: 

--~ L.!NEFiR 
- - - ~:.JAQR<:; T! C 
- CUBIC 

Fig. ~.2: Case 4A single-axis rest-to-rest maneuver. 



40 

(the quartic gains resulted in curves undistinguishable from the cubic 

curves and so were not plotted). The same response is obtained when 

negative initial and final Euler parameter values are used. ·By using 

positive initial conditions and negative final conditions, or vice 

versa, the response in Fig. 4.3, case 48, is obtained. Note that the 

final angle obtained is Srr/2 in Fig. 4.3. The maneuver was 

accomplished in about 15 seconds. The performance indices for the 

maneuvers in Figs. 4.2 and 4.3 are tabulated in Table 4.3. 

Case 4C 

A 11 spin-down 11 maneuver corresponding to a reorientation about the 

one axis through 90° is performed, with an initial angular velocity 

of .5 rad/sec and zero final angular velocity. Fig. 4.4 shows the 

response to linear, quadratic and cubic feedback control with positive 

initial and.final Euler parameters, where quartic gains again give no 

significant improvement from cubic gains. The performance·indices for 

this maneuver, and the maneuver involving initial and final Euler 

parameters of opposite sign, are given in Table 4.4. 

Discussion 

Although there are four possible combinations for Euler parameter 

boundary conditions, there are only two different control histories, 

as seen in Figs. 4.2 and 4.3. The maneuver performed in Fig. 4.2 

reaches the desired final angle of rr/2, while that in Fig. 4.3 must go 

through an extra rotation to end at Srr/2. Furthermore, adding more 

feedback terms to the maneuver with the extra rotation increases the 

performance index, so we can see that the optimum maneuver will not be 
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Table 4.3 

PERFORMANCE INDICES FOR CASES 4A AND 48 

Feedback Gains Jl J2 

linear 0.396605 5.22423 
quadratic 0.395830 5.35058 
cubic 0.395784 5.39222 
quartic 0.395783 5.38487 

Table 4:4 

PERFORMANCE INDICES FOR CASE 4C 

Feedback Gains Jl J2 

linear 0.287457 5.03120 
quadratic 0.286447 5.15163 
cubic 0.286297 5.22255 
quartic 0.286296 5.24521 

J1 corresponds to initial and final Euler parameters of the same sign. 

J2 corresponds to initial and final Euler parameters of opposite sign. 
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obtained from these boundary conditions. Note that the linear feedback 

performance index is much lower for the first maneuver, and hence a 

linear simulation will indicate ~he correct Euler parameter boundary 

conditions for convergence. It appears that cubic and quartic gains 

are unnecessary for these maneuvers; linear feedback performs the 

maneuver, with a slight improvement in the performance index for 

quadratic gains. 

Although steady-state values for the gains were used in these 

examples, Case 4A was also executed using transient linear gains and the 

resulting transient quadratic gains determined by numerical integration. 

This simulation showed no significant deviation from the response using 

steady state values, which is expected in the case of linear feedback 

for a linear system with constant coefficients. 

Several state weighting matrices were also used in Case 4A. For 

very small state weights, the problem became singular, as expected, and 

for larger weights, the linear, quadratic, cubic and quartic controls 

all gave the same response, indicating the linear control was very close 

to optimal. 

An identity state weight matrix was also tried, which is harder 

to solve with Potter's method. This problem arises because the linear 

part of the state equations is not completely controllable, due to the 

redundancy of the Euler parameters, and so the system has a zero eigen-

value corresponding to s0 . When there are no state weights on s0 , the 

linear gains on s0 are zero and the eigenvector associated with the 

zero eigenvalue is not needed; when the performance index requires the 

error in e0 to be minimized~ the eigenvector corresponding to the zero 
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eigenvalue must be determined accurately enough to find nonzero linear 

gains. For the case of weights on w and s0 and no penalty on s1, gains 

were found that would drive the system to either -<Pf or +<j>f. This 

problem is due to the evenness (and associated quadrant ambiguity) of 

the cosine function defining s0 . 

4.3 Three-Axis Maneuvers 

4.3.l State Equations and Optimal Control Problem 

The state equations for three-axis maneuvers are given in Eqs. 

(4.18), and the costate equations are given in Eqs. (4.21). For these 

maneuvers, linear plus quadratic feedback was considered, so that the 

costates were of the following form 

:\. 
1 = k .. x. + d .. kx.xk lJ J lJ J (i=l, ... ,7) (4.38) 

4.3.2 Simulation Results 

Two cases were studied for rotations involving a 11 three axes . 

The state penalty weights in both cases was 

11 0 0 0 0 0 0 
0 1 0 0 0 0 0 
0 0 1 0 0 0 0 

Q = 0 0 0 0 0 0 0 (4.39) 
0 0 0 0 1 0 0 
0 0 0 0 0 1 0 
0 0 0 0 0 0 1 

Table 4.5 contains the mass properties of the spacecraft. The algebra 

required to derive the gain equations for both the single-axis and 

three-axis maneuvers was performed on the IBM 370 algebraic manipulator 
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Table 4.5 

SPACECRAFT INERTIA 

Axis Moments of Inertia {kg • m2) 

yaw l.00 
pitch 0.83 
roll 0.92 

Table 4.6 

CASES 4D AND 4E BOUNDARY CONDITIONS 

Initial State Final State 

cf> 0 Tr/2 
e 0 rr/3 
1jJ 0 Tr/4 
80 1 -1 -0.33141 0.33141 

el O or 0 -0.46194 or 0.46194 
(32 0 0 -0.19134 0. 19134 

S3 0 0 -0.80010 0.80010 

wl . 01 0 
w2 0 0 
w3 0 0 
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FORMAC. The initial and final Euler parameter states, angular 

velocities and the corresponding 3-1-3 angles are given in Tables 4.6 

and 4.7. The linear gains found by Potter's method for positive final 

Euler parameters are given in Table 4.8, and the corresponding 

quadratic gains are given in Table 4.9. 

Cases 40 and 4E 

These cases involve a large angle nonlinear maneuver from pure 

spin about the one axis to zero angular velocity. The angular 

velocities, Euler parameters, and control torques are given in Figs. 

4.5 and 4.6 for positive initial and final boundary conditions, Case 40. 

Case 4E, the same maneuver but with negative initial boundary conditions, 

is shown in Figs. 4.7 and 4.8. The performance indices for this maneuver 

are given in Table 4.10. 

Case 4F 

Case 4F requires a large angle maneuver from tumbling to rest. 

Figs. 4.9 and 4.10 show the responses to the linear and quadratic gains. 

The performance indices for this maneuver are given in Table 4.11. 

Discussion 

The four possible Euler parameter boundary conditions result in 

two stable maneuvers determined by positive final Euler parameters, and 

two unstable maneuvers involving negative final Euler parameters. The 

importance of using the correct set of Euler parameter boundary condi-

tions is demonstrated in Figs. 4.5 and 4.7. The angular velocities 

and control torques are much larger when negative initial boundary 
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Table 4.7 

CASE 4F BOUNDARY CONDITIONS 

Initial State Final State 

4> -rr/2 rr/2 

e -rr/3 rr/3 

ljJ -rr/4 7T/4 

Bo -0.33141 0.33141 

s, 0.46194 0.46194 

62 -0.19134 0.19134 

63 0. 80010 0.80010 

wl -.5 0 

w2 .3 0 

W3 . 1 0 
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Table ·4.8 

LINEAR GAINS FOR THREE-AXIS MANEUVERS 

kll l . 3509 k21 -0.0217 k3l -0.1007 

k12 -0.0217 k22 1.1153 k32 -0.0346 

k13 -0. 1007 k23 -0.0346 k33 1.1144 

k14 0.0 k24 0.0 k34 0.0 

k15 0.4923 k25 -0.6116 k35 0.4262 

k16 0.8654 k26 0 .. 2963 k36 -0.3235 

k17 0.0937 k27 0.4764 k37 0.7484 
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Table 4.9 

