
Optimal Numerical Integration on a Sphere

By A. D. McLaren

1. Introduction and Summary. This paper discusses the approximation of in-
tegrals over the surface of a sphere by formulas of the following form.

N r.

£ at M, 4>i) ~ / fie, <p)¿=i j dS.

Little has been published on this subject or on its extension to the solid sphere.
The literature is surveyed briefly in Section 7. Most of our space is devoted to
formulas invariant with respect to a finite group of rotations of the sphere. We
study such formulas by means of the group characters, as does Sobolev [12, 13].

The criterion by which integration formulas are usually judged is that of
efficiency. It is defined like this. Consider a system of functions over the domain of
integration such as polynomials in Euclidean space or surface harmonics on the
sphere. They have properties of completeness and they are ordered in a natural way.
Suppose that the integration formula is exact for the first L independent functions
and therefore for all linear combinations of them. The efficiency E is the ratio of L
to the number of arbitrary constants in the formula. The latter is a fixed multiple
(one more than the dimensionality of the domain of integration) of the number N
of points at which the integrand is evaluated.

A linear combination of surface harmonics (of degree not more than p) will be
called a spherical polynomial (of degree p). If we choose to embed the surface of
the sphere in Euclidean space of three dimensions, we find that the trace left on
the surface by an ordinary polynomial in x, y and z is a spherical polynomial of the
same degree. For the surface of the sphere a pth degree integration formula (exact
for spherical polynomials of degree p) has

L = £ (2m + 1) = (p + l)2

and

3AT
Efficiency is a useful yardstick and the main part of this paper is written with

reference to it. It is not beyond criticism as we shall see later. One suspects that
efficiency is used for higher-dimensional regions, largely because it is the natural
way of expressing the classical results of mechanical quadrature for the line segment.
It is these results that we first attempt to generalize to the surface of the sphere.
Generalization from the line segment to the circumference of the unit circle is
achieved by replacing the classical arguments [14, Theorem 3.4.1] by their analogues
for a complex variable and using the theory of polynomials orthogonal on the unit
circle [14, chapter XI]. The classical arguments do not extend to the sphere but we
may continue as follows.
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In the case of unit weight function the points of the integration formula for the
circumference are evenly spaced. In other words, the set of points is invariant under
a finite group of rotations of the unit circle. In the case of the sphere we are con-
sidering only unit weight function so that it is natural to study sets of points in-
variant under one of the finite groups of rotations associated with the regular solids.
Sections 2-6 are concerned with this.

Let g be the order of the group. Then we shall see that, apart from any intrinsic
merit, the use of an invariant formula reduces by a factor of approximately g the
number of independent surface harmonics for which the formula must be made
exact. This enables us to find some efficient formulas. They are listed in Table 2.
The most spectacular is accurate to the 14th degree, that is exact for 225 inde-
pendent functions, and uses only 72 points so that E > 1.

In the case of the circle it is possible to determine an infinite sequence of formulas
of increasing accuracy and with E near unity. As far as the writer is aware, no one
has shown that this can be done for the sphere or any other two-dimensional region;
although E = § has been obtained for the sphere by cartesian product methods (see
Section 7). There is no evidence yet that E = 1 is a fruitful target in more than
one dimension unless we are content with limited accuracy. Nor is E = la strict
upper bound to what may be achieved, as shown by the 14th degree formula cited
above. It may be better to seek to generalize the classical results of mechanical
quadrature without reference to the efficiency E.

In a sequel to this paper it will be shown how restatement in probabilistic
terms leads to a concrete problem of minimization with respect to disposition of the
sample points (cf. Section 7.1). This method applies also to the circle and yields
the classical result.

If approximate integration is to be programmed the number of sample points
may be unimportant. To meet this case a sequential procedure based solely on
symmetry is outlined in Section 7.2.

The subject of this paper is essentially the wide dispersal of points on the surface
of a sphere. It is relevant to interpolation and to certain problems of mathematical
statistics, as well as to numerical integration.

2. Existence of Formulas. Properties of group representations assumed here
are given by Heine [4, Appendix C.].

The three finite groups ft4, S4, ft6 of rotations of the sphere are associated re-
spectively with the regular tetrahedron, octahedron-cube and icosahedron-dodeca-
hedron. Let G be a realization of one of these groups, of order g, and let co(fi) be
the set of n positions on the sphere that an arbitrary point R takes up under the
different rotations of G. In general n = g, but if R coincides with a vertex of the
regular solid, the centroid of a face (vertex of the dual solid) or the mid-point of
an edge, then n < g.

Now there is induced on the set co(Ä) an n-dimensional permutation represen-
tation {D} of G. This may be split into its component irreducible unitary represen-
tations {Dx} ; that is, the carrier space 0 of dimension n, is a direct sum

ß = 0 0X; X = 1, ■••,»■

of subspaces 0X , each invariant under G. The dimension of Í2X is that of {Dx} multi-
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plied by the number of times the latter appears in {D}, which may be zero. The
fix are mutually orthogonal, because permutations are unitary transformations. Now
e, the vector with equal components, is invariant under all permutations and so
belongs to Sit, the subspace subject to the identical representation {Di}.

We turn next, for reasons given in the Introduction, to the surface harmonics
of fixed degree m. These form a (2m 4- 1 )-dimensional function-space V invariant
under all rotations of the sphere, and therefore under those of G. So a (2»i 4- 1)-
dimensional representation {A}m of G is obtained, and F is a direct sum

F = © Fx; X = 1, ••-,;•
where the subspaces Fx comprise functions which transform under G according to
the inequivalent representations {Dx}. Consider now the natural projection of V
into 12

V ->Q

whereby every function of V is identified with the n-vector of its values at the
points of «(A). Because G operates both on V and on Q then further

Fx^Ox; X = 1, ■■■,,:
If

M = 9 Fx ;       Xjíl,    dim Fx ^ 0,    dim S2X ^ 0

N = © Fx ;       X ■£ 1,    dim Fx ^ 0,    dim 0X = 0
then

F = Ft © M © N
and the functions of N vanish at every point of «(A); while the functions of M
are orthogonal, over «(A), to Oi and thus orthogonal to e, that is their average over
Q(ß) is zero. The functions of Vi are constant over «(A).

