

Optimal on-line algorithms for single-machine scheduling

Citation for published version (APA):
Hoogeveen, J. A., & Vestjens, A. P. A. (1995). Optimal on-line algorithms for single-machine scheduling.
(Memorandum COSOR; Vol. 9539). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 24. Aug. 2022

https://research.tue.nl/en/publications/fe9a15c5-0f30-473b-92a9-8b29ebe9715a

Memorandum COSOR 95-39, 1995, Eindhoven University of Technology

Optimal on-line algorithms for single-machine scheduling

J.A. Hoogeveen A.P.A. Vestjens

Department of Mathematics and Computing Science,
Eindhoven University of Technology,

P.O.Box 513, 5600 MB, Eindhoven, The Netherlands

Abstract

We consider single-machine on-line scheduling problems where jobs arrive over time. A set of indepen-
dent jobs has to be scheduled on the machine, where preemption is not allowed and the number of jobs
is unknown in advance. Each job becomes available at its release date, which is not known in advance,
and its characteristics, e.g., processing requirement, become known at its arrival. We deal with two prob-
lems: minimizing total completion time and minimizing the maximum time by which all jobs have been
delivered. For both problems we propose and analyze an on-line algorithm based on the following idea:
As soon as the machine becomes available for processing, choose an available job with highest priority,
and schedule it if its processing requirement is not too large. Otherwise, postpone the start of this job for
a while. We prove that our algorithms have performance bound 2 and (

√
5 + 1)/2, respectively, and we

show that for both problems there cannot exist an on-line algorithm with a better performance guarantee.

Keywords: on-line algorithms, single-machine scheduling, worst-case analysis.

1 Introduction

Until a few years ago, one of the basic assumptions made in deterministic scheduling was that all
of the information needed to define the problem instance was known in advance. This assumption
is usually not valid in practice, however. Abandoning it has led to the rapidly emerging field of
on-line scheduling. Two on-line models have been proposed. The first one assumes that there
are no release dates and that the jobs arrive in a list. The on-line algorithm has to schedule the
first job in this list before it sees the next job in the list (e.g., see [Graham, 1966] and [Chen, Van
Vliet & Woeginger, 1994]). The second model assumes that jobs arrive over time. Next to the
presence of release dates, the main difference between the models is that in the second model jobs
do not have to be scheduled immediately upon arrival. At each time that the machine is idle, the
algorithm decides which one of the available jobs is scheduled, if any. In this paper we consider
two single-machine on-line scheduling problems with release dates.

We deal with the single-machine scheduling problems of minimizing total completion time
and maximum time by which all jobs have been delivered, respectively. In the latter problem, af-

1

ter their processing on the machine, the jobs need to be delivered, which takes a certain delivery
time. The corresponding off-line problems are both strongly NP-hard, but the preemptive versions
can be solved in polynomial time through an on-line algorithm (e.g., see [Lawler, Lenstra, Rin-
nooy Kan & Shmoys, 1993]). Well known on-line algorithms for the problems are the SPT-rule
and LDT-rule: choose from among the available jobs the one with the shortest processing time and
largest delivery time, respectively. If all release dates are equal, then the problems are solved by
these algorithms. For the case that the release dates are not equal, Mao, Kincaid & Rifkin [1995]
prove that SPT has a performance guarantee of n, where n is the number of jobs, and Kise, Ibaraki
& Mine [1979] prove that LDT has a performance guarantee of 2. The question is of course: can
we do better from a worst-case point of view?

Throughout the paper we use Jj to denote job j, and rj , pj, and qj to denote the release date,
processing requirement, and delivery time of Jj, respectively. We denote by Sj(σ), Cj(σ), and
Lj(σ), the starting time, completion time, and the time by which Jj is delivered in schedule σ.
We use σ to denote the schedule produced by the heuristic and π to denote an optimal schedule.

This paper is organized as follows. In Section 2 we consider the problem of minimizing total
completion time on a single-machine. We prove that any on-line algorithm for this problem has a
worst-case ratio of at least 2, and we present an algorithm that achieves this bound. Independent
of this work both Phillips, Stein & Wein [1995] and Stougie [1995] developed algorithms with
equal performance guarantee; the lower bound of 2 was achieved by Stougie as well. We present
both algorithms and compare them to our algorithm. In Section 3 we consider the problem of
minimizing the time by which all jobs have been delivered. We show that any on-line algorithm
has a worst-case ratio of at least (

√
5 + 1)/2. Moreover, we present an algorithm that achieves

this bound.