QUADRATIC GAINS FOR THREE-AXIS MANEUVERS 

dll l -.0202 d211 -.0062 d311 -.0179 
d112 -.0123 d212 -.0094 d312 - .0107 
dl13 -.0358 d213 -.0107 d313 -.0413 

dl14 . 1952 d214 .0259 d314 . 1225 

dl15 - . 1191 d215 -.0349 d315 - • 1213 
dll6 .0967 d216 -.0998 d316 .0435 
dll7 .2487 d217 .0506 d317 .0018 

d122 -.0469 d222 -.0035 d322 -.0061 

d123 - . 0110 d223 -.0122 d323 -.0130 

d124 .0259 d224 .0930 d324 .0408 

dl25 -.0349 d225 .0652 d325 .0025 

dl26 -.0998 d226 - . 0421 d326 - .1700 

dl27 .0506 d227 .1355 d327 . 0181 

dl33 -.0207 d233 -.0065 d333 -.0444 

dl34 .1225 d234 .0408 d334 .2935 

d135 - . 1213 d235 .0025 d335 .2195 

dl36 .0435 d236 - .1700 d336 .0409 

dl37 .0018 d237 .0181 d337 -.0380 

dl44 0.0 d244 0.0 d344 a.a 
dl45 .6737 d245 . 1494 d345 -.3952 

dl46 - . 3491 d246 . 7115 d346 .0104 

dl47 -.3154 d247 -.2510 d347 .2296 

dl55 -.3459 d255 . 2291 d355 .0658 

d156 -.2622 d256 .2369 d356 -.0662 

d157 .1357 d257 .1045 d357 -.4429 

dl66 .0896 d266 .1452 I d366 .3664 

l dl67 - . 5572 d267 .2272 d367 .1263 

d177 -.3651 d277 -.2517 
I d377 .2007 
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Table 4.10 

PERFORMANCE INDICES FOR CASES 40 AND 4E 

! 
Feedback Gains I Jl J2 

linear l .32873 12.0971 
quadratic l. 31442 12.7792 

J 1 corresponds to positive initial and final conditions. 

J2 corresponds to negative initial conditions and postive final condi-
tions. 

Table4.ll 

PERFORMANCE INDICES FOR CASE 4F 

Feedback Gains Jl 

linear 0.80214 
quadratic 0.67243 

J2 

6.27908 
6.81439 

J1 corresponds to boundary conditions given in Table 4.7. 

J2 corresponds to negative initial conditions and positive final condi-
tions. 
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conditions are used, and the addition of quadratic feedback terms pro-

duces even larger angular velocities and control torques. As we ob-

served in the single-axis maneuvers, the linear feedback performance 

index indicates the proper boundary conditions to obtain the optimal 

maneuver. 

Unstable behavior is observed when negative final Euler parameter 

boundary conditions were used. This instability occurs in the linear 

part of the system; some of the closed-loop poles are in the right-half 

plane. Hence an eigenvalue analysis will eliminate some boundary condi-

. tion combinations, and a linear feedback simulation will indicate which 

of the remaining combinations give the minimum performance index. 

These boundary conditions will then result in higher order feedback that 

approaches the optimal solution. 

4.4 Conclusions 

The nonlinear large angle maneuver control problem has been 

solved in feedback form for both single axis and three-axis maneuvers. 

The polynomia) feedback controls have been found to converge with 

relatively low order (linear in some cases) by formulating the 

kinematics in terms of Euler parameters. Although there are four combi-

nations of Euler parameter boundary conditions, a linear analysis will 

indicate the correct combination for convergence to a minimum. 
The other solutions may be saddle points or maxima on the performance 

index manifold; they appear because Pontryagin 1s Principle generates 

only necessary conditions for optimality. 
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Unfortunately, the smooth external control torques determined in 

this chapter are not physically realizable in practice. Most external 

torquing mechanisms do not provide continuous torques; both rockets and 

magnets usually operate in a 11 bang-bang 11 mode, so that they are either 

on at a fixed value or off. Continuous control torques can be provided 

by internal means, however, and will be considered in the next 

chapter. 



Chapter V 

INTERNAL TORQUE MANEUVERS 

5.1 System Model and Optimal Control Problem 

Attitude control is considered for a five-body configuration 

consisting of an asyrrnnetric spacecraft and four reaction wheels. We 

restrict our attention to the momentum transfer class of internal 

control torques that provides a reduction in the number of feedback 

states. 

5.1.1 Spacecraft Orientation 
~ 

A spacecraft body-fixed reference frame {b} is related to an 
~ 

inertial frame {.!:!) by the direction cosine matrix [C(s)], 

(5 .1) 

where [C(s)] is defined in Eq. (4.5) by the four Euler parameters 

60 ,s1,s2,s3 of Eq. (4.3). These attitude variables are related to the 

body-frame components of the spacecraft angular velocity~ by the 

kinematic differential equations of Eq. (4.8), which are repeated here 

for reference. 

~1 = { (pawl - P3W2 + ~2w3) 

~2 = { (p3wl + Pow2 - P1w3) 

~ 3 = · - t ( P 2wl - P 1 w2 - Po w3 ) 

60 

(5.2) 
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... 
In addition to using an arbitrary, general inertial frame {.!!_}, 

... ... 
we introduce a special inertial angular momentum frame· {1J_}, where~ 

is aligned with the system angular momentum.!:!_, as Kraige, Vadali, and 
A A 

Junkins (29], (30] have discussed. The other two unit. vectors (!!_1,JJ.3) 

are defined as the directions {fl.1} and {n 3} assume after{~} is 

rotated to coincide with.!:!. (see Fig. 5. l). The {h} reference frame can 

be considered inertial if the external torques are negligible during 

the maneuver and only internal torques are present. As is shown 

below, introducing this frame allows us to make use of the angular 

momentum integral to reduce the number of state variables. 

The orientation of {b} with respect to the momentum frame {h} is 

given by the projection 

{b} = [C(o)]{h} (5.3) 

where the 3.x3 direction cosine matrix [C] is a function of four 
... 

variable Euler parameters (o0 ,o1,o2,o3). The inertial frame{.!!_} is 
... 

projected onto {!!_} by 

{~} = [C(a)]{h} (5.4) 
... 

where a0 , a1, a2; a3 are constant Euler parameters since both{.!!_} and 
A A 

{!!_}are inertial. Using the inertial frame{.!!_} components of the 

system angular momentum 
A A A 

.!:!. = Hn 1 nl + Hn2~ + HnJ.!!.3 (5.5) 

the constant ai Euler parameters can be defined 
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Fig. 5.1: Angular momentum inertial frame of reference. 



= 1:1 + Hn 2]1 /2 
ao L 2H 

~ H - H 2 T/2 al = -Hn3 2H(H2 +nH2 ) 
nl n3 

a2 = 0 

D H - H 2 Jl /2 CX3 = Hnl 2H(H2 +nH2 ) 
nl n3 
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(5.6) 

The oi Euler parameters are then related to t!ie ~i parameters by the 

bilinear, orthogonal equation 

60 ao -al -a2 -a3 ~o 

61 al ao -a3 a2 ~l 
(5. 7) = 

02 a2 a3 a -al ~2 0 

03 a3 -a2 al a 
0 

6 ·3 

and are related to the body-frame components of~ by the differential 

equations 

61 = ~ (oowl o3w2 + ozw3) 

• 1 
62 = 2 (53w1 + 0ow2 - 01w3) 

( 5. 8) 
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We can show from Eq. (5.3) and using the algebraic expressions for 

[C(c)] from Eq. (4.5) where e's are used instead of S's, that 

hA - 2(s s + s s )bA + (s20 - s21 + 0~22 - ~23)bA,., !!2 - u1u2 uou3 -1 u u u -c. 