The point of this decomposition is that the true value of the integral of any
surface harmonic of degree m is zero, except when m = 0. Now Vi does not depend
on the particular invariant set «(A) under consideration so that an integration
formula which assigns equal weights to points in the same invariant set is accurate
for the whole of F if it is accurate for V\. This statement is trivial when m = 0
for then V = Vi. From now on we shall distinguish different values of m by writing
F(m) for F and V¿m) for V1.

The dimension of Fi<m) is the number of times the identical representation ap-
pears in {A}m . Let this be d\m), for m = 0, 1, 2, • • ■ . Then an integration formula
accurate to the pth degree may be found using just

Cv = J! d¿m)

invariant sets. In fact almost any Cp sets will do, by the following
Theorem. The set of points RX,R2, ■ • ■ , Rhön the sphere is said to be a p-adequate

h-tuple if there exists a pth degree integration formula, invariant under G, which uses
only w(R}); j = 1, ■ ■ ■ , h. Then the set of C-„-tuples which are not p-adequate has
measure zero iwith respect to the natural Cv-fold product measure).
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Proof. Let a basis of linearly independent functions of

Up= © V¿m); m = 0, 1, ••• ,p

be fiid, <t>) ; i = 1, • • • , Cp . Then the C„-tuple (/2y) ; j = 1, • • • , Cp is certainly
p-adequate if the Cp X Cp matrix whose ii, j)th element is the sum of the values of
fiid, <j>) at the points of «(Äy) is non-singular. Now Fi(m) contains only functions
that are constant over any «(A), so that the determinant that must not vanish is
simply

detA = WURM-
The proof is by induction : we assume that Ri, ■ ■ ■ , Rh have been chosen, where

1 ^ h < Cp , so that the first h columns of A are linearly independent and show
that almost any choice of Rk+i will do. Let ßi (i — 1, • • • , Cp) be constants, not all
zero, such that

2 ßifiiRi) =0; j = 1, A.

If Ä is any point on the sphere such that the column /.(Ä) is linearly dependent
on the first h columns f-iR¡), j = 1, • • • , h, then

Z ßHR) = 0.

Now this finite sum of surface harmonics is not identically zero because the /,( • )
are the linearly independent functions of Up. Hence the set on which it vanishes
has measure zero. Thus for almost any Rk+i the first (A + 1) columns of A are
linearly independent. It follows by induction that det. A is non-zero p.p.

3. Calculation of Cp. Before this theorem can be put to work the numbers
Cp must be calculated.

The decomposition of {A}OT is a straightforward matter involving the characters
of the {Dx} and of {A}m itself: see for example Heine [4, page 119]. Consider a ro-
tation of the sphere through an angle \f/ about any axis: with this as axis of co-
ordinates the tesseral harmonics

e"*Pro*(cos 6) ; s = 0, ±1, • • • , ±m

are eigenfunctions of the rotation, with eigenvalues e   . So the character of {A}m is

E uj, _ sin (m 4- h)te     =
sin \\p

Hence

q\ , Cm) =ly sin (m + \)\\,k
g k=i        sin tyk

where the fcth group element is a rotation through an angle \¡/k. The results are
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quite simple because
5(m) = diim) 1 (2m 4- 1)

is periodic in m, with period \g.
An ingenious alternative for (1) is obtained by Sobolev [12]: let qi, q2, #3 be

the orders of the subgroups of G which give rise respectively to the vertices, faces
and edges of the regular solid. Then he finds, for 0 S m ^ \g — 1,

d.(m) = 0, 2m + 1 S g Z 1/9
= 1,       2m + 1 > g 2Z Vi)

where summation extends only to those qt which are not factors of m. Extension to
larger values of m follows of course from the periodicity of 5(m)

Table 1
Data on Groups

S4
Cf5

?!

3
4
5

is

3
3
3

2a

2
2
2

12
24
60

No. of
elements

«4

4

2*-/3

4

-2x/3

S4

6

x/2 ±2x/3

15

«5

20

2t/3

12

2x/5

12

4x/5

Tetrahedral Group 0,4,
m:       0    12    3   4   5
¿i(m). 10   0    110

di(m+6) = d/mJ 4- 1.

m:
d¿m):

m = 0, 1, •

m = 15, 16.

Octahedral Group S4
0    12    3    4   5   6   7 9    10    11

010   0   0    10    10    11
di(»+i2, _ diw + l

Icosahedral Group et6
-, 14:       diim) = 1       for m = 0, 6, 10, 12= 1

= 0
, 29:   dr' = 0

otherwise
for m = 17, 19, 23, 29

= 1       otherwise
^m+30)   =   d («)   +   l
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The \¡/k, qi and di m for all three groups appear in Table 1. The Cp may be
found simply by counting the dim\ However even this exertion may be avoided by
the following observation.
Let

(2) Cv = - (p + 1)2 + e(p); p = 0,1,2, •••.

Then e(p) = 0 when (p + 1) is a multiple of %g and ï<e(p)<f otherwise.
This statement, once proved, determines the integer Cp exactly. Direct calculation,

using Table 1, shows that the statement is true when 0 á p I 5? - 1. We show
that it is valid without restriction on p by proving that e(p) is periodic, with period
to.

e(p) se Cp - i (p + l)2 = ¿ 5(ra).

It is convenient to define C_i = 0, so that e( —1) = 0 and

tip + |9) - eip) = P+J: V"" (p =  -1, 0, 1, 2, • • • ).

Now this is independent of p, because 5(m) has period igy so

«(p + io) - «(p) = 'z V"'
m=0

1/2^-1
= £ *(m) - to

m=0

= 0
by inspection of Table 1. Hence e(p) is periodic, with period \g.

