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Abstract

We consider the wave and Schrödinger equations on a bounded open connected subset Ω of
a Riemannian manifold, with Dirichlet, Neumann or Robin boundary conditions whenever its
boundary is nonempty. We observe the restriction of the solutions to a measurable subset ω

of Ω during a time interval [0, T ] with T > 0. It is well known that, if the pair (ω, T ) satisfies
the Geometric Control Condition (ω being an open set), then an observability inequality holds
guaranteeing that the total energy of solutions can be estimated in terms of the energy localized
in ω × (0, T ).

We address the problem of the optimal location of the observation subset ω among all
possible subsets of a given measure or volume fraction. A priori this problem can be modeled
in terms of maximizing the observability constant, but from the practical point of view it
appears more relevant to model it in terms of maximizing an average either over random
initial data or over large time. This leads us to define a new notion of observability constant,
either randomized, or asymptotic in time. In both cases we come up with a spectral functional
that can be viewed as a measure of eigenfunction concentration. Roughly speaking, the subset
ω has to be chosen so to maximize the minimal trace of the squares of all eigenfunctions.
Considering the convexified formulation of the problem, we prove a no-gap result between the
initial problem and its convexified version, under appropriate quantum ergodicity assumptions,
and compute the optimal value. Our results reveal intimate relations between shape and
domain optimization, and the theory of quantum chaos (more precisely, quantum ergodicity
properties of the domain Ω).

We prove that in 1D a classical optimal set exists only for exceptional values of the volume
fraction, and in general one expects relaxation to occur and therefore classical optimal sets not
to exist. We then provide spectral approximations and present some numerical simulations
that fully confirm the theoretical results in the paper and support our conjectures.

Finally, we provide several remedies to nonexistence of an optimal domain. We prove that
when the spectral criterion is modified to consider a weighted one in which the high frequency
components are penalized, the problem has then a unique classical solution determined by
a finite number of low frequency modes. In particular the maximizing sequence built from
spectral approximations is stationary.
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1 Introduction

1.1 Problem formulation and overview of the main results

In this article we model and solve the problem of optimal observability for wave and Schrödinger
equations posed on any open bounded connected subset of a Riemannian manifold, with various
possible boundary conditions.

We briefly highlight the main ideas and contributions of the paper on a particular case, often
arising in applications.

Assume that Ω is a given bounded open subset of IRn, representing for instance a cavity in
which some signals are propagating according to the wave equation

∂tty = △y, (1)

with Dirichlet boundary conditions. Assume that one is allowed to place some sensors in the cavity,
in order to make some measurements of the signals propagating in Ω over a certain horizon of time.
We assume that we have the choice not only of the placement of the sensors but also of their shape.
The question under consideration is then the determination of the best possible shape and location
of sensors, achieving the best possible observation, in some sense to be made precise.

This problem of optimal observability, inspired in the theory of inverse problems and by con-
trol theoretical considerations, is also intimately related with those of optimal controllability and
stabilization (see Section 6 for a discussion of these issues).

So far, the problem has been formulated informally and a first challenge is to settle properly
this question, so that the resulting problem will be both mathematically solvable and relevant in
view of practical applications.

A first obvious but important remark is that, in the absence of constraints, certainly, the best
policy consists of observing the solutions over the whole domain Ω. This is however clearly not
reasonable, and in practice the domain covered by sensors has to be limited, due for instance
to cost considerations. From the mathematical point of view, we model this basic limitation by
considering as the set of unknowns, the set of all possible measurable subsets ω of Ω that are of
Lebesgue measure |ω| = L|Ω|, where L ∈ (0, 1) is some fixed real number. Any choice of such a
subset represents the sensors put in Ω, and we assume that we are able to measure the restrictions
of the solutions of (1) to ω.

Modeling. Let us now model the notion of best observation. At this step it is useful to recall
some well known facts on the observability of the wave equation.

For all (y0, y1) ∈ L2(Ω, C)×H−1(Ω, C), there exists a unique solution y ∈ C0(0, T ;L2(Ω, C))∩
C1(0, T ;H−1(Ω, C)) of (1) such that y(0, ·) = y0(·) and ∂ty(0, ·) = y1(·). Let T > 0.

We say that (1) is observable on ω in time T if there exists C > 0 such that1

C‖(y0, y1)‖2
L2×H−1 6

∫ T

0

∫

ω

|y(t, x)|2 dx dt, (2)

for all (y0, y1) ∈ L2(Ω, C) × H−1(Ω, C). This is the so-called observability inequality, which is of
great importance in view of showing the well-posedness of some inverse problems. It is well known

1In this inequality, and throughout the paper, we use the usual Sobolev norms. For every u ∈ L2(Ω, C), we

have ‖u‖L2(Ω,C) =
`R

Ω |u(x)|2 dx
´1/2

. The Hilbert space H1(Ω, C) is the space of functions of L2(Ω, C) having a

distributional derivative in L2(Ω, C), endowed with the norm ‖u‖H1(Ω,C) =
“

‖u‖2
L2(Ω,C)

+ ‖∇u‖2
L2(Ω,C)

”1/2
. The

Hilbert space H1
0 (Ω, C) is defined as the closure in H1(Ω, C) of the set of functions of class C∞ on Ω and of compact

support in the open set Ω. It is endowed with the norm ‖u‖H1
0 (Ω,C) = ‖∇u‖L2(Ω,C). The Hilbert space H−1(Ω, C)

is the dual of H1
0 (Ω, C) with respect to the pivot space L2(Ω, C), endowed with the corresponding dual norm.
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that within the class of C∞ domains Ω, this observability property holds if the pair (ω, T ) satisfies
the Geometric Control Condition in Ω (see [3]), according to which every ray of geometrical optics
that propagates in the cavity Ω and is reflected on its boundary ∂Ω intersects ω within time T .
The observability constant is defined by

C
(W )
T (χω) = inf

{∫ T

0

∫
Ω

χω(x)|y(t, x)|2 dx dt

‖(y0, y1)‖2
L2×H−1

| (y0, y1) ∈ L2(Ω, C) × H−1(Ω, C) \ {(0, 0)}
}

. (3)

It is the largest possible constant for which (2) holds. It depends both on the time T (the horizon
time of observation) and on the subset ω on which the measurements are done. Here, the notation
χω stands for the characteristic function of ω.

A priori, it might appear natural to model the problem of best observability as that of maxi-

mizing the functional χω 7→ C
(W )
T (χω) over the set

UL = {χω | ω is a measurable subset of Ω of Lebesgue measure |ω| = L|Ω|}. (4)

This choice of model is hard to handle from the theoretical point of view, and more importantly,
is not so relevant in view of practical issues. Let us explain these two facts.

First of all, a spectral expansion of the solutions shows the emergence of crossed terms in the
functional to be minimized, that are difficult to treat. To see this, in what follows we fix a Hilbert
basis (φj)j∈IN∗ of L2(Ω, C) consisting of (real-valued) eigenfunctions of the Dirichlet-Laplacian
operator on Ω, associated with the negative eigenvalues (−λ2

j )j∈IN∗ . Then any solution y of (1)
can be expanded as

y(t, x) =
+∞∑

j=1

(
aje

iλjt + bje
−iλjt

)
φj(x), (5)

where the coefficients aj and bj account for initial data. It follows that

C
(W )
T (χω) =

1

2
inf

(aj),(bj)∈ℓ2(C)
P+∞

j=1(|aj |2+|bj |2)=1

∫ T

0

∫

ω

∣∣∣∣∣∣

+∞∑

j=1

(
aje

iλjt + bje
−iλjt

)
φj(x)

∣∣∣∣∣∣

2

dx dt,

and then maximizing this functional over UL appears to be very difficult from the theoretical point
of view, due to the crossed terms

∫
ω

φjφk dx measuring the interaction over ω between distinct
eigenfunctions.

The second difficulty with this model is its limited relevance in practice. Indeed, the observ-
ability constant defined by (3) is deterministic and provides an account for the worst possible case.
Hence, in this sense, it is a pessimistic constant. In practical applications one realizes a large
number of measures, and it may be expected that this worst case will not occur so often. Then,
one would like the observation to be optimal for most of experiments but maybe not for all of them.
This leads us to consider rather an averaged version of the observability inequality over random
initial data. More details will be given in Section 2.3 on the randomization procedure, but in few
words, we define what we call the randomized observability constant by

C
(W )
T,rand(χω) =

1

2
inf

(aj),(bj)∈ℓ2(C)
P+∞

j=1(|aj |2+|bj |2)=1

E



∫ T

0

∫

ω

∣∣∣∣∣∣

+∞∑

j=1

(
βν

1,jaje
iλjt + βν

2,jbje
−iλjt

)
φj(x)

∣∣∣∣∣∣

2

dx dt


 ,

(6)
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where (βν
1,j)j∈IN∗ and (βν

2,j)j∈IN∗ are two sequences of (for example) i.i.d. Bernoulli random laws on
a probability space (X ,A, P), and E is the expectation over the X with respect to the probability
measure P. It corresponds to an averaged version of the observability inequality over random initial
data. Actually, we have the following result.

Theorem 1 (Characterization of the randomized observability constant). For every measurable
subset ω of Ω, there holds

C
(W )
T,rand

(χω) =
T

2
inf

j∈IN∗

∫

ω

φj(x)2 dx. (7)

It is interesting to note that there always holds C
(W )
T (χω) 6 C

(W )
T,rand(χω), and that the strict

inequality holds for instance in each of the following cases (see Remark 4 for details):

• in 1D, with Ω = (0, π) and Dirichlet boundary conditions, whenever T is not an integer
multiple of π;

• in multi-D, with Ω stadium-shaped, whenever ω contains an open neighborhood of the wings

(in that case, we actually have C
(W )
T (χω) = 0).

Taking all this into account we model the problem of best observability in the following more
relevant and simpler way: maximize the functional

J(χω) = inf
j∈IN∗

∫

ω

φj(x)2 dx (8)

over the set UL.
The functional J can be interpreted a criterion giving an account of the concentration properties

of eigenfunctions. This functional can be as well recovered by considering, instead of an averaged
version of the observability inequality over random initial data, a time-asymptotic version of it.
More precisely, we claim that, if the eigenvalues of the Dirichlet-Laplacian are simple (which is a
generic property), then J(χω) is the largest possible constant such that

C‖(y0, y1)‖2
L2×H−1 6 lim

T→+∞

1

T

∫ T

0

∫

ω

|y(t, x)|2 dx dt,

for all (y0, y1) ∈ L2(Ω, C) × H−1(Ω, C) (see Section 2.5).
The derivation of this model and of the corresponding optimization problem, and the new

notions of averaged observability inequalities that it leads to (Section 2), constitute the first con-
tribution of the present article.

It can be noticed that, in this model, the time T does not play any role.
It is by now well known that, in the characterization of fine observability properties of solutions

of wave equations, two ingredients enter (see [40]): on the one hand, the spectral decomposition
and the observability properties of eigenfunctions; on the other, the microlocal components that are
driven by rays of Geometric Optics. The randomized observability constant takes the first spectral
component into account but neglects the microlocal aspects that were annihilated, to some extent,
by the randomization process. In that sense, the problem of maximizing the functional J defined
by (8) is essentially a high-frequency problem.

Solving. In view of solving the uniform optimal design problem

sup
χω∈UL

J(χω), (9)
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we first introduce a convexified version of the problem, by considering the convex closure of the
set UL for the L∞ weak star topology, that is UL = {a ∈ L∞(Ω, [0, 1]) |

∫
Ω

a(x) dx = L|Ω|}. The
convexified problem then consists of maximizing the functional

J(a) = inf
j∈IN∗

∫

Ω

a(x)φj(x)2 dx

over UL. Clearly, a maximizer does exist. But since the functional J is not lower semi-continuous
it is not clear whether or not there may be a gap between the problem (9) and its convexified
version. The analysis of this question happens to be very interesting and reveals deep connections
with the theory of quantum chaos and, more precisely, with quantum ergodicity properties of Ω.
We prove for instance the following result (see Section 3.2 for other related statements).

Theorem 2 (No-gap result and optimal value of J). Assume that the sequence of probability mea-
sures µj = φ2

j (x) dx converges vaguely to the uniform measure 1
|Ω| dx (Quantum Unique Ergodicity

on the base), and that there exists p ∈ (1,+∞] such that the sequence of eigenfunctions (φj)j∈IN∗

is uniformly bounded in L2p(Ω). Then

sup
χω∈UL

J(χω) = max
a∈UL

J(a) = L,

for every L ∈ (0, 1). In other words, there is no gap between the problem (9) and its convexified
version.

At this step, it follows from Theorems 1 and 2 that, under some spectral assumptions, the

maximal possible value of C
(W )
T,rand(χω) (over the set UL) is equal to TL/2. Several remarks are in

order.

• Except in the one-dimensional case, we are not aware of domains Ω in which the spectral
assumptions of the above result are satisfied. As discussed in Section 3.3, this question is related
with deep open questions in mathematical physics and semi-classical analysis such as the QUE
conjecture.

• The spectral assumptions done above are sufficient but are not necessary to derive such a no-
gap statement: indeed we can prove that the result still holds true if Ω is a hypercube (with the
usual eigenfunctions consisting of products of sine functions), or if Ω is a two-dimensional disk
(with the usual eigenfunctions parametrized by Bessel functions), although, in the latter case,
the eigenfunctions do not equidistribute as the eigenfrequencies increase, as illustrated by the
well-known whispering galleries effect (see Proposition 1 in Section 3.2).

• We are not aware of any example in which there is a gap between the problem (9) and its
convexified version.

• It is also interesting to note that, since the spectral criterion J defined by (8) depends on the
specific choice of the orthonormal basis (φj)j∈IN∗ of eigenfunctions of the Dirichlet-Laplacian, one
can consider an intrinsic version of the problem, consisting of maximizing the spectral functional

Jint(χω) = inf
φ∈E

∫

ω

φ(x)2 dx

over UL, where E denotes the set of all normalized eigenfunctions of the Dirichlet-Laplacian. For
this problem we have a result similar to the one above (Theorem 7 in Section 3.6).

These results show intimate connections between domain optimization and quantum ergodicity
properties of Ω. Such a relation was suggested in the early work [13] concerning the exponential
decay properties of dissipative wave equations.

6



• The result stated in the theorem above holds true as well when replacing UL with the class of
Jordan measurable subsets of Ω of measure L|Ω|. The proof (done in Section 3.4), based on a kind
of homogenization procedure, is constructive and consists of building a maximizing sequence of
subsets for the problem of maximizing J , showing that it is possible to increase the values of J by
considering subsets of measure L|Ω| having an increasing number of connected components.

Nonexistence of an optimal set and remedies. The maximum of J over UL is clearly reached
(in general, even in an infinite number of ways, as it can be seen using Fourier series, see [49]).
The question of the reachability of the supremum of J over UL, that is, the existence of an optimal
classical set, is a difficult question in general. In particular cases it can however be addressed using
harmonic analysis. For instance in dimension one, we can prove that the supremum is reached if
and only if L = 1/2 (and there is an infinite number of optimal sets). In higher dimension, the
question is completely open, and we conjecture that, for generic domains Ω and generic values of
L, the supremum is not reached and hence there does not exist any optimal set. It can however
be noted that, in the two-dimensional Euclidean square, if we restrict the search of optimal sets to
Cartesian products of 1D subsets, then the supremum is reached if and only if L ∈ {1/4, 1/2, 3/4}
(see Section 4.1 for details).

In view of that, it is then natural to study a finite-dimensional spectral approximation of the
problem, namely the problem of maximizing the functional

JN (χω) = min
16j6N

∫

ω

φj(x)2 dx

over UL, for N ∈ IN∗. The existence and uniqueness of an optimal set ωN is then not difficult
to prove, as well as a Γ-convergence property of JN towards J for the weak star topology of
L∞. Moreover, the sets ωN have a finite number of connected components, expected to increase
as N increases. Several numerical simulations (provided in Section 4.2) will show the shapes of
these sets; their increasing complexity (as N increases) is in accordance with the conjecture of
the nonexistence of an optimal set maximizing J . It can be noted that, in the one-dimensional
case, for L sufficiently small, loosely speaking, the optimal domain ωN for N modes is the worst
possible one when considering the truncated problem with N + 1 modes (spillover phenomenon;
see [24, 49]).

This intrinsic instability is in some sense due to the fact that in the definition of the spectral cri-
terion (8) all modes have the same weight, and the same criticism can be made on the observability
inequality (2). Due to the increasing complexity of the geometry of high-frequency eigenfunctions,
the optimal shape and placement problems are expected to be highly complex.

One expects the problem to be better behaved if lower frequencies are more weighted than the
higher ones. It is therefore relevant to introduce a weighted version of the observability inequality
(2), by considering the (equivalent) inequality

C
(W )
T,σ (χω)

(
‖(y0, y1)‖2

L2×H−1 + σ‖y0‖2
H−1

)
6

∫ T

0

∫

ω

|y(t, x)|2 dx dt,

where σ > 0 is some weight. There holds C
(W )
T,σ (χω) 6 C

(W )
T (χω).

Considering, as before, an averaged version of this weighted observability inequality over random

initial data, we get 2C
(W )
T,σ,rand(χω) = TJσ(χω), where the weighted spectral criterion Jσ is defined

by

Jσ(χω) = inf
j∈IN∗

σj

∫

ω

φj(x)2 dx,

7



with σj = λ2
j/(σ + λ2

j ) (increasing sequence of positive real numbers converging to 1; see Section
4.4 for details). The truncated criterion Jσ,N is then defined accordingly, by keeping only the N
first modes. We then have the following result.

Theorem 3 (Weighted spectral criterion). Assume that the sequence of probability measures µj =
φ2

j (x) dx converges vaguely to the uniform measure 1
|Ω| dx, and that the sequence of eigenfunctions

φj is uniformly bounded in L∞(Ω). Then, for every L ∈ (σ1, 1), there exists N0 ∈ IN∗ such that

max
χω∈UL

Jσ(χω) = max
χω∈UL

Jσ,N (χω) 6 σ1 < L,

for every N > N0. In particular, the problem of maximizing Jσ over UL has a unique solution
χωN0 , and moreover the set ωN0 has a finite number of connected components.

As previously, note that the assumptions of the above theorem (referred to as L∞-QUE, as
discussed further) are strong ones. We are however able to prove that the conclusion of Theorem
3 holds true in a hypercube with Dirichlet boundary conditions with the usual eigenfunctions
consisting of products of sine functions, although QUE is not satisfied in such a domain (see
Proposition 7 in Section 4.4).

The theorem says that, for the problem of maximizing Jσ,N over UL, the sequence of optimal
sets ωN is stationary whenever L is large enough, and ωN0 is then the (unique) optimal set, solution
of the problem of maximizing Jσ. It can be noted that the lower threshold in L depends on the
chosen weights, and the numerical simulations that we will provide indicate that this threshold
is sharp in the sense that, if L < σ1 then the sequence of maximizing sets loses its stationarity
feature.

As a conclusion, this weighted version of our spectral criterion can be viewed as a remedy for
the spillover phenomenon. Note that, of course, other more evident remedies can be discussed,
such as the search of an optimal domain among a set of subdomains sharing nice compactness
properties (such as having a uniform perimeter or BV norm; see Section 4.3). However our aim is
to investigate the optimization problems in the broadest classes of measurable domains and rather
to discuss the mathematical, physical and practical relevance of the criterion encoding the notion
of optimal observability.

Let us finally note that all our results hold for wave and Schrödinger equations on any open
bounded connected subset of a Riemannian manifold (replacing △ with the Laplace-Beltrami
operator), with various possible boundary conditions (Dirichlet, Neumann, mixed, Robin) or no
boundary conditions in case the manifold is compact without boundary. The abstract framework
and possible generalizations are described in Section 5.

1.2 Brief state of the art

The literature on optimal observation or sensor location problems is abundant in engineering
applications (see, e.g., [35, 45, 57, 60, 63] and references therein), but the number of mathematical
theoretical contributions is limited.

In engineering applications, the aim is to optimize the number, the place and the type of sensors
in order to improve the estimation of the state of the system and this concerns, for example, active
structural acoustics, piezoelectric actuators, vibration control in mechanical structures, damage
detection and chemical reactions, just to name a few of them. In most of these applications, how-
ever, the method consists in approximating appropriately the problem by selecting a finite number
of possible optimal candidates and recasting it as a finite dimensional combinatorial optimization
problem. Among the possible approaches, the closest one to ours consists of considering trunca-
tions of Fourier expansion representations. Adopting such a Fourier point of view, the authors
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of [23, 24] studied optimal stabilization issues of the one-dimensional wave equation and, up to
our knowledge, these are the first articles in which one can find rigorous mathematical arguments
and proofs to characterize the optimal set whenever it exists, for the problem of determining the
best possible shape and position of the damping subdomain of a given measure. In [5] the authors
investigate the problem modeled in [57] of finding the best possible distributions of two materials
(with different elastic Young modulus and different density) in a rod in order to minimize the vi-
bration energy in the structure. For this optimal design problem in wave propagation, the authors
of [5] prove existence results and provide convexification and optimality conditions. The authors of
[1] also propose a convexification formulation of eigenfrequency optimization problems applied to
optimal design. In [17] the authors discuss several possible criteria for optimizing the damping of
abstract wave equations in Hilbert spaces, and derive optimality conditions for a certain criterion
related to a Lyapunov equation. In [49] we investigated the problem presented previously in the
one-dimensional case. We also quote the article [50] where we study the related problem of finding
the optimal location of the support of the control for the one-dimensional wave equation.