(5.9) 

so the body-frame components of the system angular momentum can now be 
A 

written from.!:!.= H~ as 

H1 c 2(c1o2 + o0 c3)H 

2 2 2 2 H2 = (c0 - c1 + c2 - c3)H (5.10) 

Thus we have an explicit relationship to eliminate the H. in terms of , 
the ci for the equations of motion below. 

5.1.2 Spacecraft and Reaction Wheel Dynamics 

An arbitrary asymmetric spacecraft with four reaction wheels in 

NASA standard configuration [31], [32] is considered (see Fig. 5.2). 

Three wheels are aligned along the orthogonal body-frame axes, and the 

fourth skewed wheel is aligned so that its axis is at equal angles to 

the body axes. Normal operations will use only the three orthogonal 

wheels for attitude control; the fourth wheel will be act1vated in the 

event of motor failure for one of the primary control wheels. 

The system angular momentum .!:!. is the sum of the spacecraft and 

wheel angular momenta; the body components of H and~ are related by 

(5.11) 
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where [I*] is the system inertia matrix with respect to the body frame 
~ . 

{.Q_}, n is a vector of the four wheel angular velocities and [J] the 

wheel axial moment of inertia matrix defined by [J] = diag {Jai}' 

i = 1,2,3,4. [C] is a 4x3 matrix whose rows are the three orthogonal 

body-frame components of four unit vectors along the wheel spin axes. 

Assuming negligible external torques, the time rate of change of 

the angular momentum is zero, and thus we obtain the Eulerian equation 

of motion 

. A= [I*J~ + [cJT[JJn + [~J!:!. =a (5.12) 

where 

0 -w3 w2 
[~] = W3 0 -wl {5.13) 

-w2 wl 0 

The reaction wheel equations of motion are obtained by considering 

the angular momentum of each wheel about its center of mass, and 

equating its time rate of change to the torque applied to that wheel. 

The four wheel equations are 

[JJ.Q. + [JJ[cJ~ = .!! (5.14) 

where the four components of the control vector u are the axial torques 

applied by the motors to their respective wheels. To eliminate the 

wheel angular velocities n from the spacecraft equations of motion, 

Eq. (5.14) is multiplied by [C]T and then substituted into Eq. (5.12) 

to obtain 
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(_5. 15 )_ 

where [G] ~[I* - CTJC]-l, a constant matrix. Implicit in Eq. {5.15) 

is the substitution of Eqs. (5.10); thus w is just a function of~' A, 
and u. It is interesting to note that rest-to-rest maneuvers 

(characterized by.!:!.= 0) remove all the gyroscopic terms in Eq. (5.15). 

Hence it is evident that for this class of maneuvers, angular velocity 

control is near trivial and attitude control is nonlinear only because 

of kinematic nonlinearities. 

The three equations of motion in Eq. (5.15) and the four attitude 

equations in Eq. (5.8) will be used to determine the state equations. 

Note that if the external torques were not negligible, the system 
A 

angular momentum would not be constant and the momentum frame {h} 

would not be inertial. The system equations would then include the 

three spacecraft equations of Eq. (5.12), the four wheel equations of 

Eq. {5. 14), and the four Euler parameter equations of Eq. (5.2). 

5. 1.3 State Equations 

To obtain state equations of the form 

(5.16) 

in which A is a constant coefficient matrix and f..(~_) is a vector func-

tion containing the nonlinear terms, let the state variables be the 

spacecraft angular velocities wi and the Euler parameter differences 

oi; thus the seven element state vector is 

{5.17) 
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where 

-oi = oi - o;(tf) (i = 0,1,2,3) (5.18) 

These new state variables introduce linear terms into the dynamic and 

kinematic equations, Eq. (5.15) and Eq. (5.8), respectively. 

The elements of the A matrix for the linear part of the state 

equations are found to be 

0 0 
all = 912H3 - 913H2 

0 0 
a13 = 911H2 - 912H1 

0 0 
a22 = 923Hl - 921H3 

0 0 
a31 = 932H3 - 933H2 

0 0 
a33 = 931H2 - 932H1 

a42 = - 62(tf )/2 

a51 = _oo(tf)/2 

a53 = 62(tf)/2 

a62 = 6o(tf )/2 

a71 = - 62(tf )/2 

a73 = oo(tf)/2 

0 0 
a12 = 913H1 - 911H3 

0 0 
a21 = 922H3 - 923H2 

Ho Ho a23 = 921 2 - 922 1 
0 0 

a32 = 933H1 - 931H3 

a41 = - 61(tf)/2 

a43 = - 63(tf )/2 

a52 = - 63(tf)/2 

a61 = 63(tf)/2 

a63 = - 6l(tf)/2 

a72 = ol(tf)/2 

aij = O (i = 1, ••• ,7 ;j = 4, ••• ,7) 

(5.19) 

where !!0 is Eq. (5.10) evaluated at oi(tf). Notice that the aij are 

explicit functions of the specific terminal state oi(tf) and the 

magnitude of the system angular momentum H. B is a 7x4 matrix 

and the vector£.(~) contains qua~ratic and cubic terms in xi. 
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5.1.4 Performance Indices 

Two quadratic perfonnance indices are considered 

(5 .21) 

and 

(5.22) 

where 

(5.23) 

is the 3xl vector sum of the motor torques and where Q, R and W are 

positive semidefinite weighting matrices. In the developments below, 

we show that using J2 has the advantage that an optimal m(t) can be 

determined uniquely and realized by an infinity of wheel torques if four 

wheels are used~ This allows for a versatile control scheme with a 

built in provision for redundancy. In the numerical examples, we have 

used R = W = identity matrices and several choices are made for Q. 

5. 1.5 Feedback Control 

For the performance index in Eq. (5.21), the optimal control is 

(5.24) 

where B1 is the B matrix of Eq. (5.20}. The analogous development for 

the performance index of Eq. (5.22} uses the state equations in the 

form 

(5.25) 



where B2 is a 7x3 matrix 

The optimal control m for J2 is 

m = -w-lBTA 
- 2-
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(5.26) 

and the four wheel torques are obtained by inverting Eq. (5.23). Since 

[C] is 4x3 rectangular matrix, the solution for u is not unique, but 

we can use a minimum norm criterion to obtain 

(5.27) 

Hence a unique optimal solution for m(t) is determined, but there are 

an infinite number of other wheel torque strategies that may be imple-

mented, all constrained by Eq. (5.23). The numerical examples in this 

chapter do ~ot use the minimum norm solution of Eq. (5.27); performance 

index J1 is used for the four wheel case, and J 2 used for three wheels. 

In the latter case the 3x3 nonzero submatrix of [C] is used in Eq. 

(5.23) to determine a unique control vector u for the three active 

wheels. 

5.2 Numerical Examples 

Several examples are considered for an asymmetric spacecraft with 

four reaction wheels as shown in Fig. 5.2. The moments of inertia of 

the spacecraft without the wheels and the wheel axial moment of inertia 

are given in Table 5. 1; the inertia matrix [I*] and wheel geometry 

matrix [C] are given in Table 5.2. The mass of the spacecraft is 500 

kg, the mass of each wheel is 5 kg, and the distance from the center to 
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Table 5.1 

MOMENTS OF INERTIA (kg • m2) 

Ii 86.215 

I2 85.070 

I3 113.565 

Ja 0.05 

Table 5.2 
INERTIA AND WHEEL GEOMETRY MATRICES 

[
87.212 

[I*] = -0.2237 
-0.2237 

[CJ = [ ~ 
13~3 

-0.2237 
86.067 
-0.2237 

0 
1 
0 

/3/3 

-0. 2237] 
-0.2237 

114.562 

~~3] 
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each wheel is 0.2 m. All examples were performed using linear and 

quadratic steady-state gains with free final time tf. 

