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Abstract In this paper, we consider the homogeneous one-dimensional wave equa-
tion on [0,π] with Dirichlet boundary conditions, and observe its solutions on a sub-
set ω of [0,π]. Let L ∈ (0,1). We investigate the problem of maximizing the ob-
servability constant, or its asymptotic average in time, over all possible subsets ω of
[0,π] of Lebesgue measure Lπ . We solve this problem by means of Fourier series
considerations, give the precise optimal value and prove that there does not exist any
optimal set except for L = 1/2. When L �= 1/2 we prove the existence of solutions
of a relaxed minimization problem, proving a no gap result. Following Hébrard and
Henrot (Syst. Control Lett., 48:199–209, 2003; SIAM J. Control Optim., 44:349–366,
2005), we then provide and solve a modal approximation of this problem, show the
oscillatory character of the optimal sets, the so called spillover phenomenon, which
explains the lack of existence of classical solutions for the original problem.
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1 Introduction and Main Results

1.1 Observability of the One-dimensional Wave Equation

Consider the one-dimensional wave equation with Dirichlet boundary conditions

∂2y

∂t2
− ∂2y

∂x2
= 0 (t, x) ∈ (0, T ) × (0,π),

y(t,0) = y(t,π) = 0 t ∈ [0, T ],

y(0, x) = y0(x),
∂y

∂t
(0, x) = y1(x) x ∈ [0,π],

(1)

where T be an arbitrary positive real number. For all y0(·) ∈ L2(0,π) and y1(·) ∈
H−1(0,π), there exists a unique solution y of (1), satisfying y ∈ C0([0, T ],
L2(0,π)) ∩ C1([0, T ],H−1(0,π)). For a given measurable subset ω of [0,π] of
positive Lebesgue measure, consider the observable variable

z(t, x) = χω(x)y(t, x), (2)

where χω denotes the characteristic function of ω. It is well known that the system
(1)–(2) is observable whenever T is large enough (see [17, 18, 25]), that is, the fol-
lowing observability inequality holds: there exists C > 0 such that

C
∥
∥
(

y0, y1)
∥
∥2

L2(0,π)×H−1(0,π)
�

∫ T

0

∫

ω

y(t, x)2dxdt, (3)

for every solution of (1) and all y0(·) ∈ L2(0,π) and y1(·) ∈ H−1(0,π). We denote
by CT (χω) the largest observability constant in the above inequality, that is

CT (χω)

= inf

{
GT (χω)

‖(y0, y1)‖2
L2(0,π)×H−1(0,π)

∣
∣
(

y0, y1) ∈ L2(0,π) × H−1(0,π) \ {

(0,0)
}
}

(4)

where

GT (χω) =
∫ T

0

∫ π

0
z(t, x)2dxdt =

∫ T

0

∫

ω

y(t, x)2dxdt. (5)

Note that, for every subset ω of [0,π] of positive measure, the observability in-
equality (3) is satisfied for every T � 2π . However 2π is not the smallest possi-
ble time for a specific choice of ω. For example, if ω is a subinterval of [0,π],
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a propagation argument along the characteristics shows that the smallest such time is
2 diam((0,π) \ ω).

In this article we are interested in the problem of maximizing the observability fea-
tures of (1)–(2), in a sense to be made precise, over all possible measurable subsets
of [0,π] of given measure. The measure of the subsets has of course to be fixed, oth-
erwise the best possible observation consists of taking ω = [0,π]. Hence, throughout
the article, we consider an arbitrary real number L ∈ (0,1), and consider the class
of all measurable subsets ω of [0,π] of Lebesgue measure |ω| = Lπ . We can now
be more precise. We investigate the problem of maximizing either the observability
constant CT (ω), for T > 0 fixed, or its asymptotic average in time

lim
T →+∞

CT (χω)

T
,

over all measurable subsets ω of [0,π] of Lebesgue measure |ω| = Lπ , and of deter-
mining the optimal set ω whenever it exists. Using Fourier expansions, this question
is settled more precisely in Sect. 1.2.

The article is structured as follows. Section 1.2 is devoted to writing the above
problem in terms of Fourier series and providing a more explicit criterion adapted to
our analysis. The main results are gathered in Sect. 1.3. In particular, we define and
completely solve a relaxed version of this problem, underline a generic non existence
result with respect to the values of the measure constraint L, and then investigate
a truncated shape optimization problem. The proofs are gathered in Sects. 2 and 3.
Further comments are provided in Sect. 4.

1.2 Fourier Expansion Representation of the Functional GT

In this section, using series expansions in a Hilbertian basis of L2(0,π), our objective
is to write the functional GT defined by (5) in a more suitable way for our mathe-
matical analysis. For all initial data (y0, y1) ∈ L2(0,π) × H−1(0,π), the solution
y ∈ C0(0, T ;L2(0,π)) ∩ C1(0, T ;H−1(0,π)) of (1) can be expanded as

y(t, x) =
+∞
∑

j=1

(

aj cos(j t) + bj sin(j t)
)

sin(jx), (6)

where the sequences (aj )j∈N∗ and (bj )j∈N∗ belong to �2(R) and are determined in
function of the initial data (y0, y1) by

aj = 2

π

∫ π

0
y0(x) sin(jx)dx, bj = 2

jπ

∫ π

0
y1(x) sin(jx)dx, (7)

for every j ∈ N
∗. By the way, note that

∥
∥
(

y0, y1)
∥
∥

2
L2×H−1 = π

2

+∞
∑

j=1

(

a2
j + b2

j

)

. (8)
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Let ω be an arbitrary measurable subset of [0,π]. Plugging (6) into (5) leads to

GT (χω) =
∫ T

0

∫

ω

(+∞
∑

j=1

(

aj cos(j t) + bj sin(j t)
)

sin(jx)

)2

dxdt

=
+∞
∑

i,j=1

αij

∫

ω

sin(ix) sin(jx)dx (9)

where

αij =
∫ T

0

(

ai cos(it) + bi sin(it)
)(

aj cos(j t) + bj sin(j t)
)

dt, (10)

for all αij , (i, j) ∈ (N∗)2.

Remark 1 The case where the time T is a multiple of 2π is particular because in that
case all nondiagonal terms are zero. Indeed, if T = 2pπ with p ∈ N

∗, then αij = 0
whenever i �= j , and

αjj = pπ
(

a2
j + b2

j

)

, (11)

for all (i, j) ∈ (N∗)2, and therefore

G2pπ (χω) = pπ

+∞
∑

j=1

(

a2
j + b2

j

)
∫

ω

sin2(jx)dx. (12)

Hence in that case the functional G2pπ does not involve any crossed terms.

For general values of T > 0, note that there holds obviously

G2π[ T
2π

](χω) � GT (χω) � G2π([ T
2π

]+1)
(χω),

where the bracket notation stands for the integer floor. Then it follows from Remark 1
that

π

[
T

2π

] +∞
∑

j=1

(

a2
j + b2

j

)
∫

ω

sin2(jx)dx

� GT (χω) � π

([
T

2π

]

+ 1

) +∞
∑

j=1

(

a2
j + b2

j

)
∫

ω

sin2(jx)dx.

Using (8), it follows immediately that

2

[
T

2π

]

J (χω) � CT (χω) � 2

([
T

2π

]

+ 1

)

J (χω), (13)
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where

J (χω) = inf

{+∞
∑

j=1

(

a2
j + b2

j

)
∫

ω

sin2(jx)dx
∣
∣ (aj )j�1, (bj )j�1 ∈ �2(R),

+∞
∑

j=1

(

a2
j + b2

j

) = 1

}

.

Clearly, there holds

J (χω) = inf
j∈N∗

∫

ω

sin2(jx)dx. (14)

Moreover, dividing (13) by T and making T tend to +∞, one gets the following
result.

Lemma 1 For every χω ∈ UL, one has

lim
T →+∞

CT (χω)

T
= 1

π
J(χω).