In this paper, we provide a complete model and mathematical analysis of the optimal observ-
ability problem overviewed in Section 1.1. The article is structured as follows.

Section 2 is devoted to discuss and define a relevant mathematical criterion, modeling the
optimal observability problem. We first introduce the context and recall the classical observability
inequality, and then using spectral considerations we introduce randomized or time asymptotic
observability inequalities, to come up with a spectral criterion which is at the heart of our study.

The resulting optimal design problem is solved in Section 3, where we derive, under appropriate
spectral assumptions, a no-gap result between our problem and its convexified version. To do this,
we put in evidence some deep relations between shape optimization and concentration properties
of eigenfunctions.

The existence of an optimal set is investigated in Section 4. We study a spectral approximation
of our problem, providing a maximizing sequence of optimal sets which does not converge in general.
We then provide some remedies, in particular by defining a weighted spectral criterion and showing
the existence and uniqueness of an optimal set.

Section 5 is devoted to generalize all results to wave and Schrödinger equations on any open
bounded connected subset of a Riemannian manifold, with various possible boundary conditions.

Further comments are provided in Section 6, concerning the problem of optimal shape and
location of internal controllers, as well as several open problems and issues.

2 Modeling the optimal observability problem

This section is devoted to discuss and model mathematically the problem of maximizing the ob-
servability of wave equations. A first natural model is to settle the problem of maximizing the
observability constant, but it appears that this problem is both difficult to treat from a theoretical
point of view, and actually not so relevant with respect to practice. Using spectral considerations,
we will then define a spectral criterion based on averaged versions of the observability inequalities,
which is better suited to model what is expected in practice.

2.1 The framework

Let n > 1, T be a positive real number and Ω be an open bounded connected subset of IRn. We
consider the wave equation

∂tty = △y, (10)

in (0, T ) × Ω, with Dirichlet boundary conditions. Let ω be an arbitrary measurable subset of Ω
of positive measure. Throughout the paper, the notation χω stands for the characteristic function

9



of ω. The equation (10) is said to be observable on ω in time T if there exists C
(W )
T (χω) > 0 such

that

C
(W )
T (χω)‖(y0, y1)‖2

L2×H−1 6

∫ T

0

∫

ω

|y(t, x)|2 dx dt, (11)

for all (y0, y1) ∈ L2(Ω, C) × H−1(Ω, C). This is the so-called observability inequality, relevant
in inverse problems or in control theory because of its dual equivalence with the property of
controllability (see [42]). It is well known that within the class of C∞ domains Ω, this observability
property holds, roughly, if the pair (ω, T ) satisfies the Geometric Control Condition (GCC) in Ω
(see [3, 9]), according to which every geodesic ray in Ω and reflected on its boundary according
to the laws of geometrical optics intersects the observation set ω within time T . In particular, if
at least one ray does not reach ω within time T then the observability inequality fails because of
the existence of gaussian beam solutions concentrated along the ray and, therefore, away from the
observation set (see [53]).

In the sequel, the observability constant C
(W )
T (χω) denotes the largest possible nonnegative

constant for which the inequality (11) holds, that is,

C
(W )
T (χω) = inf

{∫ T

0

∫
ω
|y(t, x)|2 dx dt

‖(y0, y1)‖2
L2×H−1

∣∣ (y0, y1) ∈ L2(Ω, C) × H−1(Ω, C) \ {(0, 0)}
}

. (12)

We next discuss the question of modeling mathematically the notion of maximizing the ob-
servability of wave equations. It is a priori natural to consider the problem of maximizing the

observability constant C
(W )
T (χω) over all possible subsets ω of Ω of Lebesgue measure |ω| = L|Ω|

for a given time T > 0. In the next two subsections, using spectral expansions, we discuss the
difficulty and the relevance of this problem, leading us to consider a more adapted spectral criterion.

2.2 Spectral expansion of the solutions

From now on, we fix an orthonormal Hilbert basis (φj)j∈IN∗ of L2(Ω, C) consisting of eigenfunc-
tions of the Dirichlet-Laplacian on Ω, associated with the positive eigenvalues (λ2

j )j∈IN∗ . As said
in the introduction, in what follows the Sobolev norms are computed in a spectral way with re-
spect to these eigenelements. Let (y0, y1) ∈ L2(Ω, C) × H−1(Ω, C) be some arbitrary initial data.
The solution y ∈ C0(0, T ;L2(Ω, C)) ∩ C1(0, T ;H−1(Ω, C)) of (10) such that y(0, ·) = y0(·) and
∂ty(0, ·) = y1(·) can be expanded as

y(t, x) =

+∞∑

j=1

(
aje

iλjt + bje
−iλjt

)
φj(x), (13)

where the sequences (aj)j∈IN∗ and (bj)j∈IN∗ belong to ℓ2(C) and are determined in terms of the
initial data (y0, y1) by

aj =
1

2

(∫

Ω

y0(x)φj(x) dx − i

λj

∫

Ω

y1(x)φj(x) dx

)
,

bj =
1

2

(∫

Ω

y0(x)φj(x) dx +
i

λj

∫

Ω

y1(x)φj(x) dx

)
,

(14)

for every j ∈ IN∗. Moreover, we have2

‖(y0, y1)‖2
L2×H−1 = 2

+∞∑

j=1

(|aj |2 + |bj |2). (15)

2Indeed, for every u =
P+∞

j=1 ujφj ∈ L2(Ω, C), we have ‖u‖2
L2 =

P+∞
j=1 |uj |

2 and ‖u‖2
H−1 =

P+∞
j=1 |uj |

2/λ2
j .

10



It follows from (13) that

∫ T

0

∫

ω

|y(t, x)|2 dx dt =

+∞∑

j,k=1

αjk

∫

ω

φi(x)φj(x) dx, (16)

where

αjk =

∫ T

0

(aje
iλjt − bje

−iλjt)(āke−iλkt − b̄keiλkt) dt. (17)

The coefficients αjk, (j, k) ∈ (IN∗)2, depend only on the initial data (y0, y1), and their precise
expression is given by

αjk =
2aj āk

λj − λk
sin

(
(λj − λk)

T

2

)
ei(λj−λk) T

2 − 2aj b̄k

λj + λk
sin

(
(λj + λk)

T

2

)
ei(λj+λk) T

2

− 2bj āk

λj + λk
sin

(
(λj + λk)

T

2

)
e−i(λj+λk) T

2 +
2bj b̄k

λj − λk
sin

(
(λj − λk)

T

2

)
e−i(λj−λk) T

2

(18)

whenever λj 6= λk, and

αjk = T (aj āk + bj b̄k) − sin(λjT )

λj
(aj b̄keiλjT + bj āke−iλjT ) (19)

when λj = λk.

Remark 1. In dimension one, set Ω = (0, π). Then φj(x) =
√

2
π sin(jx) and λj = j for every

j ∈ IN∗. In this one-dimensional case, it can be noticed that all nondiagonal terms vanish when
the time T is a multiple of 2π. Indeed, if T = 2pπ with p ∈ IN∗, then αij = 0 whenever i 6= j, and

αjj = pπ(|aj |2 + |bj |2), (20)

for all (i, j) ∈ (IN∗)2, and therefore

∫ 2pπ

0

∫

ω

|y(t, x)|2 dx dt =

+∞∑

j=1

αjj

∫

ω

sin2(jx) dx. (21)

Hence in that case there are no crossed terms. The optimal observability problem for this one-
dimensional case was studied in detail in [49].

Using the above spectral expansions, the observability constant is given by

C
(W )
T (χω) =

1

2
inf

(aj),(bj)∈ℓ2(C)
P+∞

j=1(|aj |2+|bj |2)=1

∫ T

0

∫

ω

∣∣∣∣∣∣

+∞∑

j=1

(
aje

iλjt − bje
−iλjt

)
φj(x)

∣∣∣∣∣∣

2

dx dt, (22)

aj and bj being the Fourier coefficients of the initial data, defined by (14).

Due to the crossed terms appearing in (16), the problem of maximizing C
(W )
T (χω) over all possi-

ble subsets ω of Ω of measure |ω| = L|Ω|, is very difficult to handle, at least from a theoretical point
of view. The difficulty related with the cross terms already appears in one-dimensional problems
(see [49]). Actually, this question is very much related with classical problems in non harmonic
Fourier analysis, such as the one of determining the best constants in Ingham’s inequalities (see
[29, 30]).

This problem is then let open, but as we will see next, although it is very interesting, it is not
so relevant from a practical point of view.
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2.3 Randomized observability inequality

As mentioned above, the problem of maximizing the deterministic (classical) observability constant

C
(W )
T (χω) defined by (12) over all possible measurable subsets ω of Ω of measure |ω| = L|Ω|, is

open and is probably very difficult. However, when considering the practical problem of locating
sensors in an optimal way, the optimality should rather be thought in terms of an average with
respect to a large number of experiments. From this point of view, the observability constant

C
(W )
T (χω), which is by definition deterministic, is expected to be pessimistic in the sense that it

gives an account for the worst possible case. In practice, when carrying out a large number of
experiments, it can however be expected that the worst possible case does not occur very often.
Having this remark in mind, we next define a new notion of observability inequality by considering
an average over random initial data.

The observability constant defined by (12) is defined as an infimum over all possible (determin-
istic) initial data. We are going to modify slightly this definition by randomizing the initial data
in some precise sense, and considering an averaged version of the observability inequality with a
new (randomized) observability constant.

Consider the expression of C
(W )
T (χω) given by (22) in terms of spectral expansions. Following

the works of N. Burq and N. Tzvetkov on nonlinear partial differential equations with random
initial data (see [7, 10, 11]), that use early ideas of Paley and Zygmund (see [47]), we randomize
the coefficients aj , bj , cj , accounting for the initial conditions, by multiplying each of them by some
well chosen random law. This random selection of all possible initial data for the wave equation

(79) consists of replacing C
(W )
T (χω) by the randomized version

C
(W )
T,rand(χω) =

1

2
inf

(aj),(bj)∈ℓ2(C)
P+∞

j=1(|aj |2+|bj |2)=1

E



∫ T

0

∫

ω

∣∣∣∣∣∣

+∞∑

j=1

(
βν

1,jaje
iλjt − βν

2,jbje
−iλjt

)
φj(x)

∣∣∣∣∣∣

2

dx dt


 ,

(23)
where (βν

1,j)j∈IN∗ and (βν
2,j)j∈IN∗ are two sequences of independent Bernoulli random variables on

a probability space (X ,A, P), satisfying

P(βν
1,j = ±1) = P(βν

2,j = ±1) =
1

2
and E(βν

1,jβ
ν
2,k) = 0,

for every j and k in IN∗ and every ν ∈ X . Here, the notation E stands for the expectation over
the space X with respect to the probability measure P. In other words, instead of considering the
deterministic observability inequality (11) for the wave equation (79), we consider the randomized
observability inequality

C
(W )
T,rand(χω)‖(y0, y1)‖2

L2×H−1 6 E

(∫ T

0

∫

ω

|yν(t, x)|2 dx dt

)
, (24)

for all (y0, y1) ∈ L2(Ω, C) × H−1(Ω, C), where yν denotes the solution of the wave equation with
the random initial data y0

ν(·) and y1
ν(·) determined by their Fourier coefficients aν

j = βν
1,jaj and

bν
j = βν

2,jbj (see (14) for the explicit relation between the Fourier coefficients and the initial data),
that is,

yν(t, x) =
+∞∑

j=1

(
βν

1,jaje
iλjt + βν

2,jbje
−iλjt

)
φj(x). (25)

This new constant C
(W )
T,rand(χω) is called randomized observability constant.
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Theorem 4. There holds

2 C
(W )
T,rand

(χω) = T inf
j∈IN∗

∫

ω

φj(x)2 dx

for every measurable subset ω of Ω.

Proof. The proof is immediate by expanding the square in (23), using Fubini’s theorem and the
fact that the random laws are independent, of zero mean and of variance 1.

Remark 2. It can be easily checked that Theorem 4 still holds true when considering, in the
above randomization procedure, more general real random variables that are independent, have
mean equal to 0, variance 1, and have a super exponential decay. We refer to [7, 10] for more details
on these randomization issues. Bernoulli and Gaussian random variables satisfy such appropriate
assumptions. As proved in [11], for all initial data (y0, y1) ∈ L2(Ω, C) × H−1(Ω, C), the Bernoulli
randomization keeps constant the L2 ×H−1 norm, whereas the Gaussian randomization generates
a dense subset of L2(Ω, C)×H−1(Ω, C) through the mapping R(y0,y1) : ν ∈ X 7→ (y0

ν , y1
ν) provided

that all Fourier coefficients of (y0, y1) are nonzero and that the measure θ charges all open sets of
IR. The measure µ(y0,y1) defined as the image of P by R(y0,y1) strongly depends both on the choice
of the random variables and on the choice of the initial data (y0, y1). Properties of these measures
are established in [11].

Remark 3. It is easy to see that C
(W )
T,rand(χω) > C

(W )
T (χω), for every measurable subset ω of Ω,

and every T > 0.

Remark 4. As mentioned previously, the problem of maximizing the deterministic (classical)

observability constant C
(W )
T (χω) defined by (12) over all possible measurable subsets ω of Ω of

measure |ω| = L|Ω|, is open and is probably very difficult. For practical issues it is actually more
natural to consider the problem of maximizing the randomized observability constant defined by
(23). Indeed, when considering for instance the practical problem of locating sensors in an optimal
way, the optimality should be thought in terms of an average with respect to a large number
of experiments. From this point of view, the deterministic observability constant is expected
to be pessimistic with respect to its randomized version. Indeed, in general it is expected that

C
(W )
T,rand(χω) > C

(W )
T (χω).

In dimension one, with Ω = (0, π) and Dirichlet boundary conditions, it follows from [49,
Proposition 2] (where this one-dimensional case is studied in detail) that these strict inequalities
hold if and only if T is not an integer multiple of π (note that if T is a multiple of 2π then the
equalities follow immediately from Parseval’s Theorem). Note that, in the one-dimensional case,
the GCC is satisfied for every T > 2π, and the fact that the deterministic and the randomized
observability constants do not coincide is due to crossed Fourier modes in the deterministic case.

In dimension greater than one, there is a class of examples where the strict inequality holds:

this is indeed the case when one is able to assert that C
(W )
T (χω) = 0 whereas C

(W )
T,rand(χω) > 0. Let

us provide several examples.
An example of such a situation for the wave equation is provided by considering Ω = (0, π)2

with Dirichlet boundary conditions and L = 1/2. It is indeed proved further (see Proposition 3
and Remark 19) that the domain ω = {(x, y) ∈ Ω | x < π/2} maximizes J over UL, and that
J(χω) = 1/2. Clearly, such a domain does not satisfy the Geometric Control Condition, and one

has C
(W )
T (χω) = 0, whereas C

(W )
∞ (χω) = 1/4.

Another class of examples for the wave equation is provided by the well known Bunimovich
stadium with Dirichlet boundary conditions. Setting Ω = R ∪W , where R is the rectangular part
and W the circular wings, it is proved in [12] that, for any open neighborhood ω of the closure of W
(or even, any neighborhood ω of the vertical intervals between R and W ) in Ω, there exists c > 0
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such that
∫

ω
φj(x)2 dx > c for every j ∈ IN∗. It follows that J(χω) > 0, whereas C

(W )
T (χω) = 0

since ω does not satisfy the Geometric Control Condition. It can be noted that the result still
holds if one replaces the wings W by any other manifold glued along R, so that Ω is a partially
rectangular domain.

2.4 Conclusion: a relevant criterion

In the previous section we have shown that it is more relevant in practice to model the problem of
maximizing the observability as the problem of maximizing the randomized observability constant.

Using Theorem 4, this leads us to consider the following spectral problem.

Let L ∈ (0, 1) be fixed. We consider the problem of maximizing the spectral functional

J(χω) = inf
j∈IN∗

∫

ω

φj(x)2 dx, (26)

over all possible measurable subsets ω of Ω of measure |ω| = L|Ω|.

Note that this spectral criterion is independent of T and is of diagonal nature, not involving
any crossed term. However it depends on the choice of the specific Hilbert basis (φj)j∈IN∗ of
eigenfunctions of A, at least, whenever the spectrum of A is not simple. We will come back on this
issue in Section 3.6 by considering an intrinsic spectral criterion, where the infimum runs over all
possible normalized eigenfunctions of A.

The study of the maximization of J will be done in Section 3, and will lead to an unexpectedly
rich field of investigations, related to quantum ergodicity properties of Ω.

Before going on with that study, let us provide another way of coming out with this spectral
functional (26). In the previous section we have seen that TJ(χω) can be interpreted as a random-
ized observability constant, corresponding to a randomized observability inequality. We will see
next that J(χω) can be obtained as well by performing a time averaging procedure on the classical
observability inequality.

2.5 Time asymptotic observability inequality

First of all, we claim that, for all (y0, y1) ∈ L2(Ω, C) × H−1(Ω, C), the quantity

1

T

∫ T

0

∫

ω

|y(t, x)|2 dx dt,

where y ∈ C0(0, T ;L2(Ω, C)) ∩ C1(0, T ;H−1(Ω, C)) is the solution of the wave equation (79) such
that y(0, ·) = y0(·) and ∂ty(0, ·) = y1(·), has a limit as T tends to +∞ (this fact is proved in lemmas
6 and 7 further). This leads to define the concept of time asymptotic observability constant

C(W )
∞ (χω) = inf

{
lim

T→+∞

1

T

∫ T

0

∫
ω
|y(t, x)|2 dx dt

‖(y0, y1)‖2
L2×H−1

∣∣ (y0, y1) ∈ L2(Ω, C) × H−1(Ω, C) \ {(0, 0)}
}

.

(27)
This constant appears as the largest possible nonnegative constant for which the time asymptotic
observability inequality

C(W )
∞ (χω)‖(y0, y1)‖2

L2×H−1 6 lim
T→+∞

1

T

∫ T

0

∫

ω

|y(t, x)2| dx dt, (28)

holds for all (y0, y1) ∈ L2(Ω, C) × H−1(Ω, C).
We have the following results.
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Theorem 5. For every measurable subset ω of Ω, there holds

2 C(W )
∞ (χω) = inf





∫
ω

∑
λ∈U

∣∣∣
∑

k∈I(λ) ckφk(x)
∣∣∣
2

dx
∑+∞

k=1 |ck|2
| (cj)j∈IN∗ ∈ ℓ2(C) \ {0}





,

where U is the set of all distinct eigenvalues λk and I(λ) = {j ∈ IN∗ | λj = λ}.

Corollary 1. There holds 2C
(W )
∞ (χω) 6 J(χω), for every measurable subset ω of Ω. If the domain

Ω is such that every eigenvalue of the Dirichlet-Laplacian is simple, then

2 C(W )
∞ (χω) = inf

j∈IN∗

∫

ω

φj(x)2 dx = J(χω),

for every measurable subset ω of Ω.

The proof of these results is done in Appendix A. Note that, as it is well known, the assumption
of the simplicity of the spectrum of the Dirichlet-Laplacian is generic with respect to the domain
Ω (see e.g. [44, 61, 26]).

Remark 5. It follows obviously from the definitions of the observability constants that

lim sup
T→+∞

C
(W )
T (χω)

T
6 C(W )

∞ (χω)

for every measurable subset ω of Ω. However, the equalities do not hold in general. Indeed,
consider a set Ω with a smooth boundary, and a pair (ω, T ) not satisfying the Geometric Control

Condition. Then there must hold C
(W )
T (χω) = 0. Besides, J(χω) may be positive, as already

discussed in Remark 4 where we gave several classes of examples having this property.

3 Optimal observability under quantum ergodicity assump-

tions

We define the set

UL = {χω | ω is a measurable subset of Ω of measure |ω| = L|Ω|}. (29)

In Section 2, our discussions have led us to model the problem of optimal observability as

sup
χω∈UL

J(χω), (30)

with

J(χω) = inf
j∈IN∗

∫

ω

φj(x)2 dx,

where (φj)j∈IN∗ is a Hilbert basis of L2(Ω, C) (defined in Section 2.1), consisting of eigenfunctions
of △.

The cost functional J(χω) can be seen as a spectral energy (de)concentration criterion. For
every j ∈ IN∗, the integral

∫
ω

φj(x)2 dx is the energy of the jth eigenfunction restricted to ω, and
the problem is to maximize the infimum over j of these energies, over all subsets ω of measure
|ω| = L|Ω|.
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This section is organized as follows. Section 3.1 contains some preliminary remarks and, in
particular, is devoted to introduce a convexified version of the problem (30). Our main results
are stated in Section 3.2. They provide the optimal value of (30) under spectral assumptions on
Ω, by proving moreover that there is no gap between Problem (30) and its convexified version.
These assumptions are discussed in Section 3.3. Sections 3.4 and 3.5 are devoted to prove our
main results. Finally, in Section 3.6 we consider an intrinsic spectral variant of (30) where, as
announced in Section 2.4, the infimum runs over all possible normalized eigenfunctions of △.

