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    It is well-known that onboard, real-time, optimal trajectory generation for reusable 
launch vehicles can substantially increase safety while reducing cost.  Arguably, this is one of 
the most challenging problems in optimal control theory.  In recent years, pseudospectral 
(PS) methods have shown considerable promise in solving such problems. In this paper, we 
investigate the utility of a PS guidance algorithm for solving this problem.  Based on the X-
33, a generic vehicle model is constructed for analysis.  It is shown that the PS guidance 
algorithm is capable of compensating for large uncertainties and disturbances that include 
greater than Category 5-level hurricane-force wind gusts (Hurricane Katrina was Cat 4).  A 
single algorithm is used to guide the vehicle from its entry condition to a final approach 
corridor of about 2000 ft away from the landing site.  Despite that much research is still 
necessary, results so far suggest that PS guidance methods can enhance safety considerably.  
Computational times for unoptimized codes range from about a second to 10 seconds under 
a MATLAB environment running on legacy computer hardware.  This suggests that real-
time trajectory reshaping, and even abort guidance, are well within the reach of modern 
methods and existing computational capabilities.  

 
  

I. Introduction 
 
     With ongoing efforts to improve the safety, reliability, and cost of reusable launch vehicle (RLV) systems and 
operations along with the more recent focus on a US Space Shuttle replacement following its retirement around 
2012, there is a new opportunity to implement advanced, yet simpler and more effective guidance and control 
methods than used in previous launch technologies. A key objective that is sought in this endeavor as well as almost 
all other sectors of technology is the requirement for more intelligent systems that can operate autonomously 
without much human interaction. Of course this has the underlying stipulation that they operate safely, more 
reliably, and more efficiently than ever before. To accomplish this objective for the case of an RLV, the guidance 
and control during ascent, reentry, or landing needs to perform autonomously, online and in real-time. The RLV 
intelligent control needs to be capable of adapting to rapidly changing circumstances, handling large external 
disturbances and large parameter uncertainties, re-generating trajectories (i.e. re-planning to a designated or alternate 
landing site), reconfiguring its controls in the advent of an unforeseen failure, and then re-allocating the controls. In 
practice, these challenges are met by a substantial amount of pre-flight planning involving predictions in weather, 
substantial amount of manpower, potential grounding of scheduled launch and a host of other operational 
workarounds to technical problems. In taking less computer power than a modern digital wristwatch, the Shuttle 
entry guidance is a marvelous technical achievement wherein a drag-based tracking technique is used for guidance.1  
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     With the realization of advances in computational power and numerical algorithms, recent research efforts for 
solving the reentry problem have focused on real-time, on-line trajectory generation, guidance adaptation, and 
control reconfiguration. For example, reconfigurable control in the form of an optimal control allocation algorithm 
has been performed at the Air Force Research Lab for such vehicles as the X-40, X-37, and X-33.2-4   
Reconfiguration capabilities for RLV guidance and control systems has also been rigorously pursued by such efforts 
as the Marshall Space Flight Center’s (MSFC) Advanced Guidance and Control (AG&C) Program and the Air Force 
Research Lab’s (AFRL) Integrated Adaptive Guidance and Control (IAG&C) Program. More on these programs can 
be found in Refs. 5 and 6. It is now well established that many of the challenges on entry guidance fall under the 
purview of optimal control theory. Difficulties in solving optimal control problems have reflected difficulties in 
solving the entry problem.   
     Over the last few decades, it has become customary to address the difficulties in entry guidance by way of 
reduced-order modeling and analysis.7,8 In a series of papers,9-11 Fahroo et al. showed that reduced-order modeling 
compromise safety by predicting diminished footprints. That is, a reduced-order model may falsely imply that a 
preferred landing site was not reachable thereby generating a failure mode that could otherwise have been prevented.  
Thus, entry guidance algorithms that are not based on optimal control and reasonably high fidelity models 
compromise safety. This concept was further clarified by Shaffer et al.12 who showed that optimal control 
techniques can also address trajectory reshaping in the presence of actuator failures. It has thus become increasingly 
clear in recent years that optimal trajectory generation is not a mere luxury but an absolute necessity for safe entry 
vehicle guidance. Furthermore, it is not sufficient to generate optimal trajectories for low-order models, but for 
sufficiently high fidelity vehicle and dynamical models. At the present time, it is unclear what qualifies as a 
sufficiently high fidelity model. For example, Shaffer et al. showed that high-fidelity aero models were quite crucial 
for proper guidance in the Mach-alpha space whereas Fahroo et al. showed that high-fidelity dynamical models were 
crucial for footprint maximization. One way to address all these issues is to construct models of increasing fidelity 
for a new kind of analysis that exploits all the modern tools in optimal control techniques. This is precisely the 
approach adopted in this paper.   
     In this paper, we use a standard 3-DOF dynamical model for an entry vehicle in a rotating atmosphere around an 
inverse-square law gravitational field. In recent years, it has been shown13,14 that PS methods are capable of 
generating real-time trajectories for this dynamical model for the Space Shuttle vehicle model parameters. Based on 
the possibility of real-time optimal control, a PS feedback theory has been formulated by Ross et al.15,16  For entry 
guidance, this approach updates the guidance laws in the so-called Carathèodory sense, rather than the standard 
sampled data feedback approach. This type of an update permits a longer computational time that may be exploited 
to solve high-fidelity trajectory optimization problems. An introduction to this approach is described in Ref. 16.  
Details of the PS method and the spectral algorithm (packaged into a MATLAB-based software program called 
DIDO) used to generate the optimal controls are described in Refs. 17-20. 
     The contributions of this paper are several fold: first, we combine many of the emerging concepts in real-time 
optimal control to address the difficulties in entry guidance. To this end, we circumvent the traditional problems that 
arise in entry segmentation (such as the concept of TAEM) and instead embark on using a single algorithm to guide 
the vehicle from its entry conditions all the way to a neighborhood of the landing site. Thus, given the coordinates of 
a landing site, the goal of the entry guidance algorithm is to guide the vehicle to a final approach corridor for 
handover to an autoland program.  In principle, it is possible for a PS-based method to perform autoland as well, but 
for the purpose of limiting the scope of this paper, we do not discuss this aspect of the problem. The vehicle model 
is based on an analytical curve fit of an X-33 vehicle model. It remains to be determined if our approach works with 
the full table-look up model; nonetheless, as a first step in this new type of analysis, we choose an analytical curve 
fit. An important result of this paper is the revelation that under the PS guidance law the simplified X-33-based 
generic vehicle is capable of guiding itself to a landing site despite the extreme situation of hurricane wind effects 
that exceed Category 5. 
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II.   Modeling 
 