Case SA 

A 3-d maneuver with zero initial wheel speeds is studied in 

which two state weights in the performance indices are considered 

and 

Q2 = I with q44 = 0 

{5.28) 

The four-wheel maneuver uses performance index J1 with R = I evaluated 

at tf = 120 sec., and the three-wheel maneuvers are with performance 

index J2, W =I, and tf = 240 sec. The boundary conditions are given 

in Table 5.3 using the 3-1-3 Euler angles, and the performance indices 

are listed in Table 5.4. In all maneuvers the final wheel speeds were 

small. Fig .. 5.3 shows the spacecraft and wheel angular velocities for 

the case of three orthogonal wheels (skew.wheel off) and Q2 in per-

formance index J2, and Fig. 5.4 shows the control torques required for 

this maneuver. 

For the case when Q1 is used in performance index J 2, with the 

skew wheel off, we obtain the spacecraft and wheel angular velocities 

shown in Fig. 5.5. When one of the primary wheels is turned off, and 

the skew wheel used for compensation, we obtain spacecraft angular 

velocity histories exactly like those of Fig. 5.3, and similar Euler 

parameter histories. The wheel angular velocities for each of these 

three cases is quite different, however, as can be seen in Figs. 5.6, 

5.7, and 5.8. 
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Table 5.3 

CASE SA BOUNDARY CONDITIONS 

Initial States Final States 

wl .0001 0.0 
w2 .0001 0.0 
w3 .0001 0.0 
<P -ir/2 7r/2 
e -TI /3 7r/3 
ljJ -TI/4 7r/4 
00 -.54611 -.30257 
01 .47921 - . 13976 
02 .67687 .81747 
03 .11820 .46974 

so -.33141 .33141 
131 .46194 .46194 
132 -.19134 . 19134 
133 .80010 .80010 
Ql 0.0 * 
Q2 0.0 * 
Q3 0.0 * 
Q4 0.0 * 

*Specific final boundary conditions for Qi(tf) need not be fonnally 
enforced; these are determined implicitly because angular momentum is 
conserved; i.e., for!!= constant and ~(tf) specified, Q(tf) is 
implicitly constrained by Eq. (5.11). 
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. 
Table 5.4 

CASE SA PERFORMANCE INDICES 

Linear Plus 
Control Configuration Linear Quadratic 
and Performance Index Feedback Feedback 

4 wheels ( J 1 ) 

Ql 6.15126 6. 13691 
Q2 5.76886 5.62314 

skew wheel off (J2) 
I 

91 6.48600 6.47143 
Q2 5.92983 5.73828 

3rd 111hee 1 off (J 2) 
Q2 5.93077 5.76176 

2nd wheel off (J2) 
Q2 5.92980 5.76077 

lst wheel off (J2) 

02 5.92962 5.76071 
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Case SB 

A spacecraft rest-to-rest maneuver with nonzero initial wheel 

speeds is performed with three orthogonal wheels (skew wheel off) and 

zero weight on o0 in performance index J2. The boundary conditions 

are given in Table S.S and performance indices evaluated at tf = 240 

sec are given in Table S.6. Since the initial and final Euler angles 

are the same as in Case SA, the Euler parameters Si are the same, but 

the system angular momentum is larger and hence the Euler parameters 

oi are different. In Figs. S.9, S.10, and S.11 are the spacecraft and 

wheel angular velocities, Euler parameter histories, and the control 

torques. Note that the final wheel speeds are 75, SO, 100 rad/sec for 

n1, n2, and n3, respectively. 

Case SC 

A 3-d' maneuver is considered for the three wheel configuration 

with large initial spacecraft angular velocities and the initial wheel 

speeds of Case 58. The .boundary conditions for this maneuver are given 

in Table S.7. Performance index J 2 was used, once with equal weights 

on all Euler parameters o1 and once with no weight on o0 . Only linear 

feedback was used for both performance index weights. Figs. 5.12 and 

5.13 give the time histories of the Euler parameters, spacecraft 

angular velocities, and wheel speeds for this maneuver. 

Discussion 

The maneuvers performed in Case SA all resulted in the same 

spacecraft angular velocities and attitude histories when Q2 was used 

in the performance index, indicatjng that attitude control is not 
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Table 5.5 

CASE SB BOUNDARY CONDITIONS 

Initial States 

wl 0.0 
w2 0.0 
w3 0.0 
cf> -rr /2 
e -Tr /3 
ip -rr/4 
cS 0 -.12815 
cS 1 .59459 
02 .45281 
cS 3 .65192 
Ql 50 
Q2 -75 
S13 100 
S14 0.0 

*See Table 5.3 footnote. 

Table 5.6 

CASE 58 PERFORMANCE INDICES 

1 i near feedback 
linear plus quadratic feedback 

Final States 

0.0 
0.0 
0.0 
rr/2 
rr/3 
Tr/4 

.37037 

. 10026 

.74062 

.55159 
* 
* 
* 
* 

4.81211 
4.29420 

I 
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Table 5.7 

CASE 5C BOUND.~RY CONDIT IONS 

Initial States Final States 

wl .05 0.0 

w2 . 1 0.0 

W3 - . 01 0.0 

4> -rr/2 rr/2 

e -rr/3 rr/3 

1/1 -rr/4 rr/4 

00 -.22769 - .07728 

01 . 47213 -.25249 

02 . 843,35 .93018 

03 . 11840 .24472 

nl 50 * 

n2 -75 * 
n3 100 * 

n4 0.0 * 

*See Table 5.3 footnote. 
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degraded when the skew wheel compensates for a primary wheel failure. 

The wheel torques and angular velocities were different depending upon 

which wheel was off, which produce the performance index differences 

listed in Table 5.4. Note that the skew wheel angular velocity 

developed the same profile as the missing primary wheel when either 

wheeis one or two were off. Since the third wheel normally develops 

large velocities for this maneuver, its failure required all three 

wheels for compensation. 

The system angular momentum in Case SA is quite small since the 

initial wheel speeds are zero and the initial spacecraft angular 

velocities are small. Hence we observe the axis-by-axis spacecraft-

wheel opposition demonstrated in Fig. 5.3. 

The change in performance ,index weights produces the two dif-

ferent maneuvers in Figs. 5.3 and 5.5. The magnitude of the spacecraft 

and wheel angular velocities is much smaller for the first two axes 

when 80 excursions are penalized, but the performance index listed in 

Table 5.4 is larger since the error in 80 is now measured. This 

maneuver may actually be more desirable than that produced when Q2 is 

used, since in the latter the error in 80 may be quite large but is not 

included in the performance index. 

The initial wheel speeds in Case 5B are large, so that the 

system angular momentum is not small and we do not observe the space-

craft-wheel opposition that was seen in Case 5A. As in the first case, 

quadratic feedback gave spacecraft angular velocities and Euler 

parameters oi that remained closer to their desired values, and hence 

a reduction in the performance index occurred. 
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Case SC has larger nonlinear terms in the state equations than 

either Case SA or 58. In Fig. 5.12, where no weight on o0 was used in 

the performance index, we see a highly undesirable tumbling behavior. 

By not explicitly enforcing the terminal boundary condition on o0 

through the performance index, o0 is determined by the state equations 

and the boundary conditions on the other three Euler parameters. When 

only linear terms in the state equations are used in the simulation, o0 

undergoes the large excursion of Fig. 5.14, i.e., it badly violates the 
3 

quadratic constraint I o~(t) = 1. If the full nonlinear state equa-
i=O 1 

tions are used, as in Fig. 5.12, o0 is now constrained to be 

consistent with the rigorous kinematic equation, but since the linear 

motion incurs large errors, the nonlinear terms must necessarily intro-

duce rather large departures from the linear approximation. Hence 

large torques and tumbling behavior ensues. Similar behavior is seen 

in Cases SA and 58, except that the quadratic terms change 80 by a 

relatively smaller perturbation since the gyroscopic terms are smaller, 

and so these corrections do not have the same destabilizing effect. 