3.1 Preliminary remarks

Since the set UL does not have compactness properties ensuring the existence of a solution of (30),
we consider the convex closure of UL for the weak star topology of L∞,

UL =

{
a ∈ L∞(Ω, [0, 1])

∣∣
∫

Ω

a(x) dx = L|Ω|
}

. (31)

This convexification procedure is standard in shape optimization problems where an optimal do-
main may fail to exist because of hard constraints (see e.g. [6]). Replacing χω ∈ UL with a ∈ UL,
we define a convexified formulation of the problem (30) by

sup
a∈UL

J(a), (32)

where

J(a) = inf
j∈IN∗

∫

Ω

a(x)φj(x)2 dx. (33)

Obviously, we have

sup
χω∈UL

inf
j∈IN∗

∫

Ω

χω(x)φj(x)2 dx 6 sup
a∈UL

inf
j∈IN∗

∫

Ω

a(x)φj(x)2 dx. (34)

In the next section, we compute the optimal value (32) of this convexified problem and in-
vestigate the question of knowing whether the inequality (34) is strict or not. In other words we
investigate whether there is a gap or not between the problem (30) and its convexified version (32).

Remark 6. Comments on the choice of the topology.
In our study we consider measurable subsets ω of Ω, and we endow the set L∞(Ω, {0, 1}) of all
characteristic functions of measurable subsets with the weak-star topology. Other topologies are
used in shape optimization problems, such as the Hausdorff topology. Note however that, although
the Hausdorff topology shares nice compactness properties, it cannot be used in our study because
of the measure constraint on ω. Indeed, the Hausdorff convergence does not preserve measure,
and the class of admissible domains is not closed for this topology. Topologies associated with
convergence in the sense of characteristic functions or in the sense of compact sets (see for instance
[25, Chapter 2]) do not guarantee easily the compactness of minimizing sequences of domains,
unless one restricts the class of admissible domains, imposing for example some kind of uniform
regularity.

Remark 7. We stress that the question of the possible existence of a gap between the original
problem and its convexified version is not obvious and cannot be handled with usual Γ-convergence
tools, in particular because the function J defined by (33) is not lower semi-continuous for the weak
star topology of L∞ (it is however upper semi-continuous for that topology, as an infimum of linear
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functions). To illustrate this fact, consider the one-dimensional case of Remark 1. In this specific

situation, since φj(x) =
√

2
π sin(jx) for every j ∈ IN∗, one has

J(a) =
2

π
inf

j∈IN∗

∫ π

0

a(x) sin2(jx) dx,

for every a ∈ UL. Since the functions x 7→ sin2(jx) converge weakly to 1/2, it clearly follows that
J(a) 6 L for every a ∈ UL. Therefore, we have supa∈UL

J(a) = L, and the supremum is reached
with the constant function a(·) = L. Consider the sequence of subsets ωN of (0, π) of measure Lπ
defined by

ωN =

N⋃

k=1

(
kπ

N + 1
− Lπ

2N
,

kπ

N + 1
+

Lπ

2N

)
,

for every N ∈ IN∗. Clearly, the sequence of functions χωN
converges to the constant function

a(·) = L for the weak star topology of L∞, but nevertheless, an easy computation shows that

∫

ωN

sin2(jx) dx =





Lπ
2 − N

2j sin
(

jLπ
N

)
if (N + 1) | j,

Lπ
2 + 1

2j sin
(

jLπ
N

)
otherwise,

and hence,

lim sup
N→+∞

2

π
inf

j∈IN∗

∫

ωN

sin2(jx) dx < L.

This simple example illustrates the difficulty in understanding the limiting behavior of the func-
tional because of the lack of the lower semi-continuity, what makes possible the occurrence of a gap
in the convexification procedure. In Section 3.2, we will prove that there is no such a gap under
an additional geometric spectral assumption.

3.2 Optimal value of the problem

Let us first compute the optimal value of the convexified optimal design problem (32).

Lemma 1. The problem (32) has at least one solution. Moreover, there holds

sup
a∈UL

inf
j∈IN∗

∫

Ω

a(x)φj(x)2 dx = L, (35)

and the supremum is reached with the constant function a(·) = L on Ω.

Proof. Since J(a) is defined as the infimum of linear functionals that are continuous for the weak
star topology of L∞, it is upper semi-continuous for this topology. It follows that the problem (32)
has at least one solution, denoted by a∗(·).

In order to prove (35), we consider Cesaro means of eigenfunctions.3 Note that, since the
constant function a(·) = L belongs to UL, it follows that supa∈UL

J(a) > L. Let us prove the

3In an early version of this manuscript, we used the following two assumptions on the basis (φj)j∈IN∗ of eigen-
functions under consideration in order to prove (35).

• Weak Quantum Ergodicity on the base (WQE) property. There exists a subsequence of the sequence of

probability measures µj = φ2
j dx converging vaguely to the uniform measure 1

|Ω|
dx.

• Uniform L∞-boundedness property. There exists A > 0 such that ‖φj‖L∞(Ω) 6 A, for every j ∈ IN∗.

Note that the two assumptions above imply, in particular, that there exists a subsequence of (φ2
j )j∈IN∗ converging

to 1
|Ω|

for the weak star topology of L∞(Ω). Under these assumptions, (35) follows easily.

We warmly thank Lior Silberman who indicated to us that this assumption may be dropped by using a Cesaro
mean argument, and Nicolas Burq for having pointed out the appropriate result of [28] used hereafterin.
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converse inequality. Since

sup
a∈UL

inf
j∈IN∗

∫

Ω

a(x)φj(x)2 dx = inf
(αj)∈ℓ1(IR+)
P+∞

j=1 αj=1

+∞∑

j=1

αj

∫

Ω

a∗(x)φj(x)2 dx,

one gets, by considering particular choices of sequences (αj)j∈IN∗ , that

sup
a∈UL

inf
j∈IN∗

∫

Ω

a(x)φj(x)2 dx 6 inf
N∈IN∗

1

N

N∑

j=1

∫

Ω

a∗(x)φj(x)2 dx.

According to [28, Theorem 17.5.7 and Corollary 17.5.8.], the sequence ( 1
N

∑N
j=1 φ2

j )N∈IN∗ of Cesaro

means converges to the constant 1
|Ω| , uniformly on every compact subset of the open set Ω for the

C0 topology, and thus weakly in L1(Ω). As a consequence, since a∗ ∈ L∞(Ω), we have

inf
N∈IN∗

1

N

N∑

j=1

∫

Ω

a∗(x)φj(x)2 dx 6

∫
Ω

a∗(x) dx

|Ω| = L.

The conclusion follows.

Remark 8. In general the convexified problem (32) does not admit a unique solution. Indeed,
under symmetry assumptions on Ω there exists an infinite number of solutions. For example, in
dimension one, with Ω = (0, π), all solutions of (32) are given by all functions of UL whose Fourier
expansion series is of the form a(x) = L+

∑+∞
j=1(aj cos(2jx)+ bj sin(2jx)) with coefficients aj 6 0.

It follows from (34) and (35) that supχω∈UL
infj∈IN∗

∫
ω

φj(x)2 dx 6 L. The next result states
that this inequality is an equality under the following spectral assumptions. Note that µj = φ2

j dx
is a probability measure, for every integer j.

Quantum Unique Ergodicity (QUE) on the base. The whole sequence of prob-
ability measures µj = φ2

j dx converges vaguely to the uniform measure 1
|Ω| dx.

Uniform Lp-boundedness. There exist p ∈ (1,+∞] and A > 0 such that ‖φj‖L2p(Ω) 6

A, for every j ∈ IN∗.

We stress that these assumptions are done on a selected Hilbert basis (φj)j∈IN∗ of eigenfunctions.
We refer to Section 3.3 for many comments on that fact from the semi-classical analysis point of
view.

Theorem 6. Assume that ∂Ω is Lipschitz. Under QUE on the base and uniform Lp-boundedness
assumptions, we have

sup
χω∈UL

inf
j∈IN∗

∫

ω

φj(x)2 dx = L, (36)

for every L ∈ (0, 1).

Theorem 6 is proved in Section 3.4. It follows from this result, from Corollary 1 and Theorem

4, that the maximal value of the randomized observability constant C
(W )
T,rand(χω) over the set UL is

equal to TL/2, and that, if the spectrum of △ is simple, the maximal value of the time asymptotic

observability constant C
(W )
∞ (χω) over the set UL is equal to L/2.

The question of knowing whether the supremum in (36) is reached (existence of an optimal set)
is investigated in Section 4.1.

18



Remark 9. It follows from the proof of Theorem 6 that this statement holds true as well whenever
the set UL is replaced with the set of all measurable subsets ω of Ω, of measure |ω| = L|Ω|, that
are moreover either open with a Lipschitz boundary, or open with a bounded perimeter, or Jordan
measurable (i.e., whose boundary is of measure zero).

Remark 10. The proof of Theorem 6 is constructive and provides a theoretical way of building a
maximizing sequence of subsets, by implementing a kind of homogenization procedure. Moreover,
this proof highlights the following interesting feature:

It is possible to increase the values of J by considering subsets having an increasing
number of connected components.

Remark 11. The assumptions made in Theorem 6 are sufficient conditions implying (36), but
they are however not sharp, as proved in the next proposition.

Proposition 1. 1. Assume that Ω = (0, π)2 is a square of IR2, and consider the usual Hilbert
basis of eigenfunctions of △ made of products of sine functions. Then QUE on the base is
not satisfied. However, the equality (36) holds true.

2. Assume that Ω is the unit disk of IR2, and consider the usual basis of eigenfunctions of
△ defined in terms of Bessel functions. Then, for every p ∈ (1,+∞], the uniform Lp-
boundedness property is not satisfied, and QUE on the base is not satisfied as well. However,
the equality (36) holds true.

In this proposition, the result on the square could be expected, since the square is nothing else
but a tensorised version of the one-dimensional case (see also Remark 12 hereafter). The result in
the disk is more surprising, having in mind that, among the quantum limits in the disk, one can
find the Dirac measure along the boundary which causes the well known phenomenon of whispering
galleries. This strong concentration feature could have led to the intuition that there exists an
optimal set, concentrating around the boundary; the calculations show that it is however not the
case, and (36) is proved to hold.

The next section is devoted to gather some comments on the quantum ergodicity assumptions
made in these theorems.

3.3 Comments on quantum ergodicity assumptions

This section is organized as a series of remarks.

Remark 12. The assumptions of Theorem 6 hold true in dimension one. Indeed, it has already
been mentioned that the eigenfunctions of the Dirichlet-Laplacian operator on Ω = (0, π) are given

by φj(x) =
√

2
π sin(jx), for every j ∈ IN∗. Therefore, clearly, the whole sequence (not only a

subsequence) (φ2
j )j∈IN∗ converges weakly to 1/π for the weak star topology of L∞(0, π). The same

property clearly holds for all other boundary conditions considered in this article.

Remark 13. In dimension greater than one the situation is widely open. Generally speaking, our
assumptions are related to ergodicity properties of Ω. Before providing precise results, we recall
the following well known definition.

Quantum Ergodicity (QE) on the base property. There exists a subsequence of
the sequence of probability measures µj = φ2

j dx of density one converging vaguely to

the uniform measure 1
|Ω|dx.
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Here, density one means that there exists I ⊂ IN∗ such that #{j ∈ I | j 6 N}/N converges to 1
as N tends to +∞. Note that QE implies WQE4. It is well known that, if the domain Ω (seen as
a billiard where the geodesic flow moves at unit speed and bounces at the boundary according to
the Geometric Optics laws) is ergodic, then the property QE is satisfied. This is the contents of
Shnirelman’s Theorem, proved in [14, 19, 56, 66] in various contexts (manifolds with or without
boundary, with a certain regularity). Actually the results proved in these references are stronger,
for two reasons. Firstly, they are valid for any Hilbert basis of eigenfunctions of △, whereas, here,
we make this kind of assumption only for the specific basis (φj)j∈IN∗ that has been fixed at the
beginning of the study. Secondly, they establish that a stronger microlocal version of the QE
property holds for pseudodifferential operators, in the unit cotangent bundle S∗Ω of Ω, and not
just only on the configuration space Ω. Here however we do not need (de)concentration results in
the full phase space, but only in the configuration space. This is why, following [65], we use the
wording “on the base”.

Note that the vague convergence of the measures µj is weaker than the convergence of the
functions φ2

j for the weak topology of L1(Ω). Since Ω is bounded, the property of vague convergence

in Schnirelman Theorem is equivalent to saying that, for a subsequence of density one,
∫

ω
φj(x)2 dx

converges to |ω|/|Ω| for every Borel measurable subset ω of Ω such that |∂ω| = 0 (this follows from
the Portmanteau theorem). In contrast, the property of convergence for the weak topology of
L1(Ω) is equivalent to saying that, for a subsequence of density one,

∫
ω

φj(x)2 dx converges to
|ω|/|Ω| for every measurable subset ω of Ω. Under the assumption that all eigenfunctions are
uniformly bounded in L∞(Ω), both notions are equivalent.

Note that the notion of L∞-QE property, meaning that the above QE property holds for the
weak topology of L1, is defined and mentioned in [65] as a delicate open problem. As said above
we stress that, under the assumption that all eigenfunctions are uniformly bounded in L∞(Ω), QE
and L∞-QE are equivalent.

To the best of our knowledge, nothing seems to be known on the uniform Lp-boundedness
property. As above, it follows from the Portmanteau theorem that, under uniform Lp-boundedness
(with p > 1), the QUE on the base property holds true for the weak topology of L1.

Remark 14. Shnirelman’s Theorem lets open the possibility of having an exceptional subsequence
of measures µj converging vaguely to some other measure. The QUE assumption consists of as-
suming that the whole sequence converges vaguely to the uniform measure. It is an important issue
in quantum and mathematical physics. Note indeed that the quantity

∫
ω

φ2
j (x) dx is interpreted

as the probability of finding the quantum state of energy λ2
j in ω. We stress again on the fact

that, here, we consider a version of QUE in the configuration space only, not in the full phase
space. Moreover, we consider the QUE property for the basis (φj)j∈IN∗ under consideration, but
not necessarily for any such basis of eigenfunctions.

QUE obviously holds true in the one-dimensional case of Remark 1 (see also Remark 7) but it
does however not hold true for multi-dimensional hypercubes.

More generally, only partial results exist. The question of determining what are the possible
weak limits of the µj ’s (semi-classical measures, or quantum limits) is widely open in general. It
could happen that, even in the framework of Shnirelman Theorem, a subsequence of density zero
converge to an invariant measure like for instance a measure carried by closed geodesics (these are
the so-called strong scars, see, e.g., [18]). Note however that, as already mentioned, here we are
concerned with concentration results in the configuration space only.

The QUE on the base property, stating that the whole sequence of measures µj = φ2
j dx con-

verges vaguely to the uniform measure, postulates that there is no such concentration phenomenon.

4Note that, up to our knowledge, the notion of WQE has not been considered, whereas the notions of QE and
QUE are classical in mathematical physics.
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Note that, although rational polygonal billiards are not ergodic in the phase space, while polygo-
nal billiards are generically ergodic (see [33]), the property QE on the base holds in any rational
polygon5 (see [43]), and in any flat torus (see [54]). Apart from these recent results, and in spite
of impressive recent results around QUE (see, e.g., the survey [55]), up to now no example of
multi-dimensional domain is known where QUE on the base holds true.

Remark 15. The question of knowing whether there exists an example where there is a gap
between the convexified problem (32) and the original one (30), is an open problem. We think
that, if such an example exists, then the underlying geodesic flow ought to be completely integrable
and have strong concentration properties. As already mentioned in our framework we have fixed a
given basis (φj)j∈IN∗ of eigenvectors, and we consider only the weak limits of the measures φ2

j dx.
We are not aware of any example having strong enough concentration properties to derive a gap
statement.

Remark 16. Our results here show that shape optimization problems are intimately related
with the ergodicity properties of Ω. Notice that, in the early article [13], the authors suggested
such connections. They analyzed the exponential decay of solutions of damped wave equations.
Their results reflected that the quantum effects of bouncing balls or whispering galleries play
an important role in the failure of the exponential decay properties. At the end of the article,
the authors conjectured that such considerations could be useful in the placement and design of
actuators or sensors. Our results of this section provide precise results showing these connections
and new perspectives on those intuitions. In our view they are the main contribution of our article,
in the sense that they have pointed out the close relations existing between shape optimization
and ergodicity, and provide new open problems and directions to domain optimization analysis.

3.4 Proof of Theorem 6

In what follows, for every measurable subset ω of Ω, we set Ij(ω) =
∫

ω
φj(x)2 dx, for every j ∈ IN∗.

By definition, we have J(ω) = infj∈IN∗ Ij(ω). Note that, from QUE on the base and from the
Portmanteau theorem (see Remark 13), it follows that, for every Borel measurable subset ω of Ω
such that |ω| = L|Ω| and |∂ω| = 0, one has Ij(ω) → L as j → +∞, and hence J(ω) 6 L.

Let ω0 be an open connected subset of Ω of measure L|Ω| having a Lipschitz boundary. In the
sequel we assume that J(ω0) < L, otherwise there is nothing to prove. Using the QUE assumption,
there exists an integer j0 such that

Ij(ω0) > L − 1

4
(L − J(ω0)), (37)

for every j > j0.
Our proof below consists of implementing a kind of homogenization procedure by constructing a

sequence of open subsets ωk (starting from ω0) having a Lipschitz boundary such that |ωk| = L|ωk|
and lim

k→+∞
J(ωk) = L. Proving this limit is not easy and we are going to distinguish between lower

and higher eigenfrequencies. For the low frequencies, we are going to prove that, by moving some
mass of the initial set ω0 according to some kind of homogenization idea, we can increase the
value of J . The high frequencies will be tackled thanks to the estimate (37) implied by the QUE
assumption.

Denote by ω0 the closure of ω0, and by ωc
0 the complement of ω0 in Ω. Since Ω and ω0 have

5A rational polygon is a planar polygon whose interior is connected and simply connected and whose vertex
angles are rational multiples of π.
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a Lipschitz boundary, it follows that ω0 and Ω\ω0 satisfy a δ-cone property6, for some δ > 0 (see
[25, Theorem 2.4.7]). Consider partitions of ω0 and ωc

0,

ω0 =
K⋃

i=1

Fi and ωc
0 =

K̃⋃

i=1

F̃i, (38)

to be chosen later. As a consequence of the δ-cone property, there exists cδ > 0 and a choice of
partition (Fi)16i6K (resp. (F̃i)16i6K̃) such that, for |Fi| small enough,

∀i ∈ {1, · · · , K}
(
resp. ∀i ∈ {1, · · · , K̃}

)
,

ηi

diamFi
> cδ

(
resp.

η̃i

diam F̃i

> cδ

)
, (39)

where ηi (resp., η̃i) is the inradius7 of Fi (resp., F̃i), and diamFi (resp., diam F̃i) the diameter of

Fi (resp., of F̃i).
It is then clear that, for every i ∈ {1, . . . ,K} (resp., for every i ∈ {1, . . . , K̃}), there exists ξi ∈ Fi

(resp., ξ̃i ∈ F̃i) such that B(ξi, ηi/2) ⊂ Fi ⊂ B(ξi, ηi/cδ) (resp., B(ξ̃i, η̃i/2) ⊂ F̃i ⊂ B(ξ̃i, η̃i/cδ)),
where the notation B(ξ, η) stands for the open ball centered at ξ with radius η. These features
characterize a substantial family of sets (also called nicely shrinking sets), as it is well known in
measure theory. By continuity, the points ξi and ξ̃i are Lebesgue points of the functions φ2

j , for
every j 6 j0. This implies that, for every j 6 j0, there holds

∫

Fi

φj(x)2 dx = |Fi|φj(ξi)
2 + o(|Fi|) as ηi → 0,

for every i ∈ {1, . . . ,K}, and
∫

eFi

φj(x)2 dx = |F̃i|φj(ξi)
2 + o(|F̃i|) as η̃i → 0,

for every i ∈ {1, . . . , K̃}. Setting η = max
(
max16i6K diamFi,max16i6K̃ diam F̃i

)
and using

that
∑K

i=1 |Fi| = |ω0| = L|Ω| and
∑K̃

i=1 |F̃i| = |ωc
0| = (1 − L)|Ω|, there holds

∑K
i=1 o(|Fi|) +

∑K̃
i=1 o(|F̃i|) = o(1) as η → 0. It follows that

Ij(ω0) =

∫

ω0

φj(x)2 dx =

K∑

i=1

|Fi|φj(ξi)
2 + o(1), Ij(ω

c
0) =

∫

ωc
0

φj(x)2 dx =
K̃∑

i=1

|F̃i|φj(ξ̃i)
2 + o(1),

(40)
for every j 6 j0, as η → 0. Note that, since ωc

0 is the complement of ω0 in Ω, there holds

Ij(ω0) + Ij(ω
c
0) =

∫

ω0

φj(x)2 dx +

∫

ωc
0

φj(x)2 dx = 1, (41)

for every j. Seting hi = (1 − L)|Fi| and ℓi = L|F̃i|, we infer from (40) and (41) that

(1 − L) Ij(ω0) =

K∑

i=1

hiφj(ξi)
2 + o(1), L Ij(ω0) = L −

K̃∑

i=1

ℓiφj(ξ̃i)
2 + o(1), (42)

6We recall that an open subset Ω of IRn verifies a δ-cone property if, for every x ∈ ∂Ω, there exists a normalized
vector ξx such that C(y, ξx, δ) ⊂ Ω for every y ∈ Ω ∩ B(x, δ), where C(y, ξx, δ) = {z ∈ IRn | 〈z − y, ξ〉 > cos δ‖z −
y‖ and 0 < ‖z − y‖ < δ}.