2 Total completion time

In this section, we present an on-line 2-approximation algorithm for the single-machine schedul-
ing problem of minimizing total completion time and show that no on-line algorithm can do better
from a worst-case point of view. At the end of this section, we compare the algorithms of Phillips
et al. and Stougie to our algorithm.

We first show that 2 is a lower bound on the worst-case ratio of any on-line algorithm; this
result follows from an example. For a given schedule σ, we use C(σ) as a short notation for the
total completion time of σ, i.e., C(σ) = ∑

j Cj(σ).

Theorem 2.1. Any on-line algorithm has a worst-case ratio of at least 2.

Proof. We show this result by describing a set of instances for which no on-line algorithm can
guarantee an outcome strictly less than twice the optimum. Consider the following situation. The
first job arrives at time 0 and has processing requirement p. The on-line algorithm decides to
schedule the job at time S. Depending on S, either no jobs arrive anymore or n − 1 jobs with
processing requirement 0 arrive at time S + 1. In the first case we get a ratio of C(σ)/C(π) =
(S + p)/p, whereas in the second case we get a ratio of C(σ)/C(π) ≥ n(S + p)/(n(S + 1) + p).

2

Hence,
C(σ)

C(π)
≥ max

{
S + p

p
,

n(S + p)

n(S + 1) + p

}
.

The algorithm may choose S so as to minimize this expression. Some simple algebra shows that
the best choice for S is

S = n − 1
n

p − 1.

This implies a worst-case ratio of
C(σ)

C(π)
≥ 2 − 1

n
− 1

p
.

If we let both n and p tend to infinity, then we get the desired ratio of 2. �

We can use the example of Theorem 2.1 to show that any on-line algorithm that schedules a job
as soon as the machine is available will have an unbounded worst-case ratio. If an algorithm
wants to guarantee a better performance bound, then it needs a waiting strategy. For example,
if an available job has a large processing requirement compared to the optimal solution of the
currently available instance, the algorithm should wait for extra information. To incorporate this,
we slightly modify the SPT-rule and call the new rule the delayed SPT-rule (D-SPT).

ALGORITHM D-SPT

If the machine is idle and a job is available at time t, determine an unscheduled job with smallest
processing requirement, say Ji. If there is a choice, take the job with the smallest release date. If
pi ≤ t, then schedule Ji; otherwise, wait until time pi or until a new job arrives, whichever hap-
pens first.

As we have already seen, the worst-case bound of any algorithm is at least equal to 2. If the per-
formance guarantee exceeds 2, then there exists an instance, which we call counterexample, for
which the algorithm produces a schedule with value more than twice the optimal value. We show
that our algorithm has a performance bound exactly equal to 2, by showing that there does not exist
such a counterexample. Thereto, we first derive some characteristics of a smallest counterexam-
ple, i.e., a counterexample consisting of a minimum number of jobs. Let I be such a smallest
counterexample, and let σ be the schedule created by D-SPT for this instance.

Observation 2.2. The schedule σ consists of a single block: it possibly starts with idle time after
which all jobs are executed contiguously.

Proof. Suppose that σ contains idle time between the execution of the jobs. The jobs scheduled
before this idle period do not influence the scheduling decision concerning the jobs scheduled after
this idle period, and vice versa. Therefore, the instance can be split into two independent smaller
instances. For at least one of these partial instances D-SPT creates a schedule with value more
than twice the optimal value, which contradicts the assumption that we considered an instance
with a minimum number of jobs. �

3

From now on, we assume that the jobs are numbered according to their position in the schedule
σ. We partition σ into subblocks, such that within every subblock the jobs are ordered according
to the SPT-rule, and that the last job of a subblock is larger than the first job of the succeeding
subblock if it exists. We denote these subblocks by B1, . . . , Bk ; subblock Bi+1 consists of the jobs
Jb(i)+1 , . . . , Jb(i+1) , where the indices b(i) are determined recursively as b(i) = min{ j > b(i −1) |
pj > pj+1}. The number of subblocks, k, in which the schedule is partitioned, follows from the
recursion scheme.

