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Optimal object association in the Dempster-Shafer

framework
Thierry Denoeux, Nicole El Zoghby, Véronique Cherfaoui, Antoine Jouglet

Abstract—Object association is a crucial step in target tracking
and data fusion applications. This task can be formalized as the
search for a relation between two sets (e.g., a sets of tracks
and a set of observations), in such a way that each object in
one set is matched with at most one object in the other set. In
this paper, this problem is tackled using the formalism of belief
functions. Evidence about the possible association of each object
pair, usually obtained by comparing the values of some attributes,
is modeled by a Dempster-Shafer mass function defined in the
frame of all possible relations. These mass functions are combined
using Dempster’s rule, and the relation with maximal plausibility
is found by solving an integer linear programming problem. This
problem is shown to be equivalent to a linear assignment problem,
which can be solved in polynomial time using, e.g., the Hungarian
algorithm. This method is demonstrated using simulated and real
data. The three-dimensional extension of this problem (with three
object sets) is also formalized, and is shown to be NP-hard.

Index Terms—Belief functions; Evidence theory; data fusion;
assignment problem.

I. INTRODUCTION

Object association refers to the task of matching two finite

sets of objects E = {e1, . . . , en} and F = {f1, . . . , fp},

with possibly different cardinalities. This problem arises, for

instance, in multiple target tracking applications [1], [2], in

which we need to estimate the status of mobile objects (such

as targets or storm cells [3]) that are detected at different times

by a single sensor. Data association then consists in deciding

which observation should be used to update each track. In

this case, the two sets of objects are a set of tracks and a set

of observations. Another class of problems in which object

association is needed is sensor fusion (see, e.g., [4]). In that

case, objects are typically perceived by two sensors and we

need to perform observation-to-observation or track-to-track

association, depending on the level of sensor outputs. The

study of the multi-dimensional case, in which we have more

than two sets of objects (perceived, e.g., by several sensors),

is deferred until the end of this paper.

Usually, object association is performed under the assump-

tion that each object in one set should be matched with at

most one object in the other set. An object in E may have

no counterpart in F because it has disappeared between two

successive time frames, or because it has not been perceived

by one of the sensors. Mathematically, we are thus searching

for a relation R ⊆ E × F such that, for all i, j and k:

(ei, fj) ∈ R and (ei, fk) ∈ R⇒ j = k (1a)

The authors are with Heudiasyc (UMR 7253), Université de Technologie
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and

(ei, fk) ∈ R and (ej , fk) ∈ R⇒ i = j. (1b)

Any such relation may be described by a matrix R of size

(n, p) such that Rij = 1 if (ei, fj) ∈ R and Rij = 0 otherwise

(by abuse of notation but without any risk of confusion, we

use the same notation for the relation and its corresponding

matrix).

In this paper, this problem will be investigated in the

framework of the theory of belief functions, also referred to

as Dempster-Shafer theory or Evidence theory [5]. We assume

that we receive evidence about the possible association of

each object pair (ei, fj). Mathematically, such evidence can be

represented by a mass function mij on the frame Θij = {0, 1},

such that mij({1}) = αij is the probability of knowing that

Rij = 1, mij({0}) = βij is the probability of knowing that

Rij = 0, and mij({0, 1}) = 1 − αij − βij is the probability

of knowing nothing at all about Rij .

Based on such evidence, we would like to choose the “best”

relation R∗, among the set R of all relations verifying (1a)-

(1b). The problem of selecting a relation in R based on

pairwise mass functions mij has been addressed by several

authors (see, e.g., [6]–[11]). However, only heuristic solutions

have been provided until now. The most elaborate solution so

far, proposed by Mercier et al. [10], consists in first combining

the mass functions {mij}
p
j=1

for each i, and then finding the

relation R with maximum pignistic probability [12]. However,

this algorithm involves enumerating all the elements of R,

which quickly becomes intractable when n and p are not very

small. Additionally, the method lacks a fundamental symmetry

property, as it may give different results if the sets E and F

are interchanged.

In this paper, we show that the above problem, formalized

as the search for the most plausible relation R∗ in R, can

be transformed into an equivalent linear assignment problem

and solved exactly in polynomial time. The method is studied

experimentally using both simulated and real multi-sensor data

from an intelligent vehicle application. Finally, we show that

the three-dimensional extension of this problem, with three

object sets E, F and G, is NP-hard.

The rest of this paper is organized as follows. After recalling

the necessary background on the theory of belief functions

in Section II, the object assignment problem is formalized

and solved in Section III. The sensor fusion application is

then addressed in Section IV, where experimental results

with simulated and real data are also reported. Finally, the

three-dimensional version of the object association problem is

studied in Section V and Section VI concludes the paper.
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II. BACKGROUND ON BELIEF FUNCTIONS

The theory of belief functions has two main components:

equivalent representations of a body of evidence (in the form

of mass, belief and plausibility functions), and a combination

rule for combining independent items of evidence. These

two components are reviewed in Subsection II-A and II-B,

respectively.

A. Representation of evidence

The theory of belief functions is a framework for reasoning

under uncertainty based on the modeling of evidence [5]. More

precisely, let us assume that we are interested in the value of

some variable θ taking values in a finite domain Θ, called

the frame of discernment. Uncertain evidence about θ may be

represented by a (normalized) mass function m on Θ, defined

as a function from the powerset of Θ, denoted as 2Θ, to the

interval [0, 1], such that m(∅) = 0 and
∑

A⊆Θ

m(A) = 1. (2)

Each number m(A) is interpreted as a degree of belief attached

to the proposition θ ∈ A and to no more specific proposition.