When the performance index includes weights on the departure 

motion of all four Euler parameters, 80 excursions are penalized, so it 

will very likely remain close to its desired final state when linear 

feedback is used. The quadratic terms in the state and feedback con-

trol equations do not then have to compensate for such large, obviously 

inadmissible excursions. As is evident in comparing Figs. 5.12 and 

5.13, introducing the penalty on 80 departure motion immediately 

eliminates the tumbling motion and yields an attractive optimal maneuver. 
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This behavior is a consequence· of the fact that we are using the once-

redundant Euler parameters and there is no rigorous way to enforce the 

constraint Eo~(t) = 1 using the linearized departure motion dif-

ferential equations. As is evident, however, a modest level of 

experimentation with the weight matrix leads to an attractive non-

linear control which is fully consistent with this constraint. 

5.3 Conclusions 

Polynomial feedback on angular velocities and Euler parameters 

has been used for nonlinear control of a spacecraft with four reaction 

wheels. A comparison of linear and quadratic control was made, with a 

reduction in the performance index for quadratic feedback. When using 

redundant attitude variables, care must be taken so that the linear 

gains (based upon linearized departure motion) result in modest viola-

tions of the implicit constraint(s). We have shown that practical 

optimal controls can be computed after experimentation with the weight 

matrices, which is invariably required anyway, even for strictly 

linear systems. 



Chapter VI 

GENERALIZED MOMENTA FEEDBACK 

6.1 Generalized Momentum Variables and Equations of Motion 

An alternate system of variables for rigid-body rotational dynamics 

that is conjugate to the Euler parameter kinematic variables has been 

developed recently by Morton [14]. These generalized angular momenta 

are defined from the rotational kinetic energy T as follows 

P· = ~ i a!.).: 1 
i = 0,1,2,3 (6 .1) 

where si are the four Euler parameters defined in Eq. (4.3). Four 

dynamic equations and four kinematic equations define the system (see 

Appendix A) 

(6.2) 

(6.3) 

where [Q(s)] and [r-1J4 are 4x4 matrices defined as follows 

so -S1 -S2 -83 

. [Q(s)J S1 so -83 82 = 
82 S3 so -81 

(6.4) 

83 -82 81 (30 

and, for a principal-axis body-reference frame, 

(6.5) 

The vector {~} 4 is defined from the external control torques 
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(6.6) 

Note that Eqs. (6.2) and (6.3) are cubic polynomials in p's and B's, 

and the control influence matrix is a function of the states. These 

variables are also twice redundant, with the following constraints 

3 
l B~ = 1 

i=O 1 
(6. 7) 

3 
4H2 l p~ = . 0 , i= 

(6.8) 

where H is the magnitude of the system angular momentum. Eqs. (6.7) 

and (6.8) are both integral properties of the system equations, however, 

and hence they do not need to be explicitly enforced when defining the 

optimal control problem. 

6.2 Optimal Control Problem 

Since there are no linear terms in Eqs. (6.2) and (6.3) and fewer 

controls than state variables, we either need to introduce linear terms 

in the state equations or solve for time-dependent gains. If we choose 

the first, then we can define new state variables as 

(6.9) 

where the departure motion Euler parameters are 

S· = B· - 13.(tf) , , , ' 
i=0,1,2,3 (6.10) 

Linear terms in ..e_ now appear in the kinematic equations, and constant 

terms appear in the control influence matrix. The state equations may 

now be written as 
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(6.11) 

where {u}4 is defined in Eq. (6.6}, f.(~_) contains quadratic and cubic 

terms in _!, and the 8x8 matrix A and 8x4 matrices B1 and s2 are 

defined as follows 

A = } L------------~-------~-------------~----J 
L[Q(s(tf))J[r-1J4[Q(s(tf))JT o J 

r [Q(s)] l 
B2 = 2 l 0 J 

To minimize a quadratic performance index 

(6.12) 

(6.13) 

Potter's method using matrices A and B1 was attempted. Unfortunately, 

we now have two zero poles, corresponding to s0 and p0 , that produce 

two zero eigenvalues, and even the Schur method [33] does not determine 

the corresponding eigenvectors accurately enough to produce reasonable 

linear gains. Hence constant gains cannot be used for the optimal 

control problem, and time-dependent gains must be determined. 

We may use the original cubic polynomial equations of Eqs. (6.2) 

and (6.3) if we assume time-dependent gains. The performance index to 

be minimized is 

(6.15) 

where z is the difference between,the state_! and the target stater. 
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~ = ~ - r(tf) 

~ = {Po Pi P2 P3 So S1 82 83}T 

(6.16) 

(6.17) 

The necessary conditions for optimality produce the following costate 

equations 

(6.18) 

i ,j 'k = 0' ... ,3 
i = 1 ' ... ,8 (6.19) 

where Ai and yi are the costates corresponding to pi and Si respec-

tively; the 4x4 matrix C is 

and the terms in brackets are Jacobians. 

-1 T( ) .!4=-2R Q Sl 

(6.20) 

The control is 

(6.21) 

and the boundary conditions at t = tf on the costates A; and Y; are 

(6.22) 

We now assume the costates are polynomials in the states 

{ Ai} = s.(t) + k .. (t)x. + d .. k(t)x.xk + ... 
Yi 1 1J J 1J J 

(6.23) 

Since the feedback is on the states rather than the errors in the 
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states, the time-dependent coefficients must satisfy the boundary condi-

tions of Eq. (6.22) 

~{ tf) = - H.r:{ tf) 

K(tf) = H 

and all higher order coefficients go to zero at t = tf. 

{6.24) 

By substituting Eq. (6.23) into the costate equations and equat-

ing coefficients of powers of x, we obtain the following sets of 

equations 

. 
Si = qijrj 

k. . = - q • . + fl ( s . ) 1J lJ , . 
d .. k = f 2{s. ,k .. ) 1 J l lJ 

{6.25) 

where f1 and f2 are functions of lower order coefficients. Eqs. {6.25) 

can be directly integrated, and the constants of integration deter-

mined by the boundary conditions in Eq. (6.24). Hence the feedback 

gains are polynomials in time. 

6.3 Single-Axis Maneuvers 

For maneuvers requiring only a rotation about one axis, 

Eqs. (6.2) and {6.3) reduce to the following equations 
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(6.26) 

where x = {p p1 s 
- 0 0 

(6 .27) 

and u is the control torque to be determined. The performance index 

to be minimized is 

(6.28) 

where z = x - r (6.29) 

and the target state is 

..!:. = {0 0 1 O}T (6.30) 

The costate equations are 

~l = - qljzj - lr (A1X2X4 + A2(x2x3 - 2x,x4) + A3X~ - A4X3X4) 

~2 = - q2jzj + lr (A1( 2x2X3 - X1X4) - A2X1X3 + A3X3X4 - A4X~) 

( 6. 31 ) 

1 2 
~4 = - q4jzj - 4T (A1X1X2 - A2Xl + A3(2x,x4 - X2X3) 

- A4x1x3) + 2AlU 



and the control is 

The zeroth order equations are 
. 
s. = q.3 l l 
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which, with the boundary conditions, have the solution 

where oij is the Kronecker delta. The linear equations are 

k33 = - q33 + 4 s~ 

(6.32) 

(6.33) 

K34 = k43 = - q34 - 4sls2 (6.35) 

K44 = - q44 + 4si 
. 

and kij = - qij where not otherwise specified. These equations have 

the solution 

k34 = k43 = q34(tf-t) + 4ql3q23 {~(t~-t3) + tft2 - t~t} + h34 

2 l 3 3 2 2 k44 = q44(tf-t) - 4ql3 {3(tf-t ) + tft - tft} + h44 (6.36) 

and kij = qij(tf-t) + h;j where not otherwise specified. Similar 

polynomials in time are found for the higher order gains. 