For ease of exposition, we define a dummy job J0 with p0 = S1(σ), which will not be sched-
uled. Although J0 will not be scheduled, we define S0(σ) = p0. Let m(i) be the index of the job
that has the largest processing requirement in the first i blocks, i.e., pm(i) = max0≤ j≤b(i) pj. We
define a pseudo-schedule ψ for the schedule σ as follows. The order of the jobs in ψ is the same
as in σ, but the first job in Bi+1 starts at time Sb(i)+1 (σ) − pm(i) . Furthermore, all jobs in a block
are scheduled contiguously. It is easy to verify that ψ is not a real schedule, since some jobs start
before their release date and some jobs overlap. Note that ψ contains no idle time. Let φ be an
optimal preemptive schedule for I .

Lemma 2.3. For all Jj ∈ I , we have that Cj(σ) − Cj (ψ) ≤ Cj(φ).

Proof. Consider an arbitrary job, say Jj, and suppose that Jj ∈ Bi+1. For this job Cj(σ)−Cj (ψ) =
pm(i) . If p j < pm(i) , then rj > Sm(i) (σ) ≥ pm(i) , because D-SPT always schedules the smallest
available job first and never starts a job before a time smaller than its own processing time. There-
fore, either p j ≥ pm(i) or r j > pm(i) , which implies that Cj(φ) ≥ r j + pj ≥ pm(i) . Hence, Cj(σ) −
Cj(ψ) ≤ Cj(φ). �

Lemma 2.4. C(ψ) ≤ C(φ).

Proof. Let I denote the job set corresponding to the smallest counterexample. Using this instance
and the pseudo-schedule ψ for this instance we create a new instance I′. The instance I ′ consists
of all jobs in I. The processing requirements of the jobs remain the same, but the release dates r′j
are set equal to min{rj, Sj (ψ)}.

Let φ′ be the optimal preemptive schedule for the instance I ′. Determine the first job in φ′

that starts earlier in φ′ than in ψ; suppose this job, say Jj, belongs to Bi+1 in σ. If p j ≥ pm(i) ,
then all jobs scheduled before Jj in ψ have a higher priority, i.e., either they have a smaller pro-
cessing requirement or they have equal processing requirement and a smaller release date. This
implies that in the preemptive schedule these jobs also have a higher priority and hence will be
scheduled before Jj, which contradicts the fact that Sj(φ

′) < Sj(ψ). If p j < pm(i) , then all jobs
that are executed in the interval [r j + pm(i), Sj (σ)] in σ have a higher priority than J j. Hence, all
jobs executed in the interval [rj, Sj (ψ)] in ψ have a higher priority than J j; let V denote the set
containing all these jobs. Since Jj is the first job in φ′ with Sj(φ

′) < Sj(ψ), there is no room to
start one of the jobs in V before time rj . Hence, one of the jobs in V must be postponed in φ′ to
enable Jj to start before time S j(ψ), which is inconsistent with the way φ′ has been constructed.
Therefore, no job starts earlier in φ′ than in ψ, which implies Cj(φ

′) ≥ Cj(ψ) for all j = 1, . . . ,n.

4

As the release dates in I
′ are smaller than or equal to the release dates in I , we have that

C(φ) ≥ C(φ′). Together this implies that C(ψ) ≤ C(φ′) ≤ C(φ). �

Theorem 2.5. C(σ) ≤ 2C(φ).

Proof. Combining Lemmas 2.3 and 2.4 we obtain that C(σ) ≤ C(φ) + C(ψ) ≤ 2C(φ). �

Corollary 2.6. The on-line algorithm D-SPT has performance bound 2. �

The algorithm ONE-MACHINE (1-M) developed by Phillips et al. uses the preemptive schedule.
The algorithm maintains a list of jobs that have been completed in the preemptive schedule. As
soon as a job has been finished in the preemptive schedule it will be appended to the end of this
list. As soon as the machine becomes idle, the first job in this list will be assigned to the machine.