7In other words, the largest radius of balls contained in Fi.
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for every j 6 j0, as η → 0. In what follows, we denote by Vn the Lebesgue measure of the
n-dimensional unit ball. For ε > 0 to be chosen later, we define the perturbation ωε of ω0 by

ωε =

(
ω0\

K⋃

i=1

B(ξi, εi)

)
⋃ K̃⋃

i=1

B(ξ̃i, ε̃i),

where εi = εh
1/n
i /|B(ξi, 1)|1/n = εh

1/n
i /V

1/n
n and ε̃i = εℓ

1/n
i /|B(ξ̃i, 1)|1/n = εℓ

1/n
i /V

1/n
n . Note

that it is possible to define such a perturbation, provided that

0 < ε < min

(
min

16i6K

ηiV
1/n
n

h
1/n
i

, min
16i6K̃

η̃iV
1/n
n

ℓ
1/n
i

)
.

It follows from the well known isodiametric inequality8 that |Fi| 6 Vn(diamFi)
n/2n for every

i ∈ {1, · · · , K}, and |F̃i| 6 Vn(diam F̃i)
n/2n for every i ∈ {1, · · · , K̃}, independently on the

partitions considered. Set ε0 = min(1, 2cδ). Using (39), we get

ηiV
1/n
n

h
1/n
i

=
ηiV

1/n
n

(1 − L)1/n|Fi|1/n
>

1

(1 − L)1/n

2ηi

diamFi
> ε0,

for every i ∈ {1, · · · , K}, and similarly,
eηiV

1/n
n

ℓ
1/n
i

> ε0 for every i ∈ {1, · · · , K̃}. It follows that the

previous perturbation is well defined for every ε ∈ (0, ε0]. Note that, by construction,

|ωε| = |ω0| −
K∑

i=1

εn
i |B(ξi, 1)| +

K̃∑

i=1

ε̃n
i |B(ξ̃i, 1)|

= |ω0| − εn
K∑

i=1

hi + εn
K̃∑

i=1

ℓi

= |ω0| − εn(1 − L)

K∑

i=1

|Fi| + εnL

K̃∑

i=1

|F̃i|

= |ω0| − εn(1 − L)L|Ω| + εnL(1 − L)|Ω|
= |ω0| = L|Ω|.

Using again the fact that ξi and ξ̃i are Lebesgue points of the functions φ2
j , we get

∫

B(ξi,εi)

φj(x)2 dx = |B(ξi, εi)|φj(ξi)
2 + o(|B(ξi, εi)|) as εi → 0,

for every i ∈ {1, . . . ,K}, and

∫

B(eξi,eεi)

φj(x)2 dx = |B(ξ̃i, ε̃i)|φj(ξ̃i)
2 + o(|B(ξ̃i, ε̃i)|) as ε̃i → 0,

for every i ∈ {1, . . . , K̃}. Since |B(ξi, εi)| = εn(1 − L)|Fi| and |B(ξ̃i, ε̃i)| = εnL|F̃i|, and since
∑K

i=1 |Fi| = L|Ω| and
∑K̃

i=1 |F̃i| = (1−L)|Ω|, we infer that
∑K

i=1 o(|B(ξi, εi)|)+
∑K̃

i=1 o(|B(ξ̃i, ε̃i)|) =

8The isodiametric inequality states that, for every compact K of the Euclidean space IRn, there holds |K| 6

|B(0, diam(K)/2)|.
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εno(1) as ε → 0, and thus as η → 0. It follows that

Ij(ω
ε) =

∫

ωε

φj(x)2 dx = Ij(ω0) −
K∑

i=1

∫

B(ξi,εi)

φj(x)2 dx +

K̃∑

i=1

∫

B(ξ̃i,eεi)

φj(x)2 dx,

= Ij(ω0) − εn




K∑

i=1

hiφj(ξi)
2 −

K̃∑

i=1

ℓiφj(ξ̃i)
2


+ εno(1) as η → 0,

and hence, using (42),

Ij(ω
ε) = Ij(ω0) + εn (L − Ij(ω0)) + εno(1) as η → 0,

for every j 6 j0 and every ε ∈ (0, ε0]. Since εn
0 6 1, it then follows that

Ij(ω
ε) > J(ω0) + εn(L − J(ω0)) + εno(1) as η → 0, (43)

for every j 6 j0 and every ε ∈ (0, ε0], where the functional J is defined by (26).
We now choose the subdivisions (38) fine enough (that is, η > 0 small enough) so that, for

every j 6 j0, the remainder term o(1) (as η → 0) in (43) is bounded by 1
2 (L − J(ω0)). It follows

from (43) that

Ij(ω
ε) > J(ω0) +

εn

2
(L − J(ω0)), (44)

for every j 6 j0 and every ε ∈ (0, ε0).

Let us prove that the set ωε still satisfies an inequality of the type (37) for ε small enough.
Using the uniform Lp-boundedness property and Hölder’s inequality, we have

|Ij(ω
ε) − Ij(ω0)| =

∣∣∣∣
∫

Ω

(χωε(x) − χω0
(x))φj(x)2 dx

∣∣∣∣ 6 A2

(∫

Ω

|χωε(x) − χω0
(x)|q dx

)1/q

,

for every integer j and every ε ∈ (0, ε0], where q is defined by 1
p + 1

q = 1. Moreover,

∫

Ω

|χωε(x) − χω0
(x)|q dx =

∫

Ω

|χωε(x) − χω0
(x)| dx = εn




K∑

i=1

hi +

K̃∑

i=1

ℓi


 = 2εnL(1 − L)|Ω|,

and hence |Ij(ω
ε) − Ij(ω0)| 6

(
2A2qεnL(1 − L)|Ω|

)1/q
. Therefore, setting

ε1 = min

(
ε0,

(
(L − J(ω0))

q

22q+1A2qL(1 − L)|Ω|

) 1
n

)
,

it follows from (37) that

Ij(ω
ε) > L − 1

2
(L − J(ω0)) (45)

for every j > j0 and every ε ∈ (0, ε1].
Now, using the fact that J(ω0) + εn

2 (L − J(ω0)) 6 L − 1
2 (L − J(ω0)) for every ε ∈ (0, ε0], we

infer from (44) and (45) that

J(ωε) > J(ω0) +
εn

2
(L − J(ω0)), (46)
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for every ε ∈ (0, ε1]. In particular, this inequality holds for ε such that εn = min(εn
0 , C(L−J(ω0))

q),
with the positive constant C = 1/22q+1A2qL(1−L)|Ω|. For this specific value of ε, we set ω1 = ωε,
and hence

J(ω1) > J(ω0) +
1

2
min(εn

0 , C(L − J(ω0))
q) (L − J(ω0)). (47)

Note that the constants involved in this inequality depend only on L, A and Ω. Note also that, by
construction, ω1 satisfies a δ-cone property.

If J(ω1) > L then we are done. Otherwise, we apply all the previous arguments to this new
set ω1: using QUE, there exists an integer still denoted j0 such that (37) holds with ω0 replaced
with ω1. This provides a lower bound for highfrequencies. The lower frequencies j 6 j0 are then
handled as previously, and we end up with (44) with ω0 replaced with ω1. Finally, this leads to
the existence of ω2 such that (47) holds with ω1 replaced with ω2 and ω0 replaced with ω1.

By iteration, we construct a sequence of subsets (ωk)k∈IN of Ω (satisfying a δ-cone property) of
measure |ωk| = L|Ω|, as long as J(ωk) < L, satisfying

J(ωk+1) > J(ωk) +
1

2
min(εn

0 , (L − J(ωk))q) (L − J(ωk)).

If J(ωk) < L for every integer k, then clearly the sequence (J(ωk))k∈IN is increasing, bounded
above by L, and converges to L. This finishes the proof.

Remark 17. It can be noted that, in the above construction, the subsets ωk are open, Lipschitz
and of bounded perimeter. Hence, considering the problem on the class of measurable subsets ω of
Ω, of measure |ω| = L|Ω|, that are moreover either open with a Lipschitz boundary, or open with
a bounded perimeter, or Jordan measurable, then the conclusion holds as well that the supremum
is equal to L. This proves the contents of Remark 9.

3.5 Proof of Proposition 1

First of all, we assume that Ω = (0, π)2, a square of IR2, and we consider the normalized eigen-
functions of the Dirichlet-Laplacian defined by

φj,k(x, y) =
2

π
sin(jx) sin(ky),

for all (j, k) ∈ (IN∗)2.
It is obvious that QUE on the base is not satisfied.
Let us however prove that supχω∈UL

J(χω) = L. We consider a particular subclass of measurable
subsets ω of Ω defined by ω = ω1 × ω2, where ω1 and ω2 are measurable subsets of (0, π). Using
the Fubini theorem, we have

J(χω) =
2

π
inf

j∈IN∗

∫

ω1

sin2(jx) dx × 2

π
inf

k∈IN∗

∫

ω2

sin2(ky) dy,

and hence, using the no-gap result in 1D (for the domain (0, π), according to Remark 12), it follows

that supχω∈UL
J(χω) >

|ω1||ω2|
π2 = L, whence the result.

Assume now that Ω = {x ∈ IR2 | ‖x‖ < 1} is the unit (Euclidean) disk of IR2. We consider the
normalized eigenfunctions of the Dirichlet-Laplacian given by the triply indexed sequence

φjkm(r, θ) =

{
R0k(r)/

√
2π if j = 0,

Rjk(r)Yjm(θ) if j > 1,
(48)
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for j ∈ IN, k ∈ IN∗ and m = 1, 2, where (r, θ) are the usual polar coordinates. The functions Yjm(θ)
are defined by Yj1(θ) = 1√

π
cos(jθ) and Yj2(θ) = 1√

π
sin(jθ), and Rjk by

Rjk(r) =
√

2
Jj(zjkr)

|J ′
j(zjk)| , (49)

where Jj is the Bessel function of the first kind of order j, and zjk > 0 is the kth-zero of Jj .
The eigenvalues of the Dirichlet-Laplacian are given by the double sequence of −z2

jk and are of
multiplicity 1 if j = 0, and 2 if j > 1.

To prove the no-gap statement, we use particular (radial) subsets ω, of the form ω = {(r, θ) ∈
[0, 1] × [0, 2π] | θ ∈ ωθ}, where |ωθ| = 2Lπ, as drawn on Figure 1. For such a subset ω, one has

A maximizing sequence for L=0.3

Figure 1: Particular radial subsets

∫

ω

φjkm(x)2 dx =

∫ 1

0

Rjk(r)2r dr

∫

ωθ

Yjm(θ)2 dθ =

∫

ωθ

Yjm(θ)2 dθ,

for all j ∈ IN∗, k ∈ IN∗ and m = 1, 2. For j = 0, there holds

∫

ω

φ0km(x)2 dx =

∫ 1

0

Rjk(r)2r dr

∫

ωθ

dθ = |ωθ|.

Besides, since Lπ = |Ω| =
∫ 1

0
r dr

∫
ωθ

dθ = 1
2 |ωθ|, it follows that |ωθ| = 2Lπ. By applying the

no-gap result in 1D (clearly, it can be applied as well with the cosine functions), one has

sup
ωθ⊂[0,2π]

|ωθ|=2Lπ

inf
j∈IN∗

∫

ωθ

sin2(jθ) dθ = sup
ωθ⊂[0,2π]

|ωθ|=2Lπ

inf
j∈IN∗

∫

ωθ

cos2(jθ) dθ = Lπ.

Therefore, we deduce that

sup
χω∈UL

inf
j∈IN,k∈IN∗

m∈{1,2}

∫

ω

φjkm(x)2 dx = L,

and the conclusion follows.

3.6 An intrinsic spectral variant of the problem

The problem (26), defined in Section 2.4, whenever the spectrum of △ is not simple, depends on
the Hilbert basis (φj)j∈IN∗ of L2(Ω, C) under consideration. In this section we assume that the
eigenvalues (λ2

j )j∈IN∗ of −△ are multiple, so that the choice of the basis (φj)j∈IN∗ enters into play.
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We have already seen in Theorem 5 (see Section 2.3) that, in the case of multiple eigenvalues,
the spectral expression for the time-asymptotic observability constant is more intricate and it does
not seem that our analysis can be adapted in an easy way to that case.

Besides, recall that the criterion J defined by (26) has been motivated in Section 2.3 by means
of a randomizing process on the initial data, leading to a randomized observability constant (see
Theorem 4), but then this criterion depends a priori on the preliminary choice of the basis (φj)j∈IN∗

of eigenfunctions.
In order to get rid of this dependence, and to deal with a more intrinsic criterion, it makes sense

to consider the infimum of the criteria J defined by (26) over all possible choices of orthonormal
bases of eigenfunctions. This leads us to consider the following intrinsic variant of the problem.

Intrinsic uniform optimal design problem. We investigate the problem of maxi-
mizing the functional

Jint(χω) = inf
φ∈E

∫

ω

φ(x)2 dx, (50)

over all possible subsets ω of Ω of measure |ω| = L|Ω|, where E denotes the set of all
normalized eigenfunctions of △.

Here, the word intrinsic means that this problem does not depend on the choice of the basis of
eigenfunctions of △.

As in Theorem 4, the quantity T
2 Jint(χω) can be interpreted as a constant for which the ran-

domized observability inequality (24) for the wave equation holds, but this constant is smaller than

or equal to C
(W )
T,rand(χω). Besides, there holds C

(W )
T (χω) 6

T
2 Jint(χω). Indeed this inequality follows

from the deterministic observability inequality applied to the particular solution y(t, x) = eiλtφ(x),
for every eigenfunction φ. In brief, we have

C
(W )
T (χω) 6

T

2
Jint(χω) 6 C

(W )
T,rand(χω).

As in Section 3.1, the convexified version of the above problem consists of maximizing the functional

Jint(a) = inf
φ∈E

∫

Ω

a(x)φ(x)2 dx,

over the set UL. Obviously, this problem has at least one solution, and

sup
χω∈UL

inf
φ∈E

∫

Ω

χω(x)φ(x)2 dx 6 sup
a∈UL

inf
φ∈E

∫

Ω

a(x)φ(x)2 dx = L,

the last equality being easily obtained by adapting the proof of Lemma 1.
The intrinsic counterpart of Theorem 6 is the following.

Theorem 7. Assume that the uniform measure 1
|Ω| dx is the unique closure point of the family

of probability measures µφ = φ2 dx, φ ∈ E, for the vague topology, and that the whole family of
eigenfunctions in E is uniformly bounded in L2p(Ω), for some p ∈ (1,+∞]. Then

sup
χω∈UL

inf
φ∈E

∫

ω

φ(x)2 dx = L, (51)

for every L ∈ (0, 1).
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Proof. The proof follows the same lines as in Section 3.4, replacing the integer index j with
a continuous index. The only thing that has to be noticed is the derivation of the estimate
corresponding to (44). In Section 3.4, to obtain (44) from (43), we used the fact that only a finite
number of terms have to be considered. Now the number of terms is infinite, but however one has
to consider all possible normalized eigenfunctions associated with an eigenvalue |λ| 6 |λ0|. Since
this set is compact for every λ0, there is no difficulty to extend our previous proof.

4 Nonexistence of an optimal set and remedies

In Section 4.1 we investigate the question of the existence of an optimal set, reaching the supremum
in (30). Apart from simple geometries, this question remains essentially open and we conjecture
that in general there does not exist any optimal set. In Section 4.2 we study a spectral approxi-
mation of (30), by keeping only the N first modes. We establish existence and uniqueness results,
and provide numerical simulations showing the increasing complexity of the optimal sets. We then
investigate possible remedies to the nonexistence of an optimal set of (30). As a first remark,
we consider in Section 4.3 classes of subsets sharing compactness properties, in view of ensuring
existence results for (30). Since our aim is however to investigate domains as general as possible
(only measurable), in Section 4.4, we introduce a weighted variant of the observability inequality,
where the weight is stronger on lower frequencies. We then come up with a weighted spectral
variant of (30), for which we prove, in contrast with the previous results, that there exists a unique
optimal set whenever L is large enough, and that the maximizing sequence built from a spectral
truncation is stationary.

4.1 On the existence of an optimal set

In this section we comment on the problem of knowing whether the supremum in (36) is reached
or not, in the framework of Theorem 6. This problem remains essentially open except in several
particular cases.

1D case. For the one-dimensional case already mentioned in Remarks 1, 7 and 12, we have the
following result.

Proposition 2. Assume that Ω = (0, π), with the usual Hilbert basis of eigenfunctions made of
sine functions. Let L ∈ (0, 1). The supremum of J over UL (which is equal to L) is reached if and
only if L = 1/2. In that case, it is reached for all measurable subsets ω ⊂ (0, π) of measure π/2
such that ω and its symmetric image ω′ = π − ω are disjoint and complementary in (0, π).

Proof. Although the proof of that result can be found in [23] and in [49], we recall it here shortly
since similar arguments will be used in the proof of the forthcoming Proposition 3.

A subset ω ⊂ (0, π) of Lebesgue measure Lπ solves (36) if and only if
∫

ω
sin2(jx) dx > Lπ/2

for every j ∈ IN∗, that is,
∫

ω
cos(2jx) dx 6 0. Therefore the Fourier series expansion of χω on

(0, π) must be of the form L +
∑+∞

j=1(aj cos(2jx) + bj sin(2jx)), with coefficients aj 6 0. Let
ω′ = π − ω be the symmetric set of ω with respect to π/2. The Fourier series expansion of χω′ is
L+

∑+∞
j=1(aj cos(2jx)− bj sin(2jx)). Set g(x) = L− 1

2 (χω(x)+χω′(x)), for almost every x ∈ (0, π).

The Fourier series expansion of g is −∑+∞
j=1 aj cos(2jx), with aj 6 0 for every j ∈ IN∗. Assume that

L 6= 1/2. Then the sets ω and ω′ are not disjoint and complementary, and hence g is discontinuous.

It then follows that
∑∞

j=1 aj = −∞. Besides, the sum
∑∞

j=1 aj is also the limit of
∑+∞

k=1 ak∆̂n(k)

as n → +∞, where ∆̂n is the Fourier transform of the positive function ∆n whose graph is the
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triangle joining the points (− 1
n , 0), (0, 2n) and ( 1

n , 0) (note that ∆n is an approximation of the
Dirac measure, with integral equal to 1). This is in contradiction with the fact that

∫ π

0

g(t)∆n(t)dt =
+∞∑

k=1

ak∆̂n(k),

derived from Plancherel’s Theorem.

2D square. For the two-dimensional square Ω = (0, π)2 studied in Proposition 1 we are not able
to provide a complete answer to the question of the existence. We are however able to characterize
the existence of optimal sets that are a Cartesian product.

Proposition 3. Assume that Ω = (0, π)2, with the usual basis of eigenfunctions made of products of
sine functions. Let L ∈ (0, 1). The supremum of J over the class of all possible subsets ω = ω1×ω2

of Lebesgue measure Lπ2, where ω1 and ω2 are measurable subsets of (0, π), is reached if and only
if L ∈ {1/4, 1/2, 3/4}. In that case, it is reached for all such sets ω satisfying

1

4
(χω(x, y) + χω(π − x, y) + χω(x, π − y) + χω(π − x, π − y)) = L,

for almost all (x, y) ∈ [0, π2].

Proof. A subset ω ⊂ (0, π)2 of Lebesgue measure Lπ2 is solution of (36) if and only if the inequality
4

π2

∫
ω

sin2(jx) sin2(ky) dx dy > L holds for all (j, k) ∈ (IN∗)2, that is,

∫

ω

cos(2jx) cos(2ky) dx dy >

∫

ω

cos(2jx) dx dy +

∫

ω

cos(2ky) dx dy. (52)

Set ℓx =
∫ π

0
χω(x, y) dy for almost every x ∈ (0, π), and ℓy =

∫ π

0
χω(x, y) dx for almost ev-

ery y ∈ (0, π). Letting either j or k tend to +∞ and using Fubini’s theorem in (52) leads to∫ π

0
ℓx cos(2jx) dx 6 0 and

∫ π

0
ℓy cos(2ky) dy 6 0, for every j ∈ IN∗ and every k ∈ IN∗.

Now, if ω = ω1 × ω2, where ω1 and ω2 are measurable subsets of (0, π), then the functions
x 7→ ℓx and y 7→ ℓy must be discontinuous. Using similar arguments as in the proof of Proposition
2, it follows that the functions x 7→ ℓx + ℓπ−x and y 7→ ℓy + ℓπ−y must be constant on (0, π), and
hence

∫ π

0
ℓx cos(2jx) dx = 0 and

∫ π

0
ℓy cos(2ky) dy = 0, for every j ∈ IN∗ and every k ∈ IN∗. Using

(52), it follows that
∫

ω
cos(2jx) cos(2ky) dx dy > 0, for all (j, k) ∈ (IN∗)2. The function F defined

by

F (x, y) =
1

4
(χω(x, y) + χω(π − x, y) + χω(x, π − y) + χω(π − x, π − y)),

for almost all (x, y) ∈ (0, π)2, can only take the values 0, 1/4, 1/2, 3/4 and 1, and its Fourier series
is of the form

L +
4

π2

+∞∑

j,k=1

(∫

ω

cos(2ju) cos(2kv) du dv

)
cos(2jx) cos(2ky),

and all Fourier coefficients are nonnegative. Using once again similar arguments as in the proof of
Proposition 2 (Fourier transform and Plancherel’s Theorem), it follows that F must necessarily be
continuous on (0, π)2 and thus constant. The conclusion follows.