As argued by Shafer [13], the meaning of such degrees of

belief can be better understood by assuming that we have

compared our evidence to a canonical chance set-up. The set-

up proposed by Shafer consists of an encoded message and

a set of codes Ω = {ω1, . . . , ωn}, exactly one of which is

selected at random. We know the list of codes as well as

the chance pi of each code ωi being selected. Decoding the

encoded message using code ωi produces a message of the

form “θ ∈ Ai” for some Ai ⊆ Θ. Then

m(A) =
∑

{1≤i≤n:Ai=A}

pi (3)

is the chance that the original message was “θ ∈ A”. Stated

differently, it is the probability of knowing that θ ∈ A. In

particular, m(Θ) is, in this setting, the probability that the

original message was vacuous, i.e., the probability of knowing

nothing.

The above setting thus consists of a set Ω, a probability

measure P on Ω and a multi-valued mapping Γ : Ω → 2Θ\{∅}
such that Ai = Γ(ωi) for each ωi ∈ Ω. This is the framework

initially considered by Dempster in [14]. The triple (Ω,P,Γ)
formally defines a finite random set [15]. Each piece of

evidence can thus be represented by a random set, which

induces a mass function.

To each normalized mass function m, we may associate

belief and plausibility functions from 2Θ to [0, 1] defined as

follows:

Bel(A) = P ({ω ∈ Ω|Γ(ω) ⊆ A}) =
∑

B⊆A

m(B) (4a)

Pl(A) = P ({ω ∈ Ω|Γ(ω) ∩A 6= ∅}) =
∑

B∩A 6=∅

m(B),

(4b)

for all A ⊆ Θ. These two functions are linked by the

relation Pl(A) = 1 − Bel(A), for all A ⊆ Θ. Each quantity

Bel(A) may be interpreted as the degree to which the evidence

supports A, while Pl(A) can be interpreted as the degree to

which the evidence is not contradictory to A. The following

inequalities always hold: Bel(A) ≤ Pl(A), for all A ⊆ Θ.

The function pl : Θ → [0, 1] such that pl(θ) = Pl({θ}) for

all θ ∈ Θ is called the contour function associated to m.

B. Combination of evidence

A key idea in Dempster-Shafer theory is that beliefs are

elaborated by aggregating different items of evidence. The

basic mechanism for evidence combination is Dempster’s rule

of combination, which can be naturally derived using the

random code metaphor as follows. Let m1 and m2 be two mass

functions induced by triples (Ω1,P1,Γ1) and (Ω2,P2,Γ2)
interpreted under the random code framework as before. Let

us further assume that the codes are selected independently.

For any two codes ω1 ∈ Ω1 and ω2 ∈ Ω2, the probability

that they both are selected is then P1({ω1})P2({ω2}), in

which case we can conclude that θ ∈ Γ1(ω1) ∩ Γ2(ω2).
If Γ1(ω1) ∩ Γ2(ω2) = ∅, we know that the pair of codes

(ω1, ω2) could not have been selected: consequently, the joint

probability distribution on Ω1 × Ω2 must be conditioned,

eliminating such pairs [13]. This line of reasoning leads to

the following combination rule, referred to as Dempster’s rule

[5]:

(m1 ⊕m2)(A) =
1

1− κ

∑

B∩C=A

m1(B)m2(C) (5)

for all A ⊆ Θ, A 6= ∅ and (m1 ⊕m2)(∅) = 0, where

κ =
∑

B∩C=∅

m1(B)m2(C) (6)

is the degree of conflict between m1 and m2. If κ = 1, there

is a logical contradiction between the two pieces of evidence

and they cannot be combined. Dempster’s rule is commutative,

associative, and it admits as neutral element the vacuous mass

function defined as m(Θ) = 1.

Dempster’s rule can be easily expressed in terms of contour

functions: if pl1 and pl2 are the contour functions of two mass

functions m1 and m2, then the contour function of m1 ⊕m2

is, using the same symbol ⊕ as used for mass functions and

contour functions:

(pl1 ⊕ pl2)(θ) =
pl1(θ)pl2(θ)

1− κ
, (7)

for all θ ∈ Θ.

III. OBJECT ASSOCIATION

In this section, we first show that the problem of finding the

most plausible matching between two sets of objects, based

on independent evidence pertaining to each pair of objects,

can be formalized as a binary linear programming problem

(Subsection III-A). We then show in Subsection III-B that this

problem is equivalent to a linear assignment problem and we

give the complexity of this problem.
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A. Problem formalization

As explained in Section I, we assume that the available

evidence about the association between the sets E and F

consists in np mass functions mij , 1 ≤ i ≤ n, 1 ≤ j ≤ p. Each

mij encodes a piece of evidence about a binary variable Rij

that equals 1 if ei and fj correspond to the same entity, and 0

otherwise. We note that the absence of information about the

association between ei and fj may be encoded by the vacuous

mass function such that mij({0, 1}) = 1. Typically, mij is

based on a measure of similarity between some attributes

describing the objects. Concrete examples will be discussed

in Section IV.

The key idea behind our approach is to express all the

available evidence in the frame of discernment R defined as

the set of all possible matchings between E and F verifying

(1a)-(1b). Assuming independence between the np items of

evidence, the np mass functions can then be combined using

Dempster’s rule (5), and the plausibility of any relation R ∈ R
may be simply calculated using (7).