Furthermore, in the case where T = 2pπ with p ∈ N
∗, investigated in Remark 1,

using (8) and (12) one gets that C2pπ (χω) = 2pJ(χω).
Therefore, the problem of maximizing CT (χω) in the case where T is a multiple

of 2π and the problem of maximizing limT →+∞ CT (χω)
T

over all subsets ω of [0,π]
of measure Lπ is equivalent to the problem of maximizing the functional J defined
by (14) over this class of sets. In the sequel we will actually focus on this problem:

Maximize

J (χω) = inf
j∈N∗

∫

ω

sin2(jx)dx (15)

over all possible subsets ω of [0,π] of Lebesgue measure Lπ .

Remark 2 It is not difficult to prove that

0 <
Lπ − sin(Lπ)

2
� J (χω) � Lπ + sin(Lπ)

2
,

for every L ∈ (0,1) and every subset ω of Lebesgue measure Lπ .

Remark 3 According to the above considerations, in the case where T = 2pπ with
p ∈ N

∗, the maximal value of the observability constant over all subsets of [0,π] of
measure Lπ is

2p sup
ω⊂[0,π]
|ω|=Lπ

inf
j∈N∗

∫

ω

sin2(jx)dx.
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Remark 4 We stress that the optimization problem (15), consisting of maximizing the
asymptotic observability constant, does not depend on the initial data. If we fix some
initial data (y0, y1) ∈ L2(0,π) × H−1(0,π) and some observability time T � 2π ,
we can investigate the problem of maximizing the functional GT (χω) defined by
(5) over all possible subsets ω of [0,π] of measure equal to Lπ . According to the
expression (9), there exists at least an optimal set ω which can be characterized in
terms of a level set of the function

ϕ(x) =
+∞
∑

i,j=1

αij sin(ix) sin(jx),

and of course ω depends on the initial data (y0, y1). It is interesting to investigate the
regularity of this kind of optimal set in function of the regularity of the initial data.
This study is made in details in [24]. Nevertheless this problem is of little practical
interest since it depends on the initial data.

Another interesting problem that can be investigated is the one of maximizing the
L2-norm of the worst observation among a given finite set C of initial data, in other
words, maximize

inf

{
GT (χω)

‖(y0, y1)‖2
L2×H−1

∣
∣
(

y0, y1) ∈ C
}

(16)

over all possible subsets ω of [0,π] of Lebesgue measure Lπ . Note that the problem
(22) investigated further is of this kind.

1.3 Main Results

We define UL by

UL = {

χω | ω is a measurable subset of [0,π] of measure |ω| = Lπ
}

. (17)

A partial version of the following result can be found in [7, Theorem 3.2], where
the optimal placement of actuators was investigated for the one-dimensional wave
equation. The novelty of our result lies in the fact that we are able to compute the
optimal value for this problem, and that we treat all possible measurable subsets. The
technique used in the proof is anyway widely inspired by the one of [7].

Theorem 1 For every L ∈ (0,1), there holds

sup
χω∈UL

inf
j∈N∗

∫

ω

sin2(jx)dx = Lπ

2
, (18)

and the supremum is reached if and only if L = 1/2. Moreover, if L = 1/2 then the
problem (15) has an infinite number of solutions, consisting of all measurable subsets
ω ⊂ [0,π] of measure π/2 such that ω and its symmetric set ω′ = π − ω are disjoint
(almost everywhere) and complementary in [0,π].

We have the following corollary for the observability maximization problems.
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Corollary 1 There holds

sup
ω∈UL

lim
T →+∞

CT (χω)

T
= L

2
,

and for every p ∈ N
∗,

sup
ω∈UL

C2pπ (χω) = pLπ = LT

2
.

Moreover, an optimal set exists if and only if L = 1/2, and in that case all optimal
sets are given by Theorem 1.

Remark 5 The case where T is not an integer multiple of 2π is open, and is com-
mented in Sect. 4.3 hereafter.

Remark 6 It follows from this result that if L �= 1/2 then the optimization prob-
lem (15) does not have any solution. We mention that this result generalizes
[7, Lemma 3.1] where the non-existence was proved within the class of subsets of
[0,π] of measure Lπ and that are unions of a finite number of subintervals; their
result does however not cover the case of more general subsets of [0,π], for instance
unions of an infinite number of subintervals, and does not make precise the optimal
value (18).

To overcome this non-existence result, it is usual in shape optimization problems
to consider relaxed formulations permitting to derive existence results (see e.g. [2]).
Here, the convex closure of UL for the weak star topology of L∞ is the set

U L =
{

a ∈ L∞([0,π], [0,1]) ∣
∣

∫ π

0
a(x)dx = Lπ

}

. (19)

Note that such a relaxation was used in [20, 21] for getting an existence result of
an optimal control domain of a string. Replacing χω ∈ UL with a ∈ U L, we define a
relaxed formulation of the second problem (15) by

sup
a∈U L

inf
j∈N∗

∫ π

0
a(x) sin2(jx)dx. (20)

We have the following result.

Proposition 1 The relaxed problem (20) has an infinite number of solutions, and

sup
a∈U L

inf
j∈N∗

∫ π

0
a(x) sin2(jx)dx = Lπ

2
.
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Moreover, all solutions of (20) are given by the functions of U L whose Fourier ex-
pansion series is of the form

a(x) = L +
+∞
∑

j=1

(

aj cos(2jx) + bj sin(2jx)
)

,

with coefficients aj � 0.

Remark 7 Using Theorem 1, there is no gap between the problem (15) and its relaxed
formulation (20). It is however worth noticing that this issue cannot be treated with
standard limit arguments, since the functional defined by

J (a) = inf
j∈N∗

∫ π

0
a(x) sin2(jx)dx

is not lower semi-continuous for the weak star topology of L∞ (it is however up-
per semi-continuous for that topology, as an infimum of linear functions). Indeed,
consider the sequence of subsets ωN of [0,π] of measure Lπ defined by

ωN =
N
⋃

k=1

[
kπ

N + 1
− Lπ

2N
,

kπ

N + 1
+ Lπ

2N

]

,

for every N ∈ N
∗. Clearly, the sequence of functions χωN

converges to the constant
function a(·) = L for the weak star topology of L∞, but nevertheless, an easy com-
putation shows that

∫

ωN

sin2(jx)dx = Lπ

2
− 1

2j
sin

(
jLπ

N

) N
∑

k=1

cos

(
2jkπ

N + 1

)

=
⎧

⎨

⎩

Lπ
2 − N

2j
sin(

jLπ
N

) if j = 0 mod(N + 1),

Lπ
2 + 1

2j
sin(

jLπ
N

) otherwise,

and hence, considering N large enough and j = N + 1, we get

lim sup
N→+∞

J (χωN
) = lim sup

N→+∞
inf

j∈N∗

∫

ωN

sin2(jx)dx � Lπ

2
− sin(Lπ)

2
<

Lπ

2
= J (L).

Due to this lack of semi-continuity, a gap could have been expected in the relaxation
procedure, in the sense that it could have been expected that

sup
χω∈UL

J (χω) < sup
a∈U L

J (a) = Lπ

2
.

The results above show that it is not the case, and that however the (nonrelaxed)
second problem (15) does not have any solution (except for L = 1/2).
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As a byproduct, it is interesting to note that we obtain the following corollary in
harmonic analysis, which is new up to our knowledge.

Corollary 2 Denote by F the set of the functions f ∈ L2(0,π) whose Fourier series
expansion is of the form

f (x) = L +
+∞
∑

j=1

(

aj cos(2jx) + bj sin(2jx)
)

, (21)

with aj � 0 for every j ∈ N
∗. There holds

d(F , UL) = 0,

where d(F , UL) denotes the distance of the set UL to the set F in L2 as a metric
space. If L ∈ (0,1) \ {1/2} then F ∩ UL = ∅, and if L = 1/2 then F ∩ UL consists
of the characteristic functions of all measurable subsets ω ⊂ [0,π] of measure π/2
such that ω and its symmetric set ω′ = π − ω are disjoint (almost everywhere) and
complementary in [0,π].

Based on the fact that, for L �= 1/2, the optimization problem (15) does not have
any solution, and based on the observation that it is more realistic from an engineering
point of view to take into consideration only a finite number of modes, it is natural to
consider as in [8] a truncated version of (15) involving only the first N modes, for a
given N ∈ N

∗, and to investigate the optimization problem

sup
ω⊂[0,π]
|ω|=Lπ

min
1�j�N

∫ π

0
χω(x) sin2(jx)dx. (22)

We have the following result.