4. Choice of Invariant Sets. In Figure 1 the spherical triangle XX'X" matches
a face of the tetrahedron, octahedron or icosahedron. Y is the centroid and Z is
the mid-point of XX . The invariant sets «(A) are in one-one correspondence with
the points of the closure of triangle XYZ together with the interior of triangle
X'YZ. Each has g points, if we exclude the three special sets «(X), «(F) and «(Z)
which together have only ig + 2) points. So by (2) an arbitrary Cp-tuple provides
an invariant integration formula with (p 4- 1) 4- gfe(p) points. It is p-adequate
(almost certainly), i.e. it is accurate for

¿(2m+ 1) = (p+ l)2
m=0

linearly independent functions.
Now compare what happens if the integration formula is based on (p + l)2

arbitrary points, quite unrelated to any rotation group. Take Go to be the (un-
interesting) group with just one element. Section 1 still applies and we have in this
trivial case d/m) = (2m 4- 1) and Cp = (p 4- l)2. So the (p 4- l)2 arbitrary points
form a Cp-tuple of "invariant sets" for Go and the Theorem shows that it is almost
certainly p-adequate. Hence the use of formulas invariant under (non-trivial) ro-
tation groups G does not, by itself, achieve anything.
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x z x'
Fig. 1

For the octahedron and icosahedron, invariant sets corresponding to points on
the boundary of triangle XYZ are self-antipodal and therefore eliminate odd har-
monics automatically, but full use of this property involves restriction to a set of
measure zero. Sobolev [13] augments G by reflection in the origin to obtain a group
G* of order 2g, and considers only sets « (Ä) invariant with respect to G . These
are in one-one correspondence with the points of the closure of triangle XYZ.
Unless R is X, Y or Z, « (Ä) has g or 2gr points according as R is or is not on the
boundary of triangle XYZ. Sobolev considers two series of formulas, of increasing
adequacy, and calculates their efficiency. This depends on the proportion (which
tends to zero) of points lying on the boundary of triangle XYZ. So even these are no
more efficient, asymptotically, than if the points were chosen at random.

Our theory seems to be useful only where it simplifies the proper choice of in-
variant sets to obtain efficient formulas. We saw at the beginning of this section
that the efficiency of an integration formula based on Cp arbitrary invariant sets
could not be expected to exceed

(p+ D'_ (p+ I)2 < 1
3gCp 3[(p + l)2 4- gtip)\ " 3 '

Consider the choice of a formula based on h general invariant sets «(A¿) and
h' special ones, where h and h are fixed integers and 0 ^ h ¿3. The i2¿ vary within
a two-dimensional region and so each general set may be said to have two positional
degrees of freedom. The weights to be assigned to each set are also (as before) at
our disposal so that the formula has altogether

2h 4- (A + h') = 3h + h'

degrees of freedom. We hope that each degree of freedom can be used to bring one
more independent function within the formula's domain of accuracy. We adopt the
Working Hypothesis: An invariant integration formula accurate for spherical poly-
nomials of degree not more than p may be found using just h general invariant sets
and tí special sets, if

(3) Sh + h' = Cp.
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To try and construct the formula seems to be the simplest way of finding out
whether, for a particular value of p, the hypothesis is true. Assuming its validity
for the moment we shall consider the efficiency

3N
of conceivable formulas satisfying (3), where N is the total number of points used.
E —» 1 as p —* =°, for

and so

N = gh + 0(l)

3N = 3gh + Oil) = giCp - tí) + 0(1)
= gCp + Oil)

= ip + l)2 + 0(1).

We saw just now that without the positional degrees of freedom 3N = 3gCp =
3(p + l)2 4- 0(1) so that E -> i

In fact E > 1 for some finite values of p, as we see below.
l)h' = 0:3h = CPa,ndN = gh = $gCp,so3N = (p 4- l)2 + ge(p) ^ (p + l)2

with equality (i.e. E = 1) if and only if e(p) = 0, that is when (p + 1) is a multiple
of \g.

2) h = 1: 3h -\- 1 = Cp and N = gh + g/qi because the smallest special set
will be used, of course. So

3N = giCp - 1) + 3g/qi
= (p +  l)2 + gieip)   -   (1  -3/qi))

3) tí = 2: Similar argument gives

3N = (p + l)2 + 0(e(p) - (2 - 3/31 - 3/?2))

= (p + l)2 4- gieip) - (1-3/ft))

because 52 = 3 for all three groups.
4) A' = 8: 3/t 4- 3 = Cp. The three special sets have together ig + 2) points

and would be better replaced by another general set. So E is strictly less than in
case 1), that is E < 1.

When a(p) =0, Cj, = -(p+l). Since ¡7 is divisible by 3 and Cp is an integer
ip 4- l)2 is divisible by 3. So (p 4- 1) is divisible by 32. But g is not divisible by
32. Hence Cp is a multiple of 3.

So from case 1) every value of p such that (p 4- 1) is a multiple of §¡7 gives a
formula with E = 1. In cases 2) and 3)Ëâ 1 if

e(p) ^ 1 - 3/ax - 0, h I
for Ct4, S4 and ft5 respectively. Now for S4 e(p) g J only when e(p) = 0. So cases
2) and 3) cannot give E ^ 1, for ®4 or S4, because e(p) = 0 implies that Cp is a
multiple of 3. For ß6, e(p) = f when p 4- 1 = ±6 (mod 30) and 0 < e(p) < f
when p 4- 1 = ±10, 15 (mod 30). These give formulas with E 3: 1 only when
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Cp is not a multiple of 3. By the periodicity of e(p)

C**, - Cp = A(P + 1 + 30)2 - A(p + i)2

= p + l (mod 3).

A short calculation shows that cases 2) and 3) give E à 1 for a6 when

p + 1 = ±6, 15 (mod 30)

or

p + 1 = ±10, ±20 (mod 90).

Combining these results with those of case 1) we list finally those values of p
for which the Working Hypothesis (if true) predicts an invariant integration
formula of degree p with E è 1.

p + 1 = 0 (mod 6) E =   1

p + 1 = 15 (mod 30) E >  1

p + 1 = ±10 (mod 90)

p+ 1 = ±20 (mod 90).

In the next section necessary and sufficient conditions are given for a formula
to be accurate up to degree p. In section 6 these are used to construct some low-
degree formulas. It will then be seen that the Working Hypothesis is frequently
valid and that E > 1 does occur.