A numerical example was executed with I= 1.00 kg·m2 and tf = 

20 sec. The boundary conditions are listed in Table 6.1, and the per-

fonnance indices in Table 6.2. The weights in the performance index 

were 
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Table 6.1 

SINGLE AXIS BOUNDARY CONDITIONS 

Initial I Final I State I State 

<P -rr/2 0 

so .70711 1 
s, - . 70711 0 
w . 1 0 

Pa . 14142 0 

P1 . 14142 0 

Table 6.2 

SINGLE AXIS PERFORMANCE INDICES 

Feedback Performance Index 

s. + k. ·X · .62819 1 1J J 

I S; + k .. x. + d .. kx.xk .17741 1J J 1J J 



H = Q = 

• 1 0 0 

0 . 1 0 
0 0 . l 

l 01 

0 

0 

0 
0 0 0 . l 

(6. 37) 

Fig. 6.1 shows the conjugate angular momenta and Euler parameter 

histories, and Fig. 6.2 contains the maneuver angle, angular momentum, 

and control torque histories. 

Note that linear feedback only results in angular momentum con-
trol, and that the addition of quadratic feedback is required for 

attitude control. Hence, although quadratic feedback initially in-

creases the angular momentum, the performance is decreased due to a 

major reduction in attitude errors. 

6.4 Lyapunov Control for Single Axis Maneuvers 

A Lyapunov function to determine a stable feedback control law 

is applied to the single axis maneuver discussed in Sec. 6.3. The 

target state must first be transfored from {0 0 l Q}T to the origin 

by a change of variable 

and the state equations become 

x2 = !r (x1x2 (l+x3) - xi x4) + 2(l+x3)u 

x3 = lr (x 1 x~ - x 2 (l+x~)x 4 ) 

x4 = ir (x2(l+x3)2 - x 1 (l~x 3 )x 4 ) 

(6.38) 

(6.39) 
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Consider the positive definite function 

(6.40) 

where K1 is a positive constant. Then 

v = 4I(x1x1 + x2x2) +_4IK1(x3x3 + x4x4) (6.41) 

'and by substituting Eqs. {6.39) into Eq. (6.41), we obtain 

(6.42) 

To detennine an asymptotically stable control law, we need to find u . 
such that V is negative definite. If we define 

(6.43) 

. 
then V = - f. Here we have chosen f as a positive constant K2• To 

find an optimal control, we may adjust the constants K1 and K2 to 

minimize the performance index given in Eq. (6.28). 

Fig. 6.3 shows the maneuver angle responses for several values of 

K2 , with K1 = l. The corresponding perfonnance indices are listed in 

Table 6.3 for weighting matrices 

l 0 0 0 

H = Q = 0 l 0 0 (6.44) 
0 0 1 0 
0 0 0 1 

and tf = 30 sec. Note that the minimum performance index corresponds 

to K2 = 1.5, which is also the "critically damped" response in Fig. 

6.3. For this K2 = 1.5 case, Fig. 6.4 contains the Lyapunov function, 

angular momentum, and control torque histories, and Fig. 6.5 shows the 
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Table 6.3 

PERFORMANCE INDICES FOR L YAPUNOV CONTROL 
K1 = 1 

K2 Performance Index 

• 1 7.3638 
.5 2.4864 

1 l.5886 
1.5 1 . 4813 
2 1 .5842 

10 4.7048 
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conjugate angular momenta and Euler parameter curves. 

The performance index was also calculated for Lyapunov feedback 

control with the same performance index weights as in Sec. 6.3. The 

minimum also occurred at K1 = l and K2 = 1.5,_ and at a value of .15011 

it compared favorably with the perfonnance indices of Table 6.2. 

6.5 Three-Axis Maneuvers 

Time-dependent gains similar to those calculated for the single-

axis maneuvers can be determined for three-axis maneuvers, in which 

the gain equations are integrated directly to produce polynomials in 

t. Lyapunov feedback control can also be used if we assume a function 

of the form 

V = l (x2 + x2 + x2 + x2) + 2K(x2 + x2 + x2 + x2) 4 1 2 3 4 5 6 7 8 (6.45) 

• 1 • Then v = 2 (x1x1 + x2x2 + x3x3 + x4x4) 

+ 4K(X5X5 + x6x6 + X7X7 + X3Xg) {6.46) 

The state equations, Eqs. (6.2) and (6.3), are transformed by a change 

of variable to the origin, so that the new states are 

( 6. 4 7) 

These new state equations are substituted into Eq. (6.46), which re-

duces to the following 



110 

. 
V = (-x6x1 + (x5+1 )x2 + x8x3 - x7x4)u1 

+ (-X7X1 - X3X2 + (x5+l)X3 + x6x4)u2 

+ (-x8x1 + x7x2 - x6x3 + (x5+1)x4 )u3 

+ ~1 ((x5+l)x2x6 - xlx~ + X3X6X8 - X4X6X7) 

+ ~2 {(x5+ l )X3X7 - xl x~ + X4X6X7 - X2X7Xg) 

One choice for the controls is 

2 
= -K1I1 - K((x5+l)x2x6 - xlx6 + X3X5X9 - X4X5X7) 

Ul I1(-x6x1 + (x5+l)x2 + x8x3 - x7x4) 

2 -K2I2 - K((x5+l)X3X7 - xlx7 + X4X5X7 - X2X7Xg) 
u2 = (-X7X1 - XgX2 + (x5+l)x3 + X5X4) 

-K3I3 - K((x5+l)X4Xg - xlx~ + X2X7Xg - X3X6X8) u - ~~~---~~~~~~~~~~~~~--'--~ 3 - (-x8x1 + x7x2 - x6x3 + (x5+l)x4) 
. 

(6.48) 

(6.49) 

where K1 through K3 are positive constants; then V = - (K1 + K2 + K3). 

As in the single-axis maneuvers, the coefficients K1, K2, K3, and K 

may be adjusted so that a specific performance index is minimized to 

determine an optimal stable feedback control law. 

6.6 Conclusions 

Generalized momenta variables corresponding to the Euler 

parameters have been used to parameterize rigid-body rotational dynamics. 

The constant-gain polynomial feedback law could not be used for this 

system since p0 and s0 produce two zero eigenvalues, and their 
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eigenvectors could not be determined accurately. Closed-form time-

dependent gains could be detennined, however, and Lyapunov feedback 

control laws were found for both the single and three-axis external 

torque maneuvers. By adjusting constants in the Lyapunov laws, an 

optimal control could be found to minimize a specific performance index. 

The choice of angular velocities over the conjugate angular 

momenta as state and feedback variables is clear; not only are there 

fewer states with the angular velocities, but constant gains that are 

more easily implemented can be used. 



·chapter VII 

STABILITY 

Stability is of some concern in the development of feedback 

control laws. A general and thorough treatment of stability for non-

linear systems is beyond the scope of this dissertation; however, 

several theorems from Brauer and Nohel [20] will be presented with a 

discusssion of how they may be applied to certain systems. (For 

proofs of these theorems, see Ref. [20].) 
A differential equation or system of differential equations of 

the form 

i = f(t,y) (7 .1) 

is said to be stable if for every e > 0 and t > 0 there is a o > O 
0 -

such that 

(l) if _t(t) is a solution of Eq. (7. l) 

(2) l<P(t0 ) - lol < o 
then 

(3) the solution qi(t) exists for all t > t - . - 0 

(4) and l_t(t) - ]!_(t,la) I < c: for t ~ t 0 

where ]!_(t,lc) is the solution of Eq. (7.1) corresponding to lo· 
In other words, if lo is a critical point, i.e. f(lo) = 0, then any 

motion that begins in the neighborhood of lo remains in that neighbor-

hood. Furthennore, if .:£_(t) approaches i'_(t,i'.o) as t + 00 , i.e. 

lim 1.:£.(t) - 1(t,lo)I = o 
t-?a> 

(7.2) 
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then £(t) is asymptotically stable. 

