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Abstract. This paper regards the problem of optimally placing unreliable sensors in a one-
dimensional environment. We assume that sensors can fail with a certain probability and we minimize
the expected maximum distance between any point in the environment and the closest active sensor.
We provide a computational method to find the optimal placement and we estimate the costs of the
equispaced placement and of the uniform random placement. When the number of sensors goes to
infinity, the equispaced placement is asymptotically equivalent to the optimal placement (that is,
the ratio between their costs converges to one), whereas the cost of the random placement remains
strictly larger.
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1. Introduction. Sensor networks are used to monitor large or hazardous envi-
ronments, for purposes ranging from oceanographic research to security in airports,
industrial plants, and other complex infrastructures. In order to provide the best cov-
erage of the assigned environment, sensors have to be deployed at suitable locations.
As sensors are prone to failures in collecting and transmitting data, the robustness
of the obtained coverage performance is a natural concern: thus, we consider in this
paper the problem of placing unreliable sensors in a given environment in order to
provide the optimal coverage of it.

Coverage optimization and related problems of optimal facility location have been
studied by the operations research community for a long time, often using concepts
from geometric optimization and computational geometry [24, 7]. During the past
decade, conditions for sensor networks to provide a certain level of coverage have
been found in a variety of situations, which include both random and deterministic
placement strategies [11]. Many available results allow sensors to fail or to spend time
in a sleeping mode to save energy: in fact, these two scenarios can be given a unified
treatment [17, 25] using probabilistic methods [14, 9]. However, it appears that the
issue of the optimality of such placements, although recognized as central, has been
left in the background [26].
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Control scientists have also become interested in these topics, after realizing that
feedback control can enable the autonomous deployment of self-propelled sensors [15].
The main references for this research are the book [2] and the related papers [5, 4],
while very recent developments include [1, 21, 18, 19]. Most literature from the
control community assumes sensors to behave reliably, but recent results are making
clear that this assumption is not free from risks. In fact, sensor failures deteriorate
the performance of the sensor network and it is not even clear if optimal solutions
derived for the case without failures retain good properties in other cases. Indeed,
simulations reported in [16] show the solutions that are optimal in the presence of
failure are qualitatively different from those optimal in the fully reliable case.

The commonsense countermeasure to failing sensors is adding some redundancy
and letting more than one sensor be “responsible” for covering a certain region of the
environment, so that they can back up each other in case a failure occurs. To this
aim, sensors can cluster into groups, such that the members of each group have the
same location. This approach has been exploited by Cortés [3], under the assumption
that the number of failed sensors is precisely known. As a consequence, the number
of clusters in the optimal solution is directly determined by this number.

In this paper, we consider the problem of optimal disk-coverage in a one-
dimensional environment by unreliable sensors, under a probabilistic failure model
that does not assume any a priori information about the number or the location of
the failures. Instead, we assume that sensors fail independently and with the same
probability. We then aim to minimize, in expectation, the largest distance between a
point in the environment and an active sensor.

This cost function was already used in [3], which was motivated by random field
estimation [13]. It is consistent with the spirit of standard coverage questions in
sensor networks, in which one is interested in guaranteeing a full coverage of the
environment using a given number of sensors with a certain coverage radius [17, 23].
Note that it also corresponds to the classical problem of facility location, where a
number of facilities have to service customers in a given area and want to optimize
the worst-case servicing delay [2, Chap. 2].

Regarding the choice of the environment, most prior works about sensor networks
have chosen two-dimensional settings. In contrast, our choice of working in dimension
one allows us to achieve sharper characterizations and results about optimality, both
asymptotical and for finite networks. Results of this kind are scarce in the literature,
even if one-dimensional settings have often been studied, both in classical [14] and
recent works [19, 20].

