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Abstract In telecommunication networks, a common measure is the maximum con-
gestion (i.e., utilization) on edge capacity. As traffic demands are often known with
a degree of uncertainty, network management techniques must take into account traf-
fic variability. The oblivious performance of a routing is a measure of how congested
the network may get, in the worst case, for one of a set of possible traffic demands.

We present two models to compute, in polynomial time, the optimal oblivious
routing: a linear model to deal with demands bounded by box constraints, and
a second-order conic program to deal with ellipsoidal uncertainty, i.e., when a mean-
variance description of the traffic demand is given. A comparison between the optimal
oblivious routing and the well-known OSPF routing technique on a set of real-world
networks shows that, for different levels of uncertainty, optimal oblivious routing has
a substantially better performance than OSPF routing.

Keywords Traffic engineering · Oblivious routing · Linear programming · Second
order cone programming

1 Introduction

Telecommunication networks are an important infrastructure of today’s economy; the
cost of connecting a community through wired or wireless technologies is paid off
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by the benefits offered by rapid data transfer. However, the variety of technologies
available and the complexity of such invasive structure pose difficult problems to
operators, both in the design and management of networks.

We focus on a class of problems where the link capacity is known in advance,
and a set of origin-destination requests of flow, called traffic demand (or simply de-
mand), is given. Then one faces the problem of routing these requests of flow such
that the network capacity is not overloaded. Techniques of traffic engineering allow
for a routing that does not affect the network performance (delay, data loss), thus
guaranteeing a certain quality of service.

A common measure of the network usage is the maximum link congestion for
a given routing, i.e., the maximum percentage of used link capacity. The more con-
gested a network, the more prone to instability it is in the event of a change in the
traffic requests. It is desirable then to devise a routing that gives the minimum con-
gestion for a given demand. As shown in the next section, this amounts to solving
a linear programming (LP) problem.

However, the traffic demand d is seldom known with accuracy, e.g. for difficulties
in measurement or because d varies in time, and a set D of possible demands is
considered. It is useful then to compute the oblivious performance ratio of a routing,
i.e., the maximum ratio, for all d ∈ D, between the congestion of the routing and the
minimum congestion that can be attained for d .

We present two models that obtain, in polynomial time, the optimal oblivious rout-
ing assuming that either the demand has lower and upper bounds, or is described by
mean-covariance information. These uncertainty models are motivated by the pres-
ence in the literature of techniques to estimate d with some accuracy, expressed by
box constraints or mean-variance information (Tebaldi and West 1998; Vardi 1996;
Zhang et al. 2003).

Often, real-world data networks follow the Open, Shortest Path First (OSPF) pol-
icy: routes are chosen as shortest paths between origin and destination, where arc
weights are chosen depending on network parameters such as edge capacity. As arc
weights are the only degree of freedom to play with, routing optimization consists in
finding the value of weights so as to minimize some network performance measure
(Ericsson et al. 2002; Fortz and Thorup 2000; Lin and Wang 1993). Other routing
techniques such as Multi-Protocol Label Switching (MPLS) do not constrain route
length, thus allowing for the implementation of any routing. As shown in (Fortz and
Thorup 2000), this greater flexibility pays off in terms of network performance. The
second contribution of this work is a comparison between the performance of a finely
tuned routing and that of OSPF routing as commonly implemented in today’s net-
works, that shows that the oblivious performance ratio of OSPF routing can be greatly
improved.

In the next section we present the routing problem and some additional notation.
The concept of oblivious routing is introduced in Sect. 3, and the two models are
presented in Sects. 4 and 5. We report some tests on real-world networks in Sect. 6
and give some conclusions in Sect. 7.
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2 Routing and congestion in telecommunication networks

Consider a network topology defined by an undirected graph G = (V ,E) whose
edges e ∈ E are assigned a capacity ce. An edge e may also be denoted by the set
{h, k} of its endnodes. Associated with E is the set of directed arcs A containing all
pairs (h, k) and (k,h) such that {h, k} ∈ E. The neighborhood of node h, i.e., the set
of nodes adjacent to h, is defined as N(h) = {k ∈ V : {h, k} ∈ E}.

An origin-destination pair (o-d pair) is an oriented pair (i, j) of nodes in V re-
questing an amount of flow dij to be sent from i to j . Let D be the set of all o-d pairs.
A traffic demand d = (dij ) is a vector of requests between all (i, j) ∈ D.

