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Optimal Numerical Differentiation Using

Three Function Evaluations

By J. Marshall Ash and Roger L. Jones

Abstract. Approximation of f'(x) by a difference quotient of the form

h~l{aj(x + bxh) + a2f(x + b2h) + a3f(x + b3h)]

is found to be optimized for a wide class of real-valued functions by the surprisingly

asymmetric choice of b = (¿,, b2, b3) = (1/V3 - 1, 1/V3 , 1/V3 + 1). The nearly opti-

mal choice of b = (-2, 3, 6) is also discussed.

1. Introduction. The problem of best approximating the derivative of a function

at a single point using two values of the function is "best" solved by using the

difference quotient

(1) d0(h) =---.

We consider the same problem using three values of the function and arrive at

three different solutions by interpreting "best" in five different ways. Our best

difference quotients are

(2) d,(h)-u-,

f{x + h) + u2f{x + ich) + cofjx + to2/.)
(3) diin) =-3^-.

where w = -\ + V3//2 and u2 = -\ - V3//2 are the cube roots of 1, and

(A. J , IA     32/(x + 3h) - 27fjx - 2h) - 5f(x + 6h)

Section 3 below was motivated by the kind suggestion of J. Lyness.

2. Minimum Truncation Error. Whenever we write /, we will mean either a

complex-valued function of a complex variable or a real-valued function of a real

variable. In the former case we assume that / is analytic near x and in the latter

case that / is five times differentiable at x. The point x will be fixed and the

variable h will be small. Our assumptions are chosen to guarantee (i) that /have at

x a Taylor expansion to order hA with error Oi\h\5) and (ii) that there be a bound

for the modulus off"" near x.
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160 J. MARSHALL ASH AND ROGER L. JONES

Consider the general three-point difference quotient

(5) dih) = A"1 2  aJix + b,h) = d(% b)(A).
i = i

Substituting Taylor's theorem,

fix + bth) = 2 ¿3^**/ + ̂ ßh*b?,
J'- 5!

into (5) and interchanging the order of summation gives

(6)

dih) = ¿ c/^-hJ-1 + Oih%
j-o       J-

cj = 2 atb{,      j = 0, 1, 2, 3, 4.
i = i

For dih) ->f'(x) as /i -» 0, we must have c0 = 0 and c, = 1. This motivates our first

definition.

Definition 1. A three-point rule for the first derivative is a difference quotient

¿(a, b)(/z) of the form (5) where c0 = 2 a, = 0 and c, = 2 a,¿, = 1.

Definition 2. A three-point rule for the first derivative is of degree k if and only if

i/(a, b)(A) = /'(0) for every polynomial / of degree k.

Lemma 1. A necessary and sufficient condition for the three-point rule to be of

degree 3 is

Co = 2 <*, = 0,

c3 = 20,A3 = o.

The proof of this is immediate from (6) above.

Lemma 2. No three-point rule is of degree 4. For a three-point rule to be degree 3,

we must have all b¡ distinct.

Proof. For a rule to be of degree 4 would require c2 = c3 = c4 — 0. Write this as

a matrix equation

(7)

B» = b\

b\

bl

b\

b\

b\

b\

fa.

If all b¡ =?= 0, then the Vandermonde-like matrix B is nonsingular, so a = 0,

contrary to c, = 1. If, say, b3 = 0, the three equations c2 = c3 = 0, c, = 1 lead

quickly to a similar contradiction.

Similarly, if, say, b2 = b3, we may as well combine a2 and a3, which implies we

are dealing with a two-point rule. As above, if both b¡ =£ 0, the two equations

c2 = c3 = 0 force a to be zero, contrary to c, = 1. The case of b2 = b3 = 0 is

treated similarly. Thus, for a three-point rule to be of degree 3, we must have all b¡

distinct.
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Lemma 3. The three-point rule d is of degree 3 if and only if

(8) bxb2 + bxb3 + b2b3 = 0.

Proof. The first three equations in (7), c0 = c2 = 0, c, = 1, may be written as a

matrix equation

/3a =

where the Vandermonde matrix B is easily inverted. Substitute the result of this,

»=[ib2- b,)ib3 - bx)ib3 - b2)l\b2 - b\, b\ - b\, b\ - b2),

into c3 = 0 to obtain (8).

Definition 3. A three-point rule </(a, b) is said to be normalized if

min{|Z>, - b2\, \bx - b3\, \b2 - b3\) = 1.