Our first result—Theorem 1—states that the problem at hand is equivalent to
a linear program, albeit with a number of variables growing exponentially with the
number of sensors. This fact allows for a computational solution that is tractable if the
number of sensors is not large. Second, we show that for a large number of sensors n,
the cost of the equispaced placement decreases to zero with leading term 1

2 log p−1
logn
n ,

where p is the probability of failure. In Theorem 2, we provide analytic bounds on
the optimal cost and prove that the equispaced placement is nearly optimal: the ratio
between its cost and the optimal cost tends to 1 when n grows. By contrast, we show
in Theorem 13 that a random placement has a larger cost of order 1

2(1−p)
logn
n . The

almost optimality of the deterministic placement and its strict difference from the
random placement had not been noticed before in the literature.

Our analysis also bear consequences for the failure model adopted by Cortés [3]:
for instance, we show that the equispaced placement is nearly optimal in this case as
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well. Finally, we note that our results extend and refine those recently presented by
some of the authors in [10], where a similar model of unreliable coverage was proposed.

Paper structure. The rest of the paper is organized as follows. The formal
definition of the problem is presented in section 2. Translation to a linear optimization
problem is shown in section 3. In section 4 we assess the performance of the equispaced
placement. In section 5 we analyze the special cases when the failure probabilities
are close to 0 or to 1. Section 6 deals with the case of random sensor placement. In
section 7 we adapt our results to the failure model by Cortés. Conclusions are drawn
in section 8.

2. Problem definition. We assume that we have a set of sensors indexed in
[n] = {1, . . . , n} which have to cover the interval [0, 1]. Since sensors may fail, we
consider for each placement x ∈ [0, 1]n the coverage cost defined as the largest distance
between a point in [0, 1] and its closest active (not failing) sensor. To formalize this
notion, we let A denote the set of active sensors: we will use |A| to denote the
cardinality of A and Ak to denote the kth smallest index present in the set A, for
k = 1, . . . , |A|. We also call xA ∈ [0, 1]|A| the restriction of the vector x to those
entries for which the corresponding sensors are active. The cost incurred when the
set of sensors A is active is thus

(1) C0(xA) = max
s∈[0,1]

min
j∈A

|s− xj |.

To be formally complete, we assign the arbitrary cost C0(x∅) = 1 to the situation
where all sensors fail. This convention has no effect when we seek to optimize the
locations of the sensors, as locations are irrelevant when they all fail. Observe that if
no sensor fails (A = [n]), then the cost (1) reduces to

C0(x) = max
s∈[0,1]

min
j∈[n]

|s− xj |.

In this case, it is known that the equispaced placement of n sensors, namely,

(2) xeq =
1

2n
(1, 3, . . . , 2n− 1),

is the optimal solution and achieves a cost C0(x
eq) = 1

2n . Since we assume that
failures are random, we define the event EA = {A is the set of active sensors} and we
consider the expected value of the cost C0, which is

(3) C(x) =
∑

A⊆[n]

Pr(EA)C0(xA),

where Pr(EA) is the probability of EA. In the rest of this paper, with the exception
of section 7, we assume that each sensor fails with probability p, independently from
the others. Consequently,

(4) Pr(EA) = pn−|A|(1 − p)|A|.

We are then ready to formally state our optimization problem.
Problem 1 (independent failures). For given p ∈ (0, 1) and n ∈ N, find x∗ ∈

[0, 1]n that minimizes the cost (3) with (4).
In what follows we assume, for simplicity and without losing generality, that x is

ordered x1 ≤ x2 ≤ · · · ≤ xn. This assumption implies that

(5) C0(xA) = max

{
xA1 , 1− xA|A| , max

k=1,...,|A|−1

1

2
(xAk+1

− xAk
)

}
.

D
ow

nl
oa

de
d 

02
/0

4/
16

 to
 1

30
.8

9.
13

.3
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ONE-DIMENSIONAL COVERAGE BY UNRELIABLE SENSORS 3123

3. Formulation as a linear program. A solution of Problem 1 can be numer-
ically computed by means of the following result, which shows its equivalence to a
suitable linear program.

Theorem 1 (linear program). Let n ∈ N and p ∈ (0, 1). The (ordered) vector
x∗ ∈ [0, 1]n is an optimal solution of Problem 1 if and only if there exists a vector
w∗ ∈ R

2n−1 such that (x∗, w∗) is an optimal solution to the following linear program:

min
∑
A �=∅

Pr(EA)wA(6)

s.t.