Theorem 2 For every N ∈ N
∗, the problem (22) has a unique1 solution χωN , where

ωN is a subset of [0,π] of measure Lπ that is the union of at most N intervals and is
symmetric with respect to π/2. Moreover there exists LN ∈ (0,1] such that, for every
L ∈ (0,LN ], the optimal domain ωN satisfies

∫

ωN

sin2 xdx =
∫

ωN

sin2(2x)dx = · · · =
∫

ωN

sin2(Nx)dx. (23)

Remark 8 This result is the same as the one in [8, Theorem 3.2]. Note however that
the proof in [8] is not completely correct. In order to prove (23), the authors of [8]
use a first-order expansion of

∫

ω
sin2 xdx, with ω = ⋃N

k=1[ k
N+1 − l

2N
, k

N+1 + l
2N

],
and find l + 1

π
sin( πl

2N
) instead of l + 1

π
sin(πl

N
). The serious consequence of this

misprint is that the asymptotic expansion of the quantity denoted α in their paper

1Here the uniqueness must be understood up to some subset of zero Lebesgue measure. In other words if
ω is optimal then ω ∪ N and ω \ N where N denotes any subset of zero measure is also a solution.
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is wrong and their method unfortunately does not permit to establish (23). In this
article we provide a proof of that result, which is however unexpectedly difficult and
technical.

Remark 9 Note that the necessity of LN being small enough for (23) to hold has
been illustrated on numerical simulations in [8]. The problem of fully understanding
the minimization problem (22) and its limit behavior as N tends to infinity for all
possible values of L is widely open.

Remark 10 As observed in [8], the equalities (23) are the main ingredient to char-
acterize the optimal set ωN . It follows from (23) (but it also follows from our proof,
in particular from Lemma 4) that the optimal domain ωN concentrates around the
nodes kπ

N+1 , k = 1, . . . ,N . This causes the well-known spillover phenomenon, ac-
cording to which the optimal domain ωN solution of (22) with the N first modes
is the worst possible domain for the problem with the N + 1 first modes. Note that
this phenomenon is rather bad news for practical purposes, but from the mathemat-
ical point of view this is in accordance with the fact that the problem (15) has no
solution whenever L �= 1/2. Besides, the optimal solution χωN of (22) converges for
the weak star topology of L∞ to some function a(·) ∈ L∞([0,π], [0,1]) such that
∫ π

0 a(x)dx = Lπ . This function a(·) is actually a solution of the relaxed formulation
(20) of our problem introduced further.

1.4 State of the Art

This kind of shape optimization problem has been widely considered from the appli-
cation point of view, in particular in engineering problems where the problem of opti-
mal measurement locations for state estimation in linear partial differential equations
was much investigated (see e.g. [6, 15, 16] and the many references therein). In these
applications the goal is to optimize the number, the place and the type of sensors in
order to improve the estimation or more generally some performance index. Practical
approaches consist either of solving the above kind of problem with a finite number
of possible initial data, or of recasting the optimal sensor location problem for dis-
tributed systems as an optimal control problem with an infinite dimensional Riccati
equation, having a statistical model interpretation, and then of computing approxima-
tions with optimization techniques. However, on the one part, their techniques rely
on an exhaustive search over a predefined set of possible candidates and are faced
with combinatorial difficulties due to the selection problem and thus with the usual
flaws of combinatorial optimization methods. On the other part, in all these refer-
ences approximations are used to determine the optimal sensor location. The optimal
performance and the corresponding sensor or actuator location of the approximating
sequence are then expected to converge to the exact optimal performance and lo-
cation. Among the possible approximation processes, the closest one to our present
study consists of considering Fourier expansion representations and of using modal
approximation schemes.

However, in these references there is no systematic mathematical study of the
optimal design problem. The search of optimal domains relies on finite-dimensional
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approximations and no convergence analysis is led. By the way we will show in the
present article that there may exist serious problems in the sense that optimal domains
may exist for any modal approximation but do not exist for the infinite dimensional
model. In other words, Γ -convergence properties may not hold.

There exist only few mathematical results. An important difficulty arising when
focusing on an optimal shape problem is the generic non-existence of classical so-
lutions, as explained and surveyed in [1], thus leading to consider relaxation proce-
dures. In [5] the authors discuss several possible criteria for optimizing the damping
of abstract wave equations in Hilbert spaces, and derive optimality conditions for a
certain criterion related to a Lyapunov equation. In [7, 8], the authors consider the
problem of determining the best possible shape and position of the damping subdo-
main of given measure for a one-dimensional wave equation. It can be noticed that
these two references are, up to our knowledge, the first ones investigating in a rig-
orous mathematical way this kind of problem. They have been the starting point of
our analysis. More precisely, in these two references the authors consider the damped
wave equation

∂2y

∂t2
− ∂2y

∂x2
+ 2kχω

∂y

∂t
= 0 (t, x) ∈ (0, T ) × (0,π),

y(t,0) = y(t,π) = 0 t ∈ [0, T ],

y(0, x) = y0(x),
∂y

∂t
(0, x) = y1(x) x ∈ [0,π],

where k > 0, and investigate the problem of determining the best possible subset ω of
[0,π], of Lebesgue measure Lπ , maximizing the decay rate of the total energy of the
system. The overdamping phenomenon is underlined in [7] (see also [3]), meaning
that if k is too large then the decay rate tends to zero. According to a result of [3],
if the set ω has a finite number of connected components and if k is small enough,
then at the first order the decay rate is equivalent to k infj∈N∗

∫

ω
sin2(jx)dx. We then

recover exactly the problem (15) but with the additional restriction that the subsets ω

be a finite union of intervals.
Other quite similar questions have been investigated for control issues. In [20, 21]

the authors investigate numerically the optimal location of the support of the control
determined by the Hilbert Uniqueness Method for the 1D wave equation with Dirich-
let conditions, using gradient techniques or level sets methods combined with shape
and topological derivatives. In [23] this optimal location problem is solved both the-
oretically and numerically using an approach based on Fourier expansion series like
in the present article.

2 Proof of Theorem 1

The proof of the result consists of proving that there is no gap between the problem
(15) and its relaxed version (20).



J Fourier Anal Appl (2013) 19:514–544 525

2.1 Proof of Proposition 1

First of all, noting that sin2(jx) = 1
2 − 1

2 cos(2jx), it follows from Riemann-

Lebesgue’s lemma that, for every a ∈ U L, the integral
∫ π

0 a(x) sin2(jx)dx tends to
Lπ
2 as j tends to +∞. Therefore,

inf
j∈N∗

∫ π

0
a(x) sin2(jx)dx � lim

j→+∞

∫ π

0
a(x) sin2(jx)dx = 1

2

∫ π

0
a(x)dx = Lπ

2
,

for every a ∈ U L. It follows that

sup
a∈U L

inf
j∈N∗

∫ π

0
a(x) sin2(jx)dx � Lπ

2
,

and the equality holds for instance with the constant function a(x) = L. More
precisely, the equality holds in the above inequality if and only if

∫ π

0 a(x) ×
cos(2jx)dx � 0 for every j ∈ N

∗. The result follows.

2.2 The Supremum is Reached only for L = 1/2

Let us prove that the supremum of J on UL is reached (and then equal to Lπ
2 ) if and

only if L = 1/2. First, if L = 1/2 then it is easy to see that the supremum is reached,
and is achieved for all measurable subsets ω ⊂ [0,π] of measure π/2 such that ω and
its symmetric ω′ = π − ω are disjoint and complementary in [0,π].

Conversely, assume that the supremum be reached for L �= 1/2. Then, as in the
proof of Proposition 1, this implies in particular that the Fourier series expansion of
χω on [0,π] is of the form

χω(x) = L +
+∞
∑

j=1

(

aj cos(2jx) + bj sin(2jx)
)

,

with coefficients aj � 0. The argument is then standard. Let ω′ = π − ω be the sym-
metric set of ω with respect to π/2. Then, the Fourier series expansion of χω′ is

χω′(x) = L +
+∞
∑

j=1

(

aj cos(2jx) − bj sin(2jx)
)

.