The algorithm developed by Stougie modifies the release dates of the jobs, before they are
presented to the on-line algorithm. The release date of each job is increased by its own processing
requirement. For this new instance the algorithm uses the SPT-rule. Since the algorithm first shifts
the release dates and then uses SPT, we call it the shifted SPT-rule (S-SPT).

All three algorithms 1-M, S-SPT, and D-SPT create schedules with cost no more than twice
the value of the optimal preemptive schedule. It is not to difficult to see that D-SPT does not create
more idle time than S-SPT, which again does not create more idle time than 1-M. Hence, we might
expect that on average D-SPT performs slightly better than the other two algorithms. There exist
instances, however, for which one algorithm performs twice as well as the other ones. Table 1
shows these instances. The values of C(σ) are the limiting values for ε ↓ 0, and σ denotes only
the order in which the jobs are scheduled.

Table 1: Instances to compare the worst-case behavior of D-SPT, S-SPT, and 1-M.

Instance Algorithm σ C(σ)

j 1 2 · · · n D-SPT (2,.. . ,n,1) n+1
r j 0 1 · · · 1 S-SPT (1,.. . ,n) 2n
pj 1 ε · · · ε 1-M (1,.. . ,n) 2n

j 1 2 · · · n D-SPT (1,.. . ,n) 2n
r j ε 1 + ε/2 · · · 1 + ε/2 S-SPT (2,.. . ,n,1) n+1
pj 1 ε/2 · · · ε/2 1-M (1,.. . ,n) 2n

j 1 2 3 · · · n+1 D-SPT (1,.. . ,n+1) 2n
r j 0 0 1 + ε/2 · · · 1 + ε/2 S-SPT (1,.. . ,n+1) 2n
pj ε 1 0 · · · 0 1-M (1,3,.. . ,n+1,2) n+1

5

3 Maximum delivery time

In this section, we present an on-line α-approximation algorithm for the single-machine schedul-
ing problem of minimizing the time by which all jobs have been delivered, where α = (

√
5+1)/2,

and show that no on-line algorithm can do better from a worst-case point of view. We start with
the latter. Again, we prove the lower bound on the worst-case ratio by means of an example for
which any on-line algorithm will have at least the required ratio. Let Lmax(π) denote the mini-
mum time by which all jobs can be delivered, and let Lmax(σ) denote the time by which all jobs
are delivered in schedule σ, where σ is the schedule obtained through some on-line algorithm.

Theorem 3.1. Any on-line algorithm has a worst-case ratio of at least α.

Proof. Consider the following situation. The first job arrives at time 0 and has processing re-
quirement p1 = p and delivery time q1 = 0. The on-line algorithm decides to schedule the job
at time S. Depending on S, either no jobs arrive any more or one job with processing require-
ment p2 = 1 and delivery time q2 = p arrives at time r2 = S + 1. In the first case we get a ra-
tio of Lmax(σ)/Lmax (π) = (S + p)/p; in the second case we get a ratio of Lmax(σ)/Lmax (π) ≥
(S + 2p + 1)/(S + p + 2). Hence,

Lmax(σ)

Lmax(π)
≥ max

{
S + p

p
,

S + 2p + 1
S + p + 2

}
.

The algorithm may choose S so as to minimize this expression. Some simple algebra shows that
the best choice for S is

S = p
2

(

√
5 − 4

p2
− 1) − 1.

This implies a worst-case ratio of

Lmax(σ)

Lmax(π)
≥ 1

2
(

√
5 − 4

p2
+ 1) − 1

p
.

If we let p tend to infinity, then we get the desired ratio of α. �

We can use the example of Theorem 3.1 to show that any on-line algorithm that schedules a job
as soon as the machine is available will have a worst-case ratio of at least 2. Note that a simple
algorithm like LDT already achieves this bound. Again, if an algorithm wants to guarantee a bet-
ter performance bound, then it needs a waiting strategy. Therefore, we modify the LDT-rule and
call the new rule the delayed LDT-rule (D-LDT). The basic idea behind the algorithm is that, if no
jobs with a large processing requirement are available, then we should schedule the job with the
largest delivery time; otherwise, we should decide whether to schedule the large job, the job with
the largest delivery time, or no job at all.

