EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Optimal on-line algorithms for single-machine scheduling

Citation for published version (APA):
Hoogeveen, J. A, & Vestjens, A. P. A. (1995). Optimal on-line algorithms for single-machine scheduling.
(Memorandum COSOR,; Vol. 9539). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 24. Aug. 2022

https://research.tue.nl/en/publications/fe9a15c5-0f30-473b-92a9-8b29ebe9715a

Memorandum COSOR 95-39, 1995, Eindhoven University of Technology

Optimal on-line algorithms for single-machine scheduling

J.A. Hoogeveen A.PA. Vestjens

Department of Mathematics and Computing Science,
Eindhoven University of Technology,
PO.Box 513, 5600 MB, Eindhoven, The Netherlands

Abstract

We consider single-machine on-line scheduling problems where jobs arrive over time. A set of indepen-
dent jobs has to be scheduled on the machine, where preemption is not alowed and the number of jobs
is unknown in advance. Each job becomes available at its release date, which is not known in advance,
and its characteristics, e.g., processing requirement, become known at its arrival. We deal with two prob-
lems: minimizing total completion time and minimizing the maximum time by which all jobs have been
delivered. For both problems we propose and analyze an on-line algorithm based on the following idea:
As soon as the machine becomes available for processing, choose an available job with highest priority,
and scheduleit if its processing requirement is not too large. Otherwise, postpone the start of thisjob for
awhile. We prove that our agorithms have performance bound 2 and (+/5 + 1) /2, respectively, and we
show that for both problems there cannot exist an on-line algorithm with a better performance guarantee.

Keywords: on-line algorithms, single-machine scheduling, worst-case analysis.

1 Introduction

Until afew years ago, one of the basic assumptions made in deterministic scheduling was that all
of theinformation needed to define the problem instance was known in advance. This assumption
isusually not valid in practice, however. Abandoning it has led to the rapidly emerging field of
on-line scheduling. Two on-line models have been proposed. The first one assumes that there
are no release dates and that the jobs arrive in alist. The on-line algorithm has to schedule the
firstjob in thislist beforeit sees the next job in thelist (e.g., see [Graham, 1966] and [Chen, Van
Vliet & Woeginger, 1994]). The second model assumes that jobs arrive over time. Next to the
presence of rel ease dates, the main difference between the modelsisthat in the second model jobs
do not have to be scheduled immediately upon arrival. At each time that the machineisidle, the
algorithm decides which one of the available jobs is scheduled, if any. In this paper we consider
two single-machine on-line scheduling problems with rel ease dates.

We deal with the single-machine scheduling problems of minimizing total completion time
and maximum time by which all jobs have been delivered, respectively. In thelatter problem, af-

1

ter their processing on the machine, the jobs need to be delivered, which takes a certain delivery
time. The corresponding off-line problemsare both strongly NP-hard, but the preemptiveversions
can be solved in polynomial time through an on-line agorithm (e.g., see [Lawler, Lenstra, Rin-
nooy Kan & Shmoys, 1993]). Well known on-line algorithms for the problems are the spPT-rule
and LDT-rule: choose from among the availablejobsthe one with the shortest processing timeand
largest delivery time, respectively. If all release dates are equal, then the problems are solved by
these algorithms. For the case that the rel ease dates are not equal, Mao, Kincaid & Rifkin [1995]
provethat SPT has aperformance guarantee of n, where nisthe number of jobs, and Kise, Ibaraki
& Mine[1979] provethat LDT has a performance guarantee of 2. The question isof course: can
we do better from a worst-case point of view?

Throughout the paper we use J; to denote job j, andr;, p;, and g; to denote the release date,
processing requirement, and delivery time of J;, respectively. We denote by S (o), Cj(0), and
L;(o0), the starting time, completion time, and the time by which J; is delivered in schedule .
We use o to denote the schedule produced by the heuristic and 7 to denote an optimal schedule.