0 ≤ x1 ≤ · · · ≤ xn ≤ 1,(7)

and ∀A ⊆ [n], A �= ∅,
wA ≥ 1

2
(xAk+1

− xAk
) for k = 1, . . . , |A| − 1,(8)

wA ≥ xA1 , wA ≥ 1− xA|A| .(9)

Proof. As the constant term Pr(E∅) can be ignored when looking for the x
minimizing C(x), Problem 1 is equivalent to

min
x1≤···≤xn

∑
A⊆[n],A �=∅

Pr(EA)C0(xA).

Since Pr(EA) ≥ 0 for every A, this problem is in turn equivalent to

min
x1≤···≤xn

∑
A⊆[n],A �=∅

Pr(EA)wA s.t. wA ≥ C0(xA) for every A �= ∅,

that is, to (6) under the constraints (7) and wA ≥ C0(xA) for every A �= ∅. Thanks
to (5), the constraint wA ≥ C0(xA) can be separated in wA ≥ xA1 , wA ≥ (1− xA|A|),

and wA ≥ 1
2 (xAk+1

−xAk
) for k = 1 . . . , |A|− 1, that is, in (8) and (9), which achieves

our proof.

The formulation as a linear program implies that the optimal solution corresponds
to one of the vertices of the polytope defined by the constraints. Unfortunately, the
number of such constraints is exponentially large in the number of sensors and thus
the program becomes quickly intractable. Nevertheless, we are able to calculate the
optimal placements as long as n is not too large. In Figure 1 we illustrate the evolution
of the optimal placement for Problem 1 as a function of p. We can see that the
dependence on p is rather complex and it is not clear how, or if, one could provide a
simple exact description of the optimal location of the sensors as a function of n and
p. Still, in section 5 we will show that the equispaced placement is optimal when p is
near 0 and a single cluster at 1/2 is optimal when p is near 1.

Observe that the optimal x is a piecewise constant function of p. This feature can
actually be explained by the structure of the linear program in Theorem 1. Indeed,
one can see that the constraints do not depend on p, which affects only the cost
function. For any p, one can thus always find an optimal (x∗, w∗) among the finitely
many vertices of the polytope defined by these constraints. It is therefore natural to
observe only finitely many different optimal solutions.
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Fig. 1. Optimal sensor placement for Problem 1 for n = 12 sensors and varying p.

4. Performance of the equispaced placement. The difficulty of providing
explicit formulas or efficient computational methods to solve Problem 1 motivates us
to investigate the properties of simple near-optimal solutions. We concentrate on the
equispaced placement, which we have seen to be optimal in the case of no failures,
achieving a cost C0(x

eq) = 1
2n . In the case of positive failure probability, we can prove

that the cost of the equispaced placement is nearly optimal.

Theorem 2 (cost of equispaced). Let p ∈ (0, 1) and let x∗ denote the optimal
placement for this p. Then,

(10) C(xeq) =
1

2 log p−1

logn

n
+O

(
1

n

)
for n → ∞

and for every n ∈ N

(11) C(xeq) ≤ C(x∗) +
p

1− p

2

n
.

Equation (10) is illustrated in Figure 2 (section 6). A few relevant observations
follow from this theorem: (i) the order of growth of C(xeq) is worse than the order
of C0(x

eq) only by a logarithmic factor; (ii) xeq asymptotically achieves the optimal

cost, since C(xeq)
C(x∗) → 1; and (iii) the difference in cost between xeq and the optimum

can be estimated at finite n, too. Consequently, the equispaced placement can be seen
as a valid heuristic solution when finding an exact solution proves to be intractable.
Note, however, that the difference appearing in (11) is rather high when the failure
probability p is close to 1. This is in line with the observation that the cluster
placement at 1/2 can be optimal for n not too large while p is fixed. This phenomenon
is treated in detail later in Proposition 10.