Throughout this section, we use the following notation:

- p(S) denotes the total processing time of all jobs in S;

- J(t) is the set containing all jobs that arrived at or before time t;

- U(t) is the set containing all jobs in J(t) that have not been started at time t;

6

- t1 denotes the start time of the last idle time period before time t; if there is no idle time,
then define t1 = 0.

- We call a job Jj big if p j > (α − 1)p(J(t) \ U(t1)). Note that J(t) \ U(t1) contains all
jobs that arrived at or before time t and that were not completed at time t1;

- Ji(t) denotes the job with the largest processing time in U(t).

- Jm(t) denotes the job with the largest delivery time in U(t).

ALGORITHM D-LDT

Wait until the machine is idle and a job is available. Suppose this happens at time t. If there is no
big job available, then schedule Jm(t). Otherwise, do the following.

• If Ji(t) is the only available job, then wait until a new job arrives or until time ri + (α−1)pi ,
whichever happens first.

• Otherwise,

if t + p(U(t)) > ri + αpi, schedule Jm(t) if qm > (α − 1)pi and Ji(t), otherwise;

else, if Jm(t) �= Ji(t), schedule Jm(t), else schedule the job with the second largest delivery
time.

Again we work with a smallest counterexample, where smallest refers to the number of jobs. Let
I be such a smallest counterexample, and let σ be the schedule created by D-LDT for I . We sup-
pose that Jl denotes the first completed job in σ that assumes the value Lmax(σ).

Observation 3.2. The schedule σ consists of a single block: it possibly starts with idle time after
which all jobs are executed contiguously.

Proof. Suppose to the contrary that σ does not have this form. We will show that then either we
can find a counterexample that consists of a smaller number of jobs, or that this alleged counterex-
ample is not a counterexample at all.

Suppose that σ consists of more than one block. Suppose that block B is a block that contains
a job Jl with Ll(σ) = Lmax(σ); consider any block that precedes B. Since the algorithm bases
its choices on the set J(t) \ U(t1), the existence of the jobs that are completed before the start
of block B does not influence the start time of B and the order in which the jobs are executed.
Therefore, we can remove all jobs that are completed before the start of block B without changing
the value Lmax(σ) and without increasing Lmax(π). Similarly, we can remove all jobs from I that
are released after the start of Jl in σ. Therefore, we may assume that our counterexample consists
of the jobs from block B and the jobs that are available at the start of Jl in σ but that are scheduled
in another block. Since the algorithm always starts a job if more than one job is available and
the machine is empty, we know that there is at most one job that is available at time Sl (σ) and
does not belong to B; moreover, we know that this job, which we denote by Ji, must be marked
big. Let S(B) and C(B) denote the start time of the first job and the completion time of the last
job in B. Since Ji is big, (α − 1)pi > p(B). Let J1 be the first available job, which may be
equal to Ji. Due to the operation of the algorithm, S(B) = min{r1 + (α − 1)p1,r2}, where r2

7

denotes the release date of the second available job. Since Jl is a job in B, we know that Lmax(σ) =
Ll(σ) = Cl(σ) + ql ≤ C(B) + ql. If J1 is the first job in π, then Lmax(π) ≥ Ll(π) ≥ r1 + p1 +
pl + ql > S(B) + ql , from which we derive that Lmax(σ) − Lmax(π) < C(B) − S(B) = p(B) <

(α − 1)pi ≤ (α − 1)Lmax(π), which disproves the validity of our counterexample. If J1 is not
the first job in π, then the first job in π cannot start before time r2 ≥ S(B), which implies that
Lmax(π) ≥ Ll (π) ≥ S(B) + pl + ql , and we again have that Lmax(σ) − Lmax(π) ≤ C(B) − S(B),
from which we deduce that I does not correspond to a counterexample. �

From now on, we let J0 denote the job that arrives first in I . Note that without loss of generality
we may assume that r0 = 0.

Observation 3.3. For all Jj ∈ I \ {J0}, we have that pj ≤ (α − 1)p(I).