This paper is organized as follows. In Section 2 we consider the problem of minimizing total
completion time on asingle-machine. We prove that any on-line algorithmfor this problem hasa
worst-case ratio of at least 2, and we present an algorithm that achieves this bound. Independent
of this work both Phillips, Stein & Wein [1995] and Stougie [1995] developed algorithms with
equal performance guarantee; the lower bound of 2 was achieved by Stougie as well. We present
both algorithms and compare them to our algorithm. In Section 3 we consider the problem of
minimizing the time by which all jobs have been delivered. We show that any on-line algorithm
has a worst-case ratio of at least (v/5+ 1)/2. Moreover, we present an algorithm that achieves
this bound.

2 Total completion time

In this section, we present an on-line 2-approximation algorithm for the single-machine schedul-
ing problem of minimizing total completion time and show that no on-line algorithm can do better
from aworst-case point of view. At the end of this section, we compare the algorithms of Phillips
et a. and Stougieto our agorithm.

We first show that 2 is alower bound on the worst-case ratio of any on-line algorithm; this
result follows from an example. For a given schedule o, we use C(o) as a short notation for the
total completiontimeof o, i.e., C(o) = Zj C (o).

Theorem 2.1. Any on-line algorithm has a wor st-case ratio of at least 2.

Proof. We show this result by describing a set of instances for which no on-line algorithm can
guarantee an outcome strictly less than twice the optimum. Consider thefollowing situation. The
first job arrives at time O and has processing requirement p. The on-line algorithm decides to
schedule the job at time S Depending on S either no jobs arrive anymore or n — 1 jobs with
processing requirement O arrive a time S+ 1. Inthefirst case we get aratio of C(o)/C(w) =
(S+ p)/p, whereasinthe second case weget aratio of C(o)/C () > n(S+ p)/(N(S+ 1) + p).

Hence,
C(o) S+p n(S+p) }
—= > max , .
Cm) — { p nS+1)+p
The algorithm may choose S so as to minimize this expression. Some simple algebra shows that

the best choicefor Sis
n—-1
=——p-—1
S - p

Thisimplies aworst-case ratio of
@ > 2 — E — l
CxH~ n p
If welet both n and p tend to infinity, then we get the desired ratio of 2. O

We can use the example of Theorem 2.1 to show that any on-line algorithm that schedules a job
as soon as the machine is available will have an unbounded worst-case ratio. If an algorithm
wants to guarantee a better performance bound, then it needs a waiting strategy. For example,
if an available job has a large processing requirement compared to the optimal solution of the
currently available instance, the algorithm should wait for extrainformation. To incorporatethis,
we glightly modify the spT-rule and call the new rule the delayed sPT-rule (D-SPT).

ALGORITHM D-SPT

If the machineisidleand ajob isavailable at timet, determine an unscheduled job with smallest
processing requirement, say J. If thereis achoice, take the job with the smallest release date. If
pi <t, then schedule J; otherwise, wait until time p; or until a new job arrives, whichever hap-
pens first.

Aswe have already seen, the worst-case bound of any algorithmis at least equal to 2. If the per-
formance guarantee exceeds 2, then there exists an instance, which we call counterexample, for
which the algorithm produces a schedule with value more than twice the optimal value. We show
that our algorithm has a performancebound exactly equal to 2, by showing that there does not exist
such a counterexample. Thereto, we first derive some characteristics of a smallest counterexam-
ple, i.e., a counterexample consisting of a minimum number of jobs. Let 7 be such a smallest
counterexample, and let o be the schedule created by D-sPT for thisinstance.

Observation 2.2. The schedule o consists of asingle block: it possibly starts with idletime after
which all jobs are executed contiguously.