5. Conditions for a pth-Degree Formula. Let Ai, ■ ■ ■ , A t be arbitrary points
on the unit sphere and let yrs be the arc-length ArAs. Let eei, • • • , at be real weights.
Then £'=1 arfiAr) vanishes for all surface harmonics/( • ) of degree m if and only if

í     t
2~2 X arasPmicos 7«) = 0.
r-l  s=l

This follows from the addition theorem for spherical harmonics

9™ 4-  1 J2.
^-ti P„,(co8 t„) =   22   TmniAr)iTmniAs))*

47T n=*—m

where the 7,,„n( • ) are normalized tesseral harmonics.
Now let Ri, ■ ■ ■ , Rk be any fc-tuple; and define for i,j = 1, • • • , k:

n %     ti j

»8° = E 2ZPmicosArBs); Ar 6   «(£¿)
r=l   s=l

£s € «(Äy).

n¿ = g except when «(ñ¿) is one of the special sets. The k X k matrix

n(m) s [r\$]

is symmetric and non-negative definite (by the addition theorem) and the k in-
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variant sets, with vector of weights a, provide a pth degree formula if and only if

a'n(m)a = 0; m = 1, 2, • • • , p

that is
U(m)a = 0; m = 1, 2,

In fact 2\2 aini 7e 0 is also necessary, but it is impossible to overlook the failure of
this condition in practice, so we shall not mention it again.

Lemma. The rank of II     is at most d\m).
Proof. A non-zero vector of weights may be found for any A-tuple of invariant

sets, where h > di', to eliminate the surface harmonics of degree m. This follows
from Section 1, since d\m) homogeneous equations in (d4 m + 1) unknowns have
always a non-zero solution. Hence, by the argument of the present Section, all
principal minors of n(m) larger than d\m) X dim) vanish. But n<m> is symmetric, so
that its rank is at most d/m>.

In particular when di     = 1
(m)   _ ,/    (m)    (m)\. .   i

X,y     —  €¿eyVlX»¿   TTyy   ;, €¡  —   ±1.

So if dim) g 1 (m = 1, • • • , p) the conditions aH{m)a = 0 for a pth degree formula
become

Z/(m)_ri l^m^pos¿e¿vx¿¿   — u; j (»>) _ i

since values of m for which dim) = 0 impose no constraint. Returning to the defi-
nition we find that tu is a complicated function of the position of Ri. The special
set «(X) will now play the rôle of a pivot, to simplify the form of the constraints.
Define Ro = X, which may or may not be a member of the fc-tuple. We have of
course

i = 1, • • • , k(m)   _ i /    (m)    (m)\ * Í, ,
X¿0      —   «¿eoVVXii   TToo   I d^   =   1

E(m)  _ n 1  = m = P\anno   — u; , <m> _ >.

and so

This is sufficient provided irool) vanishes only when d/m> does. It can be shown
that, for the tetrahedron iroó"> = 0 implies dxm) = 0. We omit a proof because one
may be obtained by the methods which are applied below to the other two groups.

For the octahedron and icosahedron, Too0 vanishes for all odd m because «(X)
is self-antipodal. So if there are odd harmonics to be eliminated they must be treated
separately. If m is even and dim} ^ 1 then irffi could vanish only by accident:
we shall show that this never happens.

Group S4 : The distance between two vertices of the octahedron is either 0,
x/2 or t, and

(2r)TÍÍ" = 6X2(1 + 2P2r(0)); r = 0, 1, 2,
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The inequality :

(sin0)1/2-|P„(cos0)| < 0Y V1/2

given in Szegö [14, page 163], shows that | PTC(0) | < | when n ^ 3. So ir(0lr> 7a 0,
when r ^ 2. But df = 0.

Group 05 : The distance between two vertices of the icosahedron is either
0, a, 7T — a or x and

irgr) = 12 X 2(1 + 5P2r(cos a)) ; r = 0, 1, 2, • • • .

Since di2) = 0, xóo' = 0; so cos2 a = \. The inequality gives | P„( 1/V5) | < i
when n ^ 18. Thus x$r) * 0 when r^9. Since di<2) = cC = d/8> = d/14' = 0,
only the cases 2r = 6, 10, 12, 16 remain.

Now the coefficients of a Legendre polynomial, when multiplied by a suitable
power of 2, are integers. So, for r ^ 2, 5P2r( 1/V5) can be an integer only if the
coefficient of the leading term of P2r( • ) contains a power of 5. If it contains a single
factor of 5, then the next coefficient must not contain a power of 5. The leading-
terms of Pniß) are:

1-3-5- •■• j2n - 1) / „ _ njn - 1)    „_2 \
1-2-3- ••• n        V       2(2n - 1) ß j

and the first coefficient has no power of 5 for n = 6, 10, 12. For n = 16 there is a
single factor 5, but this is present also in the second coefficient. So 5P2r(l/\/5)
is not an integer for 2r = 6, 10, 12, 16.

Hence x¿or} * 0 for 2r = 6, 10, 12, 16.

6. Construction of Formulas. We can now find some formulas whose efficiency
is near unity. The tetrahedral group is not considered because every tetrahedral
invariant set can be supplemented by another to form an invariant set of an
octahedral realization (since two mutually antipodal tetrahedra make a cube).
Nor do we look for formulas with more than one general invariant set Qi > 1),
because the calculations become more complex. The results obtained are listed in
Table 2.

6.1 Special Sets Only ih = 0). Obvious at once are formulas based on a single
special set (// = 1). The existence of the others must be proved by calculation
and a first step is to find the distances from a point of «(i20) == «(X) to the points
of «(F) and«(Z).

Group S4 : The distance between a vertex of the octahedron and one of the cube
is <t> or x — 4> where, since d\2) = 0, ttxy = 0 (with obvious notation).
Thus P2(cos <£) = 0, so:

cos  <p = |.

The distance between a vertex of the octahedron and the mid-point of an edge is
\¡/, it j 2 or x — ^ where x¿2i = 0, that is:

2P2(cos i>) + P2(0) = 0,
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SO

2   l 1cos w — i-

Group Of, : The distance between a vertex of the icosahedron and one of the
(4) 0.dodecahedron is a, ß, x — ß or x — a where, since di    = di    = 0, tXy = xi

Table 2
Summary of Formulas

Tetrahedral Group

The four vertices of the tetrahedron, that is the special set «(X), provide a
second-degree formula. The group is not exploited any further for the reason given
at the beginning of Section 6.