A. Entry Vehicle Model 
     The equations of motion used for this study are the standard 3-DOF model,                                                                     
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where 2/g GM r=  is the inverse-square gravitational acceleration, Er R h= + is the radial position measured from 
the center of the Earth, µ is the geocentric longitude, λ is the geocentric latitude, V  is the total airspeed (i.e. 
velocity magnitude), γ  is the vehicle’s flight path angle (FPA), and ξ is the vehicle’s heading angle. The lift and 
drag forces are represented as L and D, respectively, given by 
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where the term 21 ( )
2

r Vρ is the dynamic pressure, q , and the term 0( )
0

r re βρ − −
is a two-parameter model for 

atmospheric density, ρ , as a function of scaled altitude.  
 
     The aerodynamic coefficients of lift (CL) and drag (CD) are generated based on the X-33 data.  These coefficients 
are functions of Mach number and angle-of-attack (AoA) that are approximated by fitting the data with 2nd-order 
polynomials 
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The additional parameters are defined as follows: 
 

m     = 2455 slugs                     : vehicle’s empty mass  
Sref   = 1608 ft2                    : vehicle’s reference planform area                                  

0ρ   = 0.002378 slugs/ft3   : standard sea-level density  
r0     = 20902900 ft                      : atmospheric reference height  
β    = 4.20168e-5 ft-1                 : inverse atmospheric scale height 
GM  = 0.14076539e17 ft3/s2 : Earth's gravitational constant  
Ω    = 7.2722e-5 rad/s   : Earth's angular velocity 
g0     = 32.174 ft/sec2   : standard gravity 
Re     = 20925646.3255 ft                 : Earth's radius 

 
 
To fully capture the state at any instant, the variables in Eq. (1) form a six-dimensional state vector given as  
 

6[ , , , , , ]Tr Vµ λ γ ξ= ∈x  
 
with the controls as the AoA ( )α and the bank angle ( )σ  such that 
 

2[ , ]Tα σ= ∈u  
 

Without a thrust force for the reentry gliding problem, the only controllable parameters for the 3-DOF model are the 
lift and drag forces. Typically, for symmetric flight (i.e. coordinated turns with zero sideslip angle, β ), the lift and 
drag coefficients can be determined by the vehicle’s AoA and Mach number, a function of velocity and speed-of-
sound at a given altitude.  However, it is the physical modulation of AoA and bank angle (BA) that controls the 
vehicle’s translational motion through the atmosphere. Therefore, a common control vector for the reentry problem 
is that given by Eq. (7). Of course, this control vector assumes that there are no command delays (i.e. lags) and is 
sometimes referred to as “inertialess” control. To add more realism to the problem, as explained in Refs. 12 and 21, 
the rate limits are modeled by forming a new “virtual” control vector mathematically expressed as 
   

2[ ]Tu uα σ= ∈u  
 
Now, the original state vector must include the physical controls, α and σ , to form a new state vector:  
 

8[ ]Tr Vµ λ γ ξ α σ= ∈x  
 
Remark: For a real vehicle, or in a 6-DOF simulation, it is the control surface deflections that create body moments 
and forces to augment the wind-relative AoA, BA, and sideslip angle.   
 
To simulate external disturbances for this analysis, a wind gust model must be defined and integrated into the 
system.   
 
B. Wind Gust (Disturbance) Model 
     The most common form of external disturbance encountered during atmospheric flight is the changing direction 
and intensity of the air mass itself (i.e. wind). There are various forms of wind and numerous ways to model wind.  
For this work, a constant-magnitude wind gradient approximation is adopted as a disturbance model.   
  