Proof. Suppose that o contains idle time between the execution of the jobs. The jobs scheduled
beforethisidleperiod do not influence the scheduling decision concerning thejobs schedul ed after
thisidle period, and vice versa. Therefore, theinstance can be split into two independent smaller
instances. For at least one of these partial instances D-SPT creates a schedule with value more
than twice the optimal value, which contradicts the assumption that we considered an instance
with a minimum number of jobs. O

From now on, we assume that the jobs are numbered according to their position in the schedule
o. We partition o into subblocks, such that within every subblock the jobs are ordered according
to the sPT-rule, and that the last job of a subblock is larger than the first job of the succeeding
subblock if it exists. We denote these subblocksby By, .. ., B; subblock B;,; consists of thejobs
Joii)+1s - - - » Inii+1) , Wheretheindicesb(i) aredeterminedrecursively asb(i) = min{j > b(i — 1) |
P;j > Pj+1}.- The number of subblocks, k, in which the schedule is partitioned, follows from the
recursion scheme.

For ease of exposition, we define adummy job J with py = S;(o), which will not be sched-
uled. Although Jo will not be scheduled, we define § (o) = po. Let m(i) be the index of the job
that has the largest processing requirement in the first i blocks, i.e., pmi) = MaXo<j<bi P;- We
define a pseudo-schedule v for the schedule o asfollows. The order of the jobsin v is the same
asino, but thefirstjobin B starts at time Syi)+1(0) — Pmi)- Furthermore, all jobsin a block
are scheduled contiguously. Itiseasy to verify that v isnot areal schedule, since some jobs start
before their release date and some jobs overlap. Note that v contains no idle time. Let ¢ be an
optimal preemptive schedule for 7.

Lemma 2.3. For all J; € Z, we havethat C;(0) — C; () < Cj(¢).

Proof. Consider an arbitraryjob, say J;, and supposethat J; € B, 1. ForthisjobC; (o) —C;(¢) =
Pmiy- If Pj < Pmay, thenrj > Sy (0) > pmgy, because D-sPT aways schedules the smallest
availablejob first and never startsajob beforeatime smaller than its own processing time. There-
fore, either pj > pmgy O rj > Pmi), whichimpliesthat C;(¢) > rj + p; > pma). Hence, Cj (o) —
Ci(¥) < Cj(9). O

Lemma24. C(y) < C(¢).

Proof. Let | denotethejob set corresponding to the smallest counterexample. Using thisinstance
and the pseudo-schedule for thisinstance we create anew instance Z'. Theinstance Z’ consists
of al jobsin I. The processing requirements of the jobs remain the same, but the release datesr;
are set equal to minfr;, S; (¥)}.

Let ¢’ be the optimal preemptive schedule for the instance Z’. Determine the first job in ¢’
that starts earlier in ¢’ than in ; suppose this job, say J;, belongsto Bi.1 ino. If pj > pmg),
then all jobs scheduled before J; in ¥ have ahigher priority, i.e., either they have a smaller pro-
cessing requirement or they have equal processing requirement and a smaller release date. This
implies that in the preemptive schedule these jobs also have a higher priority and hence will be
scheduled before J;, which contradicts the fact that S (¢') < S;(¥). If pj < Pma), then al jobs
that are executed in theinterval [rj + pma), Sj(0)] in o have ahigher priority than J;. Hence, all
jobs executed in the interval [r;, S; ()] in ¥ have a higher priority than J;; let V denote the set
containing all these jobs. Since J; isthefirst jobin ¢" with S;(¢") < S;(y), thereis no room to
start one of the jobsin V beforetimer;. Hence, one of the jobsin V must be postponed in ¢ to
enable J; to start beforetime S; (), whichis inconsistent with the way ¢’ has been constructed.
Therefore, no job startsearlier in ¢’ thanin , whichimpliesC; (¢') > Cj(y) foral j=1,...,n.

As the release dates in 7' are smaller than or equal to the release dates in Z, we have that
C(¢) = C(¢'). Together thisimpliesthat C(y) < C(¢') < C(¢). O

Theorem 2.5. C(o) < 2C(¢).
Proof. Combining Lemmas 2.3 and 2.4 we obtain that C(o) < C(¢p) + C(¥) < 2C(9¢). a

Corollary 2.6. The on-line algorithm D-sPT has performance bound 2. O

The algorithm ONE-MACHINE (1-M) developed by Phillipset a. uses the preemptive schedule.
The algorithm maintains alist of jobs that have been completed in the preemptive schedule. As
soon as a job has been finished in the preemptive schedule it will be appended to the end of this
list. Assoon asthe machine becomesidle, thefirst jobin thislist will be assigned to the machine.