For every x ∈ [0,π], define g(x) = L− 1
2 (χω(x)+χω′(x)). Note that g(x) ∈ {L,L−

1/2,L − 1} for almost every x ∈ [0,π], and hence g is continuous if and only if the
sets ω and ω′ are disjoint and complementary. But this is impossible since |ω| =
Lπ = |ω′| = (1 − L)π and L �= 1/2. It follows that g is discontinuous and at least
two of the sets g−1({L}), g−1({L−1/2}) and g−1({L−1}) have a nonzero Lebesgue
measure. The Fourier series expansion of g is

g(x) = −
+∞
∑

j=1

aj cos(2jx),
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with aj � 0 for every j ∈ N
∗. It follows from the discontinuity of g that necessar-

ily,
∑∞

j=1 aj = −∞. Besides, the sum
∑∞

j=1 aj is also the limit of
∑+∞

k=1 ak
̂n(k)

as n → +∞, where 
̂n is the Fourier transform of the positive function 
n whose
graph is the triangle joining the points (− 1

n
,0), (0,2n) and ( 1

n
,0) (note that 
n is an

approximation of the Dirac measure, with area equal to 1). But this raises a contra-
diction with the following identity obtained by applying Plancherel’s Theorem:

∫ π

0
g(t)
n(t)dt =

+∞
∑

k=1

ak
̂n(k).

2.3 Proof of the No-gap Statement

We now assume that L �= 1/2 and prove the no-gap statement, that is, supχω∈UL
J (χω)

= Lπ
2 . In what follows, for every subset ω of [0,π], set

Ij (ω) =
∫

ω

sin2(jx)dx and Īj (ω) =
∫

ω

cos(2jx)dx

for every j ∈ N
∗, so that there holds

Ij (ω) = Lπ

2
− 1

2
Īj (ω). (24)

Our proof below is widely inspired from the proof of [7, Theorem 3.2] in which the
idea of domain perturbation by making some holes in the subsets under consideration
was introduced. It consists of getting a refined estimation of the evolution of Ij (ω)

when perturbating ω, precise enough to consider the infimum of these quantities. In
what follows, for every open subset ω we denote by #ω the number of its connected
components. For p ∈ N

∗, define

Jp = sup
{

J (ω) | ω open subset of [0,π], |ω| = πL, #ω � p
}

.

where J (ω) = infj∈N∗
∫

ω
sin2(jx)dx. Since J is upper semi-continuous and since the

set of open subsets of [0,π] of measure Lπ whose number of connected components
is lower than or equal to p can be written as a compact set, it is obvious that Jp

is attained at some open subset ωp . Using the arguments of Sect. 2.2, it is clear
that Jp < Lπ

2 for every p ∈ N
∗. Denote by ωp the closure of ωp , and by ωc

p the
complement of ωp in [0,π].

Consider subdivisions of ωp and ωc
p , to be chosen later:

ωp =
K
⋃

i=1

[ai, bi] and ωc
p =

M
⋃

i=1

[ci, di]. (25)

Using the Taylor Lagrange inequality, one gets
∣
∣
∣
∣
∣

∫

ωp

cos(2jx)dx −
K

∑

i=1

(bi − ai) cos

(

2j
ai + bi

2

)
∣
∣
∣
∣
∣
� 4j2

K
∑

i=1

(bi − ai)
3

24
,
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and

∣
∣
∣
∣
∣

∫

ωc
p

cos(2jx)dx −
M
∑

i=1

(di − ci) cos

(

2j
ci + di

2

)
∣
∣
∣
∣
∣
� 4j2

M
∑

i=1

(di − ci)
3

24
,

for every j ∈ N
∗. Note that, since ωc

p is the complement of ωp , there holds

∫

ωc
p

cos(2jx)dx = −
∫

ωp

cos(2jx)dx, (26)

for every j ∈ N
∗. Set hi = (1 − L)(bi − ai)π , �i = Lπ(di − ci), xi = ai+bi

2 , and

yi = ci+di

2 . Set also h = max(h1, . . . , hK, �1, . . . , �M). Then, using the fact that
∑K

i=1(bi − ai) = Lπ , one gets

(1 − L)πĪj (ωp) =
K

∑

i=1

hi cos(2jxi) + O
(

j2h2),

LπĪj (ωp) = −
M
∑

i=1

�i cos(2jyi) + O
(

j2h2),

(27)

for every j ∈ N
∗. Now, for ε ∈ (0,1), define the perturbation ωε of ωp by

ωε =
(

ωp

∖
K
⋃

i=1

(

xi − ε

2
hi, xi + ε

2
hi

))

∪
M
⋃

i=1

[

yi − ε

2
�i, yi + ε

2
�i

]

.

Note that, by construction, #ωε = p + K + M and that |ωε| = Lπ − ε
∑K

i=1 hi +
ε
∑M

i=1 �i = Lπ . Moreover, one has

Īj

(

ωε
) =

∫

ωε

cos(2jx)dx

= Īj (ωp) −
K

∑

i=1

∫ xi+ ε
2 hi

xi− ε
2 hi

cos(2jx)dx +
M

∑

i=1

∫ yi+ ε
2 �i

yi− ε
2 �i

cos(2jx)dx.

Therefore,

d

dε
Īj

(

ωε
) = −1

2

K
∑

i=1

hi

(

cos

(

2j

(

xi + ε

2
hi

))

+ cos

(

2j

(

xi − ε

2
hi

)))

+ 1

2

M
∑

i=1

�i

(

cos

(

2j

(

yi + ε

2
�i

))

+ cos

(

2n

(

yi − ε

2
�i

)))

,
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and in particular, using (26) and (27),

d

dε
Īj

(

ωε
)

|ε=0
= −

K
∑

i=1

hi cos(2jxi) +
M

∑

i=1

�i cos(2jyi)

= −(1 − L)πĪj (ωp) − LπĪj (ωp) + O
(

j2h2)

= −Īj (ωp) + O
(

j2h2) (28)

and furthermore,

d2

dε2
Īj

(

ωε
) = 1

2

K
∑

i=1

jh2
i

(

sin

(

2j

(

xi + ε

2
hi

))

− sin

(

2j

(

xi − ε

2
hi

)))

− 1

2

M
∑

i=1

j�2
i

(

sin

(

2j

(

yi + ε

2
�i

))

+ sin

(

2j

(

yi − ε

2
�i

)))

,

hence,
∣
∣
∣
∣

d2

dε2
Īj

(

ωε
)
∣
∣
∣
∣
� 2L(1 − L)π2jh. (29)

From (24), (28) and (29), we infer that

Ij

(

ωε
) = Ij (ωp) + ε

d

dε
Ij

(

ωε
)

|ε=0
+

∫ ε

0
(ε − s)

d2

ds2
Ij

(

ωs
)

ds

= Ij (ωp) + ε

(
Lπ

2
− Ij (ωp)

)

+ O
(

εj2h2) + O
(

ε2jh
)

,

for every j ∈ N
∗ and every ε ∈ (0,1). Since, by definition, Jp = J (ωp) =

infj∈N∗ Ij (ωp), we get the inequality

Ij

(

ωε
)

� Jp + ε

(
Lπ

2
− Jp

)

+ O
(

εj2h2) + O
(

ε2jh
)

, (30)

for every j ∈ N
∗ and every ε ∈ (0,1).

Besides, it follows from Riemann-Lebesgue’s Lemma that Ij (ωp) tends to Lπ
2 as

j tends to +∞. Therefore, there exists an integer j0 such that

Ij (ωp) � Lπ

2
− 1

4

(
Lπ

2
− Jp

)

,

for every j � j0. Since there holds

∣
∣Ij

(

ωε
) − Ij (ωp)

∣
∣ =

∣
∣
∣
∣

∫ π

0

(

χωε (x) − χωp(x)
)

cos(2jx)dx

∣
∣
∣
∣

� ε

(
K

∑

i=1

hi +
M
∑

i=1

�i

)

= 2εL(1 − L)π2,
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for every ε ∈ (0,1), we infer that

∀ε ∈
(

0,min

(

1,

1
4 (Lπ

2 − Jp)

2L(1 − L)π2

))

∀j � j0 Ij

(

ωε
)

� Lπ

2
− 1

2

(
Lπ

2
− Jp

)

.