(8) 

(9) 

(6) 

(7) 
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1. Wind Gradient Approximation in Equations of Motion 
     Typical aircraft and wind disturbance analysis employs an analytical approximation to the wind’s flow field 
characteristics. For example, a windshear/downdraft can be modeled as  
 

*

( )

( )

x

h

W wA x
hW w B x
h

=

=  

where w is the intensity of the windshear/downdraft combination; the functions A(x) and B(x) represent the wind 
gradients as shown in Fig. 1; and h* is a reference altitude based on the range of validity. At lower altitudes, these 
wind velocity components typically form a wind shear that is commonly represented by a parabolic gradient as a 
function of altitude.   
 
 
 
 
 
 
 
 
 
 

 
Fig. 1   Approximation of Horizontal and Vertical Wind Gradients Acting on Vehicle 

 
     Although various wind models (both discrete and continuous) and modeling standards exist, such as numerous 
wind gust models, a standard Dryden Wind Turbulence Model, and a standard Von Karman Wind Turbulence 
Model as specified by Military Specification MIL-F-8785C (Nov 1980) and Military Handbook MIL-HDBK-1797, 
this study uses a simplified approach to model a wind gust as illustrated in Fig. 1 (b). 
 
     Assuming a flat-earth approximation to the equations of motion, wind is often modeled by adding wind velocity 
components in the Cartesian x,y,z-directions ( ), ,x y zW W W  to the kinematical equations such that 
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and likewise, the wind acceleration components ( ), ,x y zW W W  are added to the dynamical equations of motion 
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(10)

(11)

(12)

(13)

D
ow

nl
oa

de
d 

by
 N

A
V

A
L

 P
O

ST
G

R
A

D
U

A
T

E
 S

C
H

O
O

L
 o

n 
Ja

nu
ar

y 
22

, 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

00
6-

60
74

 



 
American Institute for Aeronautics and Astronautics 

6

that when combined, form a new set of equations for the closed-loop implementation. For this study, details of the 
wind gradient are not included in the model, but rather uniform, constant components are used in the dynamical 
equations such that the W  terms are zero. Note that the actual implementation of the wind model equations 
involved the coordinate transformation from Cartesian to Spherical wind components such that 
[ , , ] [ , , ]x y z rW W W W W Wµ λ→ . Now, with the wind modeled directly into the vehicle’s kinematical equations, 
only the direction and magnitude of the representative wind gust is required. Although arbitrarily selecting winds 
will suffice for this study, it is common that disturbance rejection analysis incorporates a worse case scenario in 
order to test the robustness of the proposed design.   
 
2. Worse-Case Winds 
     To study the effects of wind on atmospheric flight vehicles, it is important to consider a worst-case scenario. A 
“nominal” wind depends on a particular region of the atmosphere, current temperature and pressure conditions, and 
geographical location. Unfortunately, for a vehicle transcending large vertical and horizontal distances through the 
atmosphere, many wind uncertainties exist. Although historical data can be used to chart trends, sudden and local 
variations in wind direction and intensity (e.g. turbulence and wind shear) make wind prediction nearly impossible.  
Because of these uncertainties and unpredictability, it is important to test for the worse possible case and in most 
design applications, to even add a margin of safety by exaggerating the worse-case.   
     Upper air winds, or winds aloft, over the continental United States typically flow from west to east as illustrated 
by the “westerly” velocity vectors in Fig. 2 showing long-term means (1968-1996) for May (a) and December (b). 
The troposphere, extending from the surface of the Earth to about 5-9 miles (26,400-47,520 ft) in elevation is the 
densest region of the atmosphere where most weather phenomena occurs.22  It is the high upper region of the 
troposphere where the jet stream velocity can reach approximately 80 to 180 mph heading east.   
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 2   Example of Wind Flow Patterns over Continental US at 300mb (~30,000 ft)23 
      
The wind components used in this demonstration represent a south-easterly flow which corresponds to a north-
westward heading direction with the addition of a large vertical downward component. For winds aloft, a downward 
vertical component of wind is typically very small, on the order of 1-3 cm/s.§ In localized storm systems this vertical 
component may exceed 25 m/s (> 82 ft/s).** For the continental United States, this direction and magnitude of flow 
is commonly encountered in hurricane-force winds typically in the vicinity of the Gulf of Mexico. In this worse case 
scenario, a microburst or significant wind shear in the form of a column of sinking air is capable of generating wind 
speeds higher than 160 mph.24 Since vertical windshears mostly occur at altitudes below 1000 ft, 

                                                 
§ David Brown, Private Communications, Department of Meteorology, Naval Postgraduate School, May 2006. 
** Robert Creasey, Private Communications, Department of Meteorology, Naval Postgraduate School, May 2006. 

(a) May (b) December 
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they are more commonly encountered during takeoffs and landings; however, there are cases of large vertical winds 
at higher altitudes. A relevant Space Shuttle example is the uncommon but problematic occurrence of large vertical 
wind shears during interactions between the Polar Jet and the Sub-Tropical Jet near the base of the jet stream (~ 
25,000 to 35,000 ft) over the south-eastern US. 
    