The fraction of demand (i, j) flowing on edge {h, k} in the direction h → k is
denoted as f

ij
hk ; for the sake of readability, we denote with fhk the vector (f

ij
hk),

(i, j) ∈ D, and with fe, where e = {h, k} ∈ E, the vector fhk + fkh. Finally, vector f

denotes the vector (f
ij
hk), (i, j) ∈ D, (h, k) ∈ A.

We denote the total flow on edge e as FLOW(e, f, d) = ∑
(i,j)∈D dij (f

ij
hk + f

ij
kh) =

dT (fhk + fkh) = dT fe. A routing of a demand vector d is the set of all f
ij
hk for each

o-d pair (i, j) ∈ D and arc (h, k) ∈ A satisfying flow conservation:

∑

k∈N(h)

(f
ij
hk − f

ij
kh) =

⎧
⎨

⎩

1 if h = i,

−1 if h = j,

0 otherwise
∀h ∈ V, (i, j) ∈ D.

A routing is feasible for a demand vector d if the network capacity can support
it, i.e., FLOW(e, f, d) ≤ ce for all e ∈ E; a demand d is feasible when there exists
a feasible f for d . The congestion of a network is the maximum fraction of capacity
used on the graph edges:

CONG(f, d) = max
e∈E

(FLOW(e, f, d)/ce) .

Let us denote as F the set of all feasible routings. If the demand d is known a pri-
ori, then the routing with the minimum congestion ratio, OPT(d) = minf ∈F CONG

(f, d), is computed by solving the following linear problem:

OPT(d) = min z (1)

s.t. z ≥
∑

(i,j)∈D

(g
ij
hk + g

ij
kh)/ce ∀e = {h, k} ∈ E, (2)

∑

k∈N(h)

(g
ij
hk − g

ij
kh) =

⎧
⎨

⎩

dij if h = i

−dij if h = j

0 otherw.
∀h ∈ V, (i, j) ∈ D, (3)

∑

(i,j)∈D

(g
ij
hk + g

ij
kh) ≤ ce ∀e = {h, k} ∈ E, (4)

g ≥ 0, (5)

where, unlike variables f , variables g represent a flow rather than a fraction of de-
mand. Although constraint (4) is not necessary here due to the minimization of the
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bottleneck variable z, it is used in the following sections. Notice that, in view of
constraint (4), it follows that z ≤ 1.

3 Demand uncertainty and oblivious routing

From now on, we assume that the traffic demand d is not known a priori but can
be any of a set D (non-empty and bounded) of traffic demands. Not surprisingly, the
problem gets more difficult as robust network management is needed. The problem of
routing a set of demands under uncertainty has received much attention recently. Li et
al. (2004) deal with the multicast case, where a demand has one source but multiple
destinations. Lin and Wang (1993) present a Lagrangian Relaxation-based algorithm
for the problem where demands are routed on single paths, while Roughan et al.
(2003) propose a simulation approach to solve both the estimation and the routing
problem.

Given a routing f and a set D of possible traffic demands, the congestion ratio of f

can be defined as the worst-case congestion ratio within D, i.e., maxd∈D CONG(f, d).
However, a realistic measure should be independent from D and take into account
only demands that can be routed. Let us denote H(D) as the set of feasible demands.
Hence the LP problem to compute OPT(d) is feasible for all d ∈ H(D). The oblivious
performance ratio is the worst-case ratio, over all demands in H(D), of CONG(f, d)

to the minimum congestion for d , OPT(d):

OPR(f,D) = max
d∈H(D)

CONG(f, d)

OPT(d)

is a measure of the redundancy of f with respect to the demand uncertainty D. In this
work, we consider two uncertainty representations, i.e., two specific subsets of all
feasible demands, and propose a polynomial-time method for the optimal oblivious
routing problem, which consists in finding, for a given set of o-d pairs, the routing
with the optimal oblivious performance ratio:

OOPR(D) = min
f ∈F

max
d∈H(D)

maxe∈E FLOW(e, f, d)/ce

OPT(d)
. (6)

This problem has been studied previously by Azar et al. (2003) and Applegate
and Cohen (2003). Both works focus on a very general setting: the set D con-
tains all demands admitting feasible routing on G. Azar et al. (2003) present an
LP model with a class of constraints whose cardinality is exponential, and is thus
dealt with as a family of valid inequalities whose separation has polynomial com-
plexity. The authors then describe a cutting plane procedure that finds the oblivious
routing in polynomial time. Applegate and Cohen (2003) propose a polynomial size
LP model where the separation problem of the former work is solved implicitly. As-
suming that D contains all feasible demands implies that, for the worst-case demand
d̄ = argmaxd∈H(D)

CONG(f,d)
OPT(d)

, the capacity of at least one edge is totally used, i.e.,

OPT(d̄) = 1. Thus, the optimal oblivious performance ratio (6) reduces to

min
f ∈F

max
d∈H(D)

max
e∈E

(FLOW(e, f, d)/ce);
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then, by swapping the two max operators and by strong duality, a linear programming
model is obtained.