Motivation for Definition 3. The mapping h-> ch for a nonzero constant c, which

may also be thought of as mapping (a, b) -» (c~'a, cb) while leaving h fixed,

obviously does not change anything of substance. In other words, the set of

three-point rules dia, b)(/i) partitions into equivalence classes with ¿/(a, b) ~

i/(a', b') if there is a constant c such that a' = c~'a and b' = cb. The quantity

c4(a, b) is not a class invariant, for if ¿(a, b) ~ dipi, b'), where (a', b') = (e~'a, eb)

with 0 < e < 1, we have

(9) |c4(a', b')| = 12 («r^)(e*,)4| = Ac¿% b)| < |c4(a, b)|.

By picking e very small, we can find arbitrarily small c4 without really changing

anything. Some normalization is required to keep the vector b from collapsing to 0.

In   difference   quotient   (1)   or   in   the   standard   difference   quotient

ifix + h) — fix))/h, a normalization has been achieved by expressing the error in

powers of the distance between the two arguments. Set

5 = min{|¿>, - b2\, \bt - b3\, \b2 - b3\]

and rewrite the dominant error term in (6) as

(10) e4Äi*'-(^)Äi(»)'-0Äl<*)'.

A simple calculation as in (9) above shows that G = <J(a, b) is constant on each

equivalence class.

Lemma 4. All three-point rules of degree 3 are of the form

_ t\t + 2)f(x + (1 + t)h) - (1 + 2t)f(x + <(1 + /)*) - (/ + 1)V - !)/(* - th)
iU>        K) t(2t + l)(r + 2)(/2 - 1)A

for some value of t, or are obtained from (11) by a transformation (a, b) -» (c_1a, cb).

Proof. Select representatives from each equivalence class by setting bx = 1.

Let t = b2. From (8), b3 = -r/(r + 1). Clear fractions by sending (a, b) -»

((l/(r + l))a, (/ + l)b). Our representative quotient becomes (11).
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Theorem 1. Let d be a normalized three-point rule of degree 3. Fix h and restrict a

and b to be real. Then truncation error is minimized when d = dx. iSee Eq. (2).) This

minimizing rule is unique up to the transformation (a, b) -» (-a, -b).

Proof Let d'iW, b') be any normalized three-point rule of degree 3. By Lemma 1,

we have c2(a', b') = c3(a', b') = 0, so to minimize truncation error we must mini-

mize |c4(a', b')|- By Lemma 4, there is a real number t and an equivalent three-point

rule dit) = din.it), b(r)) of the form (11). Since

|c4(a', b')| = |c4(a', b')/l3| = |G(a', b')| = |G(a, b)| = |c4(a, b)|/53,

where 8 = m.ini¥=j{\b¡ - bj\} (see (10)), we see that we must minimize |G(f)| =

|c4(a(i), bit))\/8(b(t))3 as t varies over R.

Substituting the values of a(r) and bit), as given in (11), into |c4(a, b)| reduces our

problem to that of minimizing

(i2)    |GW|-e^a-izi±m.
minfll - <2|, |2l + l|, |((( + 2)|}' «(<)

Since t is real, we have

5(0
\t2 - 1|, - (V3 + l)/2 < / < -V3 + 1, (V3 - l)/2 < t < V3 + 1,

\t2 + 2t\, - (VI + 2) < t < - (VÏ + 0/2, V3 - 2 < t < (VJ - 0/2,

|2r + 1|, -oo < t < - (V3 + 2), -V3 +l</<"vr3-2, V3+l<i<oo.

Substituting this into (12) and using the methods of elementary differential calculus

on each interval yields that

min|G(r)|=|V3

and that this minimum occurs at t - 1 + VJ, 1 - VJ, |(V3 - 1), j(-V3 - 1),

V3 — 2, and - V3 — 2. All six values of r give equivalent difference quotients (the

corresponding b vectors are scalar multiples of one another). Normalizing the

difference quotient corresponding to t =|(V3 — 1) by sending (a, b) —>

((V3 /2)a, (2/ V3 )b) produces difference quotient dx (see (2)) as the unique (up to

(a, b) -* (-a, -b)) normalized real three-point rule minimizing truncation error.

Theorem 2. Let d be a normalized three-point rule of degree 3. Fix h but allow all

variables and functions to be complex-valued. Then truncation error is minimized

when d = d2. (See Eq. (3).) This minimizing rule is unique up to the transformations

(a, b) ^ (e^a, e'^b), 0 < <p < 2tr.