3. Wind Vector Selection 
     Since large vertical wind shear is problematic near the Jet Stream, the wind vector for this study has a substantial 
vertical component. For the given initial conditions and final conditions corresponding to landing at the Space 
Shuttle Landing Facility (KTTS), Kennedy Space Center, FL, the wind is applied over a period of 20 sec beginning 
460 sec into the flight. This time-of-flight duration (460 to 480 sec) corresponds to an altitude of approximately 
45,000 to 30,000 ft, overlapping the high upper troposphere where the Jet Stream reaches its peak. Also, this altitude 
corresponds to the region of transition (tropopause) from the upper atmosphere (stratosphere) to the lower 
atmosphere (troposphere) where large wind shear phenomena is likely to occur.        
     Based on averaged wind data from 1979 to 1998 climatology charts for the south-eastern US region,25 a nominal 
wind magnitude of about 30 kts is appropriate, so for this study, a magnitude of 33.25 kts was selected as the initial 
“light” wind, see Table 1.   
 
For trajectory analysis, Table 1 shows the wind gusts selected for comparisons to a no wind scenario. 
 

Table 1  Wind Gust Selection for Trajectory Comparisons 
 Wind Components, fps Wind Magnitude 

Type Wx Wy Wz fps kts mph 
Light -30.00 15.00 -45.00 56.12 33.25 38.27 
Moderate -67.50 33.75 -101.25 126.28 74.82 86.10 
Severe -101.25 50.63 -151.81 189.37 112.20 129.12 
Exaggerated -151.88 75.94 -227.81 284.13 168.34 193.73 

 
 
Based on the Saffir-Simpson Hurricane Scale for wind speed categories,26 the worse-case scenario, labeled 
“exaggerated” in Table 1, corresponds to wind gust intensity in the “Cat 5” hurricane range (> 155 mph). Note that 
although it is labeled “exaggerated” in this study, it is not unrealistic. As discussed later, results show that the 
vehicle’s flight guidance algorithm can tolerate this significant wind gust intensity. 
 
4. Determination of Maximum Wind (Disturbance Rejection Performance) 
    With testing any control algorithm, it is important to analyze the controller’s disturbance rejection performance 
and estimate what maximum disturbance the feedback system can tolerate until the system in no longer controllable.  
For this study, the system’s performance is numerically tested. In order to determine how much wind the vehicle can 
handle before the optimal feedback guidance algorithm fails to converge, various wind profiles are implemented 
with increasing magnitude. For purpose of comparison, the wind direction is fixed by using the same direction 
cosine (i.e. same unit vector) and scaling the velocity magnitude, at most, by 50% increments. Increasing the winds 
until problems occur (e.g. constraint violations or non-convergence) helps indicate the maximum allowable wind-
gust magnitude.      
 

III.   Problem Formulation 
 
B. Reentry Optimal Control Problem Formulation 
     Even from a sub-orbital entry altitude, the reentry vehicle (RV) must traverse a fairly large portion of the Earth’s 
surface, descend through the Earth’s atmosphere, and reach a designated landing site with the appropriate velocity 
and attitude. In principle, it is possible to use the entry guidance algorithm developed in this paper for autolanding as 
well; however, since our present model does not take into account aerodynamic ground effects, we focus our efforts 
in guiding the RV all the way up to a handover to autoland guidance. As a result of this, we discard the traditional 
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notions of segmented guidance schemes that involve such concepts as terminal area energy management (TAEM) 
schemes; instead, we define a Final Approach Corridor (FAC) as illustrated in Fig. 3. In this concept, it is required 
to get the vehicle aligned with the runway centerline at the appropriate altitude, velocity, etc. Thus, the FAC 
manifests a projection of all the final conditions onto one two-dimensional box. Therefore, the problem is then to 
find the control history that minimizes some cost function associated with intercepting the desired FAC. After all, 
the primary objective of RLV reentry is to safely land at a designated landing site. Heat, dynamic pressure, structural 
loads, drag, or some other criterion could be minimized, and these can be modeled as path constraints. The reentry 
problem is then formulated by appropriately defining the cost function and corresponding constraints.      
 
     A general expression for a terminal guidance performance index is defined by the following cost function, 

2 2 2 2
0 1 1 2 2

1
( ( ), ( ), , ) ...

n

f i i n n
i

J x t u t t t w s w s w s w s
=

= ∆ = ∆ + ∆ + ∆∑  

where 2 1i i
s s s∆ = − is the difference between a specific final state value, ( )i fx t , and a desired final condition 

(i.e. the “target”) for that state, and iw is the corresponding weighting term that can be adjusted depending on the 
relative importance of the condition. 
 