The rest of this section is devoted to proving Theorem 2. We first prove (10) in
section 4.1: its proof is based on classical results about the properties of the runs of
consecutive ones in sequences of Bernoulli trials. Next, in section 4.2 we prove (11);
the proof of this formula relies on an alternative version of Problem 1 defined on the
circle, for which the equispaced solution is actually optimal.D
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4.1. Longest runs of failures and proof of (10). Let Rn be the maximum
number of sensors which fail “in a row,” i.e., the length of the longest run of failures
over n sensors. The random variable Rn is closely related to the cost, as we detail
below. On the other hand, the distribution of Rn and its asymptotic behavior for
large n are well studied in the literature, due to their relevance in combinatorics [8].
The following lemma, taken from [12], characterizes the asymptotic behavior of E[Rn].

Lemma 3. Let Rn be defined as above and p ∈ (0, 1). Then, for n → ∞,

E[Rn] =
1

log p−1
logn+

log(1−p)

log p−1
+

γ

log p−1
− 1

2
+ rp(n) + o(1) ,

where γ is the Euler–Mascheroni constant and rp(n) is a periodic function which
remains bounded and, more precisely, satisfies for all n

|rp(n)| ≤ 1

2π

√
θ

e−θ

(1− e−θ)2
with θ =

π2

log p−1
.

Recall that we denote by A the set of active sensors and that the sensors are
sorted according to their location. The cost C(xeq) is tightly related with the lengths
of runs of failures and in particular the maximum run-length. For a given set A of
active sensors, denote by R the longest run-length of failures for that set A (elements
of [n] not in A): R is thus the realization of Rn corresponding to A. Notice that if
1 ∈ A and n ∈ A, then the coverage cost is precisely determined by the longest run
of failures, since C0(x

eq
A ) = R+1

2n . However, when a failure occurs in sensor 1 or n (or
both), the runs of failures involving border sensors contribute to the cost by a larger
amount. Denote by Li and Lf the lengths of the runs of failures involving the initial
sensor 1 and the final sensor n, respectively, namely, Li = A1 − 1 and Lf = n−A|A|
for A �= ∅ and Li = Lf = n for A = ∅. Now notice that, for all A �= ∅,

C0(x
eq
A ) = max

{
R+ 1

2n
,
2Li + 1

2n
,
2Lf + 1

2n

}
.

For the case where A = ∅, recall that C0(x
eq
∅ ) = 1. Hence, for all A, we have the

following bounds:

C0(x
eq
A ) ≥ R+ 1

2n

and

C0(x
eq
A ) ≤ max

{
R+ 1

2n
,
2Li + 1

2n
,
2Lf + 1

2n

}
≤ R+ 1

2n
+

2Li + 1

2n
+

2Lf + 1

2n
.

The bounds on the averaged cost C(xeq) are then obtained by taking the expecta-
tion. Notice that with the failure model from Problem 1 the maximum run-length R
is the above-described random variable Rn, and hence its average satisfies Lemma 3.
For the initial and final run-lengths, they are truncated geometric random variables
in the following sense. Let X be a geometric random variable of parameter p, namely,
Pr(X = k) = pk(1 − p). Now notice that Pr(Li = k) and Pr(Lf = k) are equal
to Pr(X = k) for k < n, to Pr(X ≥ n) for k = n, and to 0 for larger k, so that
ELi = ELf ≤ EX = p

1−p .
We can now conclude the proof: for the lower bound

C(xeq) ≥ ERn + 1

2n
=

1

2n

(
1

log p−1
logn+O(1)

)
for n → ∞ ,
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while for the upper bound

C(xeq) ≤ ERn + 1

2n
+ 2

2EX + 1

2n
=

1

2n

(
1

log p−1
logn+O(1)

)
for n → ∞ .

4.2. Coverage on a circle and proof of (11). In order to complete the proof
of Theorem 2 we introduce a proxy model. Instead of covering the unit interval, this
time we attempt to find a good coverage on a circle with circumference 1. If we
represent the locations by values in [0, 1], this means that the distance between two
points x, y ∈ [0, 1] is min(|y − x| , 1 − |y − x|). Employing this distance to determine
the cost as in (1) leads to define the following problem.