Octahedral Group

\\

(\ N

12

14
18
20

24
26

30

50

E

0.89

0.89

0.90

0.96

ax

40

16

9216

aY

9

9

27

15309

<ly.

2
•16

32

16384

1

21

14641

fi

(0.866, 0.423, 0.267)

(0.819, 0.517, 0.251)

(0.906, 0.302, 0.302)

Pri-
ority

K S

K S
K S

K

Icosahedral Group

11

14

12
20
150

■A2
42
50

112

72

1.00

1.04

1.04

25
25

625

125

27

27

243

32
-32

512

143 see Section 6.42

F S
F

F S
S

p : degree of spherical polynomial for which formula is exact.
Cv : number of degrees of freedom of formula.
N: number of points.
E: efficiency (listed only once for each value of p).
ax ,aY ,az , a: weights assigned to points of «(X), «(F), «(Z), «(A) respectively.
R: Cartesian co-ordinates of generator of «(A).
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Hence :

P2(cos a) + P2(cos ß) = P4(cos a) + P4(cos ß) = 0,

so

cos2 a, cos2 ß = tV(5 ± 2\/5).

The distance between a vertex of the icosahedron and the mid-point of an edge
is 7, 5, x/2, x — 5 or x — 7 where jS = rxz = 0, that is:

P2(cos 7) + P2(cos 5) + P2(0) = P4(cos 7) + P4(cos 5)  + P4(0) = 0,

so

cos 7,       cos 5 =tö(5 ± V5).

The three designs for each group that use just two special sets may now be
found. So may the designs using three special sets. The calculation is given only for
the 11 th degree icosahedral design.

We demand:
("0     l (m)     i     „       im) r, /*     1 rvaxirxx + aYirYX + azirzx =0; m = 6, 10.

It is true in any case for m = 2, 4, 8. Consider the expansion, when m is even, of

(cos 8)'" in Legendre polynomials P„(cos 8) : the constant term is — —— . It follows

that we require for m even and ^ 10 :

ax 22   ¿2  icos 8rs)m + aY 22   ¿2  (cos 8r,)m + az 22   ¿2  icos 8rs)m
u(X)   u(X) u(X)   üi(K) to(X)   u(Z)

= -—î— (122-ax + 12.20aK + 12.30az)m + 1

where the angles involved have just been found.
Putting m = 6, 10 we obtain

etx/52 - ay/33 - az/26 = 0

72ax/54 - 17a y/35 - az/24 = 0

and so

ax.aY.az = o .o .¿.

6.2 Octahedral Group: h = 1. The simplest formula is one with a single, general
invariant set but no special sets. The conditions are

«■S0 = 0; 1 ^ m ^ 7
For any m > 0, xíó"' vanishes somewhere on the sphere because, regarded as a
function of A¿, it is a surface harmonic of degree m > 0 so that its integral over
the sphere vanishes. Two may or may not vanish together, but there is certainly
no reason to expect a simultaneous zero of more than two. So with g = 24 points
we can hope for a 7th degree formula.

Let ±mi , ±M2, ±M3 be the cosines of the distances from a point of the required
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invariant set to the octahedral points. Let v, = ßj ij = 1, 2, 3). Then

«■&' = 0; m = 2, 4, 6
implies

S"'-STTÎ; n = 1'2'3
by the expansion of ju " in Legendre polynomials. Hence the v¡ are the roots of

105k3 - 105k2 + 21k - 1 = 0

which are, nearly, 0.750, 0.179, 0.071. Since these squares of the direction cosines
are real, lie between 0 and 1, and sum to unity, the set exists. In fact there are two
mutually antipodal sets. Either gives a 7th degree design.

Two more formulas based on the octahedral group are found. The first is 8th
degree with 30 points (A=1;A=1).

ootÍS" + axft' =0; m = 2, 4, 6, 8.
With notation as before and Sn = 22)=i "f1, then <S4, <S3 and S2 can be expressed as
linear functions of the ratio of weights a/a0. Since Si = 1, the cubic whose roots are
the vj has just two unknown coefficients and <S4, S3, S2 have an alternative expres-
sion in terms of these. When the unwanted solution Ri = X is rejected the equations
can be solved and the cubic is

441k3 - 441k2 + 105k -5 = 0

with roots 0.670, 0.267, 0.063 approximately, and a0:a = 16:21. Again there are two
equivalent, mutually antipodal formulas.

The case (Ä = 1; h =2) could give a 9th degree formula with (at least) 38
points. We do not investigate this because a 9th degree formula with fewer points
has already been found, based on the icosahedral group.

The case (A = 1; h = 3) is more valuable so we solve it. The only novelty is
that an odd harmonic must be eliminated. This is done by confining R¿ to the bound-
ary of triangle XYZ (see Figure 1, Section 3). The "even" conditions

aoxóo0 + aixóT' + a2iro2] + axi-ï0 =0; m = 4, 6, 8, 10

give, after elimination of the weights, a linear equation in Sb, S.¡, Su, S2. There are
now two possibilities: if Ri is on XZ it is distance x/2 from X" and one root of the
cubic is zero. This leads only to R¡ = X or Ri = Z, both of which are unacceptable.
So R¡ must be tried on XY or YZ, implying that the roots have the form v, v, 1-2k.
The linear equation in the S„ is now a quintic in v but after rejection of the solutions
corresponding to 72¿ = X, R¿ = Z and Ri = Y (twice) only

k = 1/11

remains. The weights ao'.aiia2:a are as 2  -3 :3 -7:2  :11 .

6.3. Icosahedral Group: h = 1. An 11th degree formula with one general set
alone (/i  = 0) is expected. The conditions are

x<o' =0; 1 £ m ¿ 11.
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Let ±My ij = 1| • • • , 6) now be the cosines of the distances from a point of the
required invariant set to the vertices of the icosahedron. Let Ky = m (j = 1, • • • , 6).
Then

x&° = 0; m = 2,4,6,8,10
implies

6 r.