(31)
Note that this inequality does not depend on the choice of the subdivisions (25), and
in particular does not depend on the number of connected components of ωε .

We now choose the subdivisions (25) fine enough so that hj0 � 1
2 (Lπ

2 −Jp). Then
one has

ε2hj � ε

2

(
Lπ

2
− Jp

)

,

for every ε ∈ (0,1) and every j ∈ {1, . . . , j0}, and it follows from (30) that

Ij

(

ωε
)

� Jp + ε

2

(
Lπ

2
− Jp

)

, (32)

for every j ∈ {1, . . . , j0}.
Set CL = 1

16L(1−L)π2 , and choose

ε = min

(

1,CL

(
Lπ

2
− Jp

))

.

For this specific choice of ε, we obtain, using (31) and (32),

Ij

(

ωε
)

� Jp + 1

2
min

(

1,CL

(
Lπ

2
− Jp

))(
Lπ

2
− Jp

)

,

for every j ∈ N
∗, and therefore, passing to the infimum over j ,

J
(

ωε
)

� Jp + 1

2
min

(

1,CL

(
Lπ

2
− Jp

))(
Lπ

2
− Jp

)

.

We have thus constructed a new open set ωε having q = p + K + M connected
components. Reasoning by induction, we obtain a monotone increasing sequence of
integers (qk)k∈N such that q0 = p and

J (qk+1) � J (qk) + 1

2
min

(

1,CL

(
Lπ

2
− J (qk)

))(
Lπ

2
− J (qk)

)

.

for every k ∈ N. It follows from this inequality that the sequence (J (qk)k∈N is in-
creasing, bounded above by Lπ

2 , and converges to Lπ
2 . This finishes the proof of

Theorem 1
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2.4 Proof of Corollary 2

For every subset ω of [0,π] of measure Lπ , consider the Fourier series expansion of
its characteristic function

χω(x) = L +
+∞
∑

j=1

(

aj cos(2jx) + bj sin(2jx)
)

.

Since F is a closed convex of L2(0,π), the projection of χω on F is

PF χω(x) = L +
+∞
∑

j=1

(

min(aj ,0) cos(2jx) + bj sin(2jx)
)

,

and

d(χω, F )2 =
+∞
∑

j=1

max(aj ,0)2.

From Theorem 1, supχω∈UL
infj∈N∗

∫ π

0 χω(x) sin2(jx)dx = Lπ
2 . Then, let (ωn)n∈N

be a sequence of UL such that infj∈N∗
∫

ωn
sin2(jx)dx tends to Lπ

2 as n tends to +∞.

Since sin2(jx) = 1
2 (1− cos(2jx)), this implies that supj∈N∗

∫

ωn
cos(2jx)dx tends to

0 as n tends to +∞. Denoting by an
j and bn

j the Fourier coefficients of χωn , it follows
in particular that supj∈N∗ an

j tends to 0 as n tends to +∞. Combined with the fact
that the sequence (an

j )j∈N∗ is of summable squares, this implies that d(χωn, F ) tends
to 0 as n tends to +∞. The rest of the statement is obvious to prove.

3 Proof of Theorem 2

First of all, writing sin2(jx) = 1
2 − 1

2 cos(2jx), one has

sup
χω∈UL

min
1�j�N

∫

ω

sin2(jx)dx = Lπ

2
− 1

2
inf

χω∈UL

max
1�j�N

∫

ω

cos(2jx)dx,

and hence in what follows we are concerned with the problem

PN(L) = inf
χω∈UL

max
1�j�N

∫

ω

cos(2jx)dx. (33)

Our objective is to prove that this problem has a unique solution ωN(L), satisfying
the properties stated in the theorem, and that

∫

ωN(L)

cos(2x)dx =
∫

ωN(L)

cos(4x)dx = · · · =
∫

ωN(L)

cos(2Nx)dx, (34)

provided that L is small enough. We proceed in three steps. The two first steps are
straightforward and can already be found as well in [8] (although the method is
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slightly different). The third step, consisting of proving (34), is much more technical.
As already mentioned in Remark 8, equality (34) is claimed in [8] but the proof is
erroneous and cannot be corrected. We propose here another approach for the proof,
which is unexpectedly difficult. Note that the derivation of equality (34) is an impor-
tant issue for the optimal set ωN(L) because it permits to put in evidence the spillover
phenomenon discussed in Remark 10.

3.1 Relaxation Procedure

As in the proof of Theorem 1, the relaxation procedure consists here of replacing UL

with U L. The relaxed formulation of the problem (33) is

inf
a∈U L

max
1�j�N

∫ π

0
a(x) cos(2jx)dx. (35)

Note that, by compactness, it is obvious that there exists an optimum, and thus the
infimum is attained for some a ∈ U L.

3.2 Interpretation in Terms of an Optimal Control Problem

We change of point of view and consider the functions a(·) of U L as controls. Con-
sider the control system

y′(x) = a(x),

y′
j (x) = a(x) cos(2jx), j ∈ {1, . . . ,N},
z′(x) = 0,

(36)

for almost every x ∈ [0,π], with initial conditions

y(0) = 0, yj (0) = 0, j ∈ {1, . . . ,N}. (37)

The relaxed problem (35) is then equivalent to the optimal control problem of deter-
mining a control a ∈ U L steering the control system (36) from the initial conditions
(37) to the final condition

y(π) = Lπ, (38)

and minimizing the quantity z(π), with the additional final conditions

z(π) � yj (π), j ∈ {1, . . . ,N}. (39)

Expressed in such a way, this problem is a usual optimal control problem in finite
dimension. From Sect. 3.1, a is an optimal control solution of that problem. Note
anyway that the existence of an optimal control follows immediately from standard
results in optimal control theory. According to the Pontryagin Maximum Principle
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(see [22]), if a is optimal then there exist real numbers2 (py,p1, . . . , pN,pz,p
0) �=

(0, . . . ,0), with p0 � 0, such that

a(x) =
{

1 if ϕN(x) > 0,

0 if ϕN(x) < 0,
(40)

for almost every x ∈ [0,π], where the so-called switching function ϕN is defined by

ϕN(x) = py +
N

∑

j=1

pj cos(2jx). (41)

Note that, in the application of the Pontryagin Maximum Principle, it could happen
that the control a be undetermined whenever the switching function ϕN were to van-
ish on some subset of positive measure (singular case; see [27]). This does not happen
here since ϕN is a finite trigonometric sum. In particular, this implies that the optimal
control a is the characteristic function of a measurable subset ωN(L) of [0,π] of
measure Lπ . Note that the minimum of ϕN on [0,π] is reached at 0 and π , hence
from (40) the optimal set ωN does not contain 0 and π .

To prove uniqueness, assume the existence of two distinct minimizers χω1 and χω2

(it indeed follows from the discussion above that every minimizer is an extremal point
of UL, or in other words, is the characteristic function of some subset of [0,π]). As a
maximum of linear functionals, the functional a �→ max1�j�N

∫ π

0 a(x) sin2(jx)dx

is convex on U L, and it follows that for every t ∈ (0,1) the function tχω1 + (1− t)χω2

is also a solution of the problem (35), which is in contradiction with the fact that any
solution of this problem is extremal.

Finally, the fact that ωN(L) has at most N connected components follows from
the facts that the elements of ∂ωN(L) are the solutions of ϕN(x) = 0 and that ϕN can
be written as

ϕN(x) = py +
N

∑

j=1

pjT2j (cosx),

where T2j denotes the 2j -th Chebychev polynomial of the first kind. The degree of
the polynomial ϕN(arccosX) (in the argument X) is at most 2N , whence the result.