Let Rij denote the set of relations that match objects ei and

fj :

Rij = {R ∈ R|Rij = 1}. (8)

Each mass function mij on Θij = {0, 1} may be expressed

in R by transferring the mass mij({1}) = αij to Rij ,

mij({0}) = βij to Rij and mij({0, 1}) = 1 − αij − βij
to R, where Rij denotes the complement of Rij . Let plij
denote the corresponding contour function. It has the following

expression:

plij(R) =

{
1− βij if R ∈ Rij ,

1− αij otherwise,
(9)

for all R ∈ R, which can be expressed more concisely as

follows:

plij(R) = (1− βij)
Rij (1− αij)

1−Rij . (10)

Let m denote the mass function on R obtained by combin-

ing the np mass using Dempster’s rule. From (7), its contour

function pl is proportional to the product of the np mass

functions plij :

pl(R) ∝
∏

i,j

(1− βij)
Rij (1− αij)

1−Rij , (11)

and its logarithm is

ln pl(R) =
∑

i,j

[Rij ln(1− βij)+

(1−Rij) ln(1− αij)] + C, (12)

where C is a constant and it is assumed that βij < 1 and

αij < 1 for all i and j. We note that the situation where

βij = 1 or αij = 1 (which corresponds to the case where

we have absolute certainty that objects ei and fj should, or

should not be matched, respectively) can be easily accounted

for by setting βij = 1 − ǫ or αij = 1 − ǫ for some arbitrary

small ǫ > 0.

The most plausible relation R∗ can thus be found by solving

the following linear optimization problem:

max
R


∑

i,j

wijRij




under the constraints (1a)-(1b), with

wij = ln
1− βij

1− αij
. (13)

Before studying this problem in the next section, we may

observe that prior knowledge about the true object association

can be easily incorporated in this framework. For instance,

assume that relations that match more objects are considered

a priori as more plausible or, on the contrary, less plausible.

Such prior knowledge can be represented by a belief function

with contour function pl0 such that:

pl0(R) ∝ exp


λ

∑

i,j

Rij


 , (14)

where λ is a scalar parameter. A positive (respectively, nega-

tive) value of λ favors relations R with higher (respectively,

lower) cardinality. Combining this contour function with the

pairwise contour functions plij using Dempster’s rule and

taking the logarithm, we get

ln pl(R) ∝
∑

i,j

[Rij ln(1− βij)+

(1−Rij) ln(1− αij) + λRij ] + C. (15)

The obtained maximization problem would then have the same

form as above, with wij now defined as

wij = λ+ ln
1− βij

1− αij
. (16)

B. Problem resolution and complexity analysis

The problem previously formalized and denoted as P here-

after, can be stated as the following integer linear program:

max




n∑

i=1

p∑

j=1

wijRij


 (17)

subject to

p∑

j=1

Rij ≤ 1 ∀i ∈ {1, . . . , n} (18a)

n∑

i=1

Rij ≤ 1 ∀j ∈ {1, . . . , p} (18b)

Rij ∈ {0, 1} ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , p}, (18c)

where constraints (18a) and (18b) are related to Equations (1a)

and (1b), respectively.

Without loss of generality, it is considered that n ≥ p (if it

is not the case, E and F are interchanged). To be solved, P

is reduced to the following problem P ′:

max

n∑

i=1

n∑

j=1

w′
ijR

′
ij (19)
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subject to

n∑

j=1

R′
ij = 1 ∀i ∈ {1, . . . , n} (20a)

n∑

i=1

R′
ij = 1 ∀j ∈ {1, . . . , n} (20b)

R′
ij ∈ {0, 1} ∀i, j ∈ {1, . . . , n}, (20c)

where ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , p}, w′
ij = max(0, wij)

and ∀i ∈ {1, . . . , n}, ∀j ∈ {p+ 1, . . . , n}, w′
ij = 0.

Proposition 1. Let R be an optimal solution of problem

P and let R′ be an optimal solution of problem P ′, then∑n
i=1

∑n
j=1

w′
ijR

′
ij =

∑n
i=1

∑p
j=1

wijRij .

Proof: Suppose that

n∑

i=1

n∑

j=1

w′
ijR

′
ij <

n∑

i=1

p∑

j=1

wijRij .

A new solution R′′ for problem P ′ is extracted from solution

R in the following way. First, R′′ is initialized with R′′
ij =

0, ∀(i, j) ∈ {1, . . . , n}2.

For each i ∈ {1, . . . , n} such that
∑p

j=1
Rij = 1, R′′

ij

is set to Rij for all j ∈ {1, . . . , p}. At this point of the

building of solution R′′, note that
∑n

i=1

∑n
j=1

w′
ijR

′′
ij =∑n

i=1

∑p
j=1

wijRij . Note also that constraints (20a) and

(20b) do not necessarily hold since an object of E has not

to be necessarily associated with an object of F in R′′.

In this case, there is exactly the same number of indices

i ∈ {1, . . . , n} such that
∑n

j=1
R′′

ij = 0 as the number of

indices j ∈ {1, . . . , n} such that
∑n

i=1
R′′

ij = 0. Then, each

i ∈ {1, . . . , n} such that
∑n

j=1
R′′

ij = 0 is considered itera-

tively. We search for the smallest indice j with
∑n

k=1
R′′

kj = 0
(knowing that this indice necessarily exists) and R′′

ij is set to

1. If j > p, then w′
ij = 0 by definition of problem P ′. If j ≤ p,

then necessarily w′
ij = 0. Indeed, w′

ij > 0 ⇒ wij > 0 and

by setting Rij to 1 (noticing that this new matching can be

added to R since
∑p

k=1
Rik =

∑n
k=1

Rkj = 0), we obtain a

new solution for problem P with a higher cost, contradicting

that R was optimal. Thus, at the end of each iteration∑n
i=1

∑p
j=1

w′
ijR

′′
ij =

∑n
i=1

∑p
j=1

wijRij still holds. Finally,

R′′ is also a solution of P ′ with
∑n

i=1

∑p
j=1

w′
ijR

′′
ij =∑n

i=1

∑p
j=1

wijRij >
∑n

i=1

∑p
j=1

w′
ijR

′
ij contradicting the

fact that R′ is an optimal solution of P ′.