Sn S S "" = 2n~+~\ ' n=1>2> 3, 4, 5,

by the expansion of ßn in Legendre polynomials. S& can be found from the remain-
ing condition x.-J ' = 0 which is satisfied vacuously, since d/14' = 0.

The sixth degree polynomial whose roots are the Ky is now determined, but when
it is solved only two of the roots are found to be real. Hence there is no 11th degree
formula based on a single invariant set of the icosahedral group.

This instance of failure of the Working Hypothesis of Section 4 is interesting
because of its success in all the other cases investigated (those listed in Table 2).

Finally, we solve the case (h = l;h =l)to obtain a 14th degree formula with
72 points. As predicted in Section 3, it is super-efficient (i? > 1). The solution is
determined by

aoxóo*' + ax¿0° = 0; m = 2, 4, ■ • • , 14,

and the calculation, although lengthy, is similar to those already described. After
rejecting Ri = X we find

a0:a = 125:143

and

2556125k6 - 5112250k5 + 3578575k4 - 1043900k3 + 115115k2 - 3562k + 9 = 0.

This was solved on EDSAC II, with this result:

ci = 0.83186       K3 = 0.41189        k6 = 0.044731

k2 = 0.56075        k4 = 0.14800       k6 = 0.0027682

We have still to show that these six numbers are the squares of the cosines of the
distances from some point R on the sphere to the vertices of the icosahedron. If
so then we have a 14th degree formula based on «(X) and «(ß). Now cos-1(i>i1/2)
is just greater than 24° while cos-1 (k21/2) is just greater than 41°. Thus

—1   /     l/2\     i -1   /     1/2n    .      n-ocos    (ki   ) + cos    (k2   ) > 65 .

The distance between two neighboring vertices of the icosahedron is cos""1 (5_1/2)
which is just less then 64° (Section 5). So there is a point R such that K4and k2
are the squares of the cosines of the distances from it to two vertices of the
icosahedron. Now the sixth degree polynomial satisfied by the Ky (/ = 1, • • • , 6)
was constructed so that the sums Sn — /w=i Ky" satisfied four vacuous conditions,
that is conditions satisfied whatever position Ri takes on the sphere. It is shown in
the next Section that these conditions ensure that the remaining p,- ij = 3, • • • ,6)
are the squares of the cosines of the distances of the point R (determined by v\
and v%) to the remaining vertices of the icosahedron.
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So we have found a super-efficient formula accurate for spherical polynomials of
degree not more than fourteen. In Section 6.42 we show how to find the co-ordinates
of the required points with respect to rectangular axes with origin at the center
of the sphere. This will provide also a useful numerical check on the calculation.
The co-ordinates are listed in Table 2.

The cases (h = l;tí = 2) and ih = 1; tí = 3) for the icosahedral group have
not been investigated.

6.4. Icosahedral Co-ordinates. The icosahedral co-ordinates of a point on the
sphere are defined to be the squares of the cosines of the distances from that
point to the twelve vertices of the icosahedron. Since these vertices are antipodal
in pairs a point has just six icosahedral co-ordinates. They are of course the v¡ of
the previous Section.

6.41. Existence of a point with given icosahedral co-ordinates.
Remark: Consider a sextic equation with roots Ky (j = 1, • • • , 6) which are real

and lie in [0, 1]. Suppose the equation has been constructed as if its roots were the
icosahedral co-ordinates of a point on the sphere, that is

rff =0;       m = 2, 4, 8, 14.
Suppose further that there is a point on the sphere with icosahedral co-ordinates

Ky" ij = 1, • • • , 6) two of which coincide with two of the roots. Say \>i" = v\ and
"2" = v2 ; then the other icosahedral co-ordinates Ky" ij = 3, • • • , 6) coincide with
the other roots v¡  (j = 3, • ■ • , 6).

Outline of Proof: The values m = 2, 4, 8, 14 are of course those even ones for
which d\m) = 0. The four conditions x¿o"' = 0 are linear in the sums

6

Sn = £*/"; n = 1,2, ••• ,7

of the powers of the roots of the sextic equation. The conditions are satisfied also
by the same functions

Sn" =- ¿ Ky""; n = 1, 2, ■ • • , 7

of the Ky", because the Ky" are icosahedral co-ordinates. For the same reason
0 g vj" ^ 1 ; and 0 S v¡ ^ 1 by hypothesis.

We have therefore to show that the solution of the equations

»íf =0; m = 2, 4, 8, 14
in unknowns Ky (j = 1, • • • , 6) is unique when ki and k2 are given and 0 á v¡ g 1
ij = 1, • ■ • ,6). The quartic whose roots are the Ky (j = 3, • • • , 6) is constructed as
follows :

6 6

x¿2) = Xió" = 0   determines    22 "i   and    22 "/
1=3 y=3

and thus two of the coefficients. By use of the relations between the elementary
symmetric functions and the sums of the powers of the roots the remaining con-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



OPTIMAL  NUMBEICAL   INTEGRATION'   ON   A   SPHERE 377

dirions x¿o' = x¿¿4> = 0 yield one linear and one quadratic equation in the remaining
coefficients a and ß of the quartic. We find at last that a satisfies a quadratic the
sum of whose roots is

a =: 1(436 - 14/ + 40<7 + 20/2 - 80fg - lOf)
where 0^/=kx + k2<2 and 0 ^ g = viv2 < 1. By inspection a > 30 so that at
least one root of the quadratic for a exceeds 15. But 0 á Ky ̂  1 so

I a I — K4K5K6 + K3K5K6 + K3K4K6 + K3K4K6 ̂ 4.

Hence a is determined by the quadratic. When a is known ß can be found from the
linear equation. So all the coefficients of the quartic whose roots are the
vi (j = 3, • • ■ , 6) are determined. In other words, the hypotheses of the Remark
ensure that the v¡ ij = 1, • • • ,6) are the v" ij = 1, • • • , 6) in some order.

This result shows that a formal solution obtained by the methods of Section
6.3 will correspond to a real set of points on the sphere if and only if the roots of
the sextic are real and lie in [0, 1] and two of the roots are icosahedral co-ordinates
of some point. This is what actually happened in the case (/i = h =1) which we
investigated.