The assumption OPT(d) = 1 is no longer valid if the set of demands is further
limited, e.g., by box constraints or within a mean-variance region. In fact, suppose
that D is the set of demands admitting a routing in G and such that dij ≤ α

mine∈E ce|D| for
all (i, j) ∈ D, with α < 1. For all demands d ∈ D, there is a routing f such that even
if all demands were routed on edge ē with minimum capacity, FLOW(ē, f, d) ≤ αcē

and hence OPT(d) ≤ α < 1 for all d ∈D.
We observe that OPT(d) does not depend on e, hence:

OOPR(D) = min
f ∈F

max
e∈E

max
d∈H(D)

FLOW(e, f, d)/ce

OPT(d)

(notice that we have swapped the max operators). The model is as follows:

min r

s.t. r ≥ max
d∈H(D)

FLOW(e, f, d)/ce

OPT(d)
∀e ∈ E, (7)

f is a routing.

Notice that constraint (7) can be written as

max
d∈H(D)

(FLOW(e, f, d) − rceOPT(d)) ≤ 0 ∀e ∈ E. (8)

4 A model with lower and upper bounds on demands

Suppose that vectors a = (aij ) and b = (bij ), (i, j) ∈ D, are given, and that D is the
set of all feasible demands d such that a ≤ d ≤ b. For each edge e ∈ E, the left-hand
side of (8) is the solution to an optimization problem over variables d supposing that
f and r are fixed. We impose that d is a feasible demand by introducing auxiliary flow
variables g. Let us write flow conservation constraints (3) in matricial form A1g = d

and A2g = 0; analogously, we use Bg ≤ c instead of (4). As FLOW(e, f, d) = dT fe,
the left-hand side of (8) is the following LP problem in variables g, d and ω, while
fe and r are taken as parameters:

max (dT fe − rceω) (9)

s.t. (πe) A1g = d, (10)

(σe) A2g = 0, (11)

(ηe) Bg ≤ cω, (12)

(χe) ω ≤ 1, (13)

(λe) −d ≤ −a, (14)

(μe) d ≤ b, (15)

(g, d,ω) ≥ 0. (16)
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We assume feasibility here, i.e., there exists at least one (g, d,ω) such that (10–16)
hold. This is a rather general assumption, since infeasibility of (10–16) would imply
that no demand in D admits a routing. Boundedness of D also implies that this LP
is bounded. Furthermore, in any optimal solution to the above problem, we have
ω = OPT(d): as any d ∈ H(D) admits a routing g and ω has a negative coefficient
in the objective function, any optimal value of ω is also optimal to (1–5). Constraint
ω ≤ 1 requires that the network capacity support flow g, thus excluding infeasible
demands of D. To prove that the left-hand side of (8) equals an optimal solution of
(9–16), we observe that:

maxd∈H(D){dT fe − rceOPT(d)}
= maxd∈H(D)

{
dT fe − rce min

g∈F ,ω≥0
{ω : (10), (11), (12)}

}

= maxd∈H(D)

{
dT fe + max

g∈F ,ω≥0
{−rceω : (10), (11), (12)}

}

= maxd∈H(D),g∈F ,ω≥0{dT fe − rceω : (10), (11), (12)},
and that d ∈ H(D) corresponds to constraints (13–15).

On the left of each constraint in (10–16) we give the corresponding dual variables.
The dual is the following minimization problem:

min χe − aλe + bμe

s.t. πT
e A1 + σT

e A2 + ηT
e B ≥ 0, (17)

−πe − λe + μe ≥ fe, (18)

−cηe + χe ≥ −rce, (19)

(χe, ηe, λe,μe) ≥ 0. (20)

Therefore, for each edge e ∈ E we solve the dual of a maximization problem that
gives the left-hand side of (8). The result below gives an LP model, which we call
MB, to compute in polynomial time OOPR(D), where D is the set of demands d with
box constraints a ≤ d ≤ b.