Proof. Suppose to the contrary that there does exist a job J1 with r1 ≥ r0 that has p1 > (α −
1)p(I), i.e., αp1 > p(I). Then at time r1 there are at least two jobs available, which implies
that the algorithm starts a job if it had not done so already. On basis of Observation 3.2, we may
conclude that there is no idle time in the remainder of the schedule. But since J1 is marked as
big by the algorithm, this can only be the case if the other jobs are able to keep the machine busy
from time r1 to time r1 + (α− 1)p1. In that case, however, (α− 1)p1 ≤ p(I) − p1 < αp1 − p1 =
(α − 1)p1, which is a contradiction. �

We let Jk denote the last job in σ before Jl with a delivery time smaller than ql , and we let G(l)
denote the set containing Jl and all jobs between Jk and Jl in σ. Note that all jobs in G(l) have
delivery time greater than or equal to ql .

Observation 3.4. pk > (α − 1)p(I).

Proof. If Jk does not exist, then

Lmax(π) ≥
∑

j∈G(l)

pj + ql.

Since the first job in the block starts at time (α − 1)p0 at the latest,

Lmax(σ) = Cl (σ) + ql ≤ (α − 1)p0 +
∑
j∈G(l)

pj + ql ≤ (α − 1)p0 + Lmax(π) ≤ αLmax(π),

which contradicts the fact that we consider a counterexample. Therefore, we assume from now
on that such a job Jk exists. There are two possibilities for the algorithm to select Jk and not one
of the jobs from G(l):

(1) All jobs in G(l) have a release date larger than Sk(σ).

(2) There is one job from G(l) available, which we denote by J1, that is marked as big and
cannot be started yet. Note that, since J1 cannot be started yet, we must have that Sk(σ) +
pk ≤ r1 + (α − 1)p1.

For case (1), we have that

Lmax(π) ≥ min
j∈G(l)

r j +
∑
j∈G(l)

pj + ql > Sk(σ) +
∑

j∈G(l)

pj + ql,

8

and since Lmax(σ) = Cl(σ) + ql = Sk(σ) + pk + ∑
j∈G(l) pj + ql, we deduce that

Lmax(σ) − Lmax(π) < pk ≤ (α − 1)p(I) ≤ (α − 1)Lmax(π).

Concerning case (2), we have that

Lmax(π) ≥ min
j∈G(l)

r j +
∑
j∈G(l)

pj + ql = r1 +
∑

j∈G(l)

pj + ql,

from which we deduce that

Lmax(σ) − Lmax(π) < Sk(σ) + pk − r1 ≤ r1 + (α − 1)p1 − r1 ≤ (α − 1)Lmax(π).

Since neither of both cases corresponds to a counterexample, we conclude that Jk must be big.
�

Corollary 3.5. Jk = J0. �

For our analysis in Theorem 3.7, we need the following lemma.

Lemma 3.6. Either J0 is the first job in π, or Cmax(π) ≥ Cmax(σ) ≥ αp0.

Proof. Let J1 be the first job other than J0 that becomes available. As there are two jobs available
at time r1, the algorithm starts one of the jobs if the machine is still idle. Therefore, the first job
in σ starts no later than the first job in π, and since there is no idle time in σ, we have Cmax(σ) ≤
Cmax(π). It is easily checked that Cmax(σ) ≥ αp0. �

Theorem 3.7. The on-line algorithm D-LDT has performance bound α.

Proof. Suppose to the contrary that there exists an instance for which the algorithm finds a sched-
ule σ with Lmax(σ) > αLmax(π). Obviously, then there exists a counterexample I with a mini-
mum number of jobs. On basis of Observations 3.2 through 3.4, we may assume that the first
job available in I , which is defined to be J0, has p0 > (α − 1)p(I). Note that, due to Corol-
lary 3.5, J0 is the last job before Jl in σ with a delivery time smaller than ql . J0 starts no later than
at time (α − 1)p0 unless some job with delivery time greater than (α − 1)p0 is available. Let
G(h) denote the set of jobs that were selected instead of J0 when J0 was eligible for being sched-
uled; G(h) may be empty. Let Sh(σ) denote the start time of the first job in this set if available;
Sh(σ) ≤ (α − 1)p0. Note that, if S0(σ) > (α − 1)p0, then G(h) �= ∅.