Problem 2 (independent failures—circle). For given p ∈ (0, 1) and n ∈ N, find
x ∈ [0, 1]n that minimizes C̃(x) =

∑
A⊆[n] Pr(EA)C̃0(xA), where Pr(EA) = pn−|A|(1−

p)|A| and

(12) C̃0(x) = max

{
1

2
(1− xn + x1), max

i=1,...,n−1

1

2
(xi+1 − xi)

}
.

Problem 2 can also be formulated as a linear problem; a result similar to The-
orem 1 with a minor modification to constraints (9) can be proved exactly in the
same way.

Corollary 4 (linear program—circle). Let n ∈ N and p ∈ (0, 1). The (ordered)
vector x∗ ∈ [0, 1]n is the optimal solution of Problem 2 if and only if there exists a
vector w∗ ∈ R

2n−1 such that (x∗, w∗) is an optimal solution to the following linear
program:

min
∑
A �=∅

Pr(EA)wA

s.t.

0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1,

and ∀A ⊆ [n], A �= ∅,
wA ≥ 1

2
(xAk+1

− xAk
) for k = 1, . . . , |A| − 1,

wA ≥ 1

2
(1− xA|A| + xA1).(13)

We now show that the equispaced solution xeq is the optimal sensor placement
for the circle. We will then relate it to the original problem on the line.

Proposition 5 (optimal solution—circle). The equispaced sensor placement xeq

is the only optimal sensor placement (up to translation) on the circle for Problem 2.
Proof. The linear program nature of the problem allows us to combine different

sensor placements. Given (x,w) and (x′, w′) we may form (x+x′
2 , w+w′

2 ). This is a
valid point of the polytope of constraints, and the cost is between the cost of the two
initial placements. On the other hand, using the symmetry of the circle it follows that
the rotation of x (formally a translation modulo 1) does not change the associated
cost, even though w may need to be changed appropriately. Without loss of generality,
we assume thus x1 = 0.D
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Let us fix an initial (x,w) and define the rotated versions x1, x2, . . . , xn such
that xk becomes (xk)1 = 0 after rotation and re-indexing. For every xk we have the
corresponding best wk which all give the same cost. We want a closer look on their
average,

(x∗, w∗) =

(
1

n

n∑
k=1

xk,
1

n

n∑
k=1

wk

)
.

Using our previous observations, this is a valid sensor placement and w∗ has the same
cost as any wk. But what is this x∗? Let us check the distance of two consecutive
sensors (out-of-bound indices and distances have to be interpreted appropriately):

x∗
i+1 − x∗

i =
1

n

n∑
k=1

(xk
i+1 − xk

i ) =
1

n

n∑
k=1

(xk+i − xk+i−1) =
1

n
.

Therefore x∗ = xeq. This already shows that the equispaced placement is optimal.
We now show that it is the only optimal solution.

For the sensor placement x∗ the accompanying w∗ is not necessarily the best
possible. We claim that whenever x1 is not equispaced, there is a w̃∗ such that
(x∗, w̃∗) is valid and strictly cheaper than (x,w). When x is not equispaced, it means
that there are two consecutive sensors which are more than 1/n apart. In other words,
w[n] > 1/(2n). By the construction above, we get w∗

[n] = w[n] > 1/(2n). On the other

hand, we know that we can decrease w∗
[n] to 1/(2n) for the equispaced placement

without violating any constraints. Define

w̃∗
[n] = 1/(2n),

w̃∗
A = w∗

A otherwise.

This way (x∗, w̃∗) is a valid point of the polytope. The costs of the different settings
compare as follows:

C̃(x) = Pr(E∅) +
∑
A �=∅

Pr(EA)wA = Pr(E∅) +
∑
A �=∅

Pr(EA)w
∗
A

≥ Pr(E∅) +
∑
A �=∅

Pr(EA)w̃
∗
A ≥ C̃(x∗).

This becomes a strict inequality whenever Pr([n]) > 0. Consequently Pr([n]) > 0 is a
sufficient condition for x∗ = xeq to be the strong optimum. This condition obviously
holds for independent failures, which concludes our proof.