Proof. As in the proof of Theorem 1, we must minimize the function |G(0| given

in (12). Since / may be complex,

'\t2 - 1|      on/1,,

03) Sit) = \ |,2 + 2t\     onA2,

\2t + 1\     onA3,
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where A, is the union of the region enclosed by C, u C3 with the region enclosed

by C2 u C4, A2 is the reflection of Ax in the line Re t = -\, and A3 = C —

iAx (J A 2), where

c1 = {-l + ̂ ,o<|,|<f),

C3 = il +V3 e,9,0 < |0| <|"),

C4= f 1 +V3 eie, |tt < |0| <w}.

Figure 1

The shaded area in Figure 1 is Ax. Substitute (13) into (12), use the maximum

modulus theorem on (G(i))-1 to see that the minimum of G must occur on one of

the three circles of Figure 1, and use the method of elementary calculus on each

circle, treating G as the appropriate function of 0 on each C,. The result is

min\Git)\=\V3
tec y

and that the minimum occurs at / = w and u>2. Again, the corresponding difference

quotients are equivalent; in fact, both are equivalent to difference quotient d2 (see

(3)). Notice that, for any nonzero complex constant c = pe"p, the mapping (a, b) -»

(c~'a, cb), gives an equivalent best complex three-point rule minimizing truncation

error. Thus the "obvious" best three-point rule here is any one obtained by letting b

be the three vertices of any equilateral triangle centered at x. (The word "obvious"

is in quotes since the corresponding symmetric choice was not the best one in the

real case above.)

3. Roundoff Error.

Motivation for Theorem 3. In the previous section, evaluations were assumed to

be exact. Here we assume that each computation of the function / may be in error
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by as much as ± e where e is a small fixed positive quantity. From (5), we see that

this generates a roundoff error bounded by

_ (K| + \a2\ + N)e _ Ae

*R~ h h ■

Fix a difference quotient satisfying (7). From (6) and (7), we see that the dominant

term in the truncation error is c4/(4)(x)(4!)~Vi3 which is dominated by

(14)
\c4\Âh3

4!

where/4 = sup{|/(4)(.y)l : y is near x). Define the overall error E by E = ET + ER.

Elementary calculus shows the h which makes E smallest to be given by

(15)

/_MlV/4
= lkl/J   ' for which h we have

E = ^(A3\c4\)i/4fy\y\

Theorem 3. Let d be a normalized three-point rule of degree 3. Fix h and restrict a

and b to be real. Then overall error is minimized when d = dx. (See Eq. (2).) This

minimizing rule is unique up to the transformation (a, b) —> (-a, -b).

Proof. From (15) it follows that we have to miriimize v43|c4|. (Note that (a, b) -»•

(c"'a, cb) sends A —> \c\A, |e4| -» |c|"3|c4|, so that this quantity is constant over each

equivalence class.)

Assume a, b, and t are real. Then

¿3kl«(2hl)3|2«A4|

_ ( \t\t + 2)\ + \2t + 1\ + \jt + 1)V- 1)|■(
|/(2/ + 1)(/ + 2)(/2 - 1)|

t\t + l)2

8/8/|(/ + 1)[(2/ + 1)(/ - 1)]3|,

8(/ + l)7k[(2/ + \)it + 2)]\

8/|/(/ + l)[(/ + 2)(/-l)]3|,

By elementary calculus we have

-1 < / < -{-, 1 < / < 00,

-00 < / < -2, -\ < t < 0, and

-2 < / < -1,0 < / < I.

nun^3|c4| = (§)3.2<

and that this minimum occurs at / = 1 + V3 , 1 - V3 , |(V3 - 1), j(-V3 - 1),

V3 — 2, and - V3 — 2. Thus rule dx also minimizes the overall error E among all

real normalized three-point rules.

Theorem 4. Let d be a normalized three-point rule of degree 3. Fix h but allow all

variables and functions to be complex-valued. Then overall error is minimized when

d = d2. (See Eq. (3).) This minimizing rule is unique up to the transformations

(a, b) ^ (e-^a, e""b), 0 < <p < 2*.
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Proof. Let z = 2/ + 1. As in the proof of Theorem 3, we must minimize.

A3\c4\ = Fiz) where

\z - lp|z + 3| + 16|z| + \z + l|3|z - 3| V_|_

|z(z2 - 9)| )  \z2 - 1\ "

Inspired by the results of Section 2 (see Theorem 2), we were able to guess that the

minimum would occur for / = w and w2, which correspond to z = V3 i or

z = -V3 i, where F = 1. Because of the symmetries F(z) = Fiz) = F(-z), it

suffices to show that F > 1 at every point of the first quadrant, C+, except V3i.