For this example of using the FAC-target, the cost function can simply be the difference between the center of the 
FAC and the vehicle’s final position in coordinates of altitude, latitude, and longitude designated as , , ,r λ µ∆ ∆ ∆  

respectively and equally weighted 1,2,3( 1)w = such that 
 

2 2 22 2 2( ) 1 1 1 r f f fJ r FAC r FAC FACλ µλ µ λ µ⋅ = ⋅∆ + ⋅∆ + ⋅∆ = − + − + −  

 
Note that the this expression can also include difference terms for the remaining states such as , , andV γ ξ .  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 3   Final Approach Corridor (FAC) for “Target” Conditions 
 

 

X

~1000’

h1=1600’

h2=2400’ hf=2000’

~ 2 nm

FAC

~ 9 deg

(14)

(15)

D
ow

nl
oa

de
d 

by
 N

A
V

A
L

 P
O

ST
G

R
A

D
U

A
T

E
 S

C
H

O
O

L
 o

n 
Ja

nu
ar

y 
22

, 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

00
6-

60
74

 



 
American Institute for Aeronautics and Astronautics 

9

     Thus, the specific optimal control formulation for this RV problem is stated as follows:  Given an initial position 
vector [ ]( )0 0 0, ,r µ λ , velocity magnitude ( )0V , FPA ( )0γ , heading angle ( )0ξ , AoA ( )0α , and BA ( )0σ , 

find the control history ( ),α σ  that minimizes the miss distance to a predefined target under various constraints.  

Thus, the problem is to minimize ( )J ⋅ subject to the dynamic constraints, Eq. (1), the initial and final event 
conditions specified as:  

0 0 0 0 0 0 0
ft( , , , , , , ) (0sec,167323ft, 85deg,30deg,8530.2 , 1.3deg,0deg)
s

ft( , , , , , ) (2000 400ft, 80.7112 0.001371deg,30 0.001097,300 , 6.0deg, 60deg)
s

ft ft33.33 8.33
s s

f f f f f f

f

t h V

h V

h

µ λ γ ξ

µ λ γ ξ

= − −

= ± − ± ± − −

− ≤ ≤

 

 
and the state (17), path (18), and control (19) inequality constraints, respectively, specified as  
 

 

2

0ft 400000ft
90deg 90deg
89deg 89deg

1.0ft/s 17060.4ft/s
89deg 89deg

180deg 180deg

2.5g's 2.5g's
0 300lb/ft
0 70BTU/f

z

h

V

n
q
Q

µ
λ

γ
ξ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−

≤ ≤⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥≤ ≤⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ t-s

10deg 50deg
80deg 80deg

α
σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

− ≤ ≤
− ≤ ≤

 

   
 
where the path constraint terms represent the normal acceleration cos sinzn L Dα α= + , the dynamic pressure 

21 ( )
2

q r Vρ= , and the heating rate 3.15( )Q k r Vρ= with 4.47228 9k e= −  as the material heating 

coefficient (scaled).  
 
     The overall goal is to minimize the miss distance to the center of the FAC-target box, by defining the end-point 
conditions as the projected FAC-box constraints in terms of position, velocity, and flight path attitude. Also, to 
ensure the vehicle’s sink rate is appropriate for final approach setup, a constraint on final vertical speed, fr , was 
imposed. Note that although this particular formulation does not use Eqs. (8, 9) nor place constraints directly on the 
control rates, the effects of doing so are shown in the results section.   
 

(17)

(18)

(19)

(16)
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IV.   Solving the Optimal Control Problem in Real Time 
 
A. Necessary Conditions for Optimality 
     To demonstrate optimality, a theoretical analysis is first performed based on optimal control theory. To 
demonstrate the necessary conditions needed for optimality the first step requires the formulation of the 
Hamiltonian:    

( , , , ) ( , , ) ( , , )TH P x u t F x u t P f x u t= +  
 
where ( )F ⋅  is the Lagrange cost, P represents a vector of Lagrange multipliers given by Eq. (21), and ( )f ⋅  is the 
vector field for the right hand side of the differential equations of motion given in Eq. (1).  Therefore, with 
  

6 7
,[ , , , , , ] ; [ , , , , , ]T

r V f f f f f f f fP P P P P P r V rµ λ γ ξ µ λ γ ξ= ∈ = ∈P x
 

and omitting the termsΩ − for brevity, the Hamiltonian becomes 
 

[ ]

0

0

0

( ) 2
0

( )
0

( )
0

cos cos cos sin( ) sin ...
cos

1 ( , ) sin ... ...
2

1 ( , ) cos cos ... ...
2

( , ) si1
2

r

r r
V D ref

r r
L ref

r r
L ref

V VH P V P P
r r

P e V C M S g
m

V gP e VC M S
m r V

e VC M S
P

m

µ λ

β

β
γ

β

ξ

γ ξ γ ξγ
λ

ρ α γ

ρ α σ γ

ρ α

− −

− −

− −

⎡ ⎤ ⎡ ⎤⋅ = + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤+ − − +⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞+ + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

+
n

cos cos tan ...
cos

V
r

dH RHS of dynamic equations
d

σ
γ ξ λ

γ
⎡ ⎤

− +⎢ ⎥
⎢ ⎥⎣ ⎦

= ⇒x
P

 

 
The Hamiltonian Minimization Condition (HMC) is based on Pontryagin’s Minimum Principle such that the optimal 
control must minimize the Hamiltonian with respect to control. For this problem, the control is subject to an 
inequality constraint so the Karush-Kuhn-Tucker (KKT) Theorem is applied by taking the Lagrangian of the 
Hamiltonian: 

(..., , ) ( ) Tu q H q h= ⋅ +H  

where q  is a KKT multiplier and h is the control constraint vector, [ ]: ,α σ=u . The appropriate necessary 
condition is:  

0
TH h q∂ ∂ ∂⎛ ⎞= + =⎜ ⎟∂ ∂ ∂⎝ ⎠

H
u u u  

 
and substituting Eqs. (22), (4), (5) and the controls into (25), the HMC becomes  
 

(20)

(21)

(22)

(23)

(24)

(25)
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0

0

0

0

( ) 2
0

( )
0

( )
0

( ) 2
0

(0.0002 0.006) / 2 ...