3.3 Equality of the Criteria for L Small Enough

This is the most technical and difficult part of the proof of the theorem. Let us first
show how the minimum and the maximum can be inverted in (33). In order to apply
a minimax theorem, it is required to convexify the criteria and the constraints under
consideration. In accordance with the relaxed formulation (35), we define the convex
set

KL
N =

{(∫ π

0
a(x) cos(2x)dx, . . . ,

∫ π

0
a(x) cos(2Nx)dx

)
∣
∣a ∈ U L

}

.

2Note that, since the dynamics of (36) do not depend on the state, it follows that the adjoint states of the
Pontryagin Maximum Principle are constant.
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From the previous step, the optimization problem (33) coincides with its relaxed for-
mulation (35), and thus can be written as

PN(L) = min
(x1,...,xN )∈KL

N

max
1�j�N

xj .

Denote by AN the simplex of R
N , defined by

AN =
{

α = (α1, . . . , αN) ∈ R
N+

∣
∣

N
∑

j=1

αj = 1

}

Then, for every (x1, . . . , xN) ∈ KL
N there holds obviously

max
1�j�N

xj = max
α∈AN

N
∑

j=1

αjxj ,

and therefore,

PN(L) = min
(x1,...,xN )∈KL

N

max
α∈AN

N
∑

j=1

αjxj .

The set AN is compact and convex, the set KL
N is convex, the function α �→

∑N
j=1 αjxj is convex on AN and lower-semicontinuous for every (x1, . . . , xN) ∈

KL
N , and the function x �→ ∑N

j=1 αjxj is concave on KL
N for every α ∈ AL. Then,

according to Sion’s Minimax Theorem (see e.g. [13, 26]) we can invert the minimum
and the maximum, and we get

PN(L) = max
α∈AN

min
(x1,...,xN )∈KL

N

N
∑

j=1

αjxj = max
α∈AN

min
a∈U L

∫ π

0
a(x)

N
∑

j=1

αj cos(2jx)dx.

For every α = (α1, . . . , αN) ∈ AN and every x ∈ [0,π], define

FN(α,x) =
N

∑

j=1

αj cos(2jx),

Lemma 2 For every α = (α1, . . . , αN) ∈ AN , the problem

min
a∈U L

∫ π

0
a(x)FN(α, x)dx (42)

has a unique solution a ∈ U L. Moreover, a belongs actually to UL and thus is the
characteristic function of a subset of [0,π] of measure Lπ .
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Proof The proof is done as previously by interpreting the optimization problem (42)
as the optimal control problem of determining an optimal control a ∈ U L steering the
two-dimensional control system

y′(x) = a(x),

z′(x) = a(x)FN(α, x),
(43)

from initial conditions y(0) = z(0) = 0 to the final condition y(π) = Lπ , and min-
imizing z(π). The application of the Pontryagin Maximum Principle, on which we
do not give details, implies immediately that the optimal control is unique and is
a characteristic function. The conclusion follows. Note that the optimal set can be
characterized in terms of the level sets of the function FN(α, ·). �

It follows that

PN(L) = max
α∈AN

min
χω∈UL

∫ π

0
χω(x)FN(α, x)dx, (44)

for every L ∈ (0,1). We denote by αN(L) a maximizer in AN of this problem (it is
not unique a priori). The minimizer is ωN(L) and is unique.

We define the mapping

ψ : AN × (0,1) −→ R

(α,L) �−→ min
χω∈UL

1

L

∫ π

0
χω(x)FN(α, x)dx.

It is clear that, for every α ∈ AN , there exists an optimal set minimizing
∫

ω
FN(α,x)dx

over UL, and moreover this set is unique since the function FN(α, ·) cannot be piece-
wise constant. Moreover, the optimal set is obviously characterized as a level set of
FN(α, ·), and concentrates around the minima of FN(α, ·) whenever L tends to 0.
The following lemma is then obvious.

Lemma 3 For every α ∈ AN , there holds

lim
L→0

ψ(α,L) = lim
L→0

min
χω∈UL

1

L

∫ π

0
χω(x)FN(α, x)dx = π min

0�x�π
FN(α, x).

The function ψ is in such a way extended to a continuous function on AN ×[0,1).
Now, we claim that

lim
L→0

max
α∈AN

ψ(α,L) = max
α∈AN

lim
L→0

ψ(α,L). (45)

Indeed, note first that, for every L∈ (0,1), one has ψ(αN(L),L)= maxα∈AN
ψ(α,L).

For L = 0, let ᾱ ∈ AN be such that ψ(ᾱ,0) = maxα∈AN
ψ(α,0). Note that αN(L)

does not necessarily converge to ᾱ, however we will prove that ψ(αN(L),L) tends to
ψ(ᾱ,0) as L tends to 0. Let α∗ ∈ AN be a closure point of the family (αN(L))L∈(0,1)
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as L tends to 0. Then, by definition of the maximum, one has ψ(α∗,0) � ψ(ᾱ,0). On
the other hand, since ψ is continuous, ψ(ᾱ,L) tends to ψ(ᾱ,0) as L tends to 0. By
definition of the maximum, ψ(ᾱ,L) � ψ(αN(L),L) for every L ∈ (0,1). Therefore,
passing to the limit, one gets ψ(ᾱ,0) � ψ(α∗,0). It follows that ψ(ᾱ,0) = ψ(α∗,0).
We have thus proved that the (bounded) family (ψ(αN(L),L))L∈(0,1) of real numbers
has a unique closure point at L = 0, which is ψ(ᾱ,0). The formula (45) follows.

Now, combining Lemma 3 and (45), we infer that

lim
L→0

max
α∈AN

min
χω∈UL

1

L

∫ π

0
χω(x)FN(α, x)dx = π max

α∈AN

min
0�x�π

FN(α, x).

Hence, we have put in evidence a new auxiliary optimization problem,

PN = max
α∈AN

min
0�x�π

FN(α, x), (46)

which is the limit problem (at L = 0) of the problems PN(L)
L

, i.e.,

lim
L→0

PN(L)

L
= PN.

The next lemma provides the solution of the limit problem PN .

Lemma 4 The problem (46) has a unique solution ᾱN given by

ᾱN
j = 2(N + 1 − j)

N(N + 1)
, j = 1, . . . ,N. (47)

Moreover, PN = − 1
N

and FN(ᾱN , ·) attains its minimum N times on [0,π], at the
points

x̄N
k = kπ

N + 1
, k = 1, . . . ,N. (48)

For the convenience of the reader, the proof of this lemma is postponed to Sect. 3.4.
It can be noticed that Sion’s Minimax Theorem cannot be applied to (46), and indeed
it is wrong that the minimum and the maximum can be inverted.

Let us end the proof of the theorem, with the use of this lemma. First, note that,
using the same arguments as previously and Sion’s Minimax Theorem, there holds

PN(L)

L
= max

α∈AN

min
χω∈UL

1

L

∫ π

0
χω(x)FN(α, x)dx

= min
χω∈UL

max
α∈AN

1

L

∫ π

0
χω(x)FN(α, x)dx

= max
α∈AN

1

L

∫

ωN(L)

N
∑

j=1

αj cos(2jx)dx (49)
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The reasoning made to prove (45) shows that every closure point α∗ ∈ AN of
the family (αN(L))L∈(0,1) as L tends to 0 satisfies ψ(α∗,0) = maxα∈AN

ψ(α,0).
Therefore, by continuity of ψ at L = 0, there exists a sequence (Lk)k∈N converging
to 0 such that αN(Lk) tends to α∗ and ψ(αN(Lk),Lk) tends to ψ(α∗,0) as k tends
to +∞.

By Lemma 4, the solution ᾱN of the limit problem is unique, therefore every
closure point of the family (αN(L))L∈(0,1) as L tends to 0 is equal to ᾱN , and hence
αN(L) converges to ᾱN as L tends to 0. Since ᾱN clearly belongs to the interior
of AN , it follows that there exists LN ∈ (0,1] such that, for every L ∈ (0,LN ], αN(L)

belongs to the interior of AN as well. Using (49), for every L fixed αN(L) is a
solution of the maximization problem

max
α∈AN

N
∑

j=1

αj

∫

ωN(L)

cos(2jx)dx,

and since the optimal αN(L) belongs to the interior of the simplex, it follows from
the Lagrange multipliers rule that all integrals

∫

ωN(L)
cos(2jx)dx are equal. This

ends the proof of Theorem 2.