The agorithm developed by Stougie modifies the release dates of the jobs, before they are
presented to the on-linea gorithm. Therelease date of each jobisincreased by its own processing
requirement. For thisnew instancethealgorithmusesthe spT-rule. Sincethealgorithmfirst shifts
the release dates and then uses sPT, we call it the shifted sPT-rule (s-SPT).

All three algorithms 1-M, s-sSPT, and D-SPT create schedules with cost no more than twice
the value of the optimal preemptive schedule. Itisnot to difficult to see that D-SPT does not create
moreidletimethan s-sPT, which again does not create moreidletimethan 1-M. Hence, we might
expect that on average D-SPT performs slightly better than the other two algorithms. There exist
instances, however, for which one agorithm performs twice as well as the other ones. Table 1
shows these instances. The values of C(o) are the limiting values for ¢ | 0, and o denotes only
the order in which the jobs are scheduled.

Table 1: Instances to compare the worst-case behavior of D-SPT, S-SPT, and 1-M.

Instance Algorithm o C(o)
] 1 2 .- n D-SPT (2,...,n,1) n+1
ri O 1 .- 1 S-SPT ,...,n) 2n
p; 1 € € 1-M ,...,n) 2n
] 1 2 n D-SPT 1,...,n) 2n
ri e 14¢/2 1+¢/2 S-SPT (2,...,n1) n+1
pp 1 ¢/2 €/2 1-M ,...,n) 2n
] 1 2 3 n+1 D-SPT 1,...,n+1) 2n
ri O 0 1+¢/2 1+¢/2 S-SPT 1,...,n+1) 2n
p; € 1 0 e 0 1-M (1,3,...,n+1,2) n+l

3 Maximum delivery time

In this section, we present an on-line o-approximation algorithm for the single-machine schedul-
ing problem of minimizing thetimeby which all jobs have been delivered, wherea = (v/5+ 1) /2,
and show that no on-line algorithm can do better from a worst-case point of view. We start with
the latter. Again, we prove the lower bound on the worst-case ratio by means of an example for
which any on-line algorithm will have at least the required ratio. Let Ly (7) denote the mini-
mum time by which al jobs can be delivered, and let L (o) denote the time by which al jobs
are delivered in schedule o, where o is the schedule obtained through some on-line algorithm.

Theorem 3.1. Any on-line algorithm has a worst-case ratio of at least «.

Proof. Consider the following situation. The first job arrives at time 0 and has processing re-
quirement p; = p and delivery time g; = 0. The on-line algorithm decides to schedule the job
at time S Depending on S either no jobs arrive any more or one job with processing require-
ment p, = 1 and delivery time g, = p arrivesat timer, = S+ 1. In thefirst case we get ara-
tio of Limax(0)/Lmax (;t) = (S+ p)/ p; in the second case we get aratio Of Lma(0)/Lmax (77) >
(S+2p+1)/(S+ p+2). Hence,

Lmax (0) . maX{S+ p’ S+2p—|—1} .

Lmax (77) p S+p+2
The algorithm may choose S so as to minimize this expression. Some simple algebra shows that
the best choicefor Sis

Pils 4 gy
S=3([5- 5 -D-1

Thisimplies aworst-case ratio of

Lrex(0) 1 4 1
Lar) ~ 2 2 TR

If welet p tend to infinity, then we get the desired ratio of «. O

We can use the example of Theorem 3.1 to show that any on-line algorithm that schedules ajob
as soon as the machine is available will have aworst-case ratio of at least 2. Note that a simple
algorithm like LDT already achievesthisbound. Again, if an algorithm wantsto guarantee a bet-
ter performance bound, then it needs awaiting strategy. Therefore, we modify the LDT-rule and
call the new rulethe delayed LDT-rule (D-LDT). The basic ideabehind the algorithmisthat, if no
jobs with alarge processing requirement are available, then we should schedul e the job with the
largest delivery time; otherwise, we should decide whether to schedul e the large job, the job with
the largest delivery time, or no job at all.