( 0.0010 0.035) cos / 2 ...

( 0.0010 0.035) sin / 2 cos 0

( 0.0005 0.035 0.049 0.16) si

r r
V ref

r r
ref

r r
ref

r r
ref

P e V S m

P e V S m

P e V S m q

P e V M S

β

β
γ

β
ξ α

β
γ

ρ α

ρ α σ

ρ α σ γ

ρ α α

− −

− −

− −

− −

⎡ ⎤− + +⎣ ⎦
⎡ ⎤− + +⎣ ⎦
⎡ ⎤− + + =⎣ ⎦

− − + − +

0( ) 2
0

n / 2 ...

( 0.0005 0.035 0.049 0.16) cos / 2 cos 0r r
ref

m

P e V M S m qβ
ξ σ

σ

ρ α α σ γ− −

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪ ⎡ ⎤ +⎪ ⎣ ⎦
⎪

⎡ ⎤− + − + + =⎪ ⎣ ⎦⎩

 

 
Also, the multiplier-constraint pair must satisfy the following KKT complementarity conditions (CC): 
 

,

, ,

,

0 10, 89
0 ( 10, 89) (50,89)
0 50,89

if u
q if u

if u

α σ

α σ α σ

α σ

⎧≤ = − −
⎪

= − − < <⎨
⎪≥ =⎩

 

 
 
To determine the final value of the Hamiltonian, the Endpoint Lagrangian, given as, 
 

 
 
 
 
 
 
 
 
 
 
is substituted into the Hamiltonian Value Condition (HVC): 
 

( ) 0 ( ) 0f f
f

H t H t
t

∂
+ = ⇒ =

∂
E

 

This indicates that the final value for the Hamiltonian should be zero for this problem. Also, sometimes applying the 
Terminal Transversality Conditions (TTC)  
 

( )f
f

t ∂
=

∂
Eλ
x  

may give some indication of the final value of the dual variables that can be used later to confirm numerical results.  
Likewise, the Hamiltonian Evolution Equation (HEE) is used to indicate the nature of the Hamiltonian with respect 
to time such that: 

(26)

(27)

(28)

(29)

(30)

2 2 2

( , , ) : ( , ) ( , )

...

( ) ( ) ( )...

( ) ( ) ( )

T
f f f f f f

r f f f

f f f
r f f f

f f f
V f f f

x t E x t e x t

FAC r FAC FAC

r r

V V

λ µ

λ µ

γ ξ

υ υ

λ µ

υ υ λ λ υ µ µ

υ υ γ γ υ ξ ξ

= +

⇒ − + − + −

+ − + − + −

+ − + − + −

E
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0 0H dH
t dt

∂
= ⇒ =

∂  

 
Here, the Hamiltonian is constant with respect to time.  Combining HEE (31) with HVC (29), the Hamiltonian 
should be 0 for all time.  The above analysis is used throughout this study to verify that the numerical results satisfy 
the necessary conditions for optimality as briefly discussed in the Results section to follow. 
 
B. Optimal Feedback Implementation 
     Feedback is achieved through real-time computation of the optimal control problem.  A schematic of this concept 
is illustrated in Fig. 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4   Off-Line and On-Line Trajectory Generation Control Architecture 
 
Figure 4 illustrates the simulation technique where a Runge-Kutta propagation scheme is used in conjunction with 
measurement noise and external disturbances to integrate the equations of motion and determine the current vehicle 
state vector. Thus, the RK propagation for the disturbed and uncertain vehicle simulates a plant.  Complete details 
on such a method for guidance and control are described in Ref. 16.   
   

V.  Numerical Results 
 
A. Open-Loop Solution 
     For the reentry trajectory, the open-loop terminal guidance solution, shown in Fig. 5, takes only about 30 
seconds to generate from an arbitrary starting point. Although 30 seconds may be viewed as rapid in the context of 
“setup time,” this computation time can be reduced by at least a factor of 100 by optimizing the actual code, 
eliminating the Windows and MATLAB overhead etc.27 None of these computational enhancements were carried 
out because the purpose of the current work is to demonstrate the principles. In any case, Fig. 5 shows that the 
optimal open-loop control given by the ,α σ -rate modulation drives the RV to the FAC-target box over a total flight 
time of 669.1 seconds and within the allowable tolerance for the desired end-point conditions.   
 