Remark 18. All results above can obviously be generalized to multi-dimensional domains Ω
written as N cartesian products of one-dimensional sets.
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Remark 19. According to Proposition 3, if L = 1/2, then there exists an infinite number of
optimal sets. Four of them are drawn on Figure 2. It is interesting to note that the optimal
sets drawn on the left-side of the figure do not satisfy the Geometric Control Condition men-
tioned in Section 2.1, and that in this configuration the (classical, deterministic) observability

constants C
(W )
T (χω) and C

(S)
T (χω) vanish, whereas, according to the previous results, there holds

2 C
(W )
T,rand(χω) = C

(S)
T,rand(χω) = TL. This fact is in accordance with Remarks 4 and 5.

Figure 2: Ω = (0, π)2, L = 1/2.

2D disk. In the two-dimensional disk, we are also unable to provide a complete answer to the
question of the existence, but we can derive the following result.

Proposition 4. Assume that Ω = {x ∈ IR2 | ‖x‖ < 1} is the unit (Euclidean) disk of IR2, with
the usual Hilbert basis of eigenfunctions defined in terms of Bessel functions. Let L ∈ (0, 1).
The supremum of J (which is equal to L) over the class of all possible subsets ω = {(r, θ) ∈
[0, 1] × [0, 2π] | r ∈ ωr, θ ∈ ωθ} such that |ω| = Lπ, where ωr is any measurable subset of [0, 1]
and ωθ is any measurable subset of [0, 2π], is reached if and only if L = 1/2. In that case, it is
reached for all subsets ω = {(r, θ) ∈ [0, 1] × [0, 2π] | θ ∈ ωθ} of measure π/2, where ωθ is any
measurable subset of [0, 2π] such that ωθ and its symmetric image ω′

θ = 2π − ωθ are disjoint and
complementary in [0, 2π].

In order to prove this result, we are going to use the explicit expression of certain semi-classical
measures in the disk (weak limits of the probability measures φ2

j dx), and not only the Dirac
measure along the boundary which causes the well known phenomenon of whispering galleries.

Proof. We consider the Hilbert basis of eigenfunctions defined by (48), with the functions Rjk

defined by (49). Many properties are known on these functions and, in particular (see [36]):

• for every j ∈ IN, the sequence of probability measures r 7→ Rjk(r)2 r dr converges vaguely to
1 as k tends to +∞,

• for every k ∈ IN∗, the sequence of probability measures r 7→ Rjk(r)2 r dr converges vaguely
to the Dirac at r = 1 as j tends to +∞.

These convergence properties permit to identify certain quantum limits, the second property ac-
counting for the well known phenomenon of whispering galleries.

Less known is the convergence of the above sequence of measures when the ratio j/k is kept
constant. Simple computations (due to [8]) show that, when taking the limit of Rjk(r)2 r dr with
a fixed ratio j/k, and making this ratio vary, we obtain the family of probability measures

µs = fs(r) dr =
1√

1 − s2

r√
r2 − s2

χ(s,1)(r) dr,
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parametrized by s ∈ [0, 1) (we can even extend to s = 1 by defining µ1 as the Dirac at r = 1). It
follows from Portmanteau Theorem9 that

sup
a∈UL

J(a) = sup
a∈UL

inf
j∈IN,k∈IN∗

m∈{1,2}

∫ 2π

0

∫ 1

0

a(r, θ)φjkm(r, θ)2 r drdθ 6 sup
a∈UL

K(a), (53)

where

K(a) =
1

2π
inf

s∈[0,1)

∫ 1

0

∫ 2π

0

a(r, θ) dθ fs(r) dr. (54)

Lemma 2. There holds max
a∈UL

K(a) = L, and the maximum of K is reached with the constant

function a∗ = L.

Proof of Lemma 2. First, note that K(a∗ = L) = L and that the infimum in the definition of K
is then reached for every s ∈ [0, 1). Since K is concave (as infimum of linear functions), in order
to prove that a∗ = L realizes the maximum it suffices to prove that 〈DK(a∗), h〉 6 0 (directional
derivative), for every function h defined on Ω such that

∫
Ω

h(x) dx = 0. Using Danskin’s Theorem10

(see [16, 4]), we have

〈DK(a∗), h〉 =
1

2π
inf

s∈[0,1)

∫ 1

0

∫ 2π

0

h(r, θ) dθ fs(r) dr.

By contradiction, let us assume that there exists a function h on Ω such that
∫
Ω

h(x) dx = 0 and

such that
∫ 1

0

∫ 2π

0
h(r, θ) dθ fs(r) dr > 0 for every s ∈ [0, 1). Then, it follows that

∫ 1

s

∫ 2π

0

h(r, θ) dθ
r√

r2 − s2
dr > 0

for every s ∈ [0, 1), and integrating in s over [0, 1), we get

0 <

∫ 1

0

∫ 1

s

∫ 2π

0

h(r, θ) dθ
r√

r2 − s2
drds =

∫ 1

0

∫ r

0

r√
r2 − s2

ds

∫ 2π

0

h(r, θ) dθ dr

=
π

2

∫ 1

0

r

∫ 2π

0

h(r, θ) dθ dr

=
π

2

∫

Ω

h(x) dx = 0,

which is a contradiction. The lemma is proved.

According to Proposition 1 (Section 3.5), supχω∈UL
J(χω) = maxa∈UL

J(a) = maxa∈UL
K(a),

where K is defined by (54). For every a ∈ UL (which is a function of r and θ), setting b(r) =
1
2π

∫ 1

0
a(r, θ) dθ, one has

∫ 1

0
b(r)r dr = L

2 , and clearly,

max
a∈UL

K(a) = max
b∈L∞(0,1;[0,1])
R 1
0

b(r)r dr= L
2

Kr(b),

9Actually to apply Portmanteau Theorem it is required to apply the argument on every compact [0, 1 − ε], thus
excluding a neighborhood of s = 1 so as to ensure that the quantum limits under consideration are uniformly
bounded in L3/2 (for instance). Since the inequality holds for every ε > 0, the desired inequality follows anyway.

10There is however a small difficulty here in applying Danskin’s Theorem, due to the fact that the set [0, 1) is
not compact. This difficulty is easily overcome by applying the slightly more general version [4, Theorem D2] of
Danskin’s Theorem, noting that for a = L every s ∈ [0, 1) realizes the infimum in the definition of K.
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where we have set

Kr(b) = inf
s∈[0,1)

1√
1 − s2

∫ 1

0

b(r)
r√

r2 − s2
dr,

for every b ∈ L∞(0, 1). It follows from Lemma 2 that the constant function b∗ = L is a maximizer
of Kr, and Kr(b

∗) = L.

Lemma 3. The constant function b∗ = L is the unique maximizer of Kr over all functions b ∈
L∞(0, 1; [0, 1]) such that

∫ 1

0
b(r)r dr = L

2 .

Proof. Let b be a maximizer of Kr. Then, by definition, one has

∫ 1

s

b(r)
r√

r2 − s2
dr > L

√
1 − s2, (55)

for every s ∈ [0, 1). Integrating in s over [0, 1) the left-hand side of (55), using the Fubini theorem

and the fact that
∫ 1

0
b(r)r dr = L

2 , one gets

∫ 1

0

∫ 1

s

b(r)
r√

r2 − s2
drds = L

π

4
.

Besides, the integral in s over [0, 1) of the right-hand side of (55) is
∫ 1

0
L
√

1 − s2 ds = Lπ
4 . Hence

both integrals are equal, and therefore the inequality in (55) is actually an equality, that is,

1√
1 − s2

∫ 1

s

b(r)
r√

r2 − s2
dr = L, (56)

for every s ∈ [0, 1). Now, since the linear mapping

L∞(0, 1) → L∞(0, 1)

b 7→
(
s 7→ 1√

1−s2

∫ 1

s
b(r) r√

r2−s2
dr
)

(which is, by the way, an Abel transform) is clearly one-to-one, and since b∗ = L is a solution of
(56), it finally follows that b = b∗.

Coming back to the problem of maximizing K over UL, the following result easily follows from
the above lemma.

Lemma 4. An element a ∈ UL is a maximizer of K if and only if 1
2π

∫ 2π

0
a(r, θ) dθ = L, for almost

every r ∈ [0, 1].

Note that if a ∈ UL is a maximizer of J then it must be a maximizer of K.
It follows from the above lemma, from Proposition 2 and from the proof of Proposition 1 that,

for L = 1/2, the supremum of J over UL is reached for every subset ω of the form ω = {(r, θ) ∈
[0, 1] × [0, 2π] | θ ∈ ωθ}, where ωθ is any subset of [0, 2π] such that ωθ and its symmetric image
ω′

θ = 2π − ωθ are disjoint and complementary in [0, 2π].
It remains to prove that, if L 6= 1/2 then the supremum of J over UL is not reached. We argue

by contradiction. Assume that L 6= 1/2 and that χω ∈ UL is a maximizer of J . Then one has in
particular

inf
j∈IN,k∈IN∗

∫ 1

0

1

π

∫ 2π

0

χω(r, θ) sin2(jθ) dθ Rjk(r)2 r dr = L.
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Actually this equality holds as well, replacing the sine with a cosine, but we shall not use it. Writing

sin2(jθ) = 1
2 − 1

2 cos(2jθ), and noting (from Lemma 4) that
∫ 1

0
1
2π

∫ 2π

0
χω(r, θ) dθ Rjk(r)2 r dr = L,

we infer that ∫ 2π

0

∫ 1

0

χω(r, θ)Rjk(r)2 r dr cos(2jθ) dθ 6 0,

for all j ∈ IN∗ and k ∈ IN∗. Using the fact that, for every j ∈ IN, the sequence of probability
measures r 7→ Rjk(r)2 r dr converges vaguely to 1 as k tends to +∞, and using Portmanteau
Theorem, we infer that ∫ 2π

0

∫ 1

0

χω(r, θ) dr cos(2jθ) dθ 6 0,

for every j ∈ IN∗. Applying again the Fourier arguments used in the proof of Proposition 2, it

follows that the function θ 7→
∫ 1

0
χω(r, θ) dr must be continuous (since L 6= 1/2). The statement

of the proposition now easily follows.

Conjectures. In view of the results above one could expect that when Ω is the unit N -dimensional
hypercube, there exists a finite number of values of L ∈ (0, 1) such that the supremum in (36) is
reached. We do not know to what extent this conjecture can be formulated for generic domains Ω.

4.2 Spectral approximation

In this section, we consider a spectral truncation of the functional J defined by (26), and we define

JN (χω) = min
16j6N

∫

ω

φj(x)2 dx, (57)

for every N ∈ IN∗ and every measurable subset ω of Ω, and we consider the spectral approximation
of the problem (30)

sup
χω∈UL

JN (χω). (58)

As before, the functional JN is naturally extended to UL by

JN (a) = min
16j6N

∫

Ω

a(x)φj(x)2 dx,

for every a ∈ UL. We have the following result, establishing existence, uniqueness and Γ-
convergence properties.

Theorem 8. 1. For every measurable subset ω of Ω, the sequence (JN (χω))N∈IN∗ is nonin-
creasing and converges to J(χω).

2. There holds
lim

N→+∞
max
a∈UL

JN (a) = max
a∈UL

J(a).

Moreover, if (aN )n∈IN∗ is a sequence of maximizers of JN in UL, then, up to a subsequence,
it converges to a maximizer of J in UL for the weak star topology of L∞.

3. For every N ∈ IN∗, the problem (58) has a unique solution χωN ∈ UL. Moreover, ωN is
semi-analytic11 and thus it has a finite number of connected components.

11A subset ω of a real analytic finite dimensional manifold M is said to be semi-analytic if it can be written in
terms of equalities and inequalities of analytic functions, that is, for every x ∈ ω, there exists a neighborhood U of
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Proof. For every measurable subset ω of Ω, the sequence (JN (χω))N∈IN∗ is clearly nonincreasing
and thus is convergent. Note that

JN (χω) = inf





N∑

j=1

αj

∫

ω

φj(x)2 dx
∣∣∣ αj > 0,

N∑

j=1

αj = 1



 ,

J(χω) = inf




∑

j∈IN∗

αj

∫

ω

φj(x)2 dx
∣∣∣ αj > 0,

∑

j∈IN∗

αj = 1



 .

Hence, for every (αj)j∈IN∗ ∈ ℓ1(R+), one has

N∑

j=1

αj

∫

ω

φj(x)2 dx > JN (χω)

N∑

j=1

αj ,

for every N ∈ IN∗, and letting N tend to +∞ yields

∑

j∈IN∗

αj

∫

ω

φj(x)2 dx > lim
N→+∞

JN (ω)
∑

j∈IN∗

αj ,

and thus lim
N→+∞

JN (χω) 6 J(χω). This proves the first item since there always holds JN (χω) >

J(χω).
Since JN is upper semi-continuous (and even continuous) for the L∞ weak star topology and

since UL is compact for this topology, it follows that JN has at least one maximizer aN ∈ UL. Let
ā ∈ UL be a closure point of the sequence (aN )n∈IN∗ in the L∞ weak star topology. One has, for
every p 6 N ,

sup
a∈UL

J(a) 6 sup
a∈UL

JN (a) = JN (aN ) 6 Jp(a
N ),

and letting N tend to +∞ yields

sup
a∈UL

J(a) 6 lim
N→+∞

JN (aN ) 6 lim
N→+∞

Jp(a
N ) = Jp(ā),

for every p ∈ IN∗. Since Jp(ā) tends to J(ā) 6 supa∈UL
J(a) as p tends to +∞, it follows that ā is

a maximizer of J in UL. The second item is proved.
To prove the third item, let us now show that JN has a unique maximizer aN ∈ UL, which is

moreover a characteristic function. We define the simplex set

AN = {α = (αj)16j6N | αj > 0,

N∑

j=1

αj = 1}.

Note that

min
16j6N

∫

Ω

a(x)φj(x)2 dx = min
α∈AN

∫

Ω

a(x)

N∑

j=1

αjφj(x)2 dx,

x in M and 2pq analytic functions gij , hij (with 1 6 i 6 p and 1 6 j 6 q) such that

ω ∩ U =

p
[

i=1

{y ∈ U | gij(y) = 0 and hij(y) > 0, j = 1, . . . , q}.

We recall that such semi-analytic (and more generally, subanalytic) subsets enjoy nice properties, for instance they
are stratifiable in the sense of Whitney (see [21, 27]).
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for every a ∈ UL. It follows from Sion’s minimax theorem (see [58]) that there exists αN ∈ AN

such that (aN , αN ) is a saddle point of the bilinear functional (a, α) 7→
∫
Ω

a(x)
∑N

j=1 αjφj(x)2 dx

defined on UL ×AN , and

max
a∈UL

min
α∈AN

∫

Ω

a(x)

N∑

j=1

αjφj(x)2 dx = min
α∈AN

max
a∈UL

∫

Ω

a(x)

N∑

j=1

αjφj(x)2 dx

= max
a∈UL

∫

Ω

a(x)

N∑

j=1

αN
j φj(x)2 dx =

∫

Ω

aN (x)

N∑

j=1

αN
j φj(x)2 dx.

(59)

Note that the eigenfunctions φj are analytic in Ω (by analytic hypoellipticity, see [46]). We claim

that the (analytic) function x 7→ ∑N
j=1 αN

j φj(x)2 is never constant on any subset of positive
measure. This fact is proved by contradiction. Indeed otherwise this function would be constant
on Ω (by analyticity). We would then infer from the Dirichlet boundary conditions that the

function x 7→∑N
j=1 αN

j φj(x)2 vanishes on Ω̄, which is a contradiction.

It follows from this fact and from (59) that there exists λN > 0 such that aN (x) = 1 if∑N
j=1 αN

j φj(x)2 > λN , and aN (x) = 0 otherwise, for almost every x ∈ Ω. Hence there exists

ωN ∈ UL such that aN = χωN . By analyticity, it follows that ωN is semi-analytic (see Footnote
11) and thus has a finite number of connected components.

Remark 20. Note that the third item of Theorem 8 can be seen as a generalization of [24, Theorem
3.1] and [48, Theorem 3.1]. We have also provided a shorter proof.

Remark 21. In the 1D case Ω = (0, π) with Dirichlet boundary conditions, it can be proved that
the optimal set ωN maximizing JN is the union of N intervals concentrating around equidistant
points and that ωN is actually the worst possible subset for the problem of maximizing JN+1. This
is the spillover phenomenon, observed in [24] and rigorously proved in [49].

We provide hereafter several numerical simulations based on the modal approximation described
previously, which permit to put in evidence some maximizing sequences of sets.

Assume first that Ω = (0, π)2, with the normalized eigenfunctions of the Dirichlet-Laplacian
given by φj,k(x1, x2) = 2

π sin(jx1) sin(kx2), for all (x1, x2) ∈ (0, π)2. Let N ∈ IN∗. We use an
interior point line search filter method to solve the spectral approximation of the problem (30)
supχω∈UL

JN (χω), where

JN (χω) = min
16j,k6N

∫ π

0

∫ π

0

χω(x1, x2)φj,k(x1, x2)
2 dx1 dx2.

Some results are provided on Figure 3.
Assume now that Ω = {x ∈ IR2 | |x‖ < 1}, the unit Euclidean disk of IR2, with the normalized

eigenfunctions of the Dirichlet-Laplacian given as before in terms of Bessel functions by (48). In
Proposition 1, a no-gap result has been stated in this case. Some simulations are provided on
Figure 4. We observe that optimal domains are radially symmetric. This is actually an immediate
consequence of the uniqueness of a maximizer for the modal approximations problem stated in
Theorem 8 and of the fact that Ω is itself radially symmetric.

4.3 A first remedy: other classes of admissible domains

According to Proposition 2, we know that, in the one-dimensional case, the problem (30) is ill-
posed in the sense that it has no solution except for L = 1/2. In larger dimension, we expect a
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Figure 3: Ω = (0, π)2, with Dirichlet boundary conditions. Row 1: L = 0.2; row 2: L = 0.4; row
3: L = 0.6. From left to right: N = 2 (4 eigenmodes), N = 5 (25 eigenmodes), N = 10 (100
eigenmodes), N = 20 (400 eigenmodes). The optimal domain is in green.

similar conclusion. One of the reasons is that the set UL defined by (29) is not compact for the
usual topologies, as discussed in Remark 6. To overcome this difficulty, a possibility consists of
defining a new class of admissible sets, VL ⊂ UL, enjoying sufficient compactness properties and to
replace the problem (30) with

sup
χω∈VL

J(χω). (60)

Of course, now, the extremal value is not necessarily the same since the class of admissible domains
has been further restricted.

To ensure the existence of a maximizer χω∗ of (60), it suffices to endow VL with a topology,
finer than the weak star topology of L∞, for which VL is compact. Of course in this case, one has

J(χω∗) = max
χω∈VL

J(χω) 6 sup
χω∈UL

J(χω).

This extra compactness property can be guaranteed by, for instance, considering some α > 0, and
then any of the following possibles choices

VL = {χω ∈ UL | PΩ(ω) 6 α}, (61)

where PΩ(ω) is the relative perimeter of ω with respect to Ω,

VL = {χω ∈ UL | ‖χω‖BV (Ω) 6 α}, (62)
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Figure 4: Ω = {x ∈ IR2 | |x‖ 6 1}, with Dirichlet boundary conditions, and L = 0.2. Optimal
domain for N = 1 (1 eigenmode), N = 2 (4 eigenmodes), N = 5 (25 eigenmodes), N = 10 (100
eigenmodes) and N = 20 (400 eigenmodes).

where ‖ · ‖BV (Ω) is the BV (Ω)-norm of all functions of bounded variations on Ω (see for example
[2]), or

VL = {χω ∈ UL | ω satisfies the 1/α-cone property}, (63)

(see Section 3.4, footnote 6). Naturally, the optimal set then depends on the bound α under
consideration, and numerical simulations (not reported here) show that, as α tends to +∞, the
family of optimal sets behaves as the maximizing sequence built in Section 4.2, so that, in particular,
the number of connected components grows as α is increasing.

The point of view that we adopted in this article is however not to restrict the classes of possible
subsets ω, but rather to discuss the physical relevance of the criterion under consideration. In the
next subsection we rather consider a modification of the spectral criterion, based on physical
considerations.

4.4 A second remedy: weighted observability inequalities

First, observe that, in the observability inequality (11), by definition, all modes (in the spectral
expansion) have the same weight. It is however expected (and finally, observed) that the problem
is difficult owing to the increasing complexity of the geometry of highfrequency eigenfunctions.
Moreover, measuring lower frequencies is in some sense physically different from measuring high-
frequencies. It seems then relevant to introduce a weighted version of the observability inequality
(11), by considering the inequality

C
(W )
T,σ (χω)

(
‖(y0, y1)‖2

L2×H−1 + σ‖y0‖2
H−1

)
6

∫ T

0

∫

ω

|y(t, x)|2 dx dt, (64)

where σ > 0 is some weight.
This inequality holds true under the GCC. Since the norm used at the left-hand side is stronger

than the one of (11), it follows that C
(W )
T,σ (χω) 6 C

(W )
T (χω), for every σ > 0.
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From this weighted observability inequality (64), we can define as well the randomized observ-
ability constant and the time asymptotic observability constant (we do not provide the details),
and we come up with the following result, which is the weighted version of Theorem 4 and of
Corollary 1.