Let r = \z\. For z G C+ and a > 0, we have \z + a\ > r, so, from (16),

(/•-l)3r+16r+r3(r-3)\3     1      _

r(r2 + 9) )  r2+l      8K *'

Direct calculation shows g' > 0 on [9, oo) and g(9) > 1, reducing the domain of

investigation to C+ n {|z| < 9} = D. Finally, a combination of evaluating F on

the points of a mesh containing D, together with bounding grad F away from the

singularities z = 0, 1, 3, shows F > 1 away from V3 f, while a Taylor expansion of

F about V3 i shows F > 1 on the remainder of D \ {V3 /}. Thus three-point rule

d2 also minimizes the overall error E among all normizalized three-point rules.

4. A Third Rule and Some Remarks.

Motivation for the Third Rule (see (4)). Estimating the first derivative from an

equally spaced table adds the constraint that all three b¡ be integers. Under these

conditions it is clear from formula (11) that the rule given by (4) is best in a

number of ways. It is best among integer three-point rules of degree 3 with respect

to (i) minimizing max{¿>,} - min{¿>,}, (ii) minimizing 2 b2, (iii) minimizing 2 \b¡\,

et cetera.

History of Three-Point Rules. Essentially all real three-point rules appearing in

the literature have been only of degree 2. (However, compare [3, p. 217].) The most

prevalent of these is (-3/(x) + 4/(jc + h) — fix + 2h))/2h; see [1]. The complex

rule (with b = (1, w, w2)) seems to be well known; see [2].

Comparison of Three-Point Rules. In Table 1 below,/4 is a bound for the modulus

of the fourth derivative near x. All derivatives have been normalized to make

min|6, — bj\ = 1.

Observe that the overall error for the rule d3 is only slightly worse than that of

the rule dx. (By Theorem 3 it must be worse.)

Generalizations. 1. If we use/) > 3 points in our approximating rule, the most we

can hope to achieve is

(17) c, = 1,   c0= c2= ■ ■ ■ = cp = 0.

This follows from a simple linear algebra argument like the one found in Lemma 2.

Such a difference quotient is easily found in the complex case by letting b be the

pth roots of unity and solving the Vandermonde system,

c, = 1,    c0= c2= • • • = cp_x = 0,

(16) ^=16

Hz)>
16
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for a. Such a quotient appears in [2]. The last equation in (17) holds automatically

from the /^-periodicity. The same result holds in the real case. If p is even, one

simply finds the appropriate linear combination of fix + h) — fix — h), fix + 2h)

- fix - 2h), . . . ,fix + ph/2) — fix - ph/2). This process is essentially Rom-

berg extrapolation. If p is odd, more delicate arguments are required, but Eqs. (17)

can still be satisfied.

Table 1

Truncation Error

(see (14))

Overall Error

(see (IS))

"0-

(see (1))

1/2

- 1

-1/2
— =   .,67/3*2 32/3/l/3e2/3 ¿   ,.04/.l/3e2/3

3 - 2V? 4^3    - 3 - 2-Ji

6 6 6

'1

(see (2))

r-f*    3  .
V3—h3 = .016 fAh 8       ,1/4  3/4^ ,1/43/4

1 1 1
—=   +  1 -pr    -=■ -1
V3 V3       s/3

v/3 v/3 sß

(see (3))

1    /-A    3 .
-V3—hû =   .008 f.h
9 4! H

llil/J/V^   .793/4/4e3/4

1

\ß      \ß

32

40

27 S

40 40

(see (4))

4     ^4     3   . 3
-h' =   .056 /Vi
3     4! 4

3(37 5)

..ri'V/^i^i/J'V/4

2 6

3 3

2. Pass now to the dth derivative, d > 2. To approximate f(<r>ix) we now need

/? > ¿/ + 1. As above, we choose (a, b) in such a way that ¿(A) is an approximation

to the dth derivative, i.e., that c0 — c, = • • • = cd_x — 0, cd = d\ (see (6)) and

that as many higher order terms be 0 as possible. Again the kind of argument used

in Lemma 2 shows that we may hope for cd+x = cd+2 = • • • = cd+ x = 0 at

most. As in the preceding generalization 1, we may achieve this in the complex case

by letting the components of b be the p pth roots of unity. In the real case,

however, we cannot always do as well. For example, let d = 2 and/) = 3. Here

l[fix + h) + »fix + ah) + aftx + a2h)]/h2 = /"(*) + ¿/^W»3 • • •

so c0 = c, = e3 = c4 = 0, c2 = 2, as desired, while an easy calculation shows this

system to be insoluble with a and b real.
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