Remark 6. The same proof shows that xeq is an optimal sensor placement for any
variation of Problem 2 where Pr(EA) is independent of the positions of the sensors
and invariant under permutation. Moreover, if there is a nonzero probability that all
sensors are active, it is the only optimal placement, up to translations.

Next, we show that the optimal cost of our initial Problem 1 lies between the cost
C̃(xeq) of the (optimal) equispaced solution xeq for Problem 2 on the circle and the
cost C(xeq) of the same distribution for Problem 1. For this purpose, we need the
following lemma providing a bound on the difference of cost for each set A of active
sensors, which will also prove useful later.
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Lemma 7. Let A be a nonempty set of active sensors and xA their positions.
There holds C̃0(xA) ≤ C0(xA), Moreover, if C̃0(xA) < C0(xA), then C0(xA) =
max{xA1 , 1− xA|A|}.

Proof. Consider (5). Adding the average of the first two terms in the set on which
the maximum is taken does not affect the value of the maximum. We have therefore

(14)

C0(xA) = max

{
xA1 , (1− xA|A|),

1

2
(1 + xA1 − xA|A|), max

k=1,...,|A|−1

1

2
(xAk+1

− xAk
)

}
.

Observe that every quantity appearing in the definition

(15) C̃0(xA) = max

{
1

2
(1 + xA1 − xA|A|), max

k=1,...,|A|−1

1

2
(xAk+1

− xAk
)

}

also appears in (14). Therefore, we have C̃0(x) ≤ C0(xA). Moreover, in case this
inequality is strict, C0(xA) must be equal to one of the elements that appear in (14)
but not in (15), that is, either xA1 or 1− xA|A| .

Lemma 8. Let x∗ be an optimal solution to Problem 1 for given n and p. There
holds

C̃(xeq) ≤ C̃(x∗) ≤ C(x∗) ≤ C(xeq).

Proof. The inequality C(x∗) ≤ C(xeq) follows from the optimality of x∗ for
Problem 1. Similarly, C̃(xeq) ≤ C̃(x∗) follows from the optimality of xeq for Problem 2
proved in Theorem 5. Finally, since C(x)− C̃(x) =

∑
A �=∅ Pr(EA)(C0(xA)− C̃0(xA)),

it follows from Lemma 7 that C̃(x) ≤ C(x) for every x, and in particular that C(x∗) ≤
C(x∗).

Thanks to Lemma 8, now we just have to evaluate the difference between the cost
of the equispaced solution xeq in Problems 1 and 2.

Lemma 9. For any n ∈ N, p ∈ (0, 1), there holds

C(xeq) ≤ C̃(xeq) +
2

n

p

1− p
.

Proof. We first consider a (nonempty) set of active sensors A and find a bound
on the difference of cost C0(x

eq
A ) − C̃0(x

eq
A ). Observe first that xeq

i = 1
2n (2i − 1) and

therefore that C̃0(x
eq
A ) ≥ 1

2n in all cases. Suppose now that C0(x
eq
A ) and C̃0(x

eq
A ) are

different. It follows in that case from Lemma 7 that C(xeq
A ) > C̃(xeq

A ) and that

C0(x
eq
A ) = max(xA1 , 1− xA|A|) =

1

2n
max(2A1 − 1, 1 + 2(n−A|A|)).

Whenever C0(x
eq
A ) �= C̃0(x

eq
A ), we have thus

(16) C0(x
eq
A )− C̃0(x

eq
A ) ≤ 1

2n
max(2A1 − 2, 2(n−A|A|) ≤ 1

n
(A1 − 1 + n−A|A|).