Now, suppose that
∑n

i=1

∑n
j=1

w′
ijR

′
ij >∑n

i=1

∑p
j=1

wijRij . A new solution R′′ for problem P

is extracted from solution R′ in the following way. For

all i ∈ {1, . . . , n} and for all j ∈ {1, . . . , p} R′′
ij is set

to R′
ij if wij ≥ 0 and to 0 otherwise. Note that R′′ is a

solution of P since if constraints (20a) and (20b) hold,

then constraints (18a) and (18b) also hold. Since, by

definition, wij < 0 ⇒ w′
ij = 0 then

∑n
i=1

∑p
j=1

wijR
′′
ij =∑n

i=1

∑n
j=1

w′
ijR

′
ij >

∑n
i=1

∑p
j=1

wijRij , contradicting the

fact that R is an optimal solution of P .

Now, it is clear that an optimal solution for problem P can

be obtained by solving problem P ′. Indeed, from any optimal

solution R′ of problem P ′, we can build an optimal solution

R for problem P with the same cost value (and then optimal)

with Rij = R′
ij if wij > 0 and Rij = 0 otherwise. Note that

building problem P ′ runs in O(n2) time and that building an

optimal solution R of problem P from an optimal solution of

problem P ′ runs in O(np). It now remains to know how to

efficiently solve problem P ′.

Fortunately, in the operations research literature, problem

P ′ is known as the assignment problem and can be solved

in O(n3) times with the Hungarian Method [16] or in

O(n5/2 log(nmaxi,j wij)) with the algorithm of Orlin and

Ahuja [17]. Note that, most of the time, algorithms to solve

the assignment problem are described as minimum cost as-

signment with integer costs. However, the maximization cost

problem P ′ can be transformed into a minimization cost

problem by taking maxk,ℓ wkℓ − wij instead of the wij and

costs can be transformed into integers by multiplying them

by a suitably large number. In practice, since the obtained

problem is a special case of the minimum cost flow problem

[18], it is possible to use any of the algorithms solving it. In

particular, it belongs to a class of integer linear problems for

which the constraint matrices are unimodular and can be then

solved by a linear programming solver (relaxing Constraints 8

from R′
ij ∈ {0, 1} to R′

ij ∈ [0, 1]) knowing that it always has

integer solutions.

Example 1. To illustrate the way the object association

problem can be transformed into a linear assignment problem,

let us consider the following example. Assume that n = 3,

p = 4, and the αijs and βijs have the following values:

(αij) =




0.21 0.19 0.12 0.02
0.07 0.18 0.35 0.53
0.52 0.27 0.49 0.40




(βij) =




0.45 0.28 0.74 0.47
0.34 0.42 0.31 0.39
0.42 0.30 0.30 0.21


 ,

where the rows and the columns correspond to objects ei and

fj , respectively. The corresponding weight matrix W = (wij)
is:

W =




−0.3621 −0.1178 −1.2192 −0.6147
−0.3429 −0.3463 0.0597 0.2607
0.1892 −0.0420 0.3167 0.2751


 .

Setting the negative weights to 0 and transforming W into a

square matrix, we get

W ′ =




0 0 0 0
0 0 0.0597 0.2607

0.1892 0 0.3167 0.2751
0 0 0 0


 .

Transforming W ′ to maxk,ℓ w
′
kℓ − W ′ in order to define a

minimization problem, we have:

W ′′ =




0.3167 0.3167 0.3167 0.3167
0.3167 0.3167 0.2570 0.0559
0.1274 0.3167 0 0.0416
0.3167 0.3167 0.3167 0.3167


 .



IEEE TRANSACTIONS ON CYBERNETICS 5

The linear assignment problem with cost matrix W ′′ admits

the following solution:

R′ =




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


 .

Deleting the last line and setting Rij = R′
ij if wij ≥ 0 and

Rij = 0 otherwise, we get the following final solution:

R =




0 0 0 0
0 0 0 1
0 0 1 0


 ,

meaning that objet e1 is not associated, e2 is associated with

f4 and e3 is associated with f3.

Finally, we can remark that, while the Hungarian algorithm

is historically the most popular method to solve the assignment

problem, some refinements and generalizations can be found

in the literature (see, for example, [2] and [19]), in particular to

avoid the transformation to square matrices. These algorithms

can be used instead of the proposed method.

IV. SENSOR FUSION APPLICATION

In this section, we first show how pairwise mass functions

can be computed from object attributes in object recognition

applications (Subsection IV-A). We then present experimental

results with simulated and real data in Subsections IV-B and

IV-C, respectively.

A. Computation of mass functions

Typically, objects are described by a set of attributes. The

values of these attributes for each object pair (ei, fj) can be

considered as pieces of evidence regarding the association

variable Rij . This evidence may be represented as a mass

function mij in different ways, depending on the nature of the

attributes. As an illustration, we will consider three attributes

commonly used in object recognition applications: position,

velocity and class.

Position: Assume that E and F are sets of objects perceived

by two sensors, and each sensor also provides an estimated

position for each object. Let dij denote the distance between

the estimated positions of ei and fj , computed using some dis-

tance measure (like the Euclidean distance or the Mahalanobis

distance if each sensor also returns a covariance matrix). How

can a mass function mij be deduced from dij?