 
 
 
 

DIDO Trajectory 
Generation 

(off-line, open-loop) 
DIDO Trajectory 

Generation 
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Vehicle 
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*
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u
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x x x x

+
=
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0
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Fig. 5   Optimal Open-Loop Solution (No Wind) 
 
 
B. Feasibility 
     The feasibility of the computational solution can be independently validated by comparing the DIDO results to 
the propagated states via a separate ODE Runge-Kutta propagator. By interpolating the values of the control 
function, u(ti), at the LGL points and then integrating the differential dynamical equations, ( , ( ), )x f x u t t= , via 
MATLAB’s ode45 solver, a comparison of error norms can be made with the DIDO trajectory results.  Although not 
included here, results showed that the open-loop system response does satisfy the end-point conditions within an 
acceptable error range.   
  
C. Optimality 

 One way to demonstrate optimality is by verifying that the necessary optimality conditions are satisfied. This is 
performed by analytically solving some of the necessary conditions and then comparing the analytic results with the 
numerical solutions. In the absence of useful costate information, Bellman’s Principal of Optimality can be applied 
to validate optimality. Both of these methods are presented in the proceeding sections. 

 
1.  Optimality via Necessary Conditions 
     Comparing the numerical results to the above theoretical analysis of the HVC, HEE, HMC, and TTC conditions 
validates the optimality of the computational solution. The HVC stated in the theoretical analysis indicates that the 
Hamiltonian should be 0 at the final time (i.e. H(tf)=0). From the HEE, it can be shown that the Hamiltonian is 
constant with respect to time.  Combining these two conditions, the Hamiltonian should be 0 for all time, clearly 
evident in Fig. 6. Likewise, the Lagrange multipliers for the dynamics at the final time match the theoretical TTC 
results (not shown). 
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Fig. 6   Open-loop Hamiltonian 
 
2. Optimality via Bellman’s Principle 
     Another test to confirm computational optimality is to apply Bellman’s Principle of Optimality. This principle 
essentially states that by using any point on the original optimal trajectory as an initial condition to a new problem, 
with all other problem formulation parameters the same, should result in the same optimal trajectory with the same 
or better cost. Although it is not shown here, this method was used to validate the open-loop optimality and is 
demonstrated in the following closed-loop implementation. 
 
D. Closed-Loop Solution 
     Although the previous open-loop solution results in a feasible trajectory and desired end-point conditions that 
satisfy the necessary conditions for optimality, it does not account for any external disturbances as would be the case 
in real applications. To illustrate the effects of external disturbances for this reentry problem, a simulated wind gust 
was applied over a period of 20 seconds beginning at 460 seconds into the flight. Sensor measurement errors and 
parameter uncertainty can be simulated by assuming the role of the errors from the numerical propagation. The 
effects of the wind on the open-loop (OL) trajectory are seen in Figs. 7 and 8.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7   Effect of Wind Gusts on Position for Open-Loop (OL) System 
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Fig. 8   Effect of Wind Gusts on Heading for Open-Loop (OL) System 
 

Clearly shown by the insets, increasing the wind-gust intensity pushes the vehicle further from the intended target as 
indicated by the “x”-mark. Figure 7 shows that an “exaggerated” wind-gust (i.e. > Cat 5 hurricane) causes a rapid 
decrease in altitude of almost 5000 ft.  Figure 8 shows that even with wind gusts up to and including “severe,” the 
final heading is still within limits as indicated by arrow-marks on the inset. Some errors and disturbances are 
acceptable because the FAC-target design allows margin on the vehicle’s final conditions; however, with large 
disturbances such as the “exaggerated” wind gust, the system is not capable of compensating without feedback. The 
2-D ground track in Fig. 7 is a good example of how other errors in the system (e.g. modeling, numerical 
propagation, etc) can negatively affect the trajectory. Here, even the no-wind case fails to hit the FAC-target box. It 
is evident that feedback is required to handle these uncertainties and disturbances. Fig. 9 shows the effects of wind 
gusts on the closed-loop (CL) trajectory for the variables of interest.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9   Effect of Wind Gusts on Position for Closed-Loop (CL) System 
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In contrast to the OL results, it is clear that all the closed-loop trajectories satisfy the final conditions, including 
the “exaggerated” case with a wind-gust magnitude of 194 mph! Also note how the 2-D ground track nicely 
converges to the center of the FAC-target in Fig. 9.  Note that the vehicle is not guided along a reference trajectory.  
In fact, we do not use the concept of reference trajectory tracking; rather, the principle we adopt is that of 
autonomous real-time trajectory generation.  

With larger disturbances there are signs of control “chatter” as indicated in Fig. 10; however, note that this is not 
chattering but rather an artifice of compressed x-axis scaling. In this case, none of the “spikes” exceed a realistic rate 
of 5 deg/s.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10   Example of Control “Chatter” for Closed-Loop System 
 
In order to demonstrate the principles described in the Modeling section (see Eq. 8), we investigate the effect of 

limiting the control rates by imposing rate constraints. Figure 11 shows an example of a similar scenario as in Fig. 
10, but without experiencing any control “chatter.”  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 11   Example of Modeling Rates as “Virtual” Controls to Eliminate “Chatter” 
 