Proposition 1 The optimal oblivious routing with box constraints on d is obtained
by solving the following linear problem:

(MB) min r

A1f = 1,

A2f = 0,

χe − aλe + bμe ≤ 0 ∀e ∈ E,

πT
e A1 + σT

e A2 + ηT
e B ≥ 0 ∀e ∈ E, (21)

−πe − λe + μe ≥ fe ∀e ∈ E, (22)

−cηe + χe ≥ −rce ∀e ∈ E, (23)

(r, f,χ,η,λ,μ) ≥ 0. (24)
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Proof Consider the problem (P1):

(P1) min
r,f

{
r : A1f = 1,A2f = 0, max

(d,g,ω)∈X
(dT fe − rceω) ≤ 0 ∀e ∈ E

}

where X = {(d, g,ω) ≥ 0 : A1g = d,A2g = 0,Bg ≤ cω,a ≤ d ≤ b,ω ≤ 1}. Due to
strong duality, this problem is equivalent to (D1):

(D1) min
r,f

{
r : A1f = 1,A2f = 0,

min
(πe,σe,ηe,χe,λe,μe)∈Yr (e)

(χe − aλe + bμe) ≤ 0 ∀e ∈ E
}
,

where Yr(e) = {(πe, σe, ηe,χe, λe,μe) : (21), (22), (23), (24)}. We can remove the
min in problem (D1) as a result of the following observation. Consider the problem
without the min operator, (D2):

(D2) min
r,f

{r : A1f = 1,A2f = 0,

(χe − aλe + bμe) ≤ 0 ∀e ∈ E,

(πe, σe, ηe,χe, λe,μe) ∈ Yr(e) ∀e ∈ E}.
Obviously, any feasible solution to (D1) leads to a feasible point in (D2). Take

now the feasible set of (D1) which is non-empty if and only if the feasible set of (D2)
is non-empty. Let us fix an arbitrary e ∈ E. For fixed r and f feasible for (D2), let
Y ∗

r,f,e = {(πe, σe, ηe,χe, λe,μe) ∈ Yr(e) : (χe − aλe + bμe) ≤ 0}. Then

min
(πe,σe,ηe,χe,λe,μe)∈Y ∗

r,f,e

(χe − aλe + bμe) ≤ 0.

We have thus constructed a feasible solution to (D1). Hence, (D1) and (D2) must
be equivalent, and (P1) is equivalent to (D2). �

5 Modeling ellipsoidal uncertainty

Suppose that d has a probability distribution (not necessarily known) with mean d̄ and
covariance matrix P . In this case, we can represent the uncertainty set conveniently
as an ellipsoid, i.e., d ∈ {d̄ +Pu : ‖u‖2 ≤ ε}, with P positive (semi)definite as in Ben
Tal and Nemirovski (1999) and ε ≥ 0 and finite. Hence, D is bounded and nonempty.
Parameter ε determines the subset of demands that must be taken into account in the
optimization – the greater ε, the more conservative the model. If we replace variable
d with d̄ +Pu, the left-hand side of (8) is an optimum of the following maximization
problem similar to (9–16) (analogously, we assume feasibility here):

max (d̄ + Pu)T fe − rceω

s.t. (πe) A1g = d,

(σe) A2g = 0,
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(ηe) Bg ≤ cω,

ω ≤ 1, d = d̄ + Pu, ‖u‖2 ≤ ε,

(g, d,ω) ≥ 0,

where we have associated multipliers πe, σe, and ηe to the first three constraints.
Consider its Lagrangian dual problem:

min
πe,σe,ηe≥0

max
(u,ω,g)∈S

{f T
e (d̄ + Pu) − rceω + πT

e (d̄ + Pu − A1g)

+σT
e (−A2g) + ηT

e (cω − Bg)}, (25)

where S = {(u,ω,g) : ‖u‖2 ≤ ε,0 ≤ ω ≤ 1, g ≥ 0}. The inner problem is decom-
posed in the sum of f T

e d̄ + πT
e d̄ = (fe + πe)

T d̄ plus the following three maximiza-
tion problems:

(a) maxu:‖u‖2≤ε (fe + πe)
T Pu = ε‖P(fe + πe)‖2;

(b) max0≤ω≤1(η
T
e c − rce)ω = max(0, ηT

e c − rce) (we denote it as [ηT
e c − rce]+);

(c) maxg≥0(−πT
e A1 − σT

e A2 − ηT
e B)g: this problem has null solution if and only if

πT
e A1 + σT

e A2 + ηT
e B ≥ 0.