Here, it is clear that a single object cannot have two distinct

positions and, conversely, two objects cannot occupy exactly

the same position. Consequently, a small value of dij supports

the hypothesis Rij = 1, while a large value of dij supports the

hypothesis Rij = 0. Depending on sensor reliability, a fraction

of the unit mass should also be assigned to Θij = {0, 1}. This

line of reasoning justifies a mass function m
p
ij of the form:

m
p
ij({1}) = ρϕ(dij) (21a)

m
p
ij({0}) = ρ (1− ϕ(dij)) (21b)

m
p
ij(Θij) = 1− ρ, (21c)

where ρ ∈ [0, 1] is a degree of confidence in the sensor

information and ϕ is a decreasing function taking values in

[0, 1]. For instance, the following form may be chosen for ϕ:

ϕ(d) = exp(−γd), (22)

where γ is a positive coefficient.

Velocity: Let us now assume that each sensor returns a

velocity vector for each object. Let d′ij denote the Euclidean

distance between the velocity vectors of objects ei and fj .

Again, d′ij is a piece of evidence about Rij . However, this

piece of evidence does not have the same interpretation as the

previous one: here, a large value of d′ij supports the hypothesis

Rij = 0, whereas a small value of d′ij does not support

specifically Rij = 1 or Rij = 0, as two distinct objects may

have similar velocities. Consequently, the following form of

the mass function mv
ij induce by d′ij seems appropriate:

mv
ij({0}) = ρ′

(
1− ψ(d′ij)

)
(23a)

mv
ij(Θij) = 1− ρ′

(
1− ψ(d′ij)

)
, (23b)

where, as before, ρ′ ∈ [0, 1] is a degree of confidence in

the sensor information and ψ is a decreasing function taking

values in [0, 1]. This function can be chosen to have the same

form as (22), possibly with a different coefficient γ′.

Class: In many applications, objects are categorized in

distinct classes such as pedestrian, car, motorcycle, etc. Let Ω
be the set of possible classes, and let mi and mj denote mass

functions representing evidence about the class membership of

objects ei and fj . Such mass functions may be provided, e.g.,

by evidential pattern classifiers such as described in [20], [21].

Ristic and Smets [22] have considered the object association

problem using such class information. However, they made the

assumption that equality of class implies equality of objects,

a questionable assumption when the number of classes is not

much greater than the number of objects. The computation of

a mass function m′′
ij on the frame Θij from the mass functions

mi and mj on Ω can be performed rigorously as follows.

Let Sij denote the event that objects ei and fj belong to

the same class, and let Ωij = {Sij , Sij}, where Sij is the

negation of Sij . As shown in [23], the belief and plausibility

of Sij induced by mi and mj have the following expressions:

Bel({Sij}) =
∑

ω∈Ω

mi({ω})mj({ω}) = ηij , (24a)

Pl({Sij}) = 1−
∑

A∩B=∅

mi(A)mj(B) = 1− κij , (24b)

where κij is the degree of conflict (6) between mi and mj .

The corresponding mass function µij on Ωij is

µij({Sij}) = ηij (25a)

µij({Sij}) = κij (25b)

µij(Ωij) = 1− ηij − κij . (25c)

Now, it is clear that two objects from different classes cannot

be identical, whereas two objects from the same class can be

identical or not, which can be formally expressed as follows:

Sij ⇒ (Rij = 0) (26a)

Sij ⇒ (Rij = 0) or (Rij = 1). (26b)



IEEE TRANSACTIONS ON CYBERNETICS 6

Consequently, a mass function mc
ij on Θij can be computed

from µij by transferring the mass κij to {0} and the remaining

mass 1− κij to Θij . We thus get:

mc
ij({0}) = κij (27a)

mc
ij(Θij) = 1− κij . (27b)

For each object pair (ei, fj), a mass function mij on Θij

representing all the available evidence about Rij can finally

be obtained by combining m
p
ij , mv

ij and mc
ij using Dempster’s

rule:

mij = m
p
ij ⊕mv

ij ⊕mc
ij . (28)

B. Simulation experiment

The above approach to object association was tested using

simulated data. Each instance of the assignment problem was

randomly generated as follows.

a) Experimental settings: We assumed that each of two

agents perceives n objects, of which 80% are real objects and

20% are spurious. The position xi of each real object i was

generated from a uniform distribution in the square [0, 5]2

while its velocity vi was generated with direction uniformly

distributed in [0, 2π) and with norm uniformly distributed

in [0, 0.5]. Objects were assumed to belong to one of two

equiprobable classes and to be described by a feature yi
normally distributed with standard deviation σ = 2 and means

−1 in class one and +1 in class two.

For each real object i, each of the two agents was assumed

to get noisy versions of xi, vi and yi defined as follows:

x̂i = xi + ǫi, v̂i = vi + ǫ
′
i, ŷi = yi + ǫ′′i , (29)

where ǫi and ǫ
′
i are Gaussian noises with mean (0, 0) and

variance 0.04I (I being the identity matrix) and ǫ′′i is a

Gaussian noise with mean 0 and standard deviation 0.2.

Mass functions m
p
ij and mv

ij were computed as described in

Subsection IV-A with the Euclidean distance. Each agent was

also assumed to compute a mass function mi about the class of

object i from its noisy feature ŷi using the following formula:

mi({1}) =
f1(ŷi)

f1(ŷi) + f2(ŷi)
, mi({2}) = 1−mi({1}),

(30)

where fk is the density distribution of yi in class k.