In the systems considered in this dissertation, the target states 

have been zero or a fixed constant. If we make a change of variables 

so that all the final states are zero, then the critical points for 

the systems we have studied are ~ = 0. 

A simple stability test exists for linear systems with constant 

coefficients. Given the linear system 

i =Cy (7.3) 

then the motion about~ = 0 is stable if all the eigenvalues of C 

have nonpositive real parts and eigenvalues with zero real parts are 

simple. If all the eigenvalues have negative real parts, then y(t) 

asymptotically approaches~= 0 as t + 00 • For linear constant-gain 

feedback control systems, we need to evaluate the closed-loop poles 

of the system, i.e., the eigenvalues of the matrix C = A-BR-lBTK. 

If we consider linear time-dependen~ gains, then we must examine 

the system 

i = (C + S(t))y_ (7 .4) 

where C is the constant part of the closed loop system and S(t) is the 

time-dependent part. If all the eigenvalues of C have negative real 

parts and S(t) is continuous with 

lim S(t) = 0 
t~ 

(7.5) 

then solutions of Eq. {7.4) in the neighborhood of y_ = 0 are asymp-

totically stable. Note that this theorem does not necessarily require 

that the uncontrolled system be ?table; the feedback gains can be 
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written as 

(7.6) 

where K1 is the constant, steady-state part of the gain and K2 the 

time-dependent part. To apply the theorem, the matrix C = A-BR-lBTK1 
must have eigenvalues with negative real parts, and S(t) = - BR-lBTK2 
should satisfy condition (7.5). 

Nonlinear state equations with nonlinear feedback control may be 

written as 

(7. 7) 

where the linear part of the system is 

(7.8) 

and the nonlinear part is 

(7.9) 

To examine stability of this system, we first consider the linear part 

of the equations. All the eigenvalues of C must have negative real 
-parts if the linear part of the system is asymptotically stable. 

Given this, we then examine the nonlinear part of the system. If 

f and af /ay_ are continuous for IY I bounded, and 

l i m If ( t ,i:_) I _ 0 
I y_j+o IY...I -

(7.10) 

uniformly, then all solutions of Eq. (7.7) in some neighborhood of 

lo = 0 are asymptotically stable. Hence, if the linear part of the 

closed-loop system is asymptotically stable, then quadratic and 
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higher-order polynomial feedback of polynomial state equations is also 

stable, as long as the coefficients are bounded. 

Note that the closed-loop poles of the linear system must be in 

the left-half plane; for systems with redundant variables we obtain 

zero poles, and these may lead to instability in the nonlinear system 

as shown in Case 5C. If, however, we constrain the state cor-

responding to the zero eigenvalue to approach its target state as 

t ~ 00 , and all the controllable modes have negative real parts, then 

the linear part of the system will be asymptotically stable. In these 

cases, higher order polynomial feedback with constant bounded 

coefficients is continuous and satisfies condition (7.10). If time-

dependent coefficients are used in higher-order feedback, those coef-

ficients must be continuous and bounded to meet condition (7.10) [34]. 

In summary, when the linear part of the closed-loop system is 

asymptotically stable, the higher order polynomial terms will not 

destabilize the system as long as the gains are bounded, and continuous 

in the time-dependent case. Note that this applies only to situations 

where there are linear terms in the state equations; when time-

dependent gains are used with quadratic or cubic equations, as in 

Chapter VI, these theorems do not apply. To guarantee stability, the 

Lyapunov control method should be used. 



Chapter VIII 

CONCLUSIONS, COMMENTS, ANO RECOMMENDATIONS 

A straight-forward method of polynomial feedback control for non-

linear plants with polynomial state equations has been developed from 

optimal control theory, and successfully demonstrated for several 

systems. The linear gains were found to satisfy the familiar Riccati 

equation of linear system theory, and sets of linear equations were 

solved sequentially to determine higher order gains. A suboptimal con-

trol law is generated by taking a finite number of terms in the series. 

Some of the systems considered in this dissertation produced 

degenerate Riccati equations. In particular, when no linear terms are 

present in the state equations, and the number of controls is less than 

the number 9f state variables, then constant linear gains could not be 

found. To circumvent this problem, linear terms were introduced in 

the state equations by a change of variable, o~ else time-dependent 

gains were used. In the time-dependent case, closed-form polynomials 

in t were determined for the feedback coefficients. 

The Euler parameter kinematics of Chapters IV through VI provide 

quadratic or cubic polynomial equations rather than the transcendental 

equations of Euler angle parameterizations. They also present several 

problems when used as feedback variables. Since two sets of Euler 

parameters correspond to one physical location, four combinations of 

boundary conditions are possible in the formulation of the optimal 

control problem. Certain combinations produce feedback polynomials 
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that diverge as higher order terms are added, or that are unstable. 

However, the correct combination of boundary conditions can be easily 

identified by calculating the closed-loop poles of the linear system 

to eliminate unstable combinations, and then a linear simulation is 

made to identify the set that minimizes the performance index. 

The Euler parameters are also redundant, so that a zero pole 

corresponding to s0 (or c0 ) occurs in the linear analysis. Note that 

s0 is not a physically uncontrollable mode; the Euler parameters are 

guaranteed to satisfy the quadratic constraint IS~= 1, if (i) proper 

initial conditions have been imposed, and (ii) they satisfy the Euler 

parameter kinematic equations. However, asymptotic stability of the 

linear system cannot be guaranteed since this nonlinear constraint 

cannot be rigorously enforced by a linear differential equation. This 

instability is observed in Case SC, where s0 (c0 ) penalties were not 

included in an example with dominant nonlinear terms; the instability 

was eliminated when s0 (c0 ) was required to approach its target state by 

weighing it in the performance index. The linear system was then 

asymptotically stable, and the nonlinear terms did not have a ae-

stabil izing effect. 

When only one redundant variable was present, Potter's method 

could be used for solving the algebraic Riccati equation. Unfortunately, 

when a system contains more than one redundant variable, the set of 

eigenvectors corresponding to multiple zero eigenvalues cannot be 

determined accurately enough to provide reasonable linear gains. By 

assuming time-dependent gains, however, the coefficients were found to 

be polynomials in time determined analytically by integration. 
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Several comments about· this method need to be made. Although 

straight-forward, the algebra generated by this method becomes prohibi-

tive for even a modest number of state variables and terms in the series. 

All the algebra for the three, seven, or eight state variable systems 

of Chapters IV through VI was performed on the IBM 370 algebraic manipu-

lator FORMAC, which produced Fortran code for the elements of the 

quadratic coefficient matrix. As more terms are taken in the series, 

the linear systems determining the polynomial coefficients require huge 

regions of computer core. Hence the computational burden of this method 

limits the system size and polynomial order of the state equations. 

Recommendations for future study include application of the time-

dependent gain method developed in Chapter VI to the attitude control 

systems of Chapters IV and V. Stability of this method should also be 

examined, since the theorems of Chapter VII do not apply to systems 

without lin~ar terms. 

The computational storage limitations discussed above suggest that 

partial state feedback methods should be investigated. A subset of 

• state variables could be used in the polynomial expansions, and a 

representative submatrix of the linear system generating the coef-

ficients could be solved. One attractive possibility is to remove all 

linear Euler parameter feedback and replace the quadratic terms with 

three direction cosines. This substitution not only reduces the number 

of feedback terms, but also removes the sign ambiguity of the Euler 

parameter boundary conditions. A judicious choice of nonsingular equa-

tions to determine the coefficients would then need to be made. 
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This discussion concludes the presentation of polynomial feedback 

control for spacecraft attitude maneuvers. 
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Appendix A 

CONJUGATE ANGULAR MOMENTA 

Recent developments of generalized variables for rotational 

dynamics have been presented by Morton [14]. A set of four generalized 

angular momentum variables that are conjugate to the four Euler 

parameters are defined, and the equations of motion corresponding to 

Euler's equations are derived. 