Throughout this section, we use the following notation:
- p(S) denotesthe total processing time of all jobsin S
- J(1) isthe set containing all jobsthat arrived at or beforetimet;
- U(t) isthe set containing all jobsin J(t) that have not been started at timet;

6

- t; denotes the start time of the last idle time period beforetime t; if thereisno idle time,
then definet; = 0.

- Wecdl ajob J; bigif p; > (¢ — 1) p(J(t) \ U(t1)). Notethat J(t) \ U(t;) contains all
jobs that arrived at or before timet and that were not completed at time t;;

- Ji(t) denotesthe job with the largest processing timein U (t).

- Jm(t) denotes the job with the largest delivery timein U (t).

ALGORITHM D-LDT
Wait until the machineisidleand ajob isavailable. Suppose this happens at timet. If thereisno
big job available, then schedule J,(t). Otherwise, do the following.

e If Ji(t) istheonly availablejob, thenwait until anew job arrivesor until timer; + (o« — 1) pi,
whichever happens first.

e Otherwise,
ift+ p(U)) > ri +ap;, schedule Jy(t) if gm > (¢ — 1) p; and Ji (t), otherwise;

else, if Jn(t) # Ji(t), schedule Jn(t), el se schedule the job with the second largest delivery
time.

Again wework with asmallest counterexample, where smallest refersto the number of jobs. Let
7 be such asmallest counterexample, and let o be the schedule created by D-LDT for Z. We sup-
pose that J denotes the first completed job in o that assumes the value L (0).

Observation 3.2. The schedule o consists of asingle block: it possibly starts with idletime after
which all jobs are executed contiguously.

Proof. Suppose to the contrary that o does not have this form. We will show that then either we
can find a counterexampl e that consists of asmaller number of jobs, or that this alleged counterex-
ampleis not a counterexample at all.

Suppose that o consists of more than one block. Suppose that block B isablock that contains
ajob J with L;(0) = Lmax(0); consider any block that precedes B. Since the algorithm bases
its choices on the set J(t) \ U(ty), the existence of the jobs that are completed before the start
of block B does not influence the start time of B and the order in which the jobs are executed.
Therefore, we can removeall jobsthat are completed before the start of block B without changing
the value L (o) and without increasing Lma (77). Similarly, we can remove all jobsfrom 7 that
arereleased after the start of J, ino. Therefore, we may assume that our counterexample consists
of thejobsfromblock B and the jobs that are available at the start of J, in o but that are scheduled
in another block. Since the algorithm always starts a job if more than one job is available and
the machine is empty, we know that there is at most one job that is available at time S (o) and
does not belong to B; moreover, we know that this job, which we denote by J, must be marked
big. Let S(B) and C(B) denote the start time of the first job and the completion time of the last
jobin B. Since J ishig, (¢ —1)p > p(B). Let J be the first available job, which may be
equal to J. Due to the operation of the algorithm, S(B) = min{r; + (o« — 1) p1, 12}, wherer,

denotestherelease date of the second availablejob. Since J isajobin B, weknow that Ly (o) =
Li(o) =C(o) +q < C(B) +q. If Jyisthefirstjobin m, then Lpa () > Li(wr) > 11+ p1+
p+q > SB) +q, fromwhich we derive that L (0) — Lmax(7) < C(B) — S(B) = p(B) <
(¢ = 1)pi < (@ —1)Lma (1), Which disproves the validity of our counterexample. If J; is not
the first job in 7, then the first job in 7 cannot start before timer, > S(B), which implies that
Lmex (1) > Ly (7r) > S(B) + p + @, and we again have that Linax (o) — L (1) < C(B) — (B),
from which we deduce that Z does not correspond to a counterexample. O

From now on, we let J, denote the job that arrivesfirst in Z. Note that without loss of generality
we may assume that ro = 0.