The spurious objects were generated as real ones, but

independently for the two agents. An example of such an

association problem with n = 40 objects (including 32 “real”

ones) is represented in Figure 1.

b) Performance assessment: The number n of objects

was varied between 5 and 80. For each value of n, 30 associ-

ation problems were generated and solved using the algorithm

described in Section III, with ρ = ρ′ = 0.7, γ = γ′ = 0.2
and λ = 0. The quality of the association was measured by

two criteria: precision and recall defined, respectively, as the

fraction of matched pairs that are correct, and the fraction of

true object pairs that were matched. Figure 2 shows the mean

precision and recall as functions of n in three cases: using

the position information only, using position and velocity,

and using all three sources of information (position, velocity

and class). As expected, the method makes effective use of
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Fig. 1. Example of an association problem with 40 objects perceived by 2
sensors (a and b). Objects 33 to 40 (marked by a x) are spurious. The size
of the circles is proportional to the mass mi({1}) of class 1.

additional information encoded in the pairwise mass functions,

and the performances degrade gracefully with n. Figure 3

shows the mean computing times as a function of n; the

association algorithm was programmed in Matlab and run on

a Macbook Pro personal computer.

c) Influence of ρ and γ: We studied the influence of

parameters ρ (= ρ′) and γ (= γ′) on the quality of the

association. For each pair (ρ, γ), we computed the F-measure,

defined as the harmonic mean between precision and recall:

F = 2
precision · recall

precision + recall
. (31)

Parameter λ was set to 0. All three sources of information

(position, velocity and class) were used. For each pair (ρ, γ),
the values of the F-measure were averaged over 30 association

problems with n = 20 objects. The results are reported in

Table I. As we can see, the choice of parameters ρ and γ does

influence the results, and the best performances were obtained

for ρ = 0.7 and γ = 0.2. These results show that parameters ρ



IEEE TRANSACTIONS ON CYBERNETICS 7

0 10 20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

n

tim
e 

(s
)

Fig. 3. Mean running time (in seconds) plus or minus one standard deviation,
as a function of n.

and γ do have an influence on the quality of the association. If

a dataset with matched objects is available, the performances

of the system can be significantly enhanced by learning these

parameters from the data.

TABLE I
F-MEASURE FOR DIFFERENT VALUES OF ρ AND γ (AVERAGES OVER 30

ASSOCIATION PROBLEMS WITH n = 20 OBJECTS, TAKING INTO ACCOUNT

POSITION, VELOCITY AND CLASS).

γ
0.1 0.2 0.3 0.4 0.5

0.5 0.641 0.559 0.490 0.425 0.326
0.6 0.836 0.842 0.744 0.666 0.587

ρ 0.7 0.795 0.858 0.847 0.797 0.722
0.8 0.770 0.829 0.846 0.838 0.798
0.9 0.750 0.804 0.826 0.827 0.821

d) Influence of λ: We also studied the influence of λ

in (14) and (16). We recall that this parameter makes it

possible to introduce prior knowledge about the number of

associations, with positive (respectively, negative) favoring

larger (respectively, smaller) numbers of matched object pairs.

Consequently, increasing λ can be expected to increase recall

(as more true object pairs will be matched) but to decrease

precision (as more incorrect pairs will also be matched). An

experiment was carried out with n = 40 objects generated

as explained above, with λ ranging between −1 and +3. For

each value of λ, 200 association problems were generated.
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Fig. 2. Mean precision (a) and recall (b) as a function of n.
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plausibility) and Mercier’s algorithm, as a function of n.

The results reported in Figure 4 confirm that different values

λ indeed result in different trade-offs between precision and

recall. However, a higher precision can only be obtained at

the cost of a very low recall for that problem. By assigning

different weights to precision and recall, it would be possible

to find an optimal value of λ. In most applications, however, it

might be sufficient to set λ = 0 as a reasonable default value.

e) Comparison with Mercier’s method: Finally, our al-

gorithm was compared to Mercier’s method [10]. However,

the comparison could only be carried for small values of n

(n ≤ 7) because the computational complexity of this method

restricts its applications to very small numbers of objects. On

this problem, both methods yield identical solutions in almost

all cases. However, as shown in Figure 5, the running time

of Mercier’s method grows exponentially with n, whereas the

time complexity of our method is polynomial.

C. Experiment with real data

Our approach was applied as part of an advanced driver

assistance application [24]. A car was equipped with two

sensors: a vision-based Mobileye system and a four-layer

Ibeo Alasca-XT Laser scanner. Each sensor has an associated

information processing system allowing it to track and classify

objects. It is thus a track-to-track association problem [2] but

we do not use the history of the tracks (or their identity) to

match them.

For each sensor, position-based mass functions m
p
ij were

computed using (21) and (22) with ρ = 0.9, γ = 0.1 and dij
defined as the Mahalanobis distance:

dij =

√
(xi − xj)′ (Pi + Pj)

−1
(xi − xj), (32)

where xi denotes the estimated position of the center of object

i and Pi is the estimated covariance matrix of the estimate.

Each sensor also predicts the class of objects, expressed in

different frames. The laser classifies the objects as pedestrian

or non pedestrian using the algorithm developed by Fayad et

al. [24]; this algorithm computes a mass function over the two

classes. The Mobileye system has a finer frame of discernment

with five classes: pedestrian, car, truck, motorbike, bicycle. As

the latter sensor provides a predicted class, but no confidence

in the prediction, a mass 0.9 was assigned to the predicted

class, and 0.1 to the whole frame of discernment. For each

pair of mass functions mi and mj , a mass function mc
ij was

computed based on their degree of conflict using (27), and it

was combined with m
p
ij using Dempster’s rule. We note that

velocity information was not used in this application.

The considered dataset contains 58 frames (association

problems). The Mobileye sensor detected between 1 and 3

objects (average: 2) while the laser scanner wass less selective

and detected between 2 and 23 objects (average: 8.5). An

example of an association problem is shown in Figures 6a

and 6b, with corresponding result shown in Figure 6c. The

average precision and recall for our algorithm (with λ = 0)

were 0.75 and 0.90, respectively (with standard deviations 0.33

and 0.30). Mercier’s algorithm achieved identical results, with

considerably longer computing time (119 seconds on average,

against 0.23 seconds for our method).