3.4 Proof of Lemma 4

For every α ∈ AN , we define

FN(α) = min
0�x�π

FN(α, x) = min
0�x�π

N
∑

j=1

αj cos(2jx),

so that PN = maxα∈AN
FN(α). The function FN is continuous and concave on the

convex set AN as a minimum of linear functions. Let α ∈ AN be a maximizer of FN .
Note that the functions x �→ cos(2jx) are symmetric with respect to the axis x = π

2 ,
and hence the minima of FN(α, ·) on [0,π] share this property as well. We denote by
x1 < · · · < xk the points of [0,π/2] at which FN(α, ·) attains its minimum.

Note that the number k of such minima can be determined using Chebychev poly-
nomials. For every j ∈ {1, . . . ,N} we denote respectively by Tj and Uj the j th
Chebychev polynomial of the first and second kind, i.e. the polynomials satisfying

Tj (cos θ) = cos(jθ) and sin θUj (cos θ) = sin(jθ),

for every θ ∈ R. Setting y = cosx and q(y) = FN(α,x) = ∑N
j=1 αjT2j (y). The de-

gree of q is less than or equal to 2N , and there holds q(1) = 1 and |q(y)| � 1 on
[−1,1]. Distinguishing between the cases N odd or even, it is easy to see that there
are at most p = [N+1

2 ] local minimizers of q on [−1,1], and therefore k � [N+1
2 ]. At

the end of the proof, we will see that actually k = [N+1
2 ].

Let us provide a first-order characterization of the optimal solution α. According
to Danskin’s Theorem (see [4]), FN is differentiable in all directions, and

dFN(α).β = min
x∈S(α)

∂FN

∂α
(α, x).β,
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where S(α) denotes the set of all points x ∈ [0,π] at which the minimum of x �→
FN(α,x) is reached. Since α realizes the maximum of J on AN , one has

dFN(α).β = min
x∈S(α)

∂FN

∂α
(α, x).β � 0,

for every β ∈ Oα

ad, where Oα

ad is the set of admissible perturbations β = (β1, . . . , βN)

∈ R
N that satisfy

N
∑

j=1

βj = 0, and βj � 0 whenever αj = 0.

Since FN is concave (but not strictly concave) on the convex set AN , these necessary
first order optimality conditions are sufficient as well. Therefore, a necessary and
sufficient condition for α to be a maximizer of FN on AN is that

min
1���k

N
∑

j=1

βj cos(2jx�) � 0, (50)

for every β ∈ Oα

ad.
In order to prove the lemma, we next prove that ᾱN defined by (47) satisfies the

necessary and sufficient condition (50). Let us first prove that the minimizers of FᾱN

are given by (48). Using the identities

N
∑

j=1

cos(2jx) = cos((N + 1)x) sin(Nx)

sinx
,

N
∑

j=1

j cos(2jx) = N + 1

2
cos

(

(N + 1)x
)

UN(cosx)

− sinx

2
sin

(

(N + 1)x
)

U ′
N(cosx),

and

sin2 x U ′
N(cosx) = cosx UN(cosx) − NTN(cosx),

for every x ∈ [0,π], one computes

FᾱN (x) = 1

N
cos

(

(N + 1)x
)

UN(cosx) + 1

N(N + 1)
cosxUN+1(cosx)UN(cosx)

− 1

N + 1
UN+1(cosx) − 1

N + 1
UN+1(cosx)TN(cosx)

= − 1

N
+ 1

N(N + 1)

(

UN+1(cosx)
)2

.
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Therefore, the minimizers of FαN on [0,π] are the solutions of sin((N +1)x)=0,
hence (48) follows. Moreover, if we denote as previously by k the number of mini-
mizers of FαN on [0,π/2], one has k = [N+1

2 ]. Now, showing that ᾱN satisfies (50)
amounts to checking that

min
1���k

〈ξ�, β〉 � 0

for every β = (β1, . . . , βN) ∈ R
N such that β1 + · · · + βN = 0, where ξ� is the vector

of coordinates

ξ�,j = cos

(
2j�π

N + 1

)

, j = 1, . . . ,N.

From Farkas’ lemma, this condition is equivalent to the existence of (λ0, λ1, . . . , λk) ∈
R × R

k+ such that

λ0uN +
k

∑

�=1

λ�ξ� = 0, (51)

where uN = (1, . . . ,1) ∈ R
N . Using the fact that

k
∑

j=1

cos

(
2j�π

N + 1

)

= −1

2

for every � ∈ {1, . . . , k}, it follows that the condition (51) is satisfied. This ends the
proof.

4 Further Comments

4.1 Numerical Simulations

As an illustration of Theorem 2 and in particular of the spillover phenomenon
(see [8]), we provide on Fig. 1 some numerical simulations representing the optimal
set ωN of the truncated problem (22) in function of L.

4.2 Further Comments on the Non existence Result of Theorem 1

Having in mind the spillover phenomenon mentioned in Remark 10 and the fact that
if L �= 1/2 then the problem (15) has no solution, we stress that the optimal solution
χωN of (22) converges for the weak star topology of L∞ to a solution a(·) ∈ U L

of the relaxed problem (20) (note that all solutions of this problem are determined
by Proposition 1), however a(·) is not a characteristic function. In other words, the
sequence of optimization problems (22) Γ -converges to the relaxed formulation of
the second problem. Although the optimal value of (22) converges to Lπ/2, there is
the spillover phenomenon (see Theorem 2 and Remark 10).
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Fig. 1 Optimal set ωN in function of L, for N = 3 (left) and N = 4 (right) (by courtesy of P. Hébrard
and A. Henrot)

Because of the non existence of solution for this problem, there is a compromise
to make between the existence of an optimal set and the optimal value. More pre-
cisely, It is claimed in [7] that bounding the number of connected components of the
admissible sets permits to get an existence result. It corresponds to adding a bounded
variation constraint in the maximization problem. Of course, restricting the set of
maximization in such a way makes the shape optimization problem well-posed, but
decreases the optimal value of the observability constant.

Another natural idea in view of trying to recover a nice existence result consists
of penalizing the functional J defined by (14), and for instance of maximizing the
functional

Jε(χω) = J (χω) − 1

ε2

∥
∥a(1 − a)

∥
∥2

L2 .

over UL. The issue is however similar. Indeed, consider a maximizing sequence
(χωn)n∈N∗ in UL, that converges L∞ weak star to the constant function a(·) = L.
Thus, the penalization term vanishes and one see that Jε(χωn) converges to Lπ/2
whereas (χωn)n∈N∗ does not converge to a characteristic function.

4.3 Comments on the Case Where T is not an Integer Multiple of 2π

We do not know how to solve the problem of maximizing the observability constant
whenever T is not an integer multiple of 2π . In this section we provide however two
comments showing the difficulty of this problem.

First Comment If T is not an integer multiple of 2π then as already mentioned the
functional GT (χω) involves crossed terms (see (9)) that cannot be handled easily. The
same kind of difficulty due to crossed terms is encountered in the problem of find-
ing what are the best possible constants in Ingham’s inequality (see [9]), according
to which, for every real number γ and every T > 2π

γ
, there exist two positive con-

stants C1(T , γ ) and C2(T , γ ) such that for every sequence of real numbers (λn)n∈N∗
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satisfying

∀n ∈ N
∗ |λn+1 − λn| � γ,

there holds

C1(T , γ )
∑

n∈N∗
|an|2 �

∫ T

0

∣
∣
∣
∣

∑

n∈N∗
aneiλnt

∣
∣
∣
∣

2

dt � C2(T , γ )
∑

n∈N∗
|an|2,

for every (an)n∈N∗ ∈ �2(C). Establishing sharp constants within the framework of
Ingham’s method has been discussed in a number of works (see e.g. [10–12, 14])
and the problem of finding the best possible constants is an interesting (still) open
problem (see also [19, 28] for close works in harmonic analysis).