Proposition 5. For every measurable subset ω of Ω, there holds 2 C
(W )
T,σ,rand

(χω) = TJσ(χω), and

moreover if every eigenvalue of △ is simple, then 2 C
(W )
∞,σ(χω) = Jσ(χω), where

Jσ(χω) = inf
j∈IN∗

λ2
j

σ + λ2
j

∫

ω

φj(x)2 dx. (65)

It is seen from that proposition that the (initial data or time) averaging procedures do not lead
to the functional J defined by (26) but to the slightly different (weighted) functional Jσ defined
by (65). Let us now investigate the problem

sup
χω∈UL

Jσ(χω). (66)

We will see that the study of (65) differs significantly from the one considered previously. Note that
the sequence (λ2

j/(σ+λ2
j ))j∈IN∗ is monotone increasing, and that 0 < λ2

1/(σ+λ2
1) 6 λ2

j/(σ+λ2
j ) < 1

for every j ∈ IN∗.
As in Section 3.1, the convexified version of this problem is defined accordingly by

sup
a∈UL

Jσ(a), (67)

where

Jσ(a) = inf
j∈IN∗

λ2
j

σ + λ2
j

∫

Ω

a(x)φj(x)2 dx. (68)

As in Sections 3.1 and 3.2, under the assumption that there exists a subsequence of (φ2
j )j∈IN∗

converging to 1
|Ω| in weak star L∞ topology (L∞-WQE property), the problem (67) has at least

one solution, and supa∈UL
Jσ(a) = L, and the supremum is reached with the constant function

a = L.
We will next establish a no-gap result, similar to Theorem 6, but only valuable for nonsmall

values of L. Actually, we will show that the present situation differs significantly from the previous

one, in the sense that, if
λ2

1

σ+λ2
1

< L < 1, then the highfrequency modes do not play any role in

Problem (66). Before coming to that result, let us first define a truncated version of the problem
(66). For every N ∈ IN∗, we define

Jσ,N (a) = inf
16j6N

λ2
j

σ + λ2
j

∫

Ω

a(x)φj(x)2 dx. (69)

An immediate adaptation of the proof of Theorem 8 yields the following result.

Proposition 6. For every N ∈ IN∗, the problem

sup
a∈UL

Jσ,N (a) (70)

has a unique solution aN , which is moreover the characteristic function of a set ωN . Furthermore,
ωN is semi-analytic (see Footnote 11), and thus it has a finite number of connected components.
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The main result of this section is the following.

Theorem 9. Assume that the QUE on the base and uniform L∞-boundedness properties are

satisfied, for the selected Hilbert basis (φj)j∈IN∗ of eigenfunctions. Let L ∈ (
λ2

1

σ+λ2
1
, 1). Then there

exists N0 ∈ IN∗ such that

max
χω∈UL

Jσ(χω) = max
χω∈UL

Jσ,N (χω) 6
λ2

1

σ + λ2
1

< L, (71)

for every N > N0. In particular, the problem (66) has a unique solution χωN0 , and moreover the
set ωN0 is semi-analytic and has a finite number of connected components.

Proof. Using the same arguments as in Lemma 1, it is clear that the problem (67) has at least
one solution, denoted by a∞. Let us first prove that there exists N0 ∈ IN∗ such that Jσ(a∞) =

Jσ,N0
(a∞). Let ε ∈ (0, L− λ2

1

σ+λ2
1
). It follows from the L∞-QUE property that there exists N0 ∈ IN∗

such that
λ2

j

σ + λ2
j

∫

Ω

a∞(x)φj(x)2 dx > L − ε, (72)

for every j > N0. Therefore,

Jσ(a∞) = inf
j∈IN∗

λ2
j

σ + λ2
j

∫

Ω

a∞(x)φj(x)2 dx

= min

(
inf

16j6N0

λ2
j

σ + λ2
j

∫

Ω

a∞(x)φj(x)2 dx, inf
j>N0

λ2
j

σ + λ2
j

∫

Ω

a∞(x)φj(x)2 dx

)

> min (Jσ,N0
(a∞), L − ε) = Jσ,N0

(a∞),

since L − ε >
λ2

1

σ+λ2
1

and Jσ,N0
(a∞) 6

λ2
1

σ+λ2
1
. It follows that Jσ(a∞) = Jσ,N0

(a∞).

Let us now prove that Jσ(a∞) = Jσ,N0
(aN0), where aN0 is the unique maximizer of Jσ,N0

(see Proposition 6). By definition of a maximizer, one has Jσ(a∞) = Jσ,N0(a
∞) 6 Jσ,N0(a

N0). By
contradiction, assume that Jσ,N0(a

∞) < Jσ,N0(a
N0). Let us then design an admissible perturbation

at ∈ UL of a∞ such that Jσ(at) > Jσ(a∞), which raises a contradiction with the optimality of a∞.
For every t ∈ [0, 1], set at = a∞ + t(aN0 − a∞). Since Jσ,N0 is concave, one gets

Jσ,N0
(at) > (1 − t)Jσ,N0

(a∞) + tJσ,N0
(aN0) > Jσ,N0

(a∞),

for every t ∈ (0, 1], which means that

inf
16j6N0

λ2
j

σ + λ2
j

∫

Ω

at(x)φj(x)2 dx > inf
16j6N0

λ2
j

σ + λ2
j

∫

Ω

a∞(x)φj(x)2 dx > Jσ(a∞), (73)

for every t ∈ (0, 1]. Besides, since aN0(x)−a∞(x) ∈ (−2, 2) for almost every x ∈ Ω, it follows from
(72) that

λ2
j

σ + λ2
j

∫

Ω

at(x)φ2
j (x) dx =

λ2
j

σ + λ2
j

∫

Ω

a∞(x)φj(x)2 dx + t
λ2

j

σ + λ2
j

∫

Ω

(aN0(x) − a∞(x))φj(x)2 dx

> L − ε − 2t,

for every j > N0. Let us choose t such that 0 < t < 1
2

(
L−ε− λ2

1

σ+λ2
1

)
, so that the previous inequality

yields
λ2

j

σ + λ2
j

∫

Ω

at(x)φj(x)2 dx >
λ2

1

σ + λ2
1

>
λ2

1

σ + λ2
1

∫

Ω

a∞(x)φ1(x)2 dx > Jσ(a∞), (74)
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for every j > N0. Combining the estimate (73) on the low modes with the estimate (74) on the
high modes, we conclude that

Jσ(at) = inf
j∈IN∗

λ2
j

σ + λ2
j

∫

Ω

at(x)φj(x)2 dx > Jσ(a∞),

which contradicts the optimality of a∞.
Therefore Jσ,N0

(a∞) = Jσ(a∞) = Jσ,N0
(aN0), and the result follows.

Remark 22. Under the assumptions of the theorem, there is no gap between the problem (66)
and its convexified formulation (67), as before. But, in contrast to the previous results, here
there always exists a maximizer in the class of characteristic functions whenever L is larger than
a threshold value, and moreover, this optimal set can be computed from a truncated formulation
(69) for a certain value of N . In other words, the maximizing sequence (χωN )N∈IN∗ resulting from
Proposition 6 is stationary. Here, the high modes play no role, whereas in the previous results
all modes had the same impact. This result is due to the fact that we added in the left hand-
side of the observability inequalities the weight σ > 0. It can be noted that the threshold value

λ2
1

σ+λ2
1
, accounting for the existence of an optimal set, becomes smaller when σ increases. This is in

accordance with physical intuition.

Remark 23. Here, if L is not too small, then there exists an optimal set (sharing nice regularity
properties) realizing the largest possible time asymptotic and randomized observability constants.
The optimal value of these constants is known to be less than L but its exact value is unknown.
It is related to solving a finite dimensional numerical optimization problem.

Remark 24. In the case where L 6
λ2

1

σ+λ2
1
, we do not know whether there is a gap or not between

the problem (66) and its convexified formulation (67). Adapting shrewdly the proof of Theorem 6
does not seem to allow one to derive a no-gap result. Nevertheless, using these arguments we can

prove that supχω∈UL
Jσ(χω) >

λ2
1

σ+λ2
1
L.

Remark 25. We formulate the following two open questions.

• Under the assumptions of Theorem 9, does the conclusion hold true for every L ∈ (0, 1)?

• Does the statement of Theorem 9 still hold true under weaker ergodicity assumptions, for
instance is it possible to weaken QUE into WQE (defined in Footnote 3)?

Remark 26. The QUE assumption made in Theorem 9 is very strong, as already discussed. It is
true in the 1D case but, up to now, no example of a multi-dimensional domain satisfying such an
assumption is known. Anyway, we are able to prove that the conclusion of Theorem 9 holds true
as well in Ω = (0, π)n with the usual basis made of products of sine functions.

Proposition 7. Assume that Ω = (0, π)n, with the normalized eigenfunctions of △ given by

φj1...jn(x1, . . . , xn) =
(

2
π

)n/2∏n
k=1 sin(jkxk), for all (j1, . . . , jn) ∈ (IN∗)n, for every x ∈ (0, π).

There exists L0 ∈ (0, 1) and N0 ∈ IN∗ such that

max
χω∈UL

Jσ(χω) = max
χω∈UL

Jσ,N (χω), (75)

for every L ∈ [L0, 1) and every N > N0.
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Proof. The proof follows the same lines as the one of Theorem 9. Nevertheless, the inequality (72)
may not hold since QUE on the base is not satisfied here, and has to be questioned. In the specific
case under consideration, (72) is replaced with the following assertion: for any ε > 0, there exist
N0 ∈ IN∗ and L0 ∈ (0, 1) such that

λ2
j1...jn

σ + λ2
j1...jn

∫

(0,π)n

a(x)φj1...jn(x)2 dx > L − ε,

for every a ∈ UL, for every L ∈ [L0, 1) and for all (j1, . . . , jn) ∈ (IN∗)n such that
∑n

k=1 jk > N0.
It suffices then to apply it to a = a∞, where a∞ denotes a solution to the problem (67). This
assertion indeed follows from the following lemma.

Lemma 5. Let M > 0 and a ∈ L∞((0, π)n, [0, M ]). Then

inf
(j1,...,jn)∈(IN∗)n

∫

(0,π)n

a(x)φj1...jn(x)2 dx >
M

π
F [n]

(∫
(0,π)n a(x) dx

Mπn−1

)
, (76)

where F (x) = x − sin x for every x ∈ [0, π] and F [n] = F ◦ · · · ◦ F (n times).

Proof. We are going to prove this lemma by induction on n. Let us first establish (76) for n = 1.
Let j fixed. Clearly, the minimum of the functional a ∈ L∞((0, π), [0, M ]) 7→

∫ π

0
a(x) sin2(jx)dx

is reached at a = Mχω, with ω =
(
0, |ω|

2j

) ⋃ ⋃j−1
k=1

(
k
j − |ω|

2j , k
j + |ω|

2j

) ⋃ (
1 − |ω|

2j , π
)

. It is

remarkable that the value of the functional over this set does not depend on j. Indeed, we have

∫

ω

sin2(jπx) dx = 2j

∫ |ω|/2j

0

sin2 jx dx = 2

∫ |ω|/2

0

sin2 u du =
1

2
(|ω| − sin(|ω|)).

Since a = Mχω, we have
∫ π

0
a(x) dx = M |ω|, and we conclude that

2

π

∫ π

0

a(x) sin2(jx)dx >
1

π

∫ π

0

a(x) dx − M

π
sin

∫ π

0
a(x) dx

M
=

M

π
F

(∫ π

0
a(x) dx

M

)
.

For n > 2, we prove the general formula (76) by induction on n. Let us assume that (76) has
been established for integers k 6 n − 1, and let us prove it for the integer k = n. In the reasoning
below, we use the notation x′ = (x2, . . . , xn), and thus x = (x1, xn). Let a ∈ L∞((0, π)n, [0, M ])
be an arbitrary function. Using the Fubini theorem, we have

(
2

π

)n ∫

(0,π)n

a(x)
n∏

k=1

sin2(jkxk) dx =

(
2

π

)n−1 ∫

(0,π)n−1

a1(x
′)

n∏

k=2

sin2(jkxk) dx′,

with a1(x
′) = 2

π

∫ π

0
a(x1, x

′) sin2(j1x1) dx1. Since a takes its values in [0, M ], we get that a1 ∈
L∞((0, π), [0, M ]). Using the induction assumption (formula (76) with n − 1), it follows that

(
2

π

)n ∫

(0,π)n

a(x)

n∏

k=1

sin2(jkxk) dx >
M

π
F [n−1]

(
1

Mπn−2

∫

(0,π)n−1

a1(x
′) dx′

)
. (77)

Note that 0 6
1

Mπn−2

∫
(0,π)n−1 a1(x

′) dx′ 6 π. Now, using the Fubini theorem, we have

∫

(0,π)n−1

a1(x
′) dx′ =

2

π

∫

(0,π)n

a(x) sin2(j1x1) dx =
2

π

∫ π

0

b1(x1) sin2(j1x1) dx1,
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with b1(x1) =
∫
(0,π)n−1 a(x1, x

′)dx′. Since a takes its values in [0, M ], it follows that b1 ∈
L∞((0, π), [0, Mπn−1]). Therefore, applying the formula (76) with n = 1, we get

2

π

∫ π

0

b1(x1) sin2(j1x1) dx1 > Mπn−2F

(∫ π

0
b1(x1) dx1

Mπn−1

)
,

and therefore, ∫

(0,π)n−1

a1(x
′) dx′

> Mπn−2F

(∫
(0,π)n a(x) dx

Mπn−1

)
. (78)

Again, 0 6
1

Mπn−1

∫
(0,π)n a(x) dx 6 π. Since F : [0, π] → [0, π] is an increasing function, we infer

(76) from (77) and (78).

Let ε > 0. Applying Lemma 5 with M = 1 to a∞ ∈ UL, we get the existence of L0 such that
for any L > L0 and for any (j1, . . . , jn) ∈ (IN∗)n, then

∫

(0,π)n

a∞(x)φj1...jn
(x)2 dx >

1

π
F [n](Lπ) > 1 − ε,

since F [n](Lπ) → π as L → 1. Moreover, since
λ2

j1...jn

σ+λ2
j1...jn

→ 1 as
∑n

k=1 jk → +∞, there exists

N0 ∈ IN∗ such that
λ2

j1...jn

σ+λ2
j1...jn

> 1 − ε as long as
∑n

k=1 jk > N0. Therefore,

λ2
j1...jn

σ + λ2
j1...jn

∫

(0,π)n

a∞(x)φj1...jn
(x)2 dx > 1 − 2ε > L − 2ε

as long as
∑n

k=1 jk > N0 and the conclusion follows.

We end this section by providing several numerical simulations based on the modal approxima-
tion of this problem for the Euclidean square Ω = (0, π)2. Note that we are then in the framework
of Remark 26, and hence the conclusion of Proposition 7 holds true. As in Section 4.2, we use
an interior point line search filter method to solve the spectral approximation of the problem
supχω∈UL

JN,σ(χω), with σ = 1. Some numerical simulations are provided on Figures 5, where the
optimal domains are represented for L ∈ {0.2, 0.4, 0.6, 0.9} (by row). In the three first cases, the
number of connected components of the optimal set seems to increase with N . On the last row
(L = 0.9), the numerical results illustrate the conclusion of Proposition 7, showing clear evidence
of the stationarity feature of the maximizing sequence proved in this proposition.

5 Generalization to wave and Schrödinger equations on man-

ifolds with various boundary conditions

In this section we show how all the previous results can be generalized to wave and Schrödinger
equations posed on any bounded connected subset of a Riemannian manifold, with various possible
boundary conditions. For each step of our analysis we explain what are the modifications that have
to be taken into account.
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Figure 5: Ω = (0, π)2, with Dirichlet boundary conditions. Row 1: L = 0.2; row 2: L = 0.4; row
3: L = 0.6.; row 4: L = 0.9. From left to right: N = 2 (4 eigenmodes), N = 5 (25 eigenmodes),
N = 10 (100 eigenmodes).

General framework. Let (M, g) be a smooth n-dimensional Riemannian manifold, n > 1. Let
T be a positive real number and Ω be an open bounded connected subset of M . We consider both
the wave equation

∂tty = △gy, (79)

and the Schrödinger equation
i∂ty = △gy, (80)

in (0, T )×Ω. Here, △g denotes the usual Laplace-Beltrami operator on M for the metric g. If the
boundary ∂Ω of Ω is nonempty, then we consider boundary conditions

By = 0 on (0, T ) × ∂Ω, (81)

where B can be either:

• the usual Dirichlet trace operator, By = y|∂Ω,

• or Neumann, By = ∂y
∂n |∂Ω

, where ∂
∂n is the outward normal derivative on the boundary ∂Ω,

• or mixed Dirichlet-Neumann, By = χΓ0
y|∂Ω+χΓ1

∂y
∂n |∂Ω

, where ∂Ω = Γ0∪Γ1 with Γ0∩Γ1 = ∅,
and χΓi

is the characteristic function of Γi, i = 0, 1,
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• or Robin, By = ∂y
∂n |∂Ω

+βy|∂Ω, where β is a nonnegative bounded measurable function defined

on ∂Ω, such that
∫

∂Ω
β > 0.

Our study encompasses the case where ∂Ω = ∅: in this case, (81) is unnecessary and Ω is a
compact connected n-dimensional Riemannian manifold. The canonical Riemannian volume on
M is denoted by Vg, inducing the canonical measure dVg. Measurable sets12 are considered with
respect to the measure dVg.

In the boundaryless or in the Neumann case, the Laplace-Beltrami operator is not invertible
on L2(Ω, C) but is invertible in

L2
0(Ω, C) = {y ∈ L2(Ω, C) |

∫

Ω

y(x) dx = 0}.

In what follows, the notation X stands for the space L2
0(Ω, C) in the boundaryless or in the

Neumann case and for the space L2(Ω, C) otherwise. We denote by A = −△g the Laplace operator
defined on D(A) = {y ∈ X | Ay ∈ X and By = 0} with one of the above boundary conditions
whenever ∂Ω 6= ∅. Note that A is a selfadjoint positive operator.

For all (y0, y1) ∈ D(A1/2) × X, there exists a unique solution y of the wave equation (79) in
the space C0(0, T ;D(A1/2)) ∩ C1(0, T ;X) such that y(0, ·) = y0(·) and ∂ty(0, ·) = y1(·).

Let ω be an arbitrary measurable subset of Ω of positive measure. The equation (79) is said to

be observable on ω in time T if there exists C
(W )
T (χω) > 0 such that

C
(W )
T (χω)‖(y0, y1)‖2

D(A1/2)×X 6

∫ T

0

∫

ω

|∂ty(t, x)|2 dVg dt, (82)

for all (y0, y1) ∈ D(A1/2)×X. This observability inequality holds if (ω, T ) satisfies the GCC in Ω.
A similar observability problem can be formulated for the Schrödinger equation (80). For

every y0 ∈ D(A), there exists a unique solution y of (80) in the space C0(0, T ;D(A)) such that

y(0, ·) = y0(·). The equation (80) is said to be observable on ω in time T if there exists C
(S)
T (χω) > 0

such that

C
(S)
T (χω)‖y0‖2

D(A) 6

∫ T

0

∫

ω

|∂ty(t, x)|2 dVg dt, (83)

for every y0 ∈ D(A). If (ω, T ∗) satisfies the GCC then the observability inequality (83) holds for
every T > 0 (see [39]). This is so since the Schrödinger equation can be viewed as a wave equation
with an infinite speed of propagation. The GCC is sufficient to ensure the observability for the
Schrödinger equation but the obtention of sharp necessary and sufficient conditions is a widely
open problem (see [38]). The norms that are used will be computed in a spectral way, see below.

Remark 27. These inequalities can be formulated in different ways by adequate choices of the
functional spaces. For instance, the observability inequality (11) is equivalent to

C
(W )
T (χω)‖(y0, y1)‖2

X×(D(A1/2))′ 6

∫ T

0

∫

ω

|y(t, x)|2 dVg dt, (84)

for all (y0, y1) ∈ X×(D(A1/2))′, with the same observability constants. Here the dual is considered
with respect to the pivot space X. The space (D(A1/2))′ is endowed with the norm defined by

‖z‖(D(A1/2))′ = sup
w∈D(A1/2)

‖w‖
D(A1/2)

61

〈z, w〉(D(A1/2))′,D(A1/2).

12If M is the usual Euclidean space IRn then dVg = dx is the usual Lebesgue measure.
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For instance if A = −△ with Dirichlet boundary conditions as it has been considered previously,
then the observability inequality (84) exactly coincides with (11): we then recover the observability
inequality that we considered up to now throughout the paper for wave equations with Dirichlet
boundary conditions.

Similarly, the observability inequality (83) is equivalent to

C
(S)
T (χω)‖y0‖2

X 6

∫ T

0

∫

ω

|y(t, x)|2 dVg dt, (85)

for every y0 ∈ X.

Spectral expansions. We fix an orthonormal Hilbert basis (φj)j∈IN∗ of X consisting of eigen-
functions of A on Ω, associated with the positive eigenvalues (λ2

j )j∈IN∗ .

Remark 28. In the Neumann case or in the case ∂Ω = ∅, we take X = L2
0(Ω) to keep a uniform

presentation. Otherwise in X = L2(Ω), in those cases, we would have λ1 = 0 (simple eigenvalue)
and φ1 = 1/

√
|Ω|.