V. THREE-DIMENSIONAL EXTENSION

As an extension of the problem addressed in this paper, we

consider in this section the situation where we have more than

two sets of objects. To keep the notation simple, and without

loss of generality, we will consider the three-dimensional

association problem, in which we have three sets of objects.

The problem will first be formalized in Subsection V-A and

its complexity will then be studied in Subsection V-B.

A. Formalization

Let E = {e1, . . . , en}, F = {f1, . . . , fp} and G =
{g1, . . . , gq} denote the three sets of objects perceived, e.g.,

by three sensors. We are now searching for three relations

R ⊂ E × F , S ⊂ F × G and T ⊂ E × G representing,

respectively, the correspondence between objects in sets E and
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F , F and G, E and G. Each of these three relations has to

verify properties (1a)-(1b). Let R, S and T denote the sets of

relations R, S and T verifying these properties. Additionally,

relations R, S and T cannot be determined independently:

for instance, if (ei, fj) ∈ R and (fj , gk) ∈ S, then we

must have (ei, gk) ∈ T . More generally, for any three objects

(e, f, g) ∈ E×F ×G, if any two pairs of objects are related,

then the third pair has to be related too. Formally, the three

following implications must hold for any triplet (i, j, k):

(ei, fj) ∈ R and (fj , gk) ∈ S ⇒ (ei, gk) ∈ T (33a)

(ei, fj) ∈ R and (ei, gk) ∈ T ⇒ (fj , gk) ∈ S (33b)

(fj , gk) ∈ S and (ei, gk) ∈ T ⇒ (ei, fj) ∈ R. (33c)

The set of solutions to the association problem is thus the set

U of triplets (R,S, T ) ∈ R× S × T verifying (33).

As before, we shall assume that we receive pieces of

evidence regarding the association of any pair of objects in

E × F , F × G and E × G, and these pieces evidence are

encoded as pairwise mass functions mij·, m·jk and mi·k, for

all i, j and k. As before, these mass functions need to be

expressed in the common frame of discernment U before being

combined by Dempster’s rule.

Let Uij· denote the set of triplets (R,S, T ) ∈ U such that

Rij = 1, and let mij·({1}) = αij· and mij·({0}) = βij·. To

express mij· in U , we need to transfer the mass αij· to Uij·,

βij· to Uij· and 1−αij·−βij· to U . The corresponding contour

function in U is then defined as follows:

plij·(R,S, T ) =

{
1− βij· if Rij = 1,

1− αij· otherwise,
(34)

for all (R,S, T ) ∈ U , which can be expressed more concisely

(a)

(b)

(c)

Fig. 6. Example of an association problem: the laser sensor detects three
objects (a) while the Mobileye sensor detects four objects, including a spurious
one (b). The association algorithm correctly matches the three real objects (c).
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as follows:

plij·(R,S, T ) = (1− βij·)
Rij (1− αij·)

1−Rij . (35)

Similarly, with obvious notations, mass functions m·jk and

mi·k induce the following contour functions in U :

pl·jk(R,S, T ) = (1− β·jk)
Sjk(1− α·jk)

1−Sjk (36a)

pli·k(R,S, T ) = (1− βi·k)
Tik(1− αi·k)

1−Tik . (36b)

Combining the np+pq+nq pieces of evidence by Dempster’s

rule yields the following contour function:

pl(R,S, T ) ∝
∏

i,j,k

[(1− βij·)
Rij

(1− αij·)
1−Rij (1− β·jk)

Sjk(1− α·jk)
1−Sjk

(1− βi·k)
Tik(1− αi·k)

1−Tik ]. (37)

Taking the logarithm and, as before, assuming the αs and βs

to be strictly smaller than one, we get:

ln pl(R,S, T ) =
∑

i,j

wij·Rij+

∑

j,k

w·jkSjk +
∑

i,k

wi·kTik + C, (38)

where C is a constant and

wij· = ln
1− βij·

1− αij·
, w·jk = ln

1− β·jk

1− α·jk
, (39a)

wi·k = ln
1− βi·k

1− αi·k
. (39b)

The most plausible association (R∗, S∗, T ∗) can thus be found

by solving the following binary linear programming problem:

max
R,S,T


∑

i,j

wij·Rij +
∑

j,k

w·jkSjk +
∑

i,k

wi·kTik


 (40)

subject to

p∑

j=1

Rij ≤ 1,

n∑

i=1

Rij ≤ 1 ∀(i, j) (41a)

p∑

j=1

Sjk ≤ 1,

q∑

k=1

Sjk ≤ 1 ∀(j, k) (41b)

q∑

k=1

Tik ≤ 1,

n∑

i=1

Tik ≤ 1 ∀(i, k) (41c)

Rij + Sjk ≤ Tik + 1 ∀(i, j, k) (41d)

Rij + Tik ≤ Sjk + 1 ∀(i, j, k) (41e)

Sjk + Tik ≤ Rij + 1 ∀(i, j, k) (41f)

Rij ∈ {0, 1}, Sjk ∈ {0, 1}, Tik ∈ {0, 1} ∀(i, j, k) (41g)

where constraints (41d)-(41f) ensure property (33).

In the special case where all mass functions in one of the

three sets {mij·}, {m·jk} or {mi·k} are vacuous, the problem

becomes very simple. For instance, assume that all mass

functions mi·k are vacuous. This is the case when, for instance,

E, F and G are sets of objects perceived by a single sensor

at successive time frames, and we only compute the similarity

between objects perceived at two consecutive times. We then

have wi·k = 0 for all i and k and the objective function (40)

becomes a function of R and S only. As constraints (41d)-(41f)

can always be satisfied for some relation T , given R and S,

the objective function can be maximized with respect to R

and S separately. In that special case, the three-dimensional

problem can thus be solved by solving two two-dimensional

problems of the form studied in Section III. In the general

case, however, the three-dimensional problem is much harder

than the two-dimensional one, as will be shown in the next

subsection.