Second Comment: on the Optimality of the Constant Function ā(·) = L In Propo-
sition 1, it is stated that the constant function ā(·) = L is one of the solutions of
the relaxed problem (20). Intuitively, this result is not surprising. It can be indeed
expected that the best possible domain should be equitably spread over the interval
[0,π], and therefore the relaxed solution ā(·) = L appears as an intuitive solution.

Recall that (20) is the relaxed version of the problem (15), itself being equivalent
to the problem of maximizing the observability constant CT (χω) (defined by (52))
over UL, in the case where T is an integer multiple of 2π . The relaxed version was
however not defined for general values of T and we define it now. For every a ∈ U L,
we define

CT (a)

= inf

{
GT (a)

‖(y0, y1)‖2
L2(0,π)×H−1(0,π)

∣
∣
(

y0, y1) ∈ L2(0,π) × H−1(0,π) \ {

(0,0)
}
}

(52)

where the functional GT initially defined on UL by (5) is naturally extended to U L

by

GT (a) =
∫ T

0

∫ π

0
a(x)y(t, x)2dxdt, (53)

where y is the solution of (1). Note that the mapping a ∈ U L �→ CT (a) is upper semi-
continuous as an infimum of linear functions that are continuous for the L∞ weak star
topology. The set U L being compact for this topology, the existence of a maximizer
follows immediately.

What is proved in Proposition 1 is that the constant function ā(·) = L is one of the
solutions of the problem of maximizing the functional a �→ CT (a) over U L, when-
ever T is an integer multiple of 2π , and as said above this is quite intuitive and could
be expected. However more surprisingly the constant function ā(·) = L is not a solu-
tion whenever T is not an integer multiple of π .
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Proposition 2 For every L ∈ (0,1) and every T > 0 such that T is not an integer
multiple of π , the constant function ā(·) = L is not a maximizer of the functional
a �→ CT (a) over U L.

Proof First of all, using (6) and (8), one has

CT (a) = 2

π
inf

(aj )j∈N∗ , (bj )j∈N∗∈�2(R)
∑+∞

j=1(a
2
j +b2

j )=1

∫ T

0

∫ π

0
a(x)

×
(+∞

∑

j=1

(

aj cos(j t) + bj sin(j t)
)

sin(jx)

)2

dxdt,

for every a ∈ U L. Setting aj = ρj cos θj and bj = ρj sin θj for every j ∈ N
∗, we get

CT (a) = 2

π
inf

(ρj )j∈N∗∈�2(R)
∑+∞

j=1 ρ2
j =1

inf
(θj )j∈N∗∈RN∗

∫ T

0

∫ π

0
a(x)

×
(+∞

∑

j=1

ρj cos(j t − θj ) sin(jx)

)2

dxdt, (54)

for every a ∈ U L. Now if ā is the constant function equal to L on [0,π], then

CT (ā) = 2L

π
inf

(ρj )j∈N∗∈�2(R)
∑+∞

j=1 ρ2
j =1

inf
(θj )j∈N∗∈RN∗

∫ T

0

∫ π

0

(+∞
∑

j=1

ρj cos(j t −θj ) sin(jx)

)2

dxdt,

and since

∫ T

0

∫ π

0

(+∞
∑

j=1

ρj cos(j t − θj ) sin(jx)

)2

dxdt

= π

2

+∞
∑

j=1

ρ2
j

∫ T

0
cos2(j t − θj )dt = π

4

+∞
∑

j=1

ρ2
j

(

T − cos(jT − 2θj )
sin(jT )

j

)

,

it follows that

CT (ā) = L

2
inf

(ρj )j∈N∗∈�2(R)
∑+∞

j=1 ρ2
j =1

inf
(θj )j∈N∗∈RN∗

+∞
∑

j=1

ρ2
j

(

T − cos(jT − 2θj )
sin(jT )

j

)

.
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Since the infimum over the θj ∈ R is reached at θj = 1
2 (jT + επ) with ε = 1 or 0

according to the sign of sin(jT ), we get

CT (ā) = L

2
inf

(ρj )j∈N∗∈�2(R)
∑+∞

j=1 ρ2
j =1

+∞
∑

j=1

ρ2
j

(

T − | sin(jT )|
j

)

= L

2
inf

j∈N∗

(

T − | sin(jT )|
j

)

.

Since | sin(jT )| � j | sinT | for every j ∈ N
∗ and any value of T , we obtain finally

CT (ā) = L

2

(

T − | sinT |),

and moreover the infimum in the definition (54) of CT (a) is reached at ρ̄1 = 1, ρ̄j = 0
for j > 1, θ̄1 = 1

2 (T + επ) with ε = 1 or 0 according to the sign of sin(T ), and θ̄j

arbitrary for j > 1. Note that these are exactly all points at which the infimum is
reached, whenever T is not a multiple integer of π . This fact is important to apply
a usual version of Danskin’s theorem (see [4]). This classical result can indeed be
applied for a minimum over a finite dimensional space, and in our case it is possible
to consider an observability constant CT,N(a) truncated to the N first modes. In this
case, when computing CT (ā) the infimum is a minimum and is reached at the same
points as above. Thus, the derivative dCT,N(ā).h has exactly the same expression
than dCT (ā).h below for every N ∈ N

∗, and to conclude, it suffices to let N tend
to +∞ and the result follows. Let us now provide the details of the computation
of the differential of CT at ā along any admissible direction h ∈ L∞(0,π). Here
h admissible means that

∫ π

0 h(x)dx = 0. Using Danskin’s argument as discussed
above, one has

dCT (ā).h =
∫ T

0
cos2(t − θ̄1)dt

∫ π

0
h(x) sin2 xdx

= 1

2

(

T − | sinT |)
∫ π

0
h(x) sin2 xdx, (55)

for every h ∈ L∞(0,π) such that
∫ π

0 h(x)dx = 0, and for every T that is not a mul-
tiple of π . Now, since ā belongs to the interior of U L, if ā were a maximizer of
the functional a �→ CT (a) over U L (for such values of T ) then it would follow the
existence of a real number λ such that

∫ π

0
h(x) sin2 xdx = λ

∫ π

0
h(x)dx,

for every h ∈ L∞(0,π), which is absurd. The result is proved. �

Remark 11 From the point of view of characteristics, this result could actually be
expected. Indeed, every point x0 ∈ (0,π) generates two characteristics, one going to
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the left and the other one to the right. Both characteristics intersect at x0 at times 2pπ ,
for every p ∈ N

∗. Now, at time T = 2π + ε, for every x0 ∈ (ε,π − ε), rays emanating
from x0 are at a distance ε from x0, and symmetrically spread on the left and on the
right of x0. But the situation goes differently whenever x0 is close to the boundary of
(0,π), because then rays at time T are not symmetrically spread with respect to x0,
because of reflections at the boundary. This symmetry breaking intuitively explains
the loss of homogeneity of the optimal solution.

5 Conclusion and Open Problems

We have studied the problem of maximizing the observability constant, or its asymp-
totic average in time, over all possible subsets ω of [0,π] of Lebesgue measure Lπ ,
for the homogeneous one-dimensional wave equation on [0,π] with Dirichlet bound-
ary conditions. We have obtained a precise optimal value for this asymptotic observ-
ability constant, and also for the observability constant whenever the time T is an
integer multiple of 2π . We provided and solved a relaxed version of the problem and
showed that there is no gap between both optimal values. The problem of computing
the best observability constant for general values of T is open and as mentioned in
Sect. 4.3 the problem is difficult and similar to the one of computing the best con-
stants in Ingham’s inequality. We defined and solved a truncated version of the initial
problem and showed that the optimal sets share a spillover property. We note how-
ever that the set of closure points of these finite dimensional approximations is strictly
contained in the set of optimal solutions of the relaxed problem.

An interesting open problem is to investigate the situation for second-order equa-
tions with varying coefficients. Our approach here used the explicit trigonometric
form of Fourier series expansions, but the extension to the more general framework
of Sturm-Liouville kind equations is not clear.

The generalization to the multi-dimensional case is not easy and requires spec-
tral considerations related to the asymptotic behavior of the energy concentration of
eigenfunctions. It will be the subject of a future work (see [24]).
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