The proof proceeds by a case-by-case analysis. There are two reasons possible for starting J0

at time S0(σ) instead of a job from G(l). The first one is that simply none of the jobs in G(l) were
available, i.e., rj > S0(σ) for all Jl ∈ G(l). The second one is that the available jobs in G(l) all
have a delivery time at most equal to (α − 1)p0. We cover both cases by distinguishing between

(1) r j > S0(σ) for all Jj ∈ G(l), and

(2) q j ≤ (α − 1)p0 for some Jj ∈ G(l).

9

Case 1. Since none of the jobs in G(l) is available at time S0(σ),

Lmax(π) > S0(σ) + ∑
j∈G(l) pj + ql, and

Lmax(σ) = S0(σ) + p0 + ∑
j∈G(l) pj + ql .

Hence, Lmax(σ) − Lmax(π) < p0. If J0 is not the first job in π, then according to Lemma 3.6
Lmax(π) ≥ Cmax(π) ≥ αp0, which implies that Lmax(σ) − Lmax(π) < (α − 1)Lmax(π). Therefore,
we assume that J0 is the first job in π. Then

Lmax(π) ≥ p0 +
∑

j∈G(l)

pj + ql,

and hence, Lmax(σ) − Lmax(π) ≤ S0(σ). Now, either S0(σ) ≤ (α − 1)p0, which disqualifies
the counterexample, or G(h) �= ∅. Note that all jobs in G(h) have a delivery time greater than
(α − 1)p0. Since J0 is the first job in π, Lmax(π) > αp0, and we do not have a counterexample.

Case 2. Since all jobs in G(l) have a delivery time that is at least as large as ql, we have that
ql ≤ (α − 1)p0. If J0 is not the first job in π, then according to Lemma 3.6, Cmax(σ) ≤ Cmax(π),
and we get

Lmax(σ) = Cl (σ) + ql ≤ Cmax(σ) + ql ≤ Cmax(π) + ql ≤ Lmax(π) + ql ≤
Lmax(π) + (α − 1)p0 ≤ αLmax(π).

Therefore, we assume that J0 is the first job in π. Since all jobs in G(h) have a delivery time
greater than (α − 1)p0, Jl is the job with the smallest delivery time in G(h) ∪ G(l). Combining
all this yields

Lmax(π) ≥ p0 + ∑
j∈G(h)∪G(l) pj + ql, and

Lmax(σ) = Sh(σ) + p0 + ∑
j∈G(h)∪G(l) pj + ql,

which implies that Lmax(σ) − Lmax(π) ≤ Sh(σ), and we are done since Sh(σ) ≤ (α − 1)p0.
Since we have checked all possibilities, we conclude that there is no counterexample to The-

orem 3.7. �

References

CHEN, B., A. VAN VLIET, AND G.J. WOEGINGER [1994], New lower and upper bounds for on-line
scheduling, Operations Research Letters 16, 221–230.

GRAHAM, R.L. [1966], Bounds for certain multiprocessing anomalies, Bell System Technical Journal 45,
1563–1581.

KISE, H., T. IBARAKI, AND H. MINE [1979], Performance analysis of six approximation algorithms for
the one-machine maximum lateness schedulingproblem with ready times, Journalof the Operations
Research Society of Japan 22, 205–224.

LAWLER, E. L., J.K. LENSTRA, A.H.G. RINNOOY KAN, AND D.B. SHMOYS [1993], Sequencing and
scheduling: Algorithms and complexity, in: S.C. Graves, A.H.G. Rinnooy Kan, and P.H. Zipkin
(eds.), Logistics of Production and Inventory, Handbooks in OR & MS 4, Elsevier Science Publish-
ers B.V., Amsterdam, Chapter 9, 445–522, ISBN 0-444-87472-0.

MAO, W., R.K. KINCAID, AND A. RIFKIN [1995], On-line algorithms for a single machine scheduling
problem, in: S.G. Nash and A. Sofer (eds.), The impact of emerging technologies on computer sci-
ence and operations research, Kluwer Academic Press, Chapter 8, 157–173.

10

PHILLIPS, C., C. STEIN, AND J. WEIN [1995], Scheduling jobs that arrive over time, Proceedings of
the Fourth Workshop on Algorithms and Data Structures, Lecture Notes in Computer Science 955,
Springer.

STOUGIE, L. [1995], personal communication.

11