Observation 3.3. Foral J; € |\ {Jo}, we havethat p; < (« — 1) p(Z).

Proof. Suppose to the contrary that there does exist ajob J withr; > rqg that has p; > (o —
Dp@),i.e, apr > p(Z). Then at timer, there are at least two jobs available, which implies
that the algorithm starts ajob if it had not done so already. On basis of Observation 3.2, we may
conclude that there is no idle time in the remainder of the schedule. But since J; is marked as
big by the algorithm, this can only be the case if the other jobs are able to keep the machine busy
fromtimer; totimer; + (o — 1) p;. Inthat case, however, (@« —1)pr < p@)—pr<apr— p1 =
(o — 1) p1, which isacontradiction. a

We let J; denote the last job in o before J with adelivery time smaller than g, and we let G(I)
denote the set containing J and all jobs between J and J, in o. Note that all jobsin G(l) have
delivery time greater than or equal to q.

Observation 3.4. px > (¢ — 1) p(2).

Proof. If Jx does not exist, then
Loac(m) = Y pj+0.
j€G()
Sincethefirst job in the block starts at time (« — 1) pp at the latest,
Lmax(0) =Ci(0) +q < (@ — 1) po+ Z pj+a =< (¢ — 1) po+ Limex(7) < almax (1),
j€G()
which contradicts the fact that we consider a counterexample. Therefore, we assume from now
on that such ajob Jy exists. There are two possibilities for the agorithm to select J and not one
of thejobs from G(I):
(1) All jobsin G(I) have arelease date larger than S (o).
(2) Thereis one job from G(l) available, which we denote by J;, that is marked as big and
cannot be started yet. Note that, since J; cannot be started yet, we must have that & (o) +
P <Tf1+ (¢ —1)p1.
For case (1), we have that
Lmac(m) = MinTtj+ Y pj+0G > S+ Y pj+a,

1) i€G() ieG()

and since Lmac(0) = Ci(0) + q = S(0) + Pc+ X_;cqq) Pi + a1, We deduce that
Lmax(0) — Lmax (1) < px < (@ = 1) p(Z) < (o — 1) Limex (7).
Concerning case (2), we have that
Lac(7) = min T + D Pita=r+ > p+a.
jieG) jeGh)
from which we deduce that

Lmax(0) — Lnax (1) < Sc(0) + Pk —r1 <r1+ (¢ —=1)p1 — 11y < (@ — 1) Lpnax (7).

Since neither of both cases corresponds to a counterexample, we conclude that J must be big.
0

Corollary 3.5. k% = Jo. O

For our analysisin Theorem 3.7, we need the following lemma.

Lemma 3.6. Either Jisthefirst jobin i, or Gpax (1) > Crax(0) > apo.

Proof. Let J; bethefirstjob other than Jy that becomes available. Astherearetwo jobsavailable
at timer,, the algorithm starts one of the jobsif the machineis still idle. Therefore, the first job
in o starts no later than thefirst job in 7z, and since thereisno idle time in o, we have G (0) <
Cmax (). It iseasily checked that Crx (o) > apo. a

Theorem 3.7. The on-linealgorithm D-LDT has performance bound «.

Proof. Supposeto the contrary that there exists an instance for which the algorithm finds a sched-
ule o with L (0) > aLma (7). Obviously, then there exists a counterexample Z with a mini-
mum number of jobs. On basis of Observations 3.2 through 3.4, we may assume that the first
job available in Z, which is defined to be J, has py > (o« — 1) p(Z). Note that, due to Corol-
lary 3.5, Jy isthelast job before J in o with adelivery timesmaller than q,. Jo startsno later than
at time (¢ — 1) po unless some job with delivery time greater than (o« — 1) pp is available. Let
G(h) denote the set of jobs that were selected instead of J, when Jp was eligiblefor being sched-
uled; G(h) may be empty. Let S,(o) denote the start time of the first job in this set if available;
S (o) < (@ — 1) po. Notethat, if (o) > (o« — 1) po, then G(h) # .