     Results from a similar model, but without path constraints, reveals that a wind gust of approximately 206 ft/sec 
(~ 140 mph) will cause the vehicle to impact the earth’s surface unless the closed-loop algorithm is implemented.  
Shown in Fig. 12, the vehicle flying the open-loop trajectory is slammed into the ground, whereas the closed-loop 
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trajectory corrects for the microburst and is able to achieve a final altitude of 1629 ft, within the FAC-box vertical 
limits of 2000 400ft± .   
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12   Worse-Case Scenario:  “Exaggerated” Wind Gust Causing Earth Impact  
 

Both cases (Figs. 9 & 12) demonstrate that a viable trajectory exists under hurricane-force wind gusts when 
implementing the optimal nonlinear feedback. Also, like the case for no disturbances, it is important to note that for 
small disturbances, such as the light-wind scenario, the closed-loop trajectory approximately tracks the off-line 
open-loop reference trajectory. This is a direct result of Bellman’s Principle. Since the initial condition to the re-
optimization problem lies approximately on the original optimal path, then the new solution will be along the same 
trajectory. This “stability” result is a direct consequence of optimality.28   
     As with all reentry problems, it is important to ensure that the vehicle does not exceed limits on dynamic 
pressure, heating, and structural loads. A benefit of our constrained optimal feedback guidance is that the path 
constraints are not violated as demonstrated in Figs. 13 and 14.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

0 50 100 150 200 250 300 

-2 

0 

2 

4 

6 

8 

10 

12 

14 
x 10 4 

Time (sec)

Ze
 (f

t) 

CL -Wind
OL -Wind
OL -No Wind

t = 242 
z = 1629 

t = 233.5 
z = -1.9e+4 

18,749ftz∆ ≈

Applied  
Wind Gust

Earth’s Surface 

0 0.5 1 1.5 2
x 10

4

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 
x 10 

4 

Velocity, V (ft/s) 

Al
tit

ud
e,

 h
 (f

t) 

 

Dynamic
Pressure

Constraint
Heat Rate 
Constraint 

200 400 600 800 1000 1200

1 

2 

3 

4 

5 

6 

7 
x 10 

4 

CL -None

CL -Exaggerated
CL -Moderate

Dynamic
Pressure
Constraint

 

0 100 200 300 400 500 600 700-4
-2
0
2
4

n z
  

(g
) 

 

0 100 200 300 400 500 600 7000

100

200

300

qb
ar

 (l
b/

ft 2 ) 

0 100 200 300 400 500 600 700
0

20
40
60
80

Time (sec) 

Q
 (B

TU
/ft

 2 
-s

ec
) 

CL -None
CL -Moderate

CL -Exaggerated

640 650 660

1

1.5

2

2.5

Fig. 13   Velocity vs. Altitude and Path 
Constraints with Wind Disturbance 

Fig. 14   Comparison of Path Function 
Time Histories  

D
ow

nl
oa

de
d 

by
 N

A
V

A
L

 P
O

ST
G

R
A

D
U

A
T

E
 S

C
H

O
O

L
 o

n 
Ja

nu
ar

y 
22

, 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

00
6-

60
74

 



 
American Institute for Aeronautics and Astronautics 

18

Depending on the specific initial conditions, the resulting flight path may or may not have active path constraints. 
Figure 13 shows how a sample of CL trajectories do not cross the plotted dynamic pressure and heat rate constraints 
and also have a margin of safety. Note that this margin of safety can also be explicitly enforced.   
 
E. Computational Time 
     Success of this feedback method depends heavily on relatively fast computation time. A theorem that links the 
required computation time to the dynamics of the system is developed in Ref. 16. Computation of the first off-line, 
open-loop optimal trajectory takes an average of 12 seconds and the subsequent open-loop optimal control updates 
are computed within approximately 1.2 to 9.75 seconds depending on the disturbance induced by the wind gusts, 
and the stability of the Windows environment at the time of run. These trajectories were generated on a Dell 
Optiplex Desktop computer with a Pentium M, 3.40 Ghz processor, and 1.0 GB of RAM. The feedback computation 
times are shown over the entire trajectory in Fig.15(a)-(e).  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 15   Feedback Computation Times for CL System 
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For all wind disturbance cases, the average cpu computation time was 2.78 sec. As noted earlier, it is possible to 
reduce this time by a factor of 100.  Nonetheless, 2.78 sec is quite adequate for declaring the computational speed as 
“real-time” as defined by the theory developed in Ref. 16 and validated by the numerical experiments reported in 
this paper.        

VI.   Conclusions 
      
     In this paper, an optimal nonlinear feedback guidance law was constructed based on recent advances in 
pseudospectral methods. It was shown that real-time computation of the open-loop optimal controls can effectively 
be used for entry guidance in the presence of large uncertainties and disturbances that include hurricane-force wind 
gusts greater than Category 5 (Note: Hurricane Katrina was a Cat 4). Three significant advantages of this guidance 
scheme are: (1) that it does not require any advance knowledge of feedback computation times; hence, no prediction 
method is required; (2) tracking control is not required and as such the system is able to use the disturbances to its 
benefit, if any; and (3) provides the capability of recovering from failure and abort scenarios that would not be 
recoverable without rapid trajectory reshaping. Overall, this paper demonstrates the viability of this nonlinear 
feedback method for autonomous, on-board reentry applications.  
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