B. Complexity analysis

Just as the search for the most plausible relation R∗ in R is

very close to the linear assignment problem, finding the most

plausible association (R∗, S∗, T ∗) ∈ U is close to a problem

known as the axial 3-dimensional assignment problem (3DAP)

[25], which is NP-Hard in the general case. However, several

special classes of the problem are polynomially solvable [26].

3DAP can be seen as a special case of our three-dimensional

extension with |E| = |F | = |G| = n and where R∗, S∗,T ∗

are all bijective relations. It is equivalent to finding exactly n

triplets (e, f, g) ∈ E×F×G which are pairwise disjoints. The

major difference with our problem is that, when searching for

the most plausible association (R∗, S∗, T ∗) ∈ U , we can have

R∗
ij = 1 while there is no k such that S∗

jk = 1 and T ∗
ik = 1.

Keep in mind that even if we manage to find a transforma-

tion of the most plausible 3-dimensional association problem

to 3DAP, it does not mean that we have direct methods to solve

our problem (since 3DAP is NP-Hard), neither does it mean

that our problem is NP-Hard itself. Unfortunately, it turns out

to be the case, as proved in the following proposition.

Proposition 2. The most plausible 3-dimensional association

problem is NP-Hard.

Proof: To show this result, we use a reduction of the pair-

wise consistent 3-dimensional matching problem [27] denoted

as PC3DM in the following and which is NP-complete:

INSTANCE: Set M ⊆ W × X × Y , where W , X and Y

are disjoint sets having the same number r of elements. M

is pairwise consistent, i.e., for all elements a, b, c, whenever

there exists elements w, x and y such that (a, b, y) ∈ M ,

(a, x, c) ∈M , and (w, b, c) ∈M , then (a, b, c) ∈M .

QUESTION: Does M contain a subset M ′ ⊆ M such that

|M ′| = r and no two elements of M ′ agree in any coordinate

?

With a given instance of PC3DM , we associate an instance

of the 3-dimensional association problem in the following

way. We take E = W , F = X and G = Y and then

n = p = q = r. For all (ei, fj , gk) ∈ M , we set

wij· = wi·k = w·jk = 1, while all other weights are set

to 0. Note that this reduction is polynomial. We consider the

decision version of the 3-dimensional association problem, in

which the question is whether there exists a 3-dimensional

association (R,S, T ) ∈ U such that the value of the objective

function is 3r.

Suppose that there exists a subset M ′ ⊆ M such that

|M ′| = r and no two elements of M ′ agree in any coordinate.
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For each (ei, fj , gk) ∈M ′, we set Rij = Sik = Tjk = 1 while

all other values defining the relations R, S and T are set to

0. By construction, such relations respect constraints (33) and

the value of the objective function is 3r since all the 3r weights

associated with the pairs which are kept in the relations have

value 1.

Now, suppose that there exists a 3-dimensional association

(R,S, T ) ∈ U such that the value of the objective function

is 3r. Therefore, each of the r objects ei ∈ E is associated

with exactly one object fj ∈ F (eiRfj) with wij· = 1 and

exactly one objet gk in G (eiTgk) with wi·k = 1 such that

fjSgk holds and w·jk = 1. For each of the r such associations

ei, fj , gk defined by these relations we have (ei, fj , gk) ∈M .

Indeed, wij· = 1 implies that ∃y ∈ Y = G such that

(ei, fj , y) ∈M , wi·j = 1 implies that ∃x ∈ X = F such that

(ei, x, gk) ∈M , w·jk = 1 implies that ∃w ∈W = E such that

(w, ei, gk) ∈ M , and finally it implies that (ei, fj , gk) ∈ M

since M is pairwise consistent. Thus, there exists a subset

M ′ ⊆ M such that |M ′| = r and no two elements of M ′

agree in any coordinate.

Thus, it is unlikely to solve the 3-dimensional association

problem in polynomial time. As future research, we can adapt

some methods of the literature for 3DAP to solve our problem.

We can then consider branch-and-bound approaches (see, for

example, [28]) or heuristic algorithms (such as described in

[29]) if the problem is too hard to solve from an operational

point of view.

VI. CONCLUSION

Object association is an important problem in a wide range

of applications and a key component of many data fusion

systems. Belief functions have often been considered as a con-

venient formalism for representing and combining information

in multi-sensor applications (see, e.g., [10], [11], [22], [30]).

However, previous attempts to solve the assignment problem

within the Dempster-Shafer framework had led until now to ad

hoc and sometimes very time-consuming methods (see, e.g.,

[6], [8]–[11]).

In this paper, evidence about the possible association of

any two pairs of objects has been modeled by Dempster-

Shafer mass functions defined over the frame of all possible

relevant relations between the two object sets. The plausibility

of any single relation after pooling all available mass functions

can then be computed efficiently and maximized to find the

most plausible relation. This problem has been shown to be

equivalent to a linear assignment problem, which can be solved

in polynomial time using, e.g., the Hungarian algorithm. This

solution is thus both optimal and computationally much more

efficient than previous approaches to this problem in the belief

function framework [10].

As an extension of this work, the three-dimensional as-

sociation problem has also been considered. This problem

occurs, e.g., when fusing reports from three sensors. Although

this problem can be formalized in the same way as the

two-dimensional one, it was shown to be NP-hard, which

makes it unlikely that an optimal solution can be found in

polynomial time. The development of heuristic methods to

find approximate solutions to this problem is left for further

research.
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