The proof proceeds by a case-by-case analysis. There are two reasons possible for starting
at time (o) instead of ajob from G(I). Thefirst oneisthat smply none of thejobsin G(I) were
available, i.e, rj > S(o) foral J € G(l). The second one isthat the available jobsin G(l) all
have a delivery time at most equal to (o — 1) pp. We cover both cases by distinguishing between

(1) rj > S(o) foral Jj € G(l), and
(2) q; < (@ —1)po for some J; € G(l).

Case 1. Since none of thejobsin G(I) isavailable at time $ (o),

Lmax () > S(0) +ZjeG(|) p; +q. and

Lmax(0) = S(0) + Po+ X jcca) Pi +0-
Hence, Linax(0) — Lnax (7)) < po. If Jo is not the first job in 7, then according to Lemma 3.6
Limax (77) > Chax (1) > apo, which impliesthat Ly (0) — Linax (77) < (@ — 1) Linax (7r). Therefore,
we assume that Jy isthefirstjob in . Then

Lmax(7) > Po+ > Pj+0,
jeG(l)

and hence, Lyx(0) — Lmax (1) < S(0). Now, ether (o) < (o — 1) po, which disqualifies
the counterexample, or G(h) # @. Note that all jobsin G(h) have a delivery time greater than
(¢ — 1) po. Since Jy isthefirstjobinm, Lma () > apo, and we do not have a counterexample.

Case 2. Since dll jobsin G(l) have a delivery time that is at least as large as g, we have that
0 < (¢ —1)po. If Jpisnotthefirstjobin s, then according to Lemma 3.6, Cax (0) < Cax (1),
and we get

Lmax(0) = G (0) + G < Chax(0) + 0 < Criax (77) + O < Limax (77) + Q1 <

Lmax () + (¢ — 1) Po < otLmax (77).
Therefore, we assume that J, is thefirst job in 7. Since al jobsin G(h) have a delivery time
greater than (o — 1) po, J isthe job with the smallest delivery timein G(h) U G(I). Combining
al thisyields

Lmax () = po+ ZjeG(h)UG(I) p; +ai, and
Lmax(0) = $(0) + Po+ X jcamuaay Pi +
whichimpliesthat Ly (o) — Lmax (1) < S(0), and we aredone since S,(o) < (a¢ — 1) po.
Since we have checked all possibilities, we conclude that there is no counterexample to The-
orem 3.7. O

References

CHEN, B., A. VAN VLIET, AND G.J. WOEGINGER [1994], New lower and upper bounds for on-line
scheduling, Operations Research Letters 16, 221-230.

GRAHAM, R.L. [1966], Boundsfor certain multiprocessing anomalies, Bell System Technical Journal 45,
1563-1581.

Kisg, H., T. IBARAKI, AND H. MINE [1979], Performance analysisof six approximation algorithmsfor
the one-machine maximum | ateness scheduling problem with ready times, Journal of the Operations
Research Society of Japan 22, 205-224.

LAWLER, E. L., J.K. LENSTRA, A.H.G. RINNOOY KAN, AND D.B. SHMOYS [1993], Sequencing and
scheduling: Algorithms and complexity, in: S.C. Graves, A.H.G. Rinnooy Kan, and PH. Zipkin
(eds.), Logisticsof Production and Inventory, Handbooksin OR & MS 4, Elsevier Science Publish-
ersB.V., Amsterdam, Chapter 9, 445-522, ISBN 0-444-87472-0.

MAo, W., R.K. KINCAID, AND A. RIFKIN [1995], On-line agorithmsfor a single machine scheduling
problem, in: S.G. Nash and A. Sofer (eds.), The impact of emerging technol ogies on computer sci-
ence and operationsresearch, Kluwer Academic Press, Chapter 8, 157-173.

10

PHILLIPS, C., C. STEIN, AND J. WEIN [1995], Scheduling jobs that arrive over time, Proceedings of
the Fourth Workshop on Algorithmsand Data Structures, Lecture Notesin Computer Science 955,
Springer.

STOUGIE, L. [1995], personal communication.

11