6.42. Transformation to Cartesian co-ordinates. The transformation from
icosahedral co-ordinates to Cartesian co-ordinates with the center of the sphere
as origin is achieved as follows. The 15 diameters of the sphere through mid-points
of opposite edges of the icosahedron form 5 sets of 3 mutually perpendicular axes.
Choose one set iOA, OB, OC) as axes of co-ordinates (Figure 2).
Since A, B, C are (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively then the icosahedral

Fig, 2

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



378 A.   D.   MCLAREN

vertices Xx, X2,  • • • , X6 are respectively

(0, X, p);        (0, -X, p);        (-p,0, X);        (p, 0, X);        (-X, p, 0);        (X, p, 0)
where

V ~w~^ and p" V[ + v~-
10

were computed in Section 6.1.
Now consider an arbitrary point R = (a, ß, y) in triangle XiFC. It is clear on

inspection of Figure 2 that the vertices Xi, X2, • • • , X6 are ranked in order of
increasing distance from R. So if v\, k2 , • • • , k6 are the icosahedral co-ordinates of
R in decreasing order of magnitude and p,y = v¡    ij = 1, • • • , 6) then

\ß + p7 = Mi ; —Pol + X7 = ßS ; —\a + pß = ßb\
(4)

— \ß + p7 = p-2 ; pa + \y = ß4 ; \a + pß = pej

So the Cartesian co-ordinates (a, ß, y) of R can be found in terms of the icosahedral
co-ordinates.

We have almost immediately the following necessary and sufficient condition
for arbitrary positive numbers v¡ (J = 1, • • • , 6) in decreasing order of magnitude
to be the icosahedral co-ordinates of some point on the sphere.

tv¡ = 2
y-i

Mi    +  M2    _  P3    —  P-4    _  Pb    +  M6    _   P   _   1/,     , /r\
—r~r—7-/-7-7-7 ~ \  — 2*.1 ~r V°/
M3   + M4 Ms   — Ms Mi   — M2 A

where as usual m/ — ivi )    for j = 1, • • • , 6.
This is an alternative criterion to the Remark of Section 6.41. It differs from

the Remark in that in practice it cannot be applied exactly, for the roots of a sextic
equation can normally be found only approximately. So a very slight deviation of
any of the three quotients from |(1 + Vo) would pass undetected.

The criterion is useful mainly as a numerical check on the calculations. When
it is applied to the roots Ky of the sextic equation of Section 5.3, 22 v'i = 2 by con-
struction and the three quotients are

1.61803,       1.6180,       1.6180

where the last digit in each case is doubtful. In fact |(1 + V5) = 1.618035 • • • .
We saw above how to find the Cartesian co-ordinates of a point R with given

icosahedral co-ordinates. All the points of «(A), and of the antipodal set, have the
same icosahedral co-ordinates. If in Figure 2 we had taken R to be in triangle
X\YZ instead of in triangle XiFC we would have obtained the antipodal set which
would be equivalent.

We show finally how to shorten the calculation of the Cartesian co-ordinates
of all the points of «(A). The four images of R obtained by rotation about the
axis through Xi are found by permuting suitably the My (/ = 2, • • • , 6) of (4). No
more calculation is needed, by the following classical property of the regular solids
which is described by Ledermann [6].
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Five cubes are inscribed in the configuration of the icosahedron-dodecahedron.
The rotations of the icosahedral group ß5 induce just the even permutations of
these cubes. The number of rotations of Ob that keep a particular cube fixed is thus
the number of even permutations of four objects, namely 12. So 12 of the 24 sym-
metry rotations of this cube are also symmetry rotations of the icosahedron. In
fact they are the 12 symmetry rotations of the tetrahedron formed by any four
nonadjacent vertices of the cube.

Now consider a general invariant set «(ß) of the icosahedral rotations. The 60
points of «(72) must comprise just five general invariant sets of the tetrahedral
rotations. So from any five points of «(A) that are mutually inaccessible by these
tetrahedral rotations it is possible to generate all the points of «(A), simply by
applying the tetrahedral substitutions.

The choice of iOA, OB, OC) as axes of co-ordinates (Figure 2) amounts to
choosing one of the five cubes. The three directions are perpendicular to its faces.
None of the rotations of the icosahedron about the axis through X4 leave this cube
invariant; so R and its four images whose Cartesian co-ordinates have been found
by solving equations like (4) are mutually inaccessible by the tetrahedral rotations
of this cube. The tetrahedral substitutions appropriate to rectangular axes iOA,
OB, OC) are generated by

(a, ß, y) -» iß, y, a)

and

ia, ß, y) —> (a, -ß, -y).

When R and its four images have been identified it is thus simple to write down
the Cartesian co-ordinates of all 60 points of «(ß).

The octahedral substitutions that generate «(ß) from ß when the formula is
based on the octahedral group are the 3X3 pseudo-permutation matrices with
determinant +1.

The tetrahedral substitutions that generate «(ß) from five suitable representa-
tives when the formula is based on the icosahedral group are those 3 X 3 pseudo-
permutation matrices with determinant +1 in which the number of negative
elements is either two or none.

Five suitable representatives of «(ß) for the 14th degree formula are

(-0.15111, 0.15524, 0.97626)

(0.31584, 0.25705, 0.91334)

(0.34631, 0.66628, 0.66042)

(-0.10181, 0.81739, 0.56702)

(-0.40923, 0.50155, 0.76223).

7. Review. Some of the formulas have been obtained before by three other
writers working independently. They are identified by initial in the last column of
Table 2. Finden [2] considers, besides the regular solids, axially symmetric formulas
of Cartesian-product type and stereographic images of Simpson's Rule in the plane.
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Sobolev [13] employs group characters to investigate some invariant networks of
points which reduce in special cases to certain of our formulas. D. G. Kendall [5]
has shown how to deduce others from formulas for the solid sphere of the type given
by Ditkin [1] and by Hammer and Stroud [3]. Kendall's arguments work in both
directions so that formulas for the surface may be combined to obtain formulas
for the solid sphere—now the more natural sequence of reasoning.