Thus, the problem (25) has the solution (fe + πe)
T d̄ + ε‖P(fe + πe)‖2 + [ηT

e c −
rce]+ if and only if the condition πT

e A1 + σT
e A2 + ηT

e B ≥ 0 holds.

Proposition 2 The model MS for optimal oblivious routing with uncertainty ex-
pressed by mean-variance is the following:

(MS) min r

A1f = 1,

A2f = 0,

(fe − πe)
T d̄ + ε‖P(fe − πe)‖2 + ξe ≤ 0 ∀e ∈ E, (26)

ξe ≥ ηT
e c − rce ∀e ∈ E, (27)

πT
e A1 + σT

e A2 + ηT
e B ≥ 0 ∀e ∈ E, (28)

(r, f, η, ξ) ≥ 0.

The proof is similar to the proof of Proposition 1 and, thus, is omitted. This model
has the non-linear but convex, second-order cone constraint (26) and hence is solvable
in polynomial time through interior point SOCP solvers. Notice that constraints (27)
and (28) are equivalent to (19) and (17).

6 Computational results

We have adopted a test bed of four network instances available from the Rocketfuel
project (Springs et al. 2004), providing data for the topology (V and E), link counts,
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and OSPF weights we of several real-world networks. We have also used an example
instance (Nsf) from a work by Mitra and Ramakrishnan (1999), with demand and
capacity data. We assume that weights follow Cisco’s policy: a link e is assigned
an OSPF weight we equal to the inverse of its capacity. Hence, we simply assume
ce = 1/we.

Traffic demand data, regarded as proprietary information by Internet Service
Providers (ISPs), is rarely disclosed. Therefore, we have created the traffic demand
under the gravity model: the demand is assumed proportional to a repulsion and an at-
traction parameter, Ri and Ai , associated with each node i, which in turn are propor-
tional to the number of data packets exiting and entering node i, respectively. In order
to test our model on a reasonable demand, we use a scalar factor β such that the de-
mands dij = βRiAj are feasible. Assume β = γ max{u : (3), (4), (5), dij = uRiAj }
for a given γ ∈ [0,1]. Hence, (βRiAj ) is a feasible traffic demand with congestion
at most equal to γ .

We have tested our instances using different values of the uncertainty parameters.
The scalar γ has been assigned values in the set {0.75,0.95,0.99}, so as to give d̄

increasingly critical values. In model MB, the lower and upper bounds are a = d̄/p

and b = d̄p, where p has been assigned values in the set {1.2,2,5,20}. In model
MS, the covariance matrix P is a positive semidefinite, randomly generated matrix.
The parameter ε is set to ζ‖d̄‖2, where ζ ∈ {0.01,0.05,0.1,0.2,0.4,0.8}. It is worth
noticing that large values of p and ζ correspond to a greater degree of uncertainty,
hence we expect the oblivious performance ratio to grow as p and ζ grow.

The size of all instances tested could be reduced by neglecting those nodes in V

with degree one, as the routing to and from such nodes is trivial. More precisely, if the
removal of an edge e ∈ E divides the graph in two components G1 and G2 such that
G1 is a tree, then G1 = (V1,E1) can be shrunk into a supernode i whose demands dij

(resp. dji ) for all nodes j /∈ V1 are given by
∑

h∈V1
dhj (resp.

∑
h∈V1

djh), while all
internal demands dhk with both h and k in V1 can be ignored as they are routed within
G1. A polynomial procedure to reduce the graph consists in repeatedly shrinking all
nodes i with only one neighbor j to j itself, until no such nodes i are found. It
is worth noting that the flow on edge e = {i, j} is fixed, hence FLOW(e, f, d)/ce ≤
OPT(d); as OOPR(D) ≥ 1 ≥ FLOW(e,f,d)/ce

OPT(d)
, edge e can be ignored. As appears from

columns 2 to 5 in Tables 1 and 2, this reduces the size of almost all instances, which
could be solved to optimality in reasonable time.