Remark 29. There holds

D(A) =

{
y ∈ X |

+∞∑

j=1

λ4
j |〈y, φj〉L2 |2 < +∞

}
, D(A1/2) =

{
y ∈ X |

+∞∑

j=1

λ2
j |〈y, φj〉L2 |2 < +∞

}
,

and for every y ∈ D(A) we set ‖y‖2
D(A) =

∑+∞
j=1 λ4

j |〈y, φj〉L2 |2 and ‖y‖2
D(A1/2)

=
∑+∞

j=1 λ2
j |〈y, φj〉L2 |2.

In the case of Dirichlet boundary conditions, and if ∂Ω is C2 then one has D(A) = H2(Ω, C)∩
H1

0 (Ω, C) (endowed with the norm ‖u‖H2∩H1
0

= ‖△u‖L2) and D(A1/2) = H1
0 (Ω, C) (endowed

with the norm ‖u‖H1
0

= ‖∇u‖L2). For Neumann boundary conditions, one has D(A) = {y ∈
H2(Ω, C) | ∂y

∂n |∂Ω
= 0 and

∫
Ω

y(x) dx = 0} and D(A1/2) = {y ∈ H1(Ω, C) |
∫
Ω

y(x) dx = 0}. In the

mixed Dirichlet-Neumann case (with Γ0 6= ∅), one has D(A) = {y ∈ H2(Ω, C) | y|Γ0
= ∂y

∂n |Γ1
= 0}

and D(A1/2) = H1
Γ0

(Ω, C) = {y ∈ H1(Ω, C) | y|Γ0
= 0} (see e.g. [37]).

For every y0 ∈ D(A), the solution y ∈ C0(0, T ;D(A)) of (80) such that y(0, ·) = y0(·) can be
expanded in Fourier series as follows

y(t, x) =

+∞∑

j=1

cje
iλ2

j tφj(x).

Moreover, ‖y0‖2
D(A) =

∑+∞
j=1 λ4

j |cj |2, the sequence (λ2
jcj)j∈IN∗ being in ℓ2(C) and determined in

terms of y0 by cj =
∫
Ω

y0(x)φj(x) dVg, for every j ∈ IN∗. It follows that

∫ T

0

∫

ω

|∂ty(t, x)|2 dVg dt =

+∞∑

j,k=1

λ2
jλ

2
kαjk

∫

ω

φj(x)φk(x) dVg,

with

αjk = cj c̄k

∫ T

0

ei(λ2
j−λ2

k)t dt =
2cj c̄k

λ2
j − λ2

k

sin

(
(λ2

j − λ2
k)

T

2

)
ei(λ2

j−λ2
k) T

2 ,

whenever j 6= k, and αjj = |cj |2T whenever j = k. The observability constant is given by

C
(S)
T (χω) = inf

(λ2
jcj)∈ℓ2(C)

P+∞

j=1 λ4
j |cj |2=1

∫ T

0

∫

ω

∣∣∣∣∣∣

+∞∑

j=1

λ2
jcje

iλ2
j tφj(x)

∣∣∣∣∣∣

2

dVg dt.
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Making as in Section 2.3 a random selection of all possible initial data for the Schrödinger equation
(80) leads to define its randomized version as

C
(S)
T,rand(χω) = inf

(λ2
jcj)∈ℓ2(C)

P+∞

j=1 λ4
j |cj |2=1

E



∫ T

0

∫

ω

∣∣∣∣∣∣

+∞∑

j=1

λ2
jβ

ν
j cje

iλ2
j tφj(x)

∣∣∣∣∣∣

2

dVg dt


 ,

where (βν
j )j∈IN∗ denotes a sequence of independent Bernoulli random variables on a probability

space (X ,A, P). This corresponds to considering the randomized observability inequality

C
(S)
T (χω)‖y0‖2

D(A) 6 E

(∫ T

0

∫

ω

|∂tyν(t, x)|2 dVg dt

)
,

for every y0(·) ∈ D(A), where yν denotes the solution of the Schrödinger equation with the random
initial data y0

ν(·) determined by its Fourier coefficients cν
j = βν

j cj .
Theorem 4 then still holds in this general framework, and one has

2 C
(W )
T,rand(χω) = C

(S)
T,rand(χω) = T inf

j∈IN∗

∫

ω

φj(x)2 dVg = TJ(χω),

for every measurable subset ω of Ω, where J is defined as before by (26).
The time asymptotic observability constant is defined accordingly for the Schrödinger equation

by

C(S)
∞ (χω) = inf

{
lim

T→+∞

1

T

∫ T

0

∫
ω
|∂ty(t, x)|2 dVg dt

‖y0‖2
D(A)

∣∣ y0 ∈ D(A) \ {0}
}

. (86)

Corollary 1 holds as well, stating that 2C
(W )
∞ (χω) = C

(S)
∞ (χω) = J(χω) whenever every eigenvalue

of A is simple. Note that the spectrum of the Neumann-Laplacian is known to consist of simple
eigenvalues for many choices of Ω: for instance, it is proved in [26] that this property holds for
almost every polygon of IR2 having N vertices.

Main results under quantum ergodicity assumptions. Theorem 6 is unchanged in this
general framework. Several very minor things in the proof have to be (obviously) adapted to the
general Riemannian setting.

Spectral approximation. It must be noted that the third point of Theorem 8 can hold true
only if M is an analytic Riemannian manifold and if Ω has a nontrivial boundary. This assumption
is indeed used at the end of the proof of this theorem, when showing by contradiction that the
function x 7→∑N

j=1 αN
j φj(x)2 is never constant on any subset of positive measure. The reasoning

works when dealing with Dirichlet boundary conditions, but not for any other boundary condition.
Actually, at this step it is required that the family (φj)j∈IN∗ of eigenfunctions satisfies the following
geometrical property:

Strong Conic Independence Property. If there exists a subset E of Ω of positive Lebesgue
measure, an integer N ∈ IN∗, a N -tuple (αj)16j6N ∈ (IR+)N , and C > 0 such that∑N

j=1 αj |φj(x)|2 = C almost everywhere on E, then there must hold C = 0 and αj = 0
for every j ∈ {1, · · · , N}.

This property is defined and used in [52]. We have thus to distinguish between the different
boundary conditions under consideration. Up to our knowledge, the general validity of this property
is an open problem. Nevertheless, this property holds true in the following cases:
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• Dirichlet-Laplacian;

• mixed Dirichlet-Neumann Laplacian defined on D(A0) = {y ∈ H2(Ω, C) | χΓ0
y|∂Ω = 0}, with

Γ0 ⊂ ∂Ω and Hn−1(Γ0) > 0;

• Neumann-Laplacian on the n-dimensional square, defined on D(A0) = {y ∈ H2(Ω, C) |
∫
Ω

y =

0 and ∂y
∂n = 0 on ∂Ω}, with the usual Hilbert basis of eigenfunctions consisting of products

of cosine functions.

In all those cases, the third point of Theorem 8 holds true.

Numerical simulations. Some results are provided on Figure 6 in the case Ω = (0, π)2 with
Neumann boundary conditions. They illustrate as well the non-stationarity feature of the maxi-
mizing sequence of optimal sets ωN .

Figure 6: Ω = (0, π)2, with Neumann boundary conditions. Row 1: L = 0.2; row 2: L = 0.4; row
3: L = 0.6. From left to right: N = 2 (4 eigenmodes), N = 5 (25 eigenmodes), N = 10 (100
eigenmodes), N = 20 (400 eigenmodes).

Remedy: weighted observability inequalities In the general framework, the weighted ver-
sions (as discussed in Section 4.4) of the observability inequalities (82) and (83) are

C
(W )
T,σ (χω)

(
‖(y0, y1)‖2

D(A1/2)×X + σ‖y0‖2
X

)
6

∫ T

0

∫

ω

|∂ty(t, x)|2 dx dt (87)
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in the case of the wave equation, and

C
(S)
T,σ(χω)

(
‖y0‖2

D(A) + σ‖y0‖2
X

)
6

∫ T

0

∫

ω

|∂ty(t, x)|2 dx dt (88)

in the case of the Schrödinger equation, where σ > 0.
Note that, in the Dirichlet case, if σ = 1 then the inequality (87) corresponds to replacing the

H1
0 norm with the full H1 norm defined by ‖f‖H1(Ω,C) = (‖f‖2

L2(Ω,C) + ‖∇f‖2
L2(Ω,C))

1/2.

Clearly, there holds C
(W )
T,σ (χω) 6 C

(W )
T (χω) and C

(S)
T,σ(χω) 6 C

(S)
T (χω), for every σ > 0.

Proposition 5 remains unchanged, stating that 2C
(W )
T,σ,rand(χω) = C

(S)
T,σ,rand(χω) = TJσ(χω) for

every measurable subset ω of Ω, and that 2C
(W )
∞,σ(χω) = C

(S)
∞,σ(χω) = Jσ(χω) if moreover every

eigenvalue of A is simple, where Jσ is defined by (65).
Theorem 9 remains in force as well. Therefore, in the general framework, the averaged versions

of these weighted observability inequalities constitute a physically relevant remedy to ensure the
existence and uniqueness of an optimal set.

For the sake of completeness, let us provide a numerical simulation illustrating this result.
In Remark 26 we can also consider the domain Ω = T

n (flat torus), Ω = (0, π)n with Dirichlet
boundary conditions, or mixed Dirichlet-Neumann boundary conditions with either Dirichlet or
Neumann condition on every full edge of the hypercube, with the usual basis (φj)j∈IN∗ of eigen-
functions consisting of products of either sine or of cosine functions (tensorized version of the 1D
case). It is the easy to see that the conclusion of Proposition 7 holds true in these more general
cases.

Some numerical simulations are provided on Figure 7 (with the weight σ = 1), again clearly
illustrating the stationarity feature of the maximizing sequence, as soon as L is large enough.

6 Further comments

In Section 6.1, we show how our results for the problem (30) can be extended to a natural variant of
observability inequality for Neumann boundary conditions or in the boundaryless case. In Section
6.2 we show how the problem of maximizing the observability constant is equivalent to the optimal
design of a control problem and, namely, to that of controllability in which solutions are driven to
rest in final time by means of a suitable control function. Section 6.3 is devoted to comment on
several open issues.

6.1 Further remarks for Neumann boundary conditions or in the bound-

aryless case

In the Neumann case, or in the case ∂Ω = ∅, as explained in Footnote 28 one has to take care
of the constant (in space) solutions that can be an impediment for the observability inequality to
hold. In this section, we show that, if instead of considering the observability inequalities (82) and
(83), we consider the inequalities

C
(W )
T (χω)‖(y0, y1)‖2

H1×L2 6

∫ T

0

∫

ω

(
|∂ty(t, x)|2 + |y(t, x)|2

)
dVg dt (89)

in the case of the wave equation, and

C
(S)
T (χω)‖y0‖2

H2 6

∫ T

0

∫

ω

(
|∂ty(t, x)|2 + |y(t, x)|2

)
dVg dt (90)
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Figure 7: Ω = (0, π)2, with Dirichlet boundary conditions on ∂Ω ∩ ({x2 = 0} ∪ {x2 = π} and
Neumann boundary conditions on the rest of the boundary. Row 1: L = 0.2; row 2: L = 0.4; row
3: L = 0.6; row 4: L = 0.9. From left to right: N = 2 (4 eigenmodes), N = 5 (25 eigenmodes),
N = 10 (100 eigenmodes).

in the case of the Schrödinger equation (see [59, Chapter 11] for a survey on these problems), then
all results remain unchanged.13

Indeed, consider initial data (y0, y1) ∈ H1(Ω, C) × L2(Ω, C). The corresponding solution y
can still be expanded as (13), except that now (φj)j∈IN∗ consists of the eigenfunctions of the
Neumann-Laplacian or of the Laplace-Beltrami operator in the boundaryless case, associated with
the eigenvalues (−λ2

j )j∈IN∗ , with λ1 = 0 and φ1 being constant, equal to 1/
√
|Ω|. The relation (15)

does not hold any more and is replaced with

‖(y0, y1)‖2
H1×L2 =

+∞∑

j=1

(
2λ2

j |aj |2 + 2λ2
j |bj |2 + |aj + bj |2

)
. (91)

Following Section 2.3, we define the time asymptotic observability constant C
(W )
∞ (χω) as the largest

13The norm in H2(Ω, C) is given by ‖u‖H2 =
“

‖u‖2
L2 + ‖Du‖2

L2 + ‖D2u‖2
L2

”1/2
.
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possible nonnegative constant for which the time asymptotic observability inequality

C(W )
∞ (χω)‖(y0, y1)‖2

H1×L2 6 lim
T→+∞

1

T

∫ T

0

∫

ω

(
|∂ty(t, x)|2 + |y(t, x)|2

)
dVg dt (92)

holds, for all (y0, y1) ∈ H1(Ω, C) × L2(Ω, C). Similarly, we define the randomized observabil-

ity constant C
(W )
T,rand(χω) as the largest possible nonnegative constant for which the randomized

observability inequality

C
(W )
T,rand(χω)‖(y0, y1)‖2

H1×L2 6 E

(∫ T

0

∫

ω

(
|∂tyν(t, x)|2 + |yν(t, x)|2

)
dVg dt

)
(93)

holds, for all (y0, y1) ∈ H1(Ω, C) × L2(Ω, C), where yν is defined as before by (25). The time
asymptotic and randomized observability constants are defined accordingly for the Schrödinger
equation. We have the following result, showing that we recover the same criterion as before.

Theorem 10. Let ω be a measurable subset of Ω.

1. If the domain Ω is such that every eigenvalue of the Neumann-Laplacian is simple, then

2 C
(W )
∞ (χω) = C

(S)
∞ (χω) = J(χω).

2. There holds 2 C
(W )
T,rand(χω) = C

(S)
T,rand(χω) = TJ(χω).

Proof. Following the same lines as those in the proofs of Theorems 4 and 5, we obtain C
(W )
T,rand(χω) =

TC
(W )
∞ (χω) = T Γ, with

Γ = inf
((aj),(bj))∈(ℓ2(C))2\{0}

∑+∞
j=1(1 + λ2

j )(|aj |2 + |bj |2)
∫

ω
φj(x)2 dVg

∑+∞
j=1

(
2λ2

j (|aj |2 + |bj |2) + |aj + bj |2
) .

Let us prove that Γ = 1
2J(χω). First of all, it is easy to see that, in the definition of Γ, it

suffices to consider the infimum over real sequences (aj) and (bj). Next, setting aj = ρj cos θj and
bj = ρj sin θj , since |aj + bj |2 = ρ2

j (1 + sin(2θj)), to reach the infimum one has to take θj = π/4
for every j ∈ IN∗. It finally follows that

Γ = inf
(ρj)∈ℓ2(IR)
P+∞

j=1 ρ2
j=1

1

2

+∞∑

j=1

ρ2
j

∫

ω

φj(x)2 dVg =
1

2
J(χω).

6.2 Optimal shape and location of internal controllers

In this section, we investigate the question of determining the shape and location of the control
domain for wave or Schrödinger equations that minimizes the L2 norm of the controllers realizing
null controllability and its connections with the previous results on the optimal design for observ-
ability. We shall see that maximizing the observability constant is equivalent to minimizing the
cost of controlling the corresponding adjoint system.

For the sake of simplicity, we will only deal with the wave equation, the Schrödinger case being
easily adapted from that case. Also, without loss of generality we restrict ourselves to Dirichlet
boundary conditions.
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Consider the internally controlled wave equation on Ω with Dirichlet boundary conditions

∂tty(t, x) −△gy(t, x) = hω(t, x), (t, x) ∈ (0, T ) × Ω,
y(t, x) = 0, (t, x) ∈ [0, T ] × ∂Ω,
y(0, x) = y0(x), ∂ty(0, x) = y1(x), x ∈ Ω,

(94)

where hω is a control supported in [0, T ] × ω and ω is a measurable subset of Ω.
Note that (94) is well posed for all initial data (y0, y1) ∈ H1

0 (Ω, IR) × L2(Ω, IR) and every
hω ∈ L2((0, T ) × Ω, IR), and its solution y belongs to C0(0, T ;H1

0 (Ω, IR)) ∩ C1(0, T ;L2(Ω, IR)) ∩
C2(0, T ;H−1(Ω, IR)).

The exact controllability problem consists of finding a control hω steering System (94) to
y(T, ·) = ∂ty(T, ·) = 0.

It is well known that, for every subset ω of Ω of positive measure, the exact controllability
problem is by duality equivalent to the fact that the observability inequality

C‖(φ0, φ1)‖2
L2×H−1 6

∫ T

0

∫

ω

|φ(t, x)|2 dVg dt, (95)

holds, for all (φ0, φ1) ∈ L2(Ω, IR) × H−1(Ω, IR), for a positive constant C (only depending on T
and ω), where φ is the (unique) solution of the adjoint system

∂ttφ(t, x) −△gφ(t, x) = 0, (t, x) ∈ (0, T ) × Ω,
φ(t, x) = 0, (t, x) ∈ [0, T ] × ∂Ω,
φ(0, x) = φ0(x), ∂tφ(0, x) = φ1(x), x ∈ Ω.

(96)

The Hilbert Uniqueness Method (HUM, see [41, 42]) provides a way to characterize the unique
control solving the above exact null controllability problem and having moreover a minimal L2((0, T )×
Ω, IR) norm. This control is referred to as the HUM control and is characterized as follows. Define
the HUM functional Jω by

Jω(φ0, φ1) =
1

2

∫ T

0

∫

ω

φ(t, x)2 dVg dt − 〈φ1, y0〉H−1,H1
0

+ 〈φ0, y1〉L2 . (97)

The notation 〈·, ·〉H−1,H1
0

stands for the duality bracket between H−1(Ω, IR) and H1
0 (Ω, IR), and

the notation 〈·, ·〉L2 stands for the usual scalar product of L2(Ω, IR).
If (95) holds then the functional Jω has a unique minimizer (still denoted (φ0, φ1)) in the space

L2(Ω, IR) × H−1(Ω, IR), for all (y0, y1) ∈ H1
0 (Ω, IR) × L2(Ω, IR). The HUM control hω steering

(y0, y1) to (0, 0) in time T is then given by hω(t, x) = χω(x)φ(t, x), for almost all (t, x) ∈ (0, T )×Ω,
where φ is the solution of (96) with initial data (φ0, φ1) minimizing Jω.

The HUM operator Γω is then defined by

Γω : H1
0 (Ω, IR) × L2(Ω, IR) −→ L2((0, T ) × Ω, IR)

(y0, y1) 7−→ hω

With this definition, it is a priori natural to model the problem determining the best control
domain as the problem of minimizing the norm of the operator Γω,

‖Γω‖ = sup

{
‖hω‖L2((0,T )×Ω,IR)

‖(y0, y1)‖H1
0×L2

| (y0, y1) ∈ H1
0 (Ω, IR) × L2(Ω, IR) \ {(0, 0)}

}
, (98)

over the set UL. The following result holds and can be proved using Fourier expansion. We
refer to [50] for the details of the proof in the one-dimensional case. Note that the proof in the
multi-dimensional case is exactly the same.
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Proposition 8. Let T > 0 and let ω be measurable subset of Ω. If C
(W )
T (χω) > 0 then ‖Γω‖ =

1/C
(W )
T (χω), and if C

(W )
T (χω) = 0, then ‖Γω‖ = +∞.

This result illustrates the well known duality between controllability and observability, and
moreover shows that, for the optimal design control problem, one has

inf
χω∈UL

‖Γω‖ =

(
sup

χω∈UL

C
(W )
T (χω)

)−1

. (99)

Therefore the problem of minimizing ‖Γω‖ is equivalent to the problem of maximizing the
observability constant over UL.

However, as discussed previously in the article, it is more relevant to maximize rather the
randomized observability constant CT,rand(χω) defined by (23) (see Section 2.3). It is therefore
natural to identify the dual optimal design problem at the control level.

The corresponding control problem reads as follows:

∂tty(t, x) −△gy(t, x) =
∑

j≥1 fj(t)
∫

ω
φ2

j (u) du φj(x), (t, x) ∈ (0, T ) × Ω,

y(t, x) = 0, (t, x) ∈ [0, T ] × ∂Ω,
y(0, x) = y0(x), ∂ty(0, x) = y1(x), x ∈ Ω,

(100)

Note that, in this problem the control is of lumped type, determined by the time-dependent
functions {fj(t)}j≥1 ∈ L2(0, T ; ℓ2), that are weighted by the constant

∫
ω

φ2
j (x)dx, which underlines

the need of choosing ω so that the uniform spectral observability property holds, and acting on
the profiles φj of the eigenfunctions of the laplacian.

Note in particular that, as a consequence of the randomization process at the observability
level, the controls are distributed everywhere in the domain, through the profiles given by the
eigenfunctions of the laplacian.

This issue will be investigated with further detail in a forthcoming article, together also with
the corresponding consequences at the level of stabilization.

6.3 Open problems

We provide here a list of open problems.

Optimal stabilization domain. Similar important problems can be addressed as well for sta-
bilization issues. For instance, when considering the wave equation with a local damping,

∂tty = △y − 2kχωyt, (101)

with k > 0, one can address the question of determining the best possible damping domain ω (in
the class UL), achieving for instance (if possible) the largest possible exponential decay rate.

This question was investigated in [23] in the one-dimensional case. The following is known.
First, if k tends to +∞ then the decay rate tends to 0 (overdamping phenomenon). Second, as
proved in [15], if the set ω has a finite number of connected components and if k is small enough,
then, at the first order. the decay rate is determined by the spectral abscissa which is of the order
of k infj∈IN∗

∫
ω

sin2(jx) dx. Therefore, in this 1D case, for k small maximizing the decay rate is
then equivalent to the problem (30) in 1D (however, with the additional restriction that χω is in
BV ).