The formulas listed in Table 2 of the present paper have been constructed to
obtain maximum efficiency subject to invariance under the appropriate group of
rotations. This invariance seems to be at worst a harmless requirement so that for
practical purposes the problem of spherical integration is solved provided the num-
ber JV of sample points is within the range of Table 2. The existence of larger for-
mulas, of arbitrarily high degree p, that are efficient (2? near unity) has not been
proved although D. G. Kendall [5] has obtained E = § for any odd value of p.
This is achieved by means of axially symmetric Cartesian-product formulas which
are derived from work of Peirce [9] on the spherical shell. The same idea was applied
earlier by Ditkin [1] to the complete solid sphere.

In conclusion two alternative methods of obtaining indefinitely large formulas
are suggested.

7.1. The Extremal Property. With the notation of Section 5, let 22 ar = / dS =

4x. The conditions that an integration formula, not necessarily invariant, must
satisfy for pth degree accuracy are

t    t
22 X) arasPm(cos 7rs) =0; m = 1, • • • , p.
r=l   s=l

Because these expressions are non-negative definite this is equivalent to
t    t p

22 ¿2 aras 22 XmPm(cos 7rs) = 16x2X0
r=l   s=l m=0

where the Xm(m = 1, • • • , p) are any positive constants. If
V

Lpiß)   =   22 ^mPmiß)
m—(S

then to find a pth degree formula we have simply to arrange that
t    t

22 z2 arasLPicos yrs)
r=l  s=l

attains its minimum 16x2X0 with respect both to points Ar and to weights ar. The
number of points must be large enough for the required integration formula to
exist. \ip + 1) points may be sufficient while (almost any) (p + l)2 points are
certainly sufficient.

The polynomial L„iß) is highly arbitrary and it may be convenient to use the
fact that the coefficients in the expansion of mp in Legendre polynomials Pmiß)
are alternately positive and zero. This follows from the recurrence relation

(2m + l)ßPmiß) = (m + 1)P„+1(m) + ihP—i(m)

and induction on p.
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If the points AT are accepted only in antipodal pairs, to eliminate the odd har-
monics, then the condition for a pth degree integration formula (where p is even)
is

t    t ir 2
22 ¿2 arasicos yrs)P =       ,   .
r=l í=í P  +   1

with 22 ar = 4x.
Instead we may modify the criterion of efficiency, which emphasizes the lower

harmonics to the extent of ignoring altogether those whose degree exceeds p. This
can be done by choosing a convenient function L«o(m) with a convergent expansion
in Legendre polynomials that has positive coefficients, and minimizing

t    i
22 X) arasL„o(cos y„)-
r=l  s=l

In a sequel to this paper the problem of spherical integration is restated in prob-
abilistic terms and shown to lead to an extremal problem of just this form.

7.2. The Reproducing Icosahedron. In the main part of the paper (Sections
2-6) only integration formulas based on the regular solids were considered and
they were judged by the efficiency E. In the preceding Section the notion of efficiency
was modified to provide a less artificial criterion and the regular solids played no
part at all. In this final Section the idea of efficiency is discarded altogether and
appeal is made only to symmetry.

The theory of Section 2, on which we have relied so heavily has two serious
limitations. One is its inability to treat more than one regular solid (with its dual)
at a time, for it is fundamental that one fixed realization of the group G is considered.
Finden [2] considers three dodecahedra in a certain mutual orientation but this
formula seems to be beyond the scope of Section 2. The second limitation is the
lack of further finite subgroups of the rotation group which might provide other
regular solids. This apparent shortcoming is a valuable safeguard when icosahedra
are reproduced over the sphere in the following manner.

We saw in Section 6.42 that just five cubes could be inscribed in the icosahedral
configuration and that they were permuted evenly by its symmetry rotations. The
vertices of the cubes coincide in pairs at the centroids of the faces of the icosahedron.
The converse property associates with any cube just two icosahedra. They are
permuted by the rotations of the cube.

We say two icosahedra are first neighbors if there is a cube inscribed in them both
in the way just described. Clearly every icosahedron has exactly five first neighbors.
We say (inductively) that two icosahedra are jth neighbors ij = 2, 3, • • •) if there
is an icosahedron that is a first neighbor of one and a ij — l)th neighbor of the
other. Two icosahedra are simply neighbors if for some j = 0, 1, 2, • • • they are
jth neighbors. Thus "neighborhood" is an equivalence relation.

Let Jo denote the twelve vertices of a certain icosahedron. Let Ij ij = 1,2, ■ • • )
denote the set of vertices of all the jth neighbors of I0. These sets /,- may not be
disjoint. We propose equally-weighted integration formulas based on sets of points
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of the following form
M

KM =   U 7y .
y=o

Consider the set of points on the sphere

XM  =   Ü 7y .
y=o

It consists of the vertices of all icosahedra that are neighbors of To • Let L be any
such icosahedron. Because neighborhood is an equivalence relation Kx is equally
well described as consisting of the vertices of all neighbors of I0 . So the group Gx
of rotations of the sphere under which the set Kx is invariant includes those rota-
tions that transform /0 into any one of its neighbors. The ordinary symmetry rota-
tions of To are properly included so 0«, is too large to be one of the three finite groups
associated with regular solids. (?„ is obviously not cyclic nor dihedral. Hence Gx
is not finite, by Weyl [15]. Hence Kx is not a finite set. It is, of course, countable.

By suitable choice of M the integration formula based on the set KM has an
arbitrarily large number of points. The justification for using the ascending se-
quence of sets KM is simply the striking symmetry of their union Kx , as expressed
by invariance under the group 0«, • A high degree of symmetry in the integration
formula is a reasonable aim because the integral itself is an invariant of the whole
rotation group. The question of whether the points of KM are asymptotically dis-
tributed uniformly over the sphere, and associated matters of convergence are
postponed to another occasion.

These formulas have two practical advantages. The sets KM are nested so that
no work is wasted when a crude approximation to the integral is later refined.
This applies if the sample points are found explicitly. In fact the second property
removes the need for that if a computer is available. All that is necessary is a routine
to locate the vertices of the five first neighbors of a given icosahedron. Sequential
generation of the sample points should then be possible, followed at once by evalua-
tion there of the integrand.
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