The orientation of a spacecraft body-fixed reference frame to an 

inertial frame may be parameterized by the Euler parameters of Eq. 

(4.3). The kinematic equations relating the Euler par~meters to the 

body-frame components wi of the spacecraft angular velocity are given 

by Eq. (4.8) and repeated below for reference . 

. 
0 so so -sl -S2 -s3 . 

S1 1 s, so -S3 S2 wl . = 2 
S2 S2 S3 so -s, w2 

(A. 1 ) 

S3 S3 -s2 S1 so W3 

or 

{§_} = 1 [Q(s)]{~}4 (A.2) 

where {~}4 = {0 T 
wl w2 W3} (A.3) 

The rotational equations of motion were derived in Chapter IV 

from Eq. (4.9), and the use of a principal axis system for the body 

reference frame gave us Euler's equations, Eq. (4.13). They may be 

rewritten as four equations as follows 
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0 0 0 0 0-, 0 0 . 
Hl 0 0 -w3 w2 Hl ul . - - + 
H2 0 W3 0 -wl H2 u2 . 
H3 0 -w2 wl 0 H3 U3 

where H. = I .w. 
1 1 1 

and ui are the external control torques. The rotational kinetic 

energy of the system is 

l 3 2 T = -2 l I.w. . l 1 1 1= 

As is done in Lagrangian and Hamiltonian mechanics, we can define 

generalized angular momentum variables as follows 

i = 0,1,2,3 

(A. 4) 

(A.5) 

(A.6) 

(A. 7) 

Since [Q(s)] is an orthogonal matrix [35], Eq. (A.2) may be easily in-

verted and substituted into Eq. (A.7) to yield four expressions 

{£} = 2[Q{s)](!i_}4 

where {!:!_} 4 = {0 H1 H2 H3}T 

(A.8) 

(A.9) 

Morton [14] has presented the following properties of the con-

jugate angular momenta 

Ji·.e.=O 

~ • £. = 2T 

£. • .E. = 4H2 

(A.10) 

(A.11) 

(A. 12) 
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-
where H is the magnitude of the angular momentum vector. Since rota-

tional motion has three degrees of freedom and we have four conjugate 

angular momentum variables, the pi are once redundant and must satisfy 

the constraint Eq. (A.12). 

To use the conjugate angular momenta as generalized variables, 

Euler's equations and the kinematic equations must be rewritten to re-

move thew's in favor of the p's. Eq. (A.8) may be rewritten 

as 

(A.13) 

and from Eq. (A.5) we obtain 

{w}4 = [I-lJ4.{!:!_}4 (A.14) 

where [C 1J4 = diag {0, l/! 1 , 1/I2, l/I 3l (A. 15) 

When a prineipal axis system is not used, [I-1]4 is the 4x4 matrix 

with zeros in the first row and column and the inverse of the usual 

inertia matrix in the lower 3x3 submatrix. By substituting Eq. (A.13) 

into Eq. (A.14), we obtain {w}4 in terms of {!} and {_e) 

(A.16) 

Eq. (A.16) is then used in Eq. (A.2) to obtain the following kinematic 

equations 

(A.17) 

Euler's equations must also be expressed in terms of {,E.) and {B}. 

If we differentiate Eq. (A.8) with respect to time, we obtain 
. 

{Q.} = 2[Q(s)J(t!J4 + Z[Q(s)J{.tU4 {A. 18) 
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The kinematic equations, Eq. (A.2), express {S} in terms of{..@_} and 

{w}, so that 

[Q(s)J = i [Q(s)][Q(w4)J 

Eq. (A.4) may be rewritten in matrix form as 

where 

0 -wl -w2 -w3 

wl 0 w3 -w2 
[R(w4)J = 

0 w2 -w3 wl 

W3 w2 -wl 0 

By substituting Eqs. (A.19) and {A.20) into Eq. (A.18), we obtain 

{.E_} =.[Q(s)][R(w4 )J {!:!)4 + 2[Q(s)]{_~) 4 

But [R(w4)]{!!_}4 = [Q(H4)]{!:!_}4 

and [Q(s)][Q(H4)] = ~ [Q(p)] 

from Eq. (A.8), so that 

{Q) = ~ [Q(p)]{_~)4 + 2[Q(s)]{_y}4 

By rewriting Eq. (A.16) as 

(A. 19) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

and substituting into Eq. (A.25), we obtain the following four equa-

ti ans of motion 
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(A.27) 

Hence we have four kinematic equations, Eqs. (A.17), and four dynamic 

equations, Eqs. (A.27). It is interesting to note that when no 

external torques are present, Eqs. (A.17) and (A.27) with.!:!.= 0 may 

be derived from Hamilton's canonical form 

. aT 
Si = ap; 

(A.28) . aT P; = - -as; 



Appendix B 

POTTER'S METHOD 

The algebraic matrix Riccati equation is 

(B. l) 

where A, B, R and Q are constant nxn matrices and K is the unknown 

matrix to be determined. Potter's method first determines the eigen-

values and eigenvectors of a 2n x 2n matrix M 

(B.2) 

If Q and R are positive definite symmetric real matrices, then the 

eigenvalues of M fall into two groups, the eigenvalues A1, ... ,An with 

positive real parts, and the eigenvalues -A1 , •.. ,-An. Then eigen-

vectors corresponding to A1, ... ,An are put by columns into a 2nxn 

matrix, with the first n rows forming the matrix D and the lower n 

rows forming matrix C. Then the positive semidefinite solution to 

Eq. ( B. 1 ) is 

K = DC-1 

To see that the solution matrix K is Eq. (B.3), we form a 

matrix G 

Then, using Eq. (B.1), 

KG= Q + ATK 
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(B.3) 

(B.4) 

(B.5) 
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Let S transfonn G into Jordan canonical form 

It can be shown that J is diagonal (see [17]). Let 

R = KS 

Then RJ = QS + ATR 

from Eqs. (B.6) and (B.5), and 

SJ = BR-lBTR - AS 

(B.6) 

(B. 7) 

(B.8) 

(B.9) 

from Eqs. (B.6) and (B.4). Eqs. (B.8) and (B.9) may be rewritten as 

[:] J = [~~~~~r--i---~~--J [:J (B.10) 

So J contains eigenvalues of M, with corresponding eigenvectors[~] . 

But from Eq. (B.7} 

K = RS- l ( B . 11 ) 

which is the same as Eq. (B.3). Tn show that the eigenvalues in J, 

which are the eigenvalues of matrix G, have positive real parts, we 

examine 

which follows from Eqs. (B.4) and (B.l). If Q and Rare symmetric 

positive definite matrices, then the right hand side of Eq. (B.12) is 

positive definite, and so G is positive definite. Hence the eigen-

values of G have positive real parts. 
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To show that K = RS-l is the positive semidefinite solution to 

Eq. (B. l), we form matrix 

( B. 13) 

Then K = s-Tps-1, and if we show that Pis postive semidefinite, then 

so is matrix K. Define a 2nxn matrix 

(B.14) 

where A1, •.• ,An are the eigenvalues of M with positive real parts, and 

a1 , ••. ,an are their corresponding eigenvectors (i.e., a1, .•• ,an are the 

columns of matrix [~] ). Then 

d dt U(t) = - MU(t) (B.15) 

and P = uT (O) [; :J U(O) (B.16) 

But since U(t) is made up-of eigenvalues with positive real parts, then 

U(t) + 0 as t + ~, and 

P = - ( ~t { uT (tl G :J u(t)} dt (B. 17) 

or p = ( uT (t) {MT [; :J + [; :J M} U(t) dt (B.18) 

by using Eq. (B.15). Examining Eq. (B.18) 

MT [; : ] + [; : ] M = [B R: 
1s T ~] (B.19) 
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which is positive semidefinite, so the integrand in Eq. (B.18) is 

positive semidefinite, and K = RS-l is the positive semidefinite solu-

ti on to Eq. (B. l). 
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