We have tested the MB model on a Sun Fire 240 workstation equipped with
a 1.66 GHz Sparc64 processor and 4 GB RAM; the MS model instead has been
tested on a computer with a 1.5 MHz Pentium processor and 512 MB of RAM mem-
ory. Both models for optimal oblivious routing have been coded in AMPL (Fourer et
al. 1990); model MB has been solved by the linear programming solvers of CPLEX

9.0 (Ilog Inc 2003) (we have chosen to use the barrier instead of the simplex method
due to a substantial improvement in solution time), whereas the SOCP model MS has
been solved through the interior point method in the MOSEK 3.1 software package
(Andersen and Andersen 2000). The source and the data files used in our tests are
available from the ftp page:

ftp://ftp.elet.polimi.it/users/Pietro.Belotti/oblivious

ftp://ftp.elet.polimi.it/users/Pietro.Belotti/oblivious
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Table 1 shows the results obtained with the MB model. Columns 4 and 5 give the
size of the instance after the reduction above described, then for each value of γ and
p we report the optimal oblivious performance ratio “oopr” and the performance ratio
“ospf” obtained by OSPF routing. We obtain “ospf” by simply computing, for each
pair (s, t), the shortest path from s to t according to the OSPF weights we = 1/ce,
and then fixing the flow variables f in MB accordingly. The last column reports the
computing time required, on average, to solve the LP problem associated with MB.

Analogously, Table 2 shows the results obtained with the MS model. For each
value of γ and ζ we report the optimal oblivious performance ratio “oopr” and the
performance ratio “ospf” obtained by OSPF routing, which is obtained similarly as
for MB. Due to its size, instance Sprintlink of model MS could not fit into the RAM
memory and hence has not been solved.

It is apparent from the tables that, in all cases, OSPF routing has an oblivious
performance ratio that is much worse than the optimal oblivious routing, computed
through our models. With low degrees of uncertainty, while OSPF routing has a sen-
sible performance loss (from 40% for Sprintlink network, under the MB model, to
151% for Abovenet, under the MS model), the optimal oblivious performance ratio is
one in most cases, as is expected since, for p → 1 or ζ → 0, the optimal routing is
the one obtained with model (1–5). Nevertheless, OPR(D) = 1 even for larger p and
ζ , i.e., even greater degrees of uncertainty do not affect the routing performance.

As p and ζ get large values, OSPF routing has a performance ratio of up to 12 as in
instance Sprintlink, whereas the best oblivious routing does not worsen significantly,
as the performance loss is not greater than 99%, indicating high robustness of the
optimal oblivious routing; notice that p = 20 and ζ = 0.8 give a large percentage
of the feasible demands. We also observe that the performance ratio has almost no
dependence on γ , which can be explained by the fact that γ specifies how critical the
demand is w.r.t. the network capacity, but it does not drive the level of uncertainty,
which is specified by p and ζ .

We have depicted the dramatic gain in performance in Fig. 1 for network Nsf,
under the MS model, for γ = 0.95 and for ζ varying in the interval [10−5,5]. It is
worth emphasizing that the optimal performance ratio is 1 for small and medium
values of ζ , whereas the OSPF routing has a performance ratio of 1.6, i.e., a loss of
60%, even for very low degrees of uncertainty. For higher degrees of uncertainty,
the OSPF routing attains a performance ratio of 4 while the optimal oblivious ratio
stabilizes at 1.818. This shows that a finely tuned routing, at least for low degrees of
uncertainty, may have a performance ratio which is the best possible, and does not
increase significantly even with high uncertainty.

The optimization time is reasonably short for all instances except Sprintlink, that
has a size almost double as that of the remaining ones and has required greater mem-
ory and processor resources. For larger networks it could be necessary to study an
alternative approach, e.g., a column generation technique based on a path formulation
of the problem.
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Fig. 1 Comparison of the OSPF and the optimal oblivious performance ratio for network Nsf with
γ = 0.95 and different values of ζ

7 Concluding remarks

We have proposed two models to obtain a routing with optimal oblivious performance
with respect to two models of demand uncertainty. The first is a linear programming
model that deals with demands whose uncertainty is modeled by box constraints.
In order to deal with ellipsoidal uncertainty, we have proposed a second-order cone
programming model to obtain the optimal routing given a mean-covariance represen-
tation of the traffic demand. This proves that the problem of finding optimal oblivious
routing with box or ellipsoidal uncertainty can be solved in polynomial time.

From a more practical viewpoint, we compare the optimal oblivious routing with
the more common OSPF routing technique, where edge weights are fixed according to
a simple rule. We have observed that an optimized routing has a much better perfor-
mance ratio, and a good level of robustness even with high uncertainty. It remains to
be investigated whether a better choice of OSPF weights can improve the performance
observed in our tests.
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