Note that, even in 1D, expect for those two asymptotic regimes in which k is small or large,
the problem of maximizing the decay rate over UL is a completely open problem.

The issue is of course, much more complex in the multi-dimensional case.
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Generally speaking, the exponential stability property of (101) is equivalent to the observability
property of the corresponding conservative wave equation (1) (see [20]). Note however that this
general statement so that “observability implies stabilization” does not yield explicit decay rates
for the dissipative semigroup.

The ultimate dependence of the decay rate in terms of the amplitude of the dissipative potential
(k) and the geometry of ω is rather complex as proved in [40]. In fact, the exponential decay rate
τ(ω) does not coincide in general with the negative of the spectral abscissa S(ω) since is the
minimum of this real number and of a geometric quantity giving an account for the average time
spent by geodesics crossing ω (see [22] for a study of this geometric quantity in the square).

It is an interesting open problem to study the maximization of this geometric criterion over the
set UL.

It can be noted that the fact that τ(ω) 6 −S(ω) and that in multi-D the strict inequality may

hold, is similar to the fact, underlined in Remark 4, that C
(W )
T (χω) 6 C

(W )
T,rand(χω) and that the

strict inequality may hold.
As in the context of control, the randomized observability property implies weaker stabilization

results. This will be analyzed in a systematic way in a forthcoming article based on the abstract
results of [20]) that provide a functional setting to transfer observability results for conservative
semigroups into stabilization results.

Maximization of the deterministic observability constant. As discussed in Section 2.3,

the problem of maximizing the (usual) deterministic observability constant C
(W )
T (χω) (defined by

(12)) over UL is open, and is difficult due to the crossed terms appearing in the spectral expansion.

It can be noted that the convexified version of this problem, consisting of maximizing C
(W )
T (a)

over UL, obviously has some solutions, and again here the question of a gap, and the question
of knowing whether the supremum is reached over UL (existence of a classical optimal set) are
open. Even a truncated version of this criterion is an open problem, that is, the problem of
maximizing the lowest eigenvalue of the Gramian matrix whose element row j and column k is∫

ω
φj(x)φk(x) dx. An interesting problem consists of investigating theoretically or numerically the

sequence of maximizing subsets for this truncated problem.
Even in 1D, this problem is open.
As it was noted in Remark 1, in the one-dimensional case and if T is an integer multiple of 2π

then the crossed terms disappear and the Gramian matrix is diagonal, but if T is not an integer
multiple of 2π then owing to the crossed terms the functional cannot be handled easily. Similar
difficulties due to crossed terms are encountered in the open problem of determining the best
constants in Ingham’s inequality (see [29]), according to which, for every γ > 0 and every T > 2π

γ ,

there exist C1(T, γ) > 0 and C2(T, γ) > 0 such that for every sequence (λn)n∈IN∗ of real numbers
satisfying |λn+1 − λn| > γ for every n ∈ IN∗, there holds

C1(T, γ)
∑

n∈IN∗

|an|2 6

∫ T

0

∣∣∣∣∣
∑

n∈IN∗

aneiλnt

∣∣∣∣∣

2

dt 6 C2(T, γ)
∑

n∈IN∗

|an|2,

for every (an)n∈IN∗ ∈ ℓ2(C) (see, e.g., [30, 32, 34, 62]).

Dependence on time. Instead of maximizing the observability constant over UL, for a fixed
time T , one can think of running the optimization also over the time.

Before setting this problem, let us make the following remark in 1D. Setting Ω = [0, π] (with
Dirichlet boundary conditions), it is clear that if T > 2π then the observability inequality (11) is
satisfied for every subset ω of positive measure. However 2π is not the smallest possible time for
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a given specific choice of ω. For instance if ω is a subinterval of [0, π] then the smallest possible
time for which the observability inequality holds is 2 diam((0, π) \ω). The question of determining
this minimal time is nontrivial if, instead of an interval, the set ω is, for instance, a fractal set. We
settle the following open problem (not only in 1D but also in general): given L ∈ (0, 1), does there
exist a time TL > 0 such that the observability inequality (11) holds for every ω ∈ UL and every
T > TL?

Having in mind this open question, it is interesting to investigate the problem of maximizing
the functional (χω, T ) 7→ CT (χω) over the set UL × (0,+∞). Similar questions arise when the
observation set in not cylindrical but rather a measurable space-time set having a certain fixed
measure. For such problems note that the existence of a maximizer is easy to derive when consid-
ering their convexified version, but then the question of proving a no-gap result is nontrivial and
has not been studied. Also, it is interesting to investigate whether or not the supremum is reached
in the class of classical sets.

Nonexistence of an optimal set. In Section 4.1, using harmonic analysis we have proved
that, in 1D, the supremum of J over UL is reached if and only if L = 1/2 (and there is an infinite
number of optimal sets). In the Euclidean square the question is open, however if the supremum
is considered only over sets to Cartesian products of 1D subsets, then it is reached if and only if
L ∈ {1/4, 1/2, 3/4}. In general, the question of the existence of an optimal set is completely open,
and we expect that the supremum is not reached for generic domains Ω and generic values of L.

This conjecture is in accordance with the observed increasing complexity of the sequence of
optimal sets ωN solutions of the problem of maximizing the truncated spectral criterion JN . An
interesting question occurs here. In the (certainly) nongeneric case where an optimal set does exist
(like in 1D for L = 1/2 where there is an infinite number of optimal sets), what is the limit of
the sets ωN? More precisely, can it happen that ωN converges to a set (if it does) which is of
fractal type? The study of [51], done for fixed initial data, indicates that it might be the case. The
question is however completely open.

Note that the spillover phenomenon was proved to occur in 1D for L sufficiently small, according
to which the optimal set ωN maximizing JN is, loosely speaking, the worst possible one for the
problem of maximizing JN+1. Proving this fact in a more general context is an open problem.

Besides, note that JN is defined as a truncation of the functional J , keeping the N first modes.
It would be interesting to consider similar optimal design problems running for instance over
initial data whose Fourier coefficients satisfy a uniform exponential decreasing property. Another
possibility is to truncate the Fourier series and keep only the modes whose index is between two
integers N1 and N2.

Weighted observability inequalities as a remedy. In view of providing a physically relevant
remedy to the problem of nonexistence of an optimal set, in Section 4.4 we introduced a weighted
version of the observability inequality, which is however equivalent to the classical one. We proved
that, if L > λ2

1/(σ + λ2
1) then there exists a unique optimal set, which is moreover the limit of the

stationary sequence of optimal set ωN of the truncated criterion. Our simulations indicate that this
threshold in L is sharp. It is an open question to investigate the situation where L 6 λ2

1/(σ + λ2
1):

is there a gap or not between the problem and its convexified version? Is the supremum over UL

reached or not?

Quantum ergodicity assumptions. In Theorem 6, we assumed the strong QUE on the base,
and uniform Lp boundedness properties. As discussed in Section 3.3, except in 1D, up to now
no domain is known where these assumptions hold true. The property QUE is attached to a well
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known conjecture in mathematical physics. With the example of the disk (Proposition 1), we have
seen that these assumptions are however not sharp.

Theorem 9, providing the existence of an optimal set for the weighted version of the problem,
holds true under L∞-QUE on the base. The example of the hypercube (Proposition 7) shows that
these assumptions are not sharp.

Weakening the sufficient assumptions of these three results is a completely open problem.

Besides of that, note that, concerning the quantum ergodicity assumptions that we used, and
the discussion we made in Section 3.3, we used the current state of the art in mathematical physics.
The model that we used throughout, based on averaging either with respect to time or with respect
to random initial data, leads to a spectral criterion whose solving requires a good knowledge on
quantum ergodicity properties which are in the current state of the art not well known. The
question is open to look for more robust models in which the solving of an optimal design problem
would not require such a fine knowledge of the eigenelements. For instance it is likely that the
microlocal methods used in [3] in order to provide an almost necessary and sufficient condition for
the observability to hold (the Geometric Control Condition) in terms of geometric rays, should
allow one to identify classes of domains where the constant is governed by a finite number of modes.

In brief, it is an open question to model the optimal design problems under consideration
(possibly, based on the notion of geometric rays as discussed above) in such a way that the resulting
problem will be both physically and mathematically relevant, and will not require, for its solving,
such strong sufficient assumptions than the ones considered here.

Other models. In this article we have modeled and studied the optimal observability problem
for wave and Schrödinger equations. It can be noted that, using the randomization procedure
or the time averaging procedure that we have introduced on the observability inequalities, the
spectral criterion J considered throughout can be derived as well for many other conservative
models, however then nothing is known on the probability measures µj = φ2

j dx where the φj

are the eigenfunctions of the underlying operator. As we have seen, even for the Laplacian the
quantum ergodicity properties are widely unknown, and then the situation is even more open for
other operators.

For parabolic models the situation seems to go differently. The randomization leads to a
weighted spectral criterion similar to Jσ, but where the sequence of weights σj is an increasing
sequence tending to +∞ (whereas, here, it was an increasing sequence converging to 1). Because
of that, in contrast to the results of the present article, it is expected that an optimal set does
exist, only under slight assumptions. We refer to [52] for results in that direction.

Also, for such other models, the previous raised questions – optimal shape and location of
internal controllers; maximization of the deterministic observability constant – can be as well
settled as open problems.

A Appendix: proof of Theorem 5 and of Corollary 1

For the convenience of the reader, we first prove Theorem 5 in the particular case where all the
eigenvalues of △ are simple (it corresponds exactly to the proof of Corollary 1) and we then give
the generalization to the case of multiple eigenvalues.

From (13), we have y(t, x) =
∑+∞

j=1 yj(t, x) with

yj(t, x) = (aje
iλjt + bje

−iλjt)φj(x). (102)

Without loss of generality, we consider initial data (y0, y1) ∈ L2(Ω, C) × H−1(Ω, C) such that
‖(y0, y1)‖2

L2×H−1 = 2, in other words such that
∑

j∈IN∗(|aj |2 + |bj |2) = 1 (using (15)).

55



Setting

ΣT (a, b) =
1

T

∫ T

0

∫
ω
|y(t, x)|2 dx dt

‖(y0, y1)‖2
L2×H−1

=
1

2T

∫ T

0

∫

ω

|y(t, x)|2 dxdt,

we write for an arbitrary N ∈ IN∗,

ΣT (a, b) =
1

T

∫ T

0

∫

ω




∣∣∣∣∣∣

N∑

j=1

yj(t, x)

∣∣∣∣∣∣

2

+

∣∣∣∣∣

+∞∑

k=N+1

yk(t, x)

∣∣∣∣∣

2

+2ℜe




N∑

j=1

yj(t, x)

+∞∑

k=N+1

ȳk(t, x)




 dx dt. (103)

Using the assumption that the spectrum of △ consists of simple eigenvalues, we have the following
result.

Lemma 6. With the notations above, we have

lim
T→+∞

1

T

∫ T

0

∫

ω

∣∣∣∣∣∣

N∑

j=1

yj(t, x)

∣∣∣∣∣∣

2

dx dt =

N∑

j=1

(|aj |2 + |bj |2)
∫

ω

φj(x)2 dx.

Proof of Lemma 6. Since the sum is finite we can invert the infimum (which is a minimum) and
the limit. Now, we write

1

T

∫ T

0

∫

ω

∣∣∣∣∣∣

N∑

j=1

yj(t, x)

∣∣∣∣∣∣

2

dx dt =
1

T

N∑

j=1

αjj

∫

ω

φj(x)2 dx +
1

T

N∑

j=1

N∑

k=1
k 6=j

αjk

∫

ω

φj(x)φk(x) dx,

where αjk is defined by (17). Using (18) and (19), we get limT→+∞
αjj

T = |aj |2 + |bj |2, for every
j ∈ IN∗ and, using that the spectrum of △ consists of simple eigenvalues,

|αjk| 6
4 max16j,k6N (λj , λk)

|λ2
j − λ2

k|
, (104)

whenever j 6= k. The conclusion follows easily.

Let us now estimate the remaining terms

R =
1

T

∫ T

0

∫

ω

∣∣∣∣∣∣

+∞∑

j=N+1

yj(t, x)

∣∣∣∣∣∣

2

dx dt and δ =
1

T
ℜe



∫ T

0

∫

ω

N∑

j=1

yj(t, x)

+∞∑

k=N+1

ȳk(t, x) dx dt




of the right-hand side of (103).

Estimate of R. Using the fact that the φj ’s form a Hilbert basis, we get

R 6
1

T

∫ T

0

∫

Ω

∣∣∣∣∣∣

+∞∑

j=N+1

yj(t, x)

∣∣∣∣∣∣

2

dx dt

=
1

T

+∞∑

j=N+1

∫ T

0

|aje
iλjt − bje

−iλjt|2 dt

=
1

T

+∞∑

j=N+1

(
T (|aj |2 + |bj |2) −

1

λj
ℜe

(
aj b̄j

e2iλjT − 1

i

))
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and finally

R 6

(
1 +

1

λNT

) +∞∑

j=N+1

(|aj |2 + |bj |2). (105)

Estimate of δ. Using (18) and the fact that λj 6= λk for every j ∈ {1, · · · , N} and every
k > N + 1, we have |δ| 6

2
T (SN

1 + SN
2 + SN

3 + SN
4 ), with

SN
1 =

∣∣∣∣∣∣

N∑

j=1

+∞∑

k=N+1

1

λj − λk
aj ākei(λj−λk) T

2 sin

(
(λj − λk)

T

2

)∫

ω

φj(x)φk(x) dx

∣∣∣∣∣∣
,

SN
2 =

∣∣∣∣∣∣

N∑

j=1

+∞∑

k=N+1

1

λj + λk
aj b̄kei(λj+λk) T

2 sin

(
(λj + λk)

T

2

)∫

ω

φj(x)φk(x) dx

∣∣∣∣∣∣
,

SN
3 =

∣∣∣∣∣∣

N∑

j=1

+∞∑

k=N+1

1

λj + λk
bj āke−i(λj+λk) T

2 sin

(
(λj + λk)

T

2

)∫

ω

φj(x)φk(x) dx

∣∣∣∣∣∣
,

SN
4 =

∣∣∣∣∣∣

N∑

j=1

+∞∑

k=N+1

1

λj − λk
bj b̄ke−i(λj−λk) T

2 sin

(
(λj − λk)

T

2

)∫

ω

φj(x)φk(x) dx

∣∣∣∣∣∣
.

Let us estimate SN
1 . We write

SN
1 =

∣∣∣∣∣∣

N∑

j=1

aj

∫

ω

φj(x)

+∞∑

k=N+1

āk

λj − λk
ei(λj−λk) T

2 sin

(
(λj − λk)

T

2

)
φk(x) dx

∣∣∣∣∣∣
,

and, using the Cauchy-Schwarz inequality and the fact that the integral of a nonnegative function
over ω is lower than the integral of the same function over Ω, one gets

SN
1 6

N∑

j=1

|aj |



∫

Ω

∣∣∣∣∣

+∞∑

k=N+1

āk

λj − λk
ei(λj−λk) T

2 sin

(
(λj − λk)

T

2

)
φk(x)

∣∣∣∣∣

2

dx




1/2

=
N∑

j=1

|aj |
(

+∞∑

k=N+1

|ak|2
(λj − λk)2

sin2

(
(λj − λk)

T

2

))1/2

.

The last equality is established by expanding the square of the sum inside the integral, and by
using the fact that the φk’s are orthonormal in L2(Ω). Since the spectrum of △ consists of simple
eigenvalues (assumed to form an increasing sequence), we infer that λk − λj > λN+1 − λN for all

j ∈ {1, · · · , N} and k > N + 1, and since
∑+∞

j=1 |aj |2 6 1, it follows that

SN
1 6

1

λN+1 − λN

N∑

j=1

|aj |
(

+∞∑

k=N+1

|ak|2
)1/2

6
N

λN+1 − λN
.

The same arguments lead to the estimates SN
2 6

N
λN

, SN
3 6

N
λN

, SN
4 6

N
λN+1−λN

, and therefore,

|δ| 6
4N

T

(
1

λN
+

1

λN+1 − λN

)
. (106)
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Now, combining Lemma 6 with the estimates (105) and (106) yields that for every ε > 0, there
exist Nε ∈ IN∗ and T (ε, Nε) > 0 such that, if N > Nε and T > T (ε, Nε), then

∣∣∣∣∣∣
ΣT (a, b) −

N∑

j=1

(|aj |2 + |bj |2)
∫

ω

φj(x)2 dx

∣∣∣∣∣∣
6 ε.

As an immediate consequence, and using the obvious fact that, for every η > 0, there exists
Nη ∈ N

∗ such that, if N > Nη then
∣∣∣∣∣∣

+∞∑

j=1

(|aj |2 + |bj |2)
∫

ω

φj(x)2 dx −
N∑

j=1

(|aj |2 + |bj |2)
∫

ω

φj(x)2 dx

∣∣∣∣∣∣
6 η,

one deduces that limT→+∞ ΣT (a, b) =
∑+∞

j=1(|aj |2+|bj |2)
∫

ω
φj(x)2 dx. At this step, we have proved

the following lemma, which improves the statement of Lemma 6.

Lemma 7. Denoting by aj and bj the Fourier coefficients of (y0, y1) defined by (14), there holds

lim
T→+∞

1

T

∫ T

0

∫

ω

|y(t, x)|2 dx dt =

+∞∑

j=1

(|aj |2 + |bj |2)
∫

ω

φj(x)2 dx.

Corollary 1 follows, noting that

inf
(aj),(bj)∈ℓ2(C)

P+∞

j=1(|aj |2+|bj |2)=1

+∞∑

j=1

(|aj |2 + |bj |2)
∫

ω

φj(x)2 dx = inf
j∈IN∗

∫

ω

φj(x)2 dx.

To finish the proof, we now explain how the arguments above can be generalized to the case of
multiple eigenvalues. In particular, the statement of Lemma 1 is adapted in the following way.

Lemma 8. Using the previous notations, one has

lim
T→+∞

1

T

∫ T

0

∫

ω

∣∣∣∣∣∣

N∑

j=1

yj(t, x)

∣∣∣∣∣∣

2

dx dt =
∑

λ∈U
λ6λN

∫

ω




∣∣∣∣∣∣

∑

k∈I(λ)

λkakφk(x)

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

∑

k∈I(λ)

λkbkφk(x)

∣∣∣∣∣∣

2

 dx.

Proof of Lemma 8. Following the proof of Lemma 6, simple computations show that

1

T

∫ T

0

∫

ω

∣∣∣∣∣∣

N∑

j=1

yj(t, x)

∣∣∣∣∣∣

2

dx dt =
1

T

∑

λ∈U

∑

(j,k)∈I(λ)2

αjk

∫

ω

φj(x)φk(x) dx

+
1

T

∑

(λ,µ)∈U2

λ6=µ

∑

j∈I(λ)
k∈I(µ)

αjk

∫

ω

φj(x)φk(x) dx,

where

lim
T→+∞

αjk

T
=

{
aj āk + bj b̄k if (j, k) ∈ I(λ)2,
0 if j ∈ I(λ), k ∈ I(µ), with (λ, µ) ∈ U2 and λ 6= µ.

The conclusion of the lemma follows.
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Noting that the previous estimates on R and δ are still valid and that

inf
(aj),(bj)∈ℓ2(C)

P+∞

j=1(|aj |2+|bj |2)=1

∑

λ∈U
λ6λN

∫

ω




∣∣∣∣∣∣

∑

k∈I(λ)

akφk(x)

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

∑

k∈I(λ)

bkφk(x)

∣∣∣∣∣∣

2

 dx

= inf
(ck)j∈IN∗∈ℓ2(C)

P+∞

k=1 |ck|2

∫

ω

∑

λ∈U

∣∣∣∣∣∣

∑

k∈I(λ)

ckφk(x)

∣∣∣∣∣∣

2

dx,

Theorem 5 follows.
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[64] A. Wächter, L.T. Biegler, On the implementation of an interior-point filter line-search algorithm for
large-scale nonlinear programming, Mathematical Programming 106 (2006), 25–57.

[65] S. Zelditch, Eigenfunctions and nodal sets, Surveys in differential geometry. Geometry and topology,
237–308, Surv. Differ. Geom., 18, Int. Press, Somerville, MA, 2013.

[66] S. Zelditch, M. Zworski, Ergodicity of eigenfunctions for ergodic billiards, Comm. Math. Phys. 175

(1996), no. 3, 673–682.

62


	Introduction
	Problem formulation and overview of the main results
	Brief state of the art

	Modeling the optimal observability problem
	The framework
	Spectral expansion of the solutions
	Randomized observability inequality
	Conclusion: a relevant criterion
	Time asymptotic observability inequality

	Optimal observability under quantum ergodicity assumptions
	Preliminary remarks
	Optimal value of the problem
	Comments on quantum ergodicity assumptions
	Proof of Theorem 6
	Proof of Proposition 1
	An intrinsic spectral variant of the problem

	Nonexistence of an optimal set and remedies
	On the existence of an optimal set
	Spectral approximation
	A first remedy: other classes of admissible domains
	A second remedy: weighted observability inequalities

	Generalization to wave and Schrödinger equations on manifolds with various boundary conditions
	Further comments
	Further remarks for Neumann boundary conditions or in the boundaryless case
	Optimal shape and location of internal controllers
	Open problems

	Appendix: proof of Theorem 5 and of Corollary 1