When C0(x
eq
A ) = C̃0(x

eq
A ), the inequality also holds since the right-hand side of (16)

is nonnegative.D
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We now sum the inequality (16) over all events and use the symmetry of our
problem to obtain

C(xeq)− C̃(xeq) ≤ 1

n

∑
A �=∅

Pr(EA)(A1 − 1) +
1

n

∑
A �=∅

Pr(EA)(n−A|A|)

=
2

n

∑
A �=∅

Pr(EA)(A1 − 1)

=
2

n

n∑
k=1

Pr(A1 = k)(k − 1),(17)

where the event A1 = k implicitly implies that A is nonempty. Observe that the
probability for the kth sensor to be the first active one is pk−1(1− p). Therefore, the
expression

∑n
k=1 Pr(A1 = k)(k − 1) is the expected value of a truncated geometric

random variable (i.e., a geometric random variable whose value is set to 0 if it exceeds
n) and is bounded by p

1−p . Reintroducing this into (17) leads to the desired result

C(xeq)− C̃(xeq) ≤ 2
n

p
1−p .

The inequality (11) in Theorem 2 follows then from the combination of Lemmas 8
and 9.

5. Extreme values of p. In this section, we study the optimal placement when
p takes on extreme values, close either to 0 or to 1. Our first result gives the optimal
placements under such conditions.

Proposition 10 (small and large p). If p is in a neighborhood of 0, then the
equispaced placement xeq is optimal. Similarly, if p is in a neighborhood of 1, then
the optimal placement is xsgl, where xsgl

i = 1
2 for all i ∈ [n].

Proof. We rely on the linear program formulation in section 3. We have seen
that the polytope of constraints is independent of p and that the cost vector evolves
continuously with p. For p = 0 we know that the unique optimal solution is xeq. This
means that for any other vertex x of the polytope of constraints we have

C(xeq) < C(x).

Let us denote the set of vertices of the polytope of constraints by V . Knowing that
V is finite, we get

C(xeq) < min
x∈V \{xeq}

C(x).

The strict inequality and the continuity of the cost function with respect to p imply
that, for a sufficiently small perturbation of the cost vector, xeq will remain the
optimal placement. In other words, xeq is optimal as long as p is in a sufficiently
small neighborhood of 0.

For large failure probability p = 1−ε the most relevant events are those with just
one active sensor, in the sense that any A with size two or more has Pr(EA) = O

(
ε2
)
.

Then,

C(x) = (1− ε)n + ε(1− ε)n−1
n∑

i=1

max(xi, 1− xi) +O
(
ε2
)
.

This holds for any placement x, so in particular for all x ∈ V . Clearly xsgl is strictly
optimal concerning the main term

∑n
i=1 max(xi, 1−xi). Recalling that V is finite, this

implies that one can find a sufficiently small ε̄ such that for all ε ≤ ε̄, C(xsgl) < C(x)
for all x ∈ V \ {xsgl}, i.e., xsgl is optimal.
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C(xeq)

E[C(xrand)]

1
2 log p−1
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n

1
2(1−p)

logn
n

n

Fig. 2. The plot compares E[C(xrand)], C(xeq), and their approximations according to The-
orems 13 and 2, respectively. The expected costs are simulated as Monte Carlo averages over 100
independent realizations of the placements and of the failures, taking p = 0.3.

The next two results provide estimates on the sizes of the neighborhoods in Propo-
sition 10, showing that their sizes asymptotically vanish as n diverges. Their proofs,
presented in Appendices A and B, rely on comparing xeq and xsgl with alternative
placements and showing that the former are not optimal when p differs from respec-
tively 0 or 1 by more than a certain value that decays in O(1/n).

Proposition 11 (neighborhood of 0). The neighborhood of 0 where xeq is opti-
mal is at most c0/n long, with some constant c0 > 0.

Proposition 12 (neighborhood of 1). The neighborhood of 1 where the single
cluster placement xsgl is optimal is at most 3/n long.

The proof of Proposition 12 actually shows the slightly stronger result that xsgl

is suboptimal for any p < 1− 3/n. In other words, it does not become optimal again
for smaller values of p.

6. Performance of a random placement. In this section we consider a ran-
dom placement xrand of the sensors. More precisely, the positions xrand

1 , . . . , xrand
n

are independently and identically distributed (i.i.d.) random variables, uniformly dis-
tributed in the interval [0, 1]. Notice that (differently from x in the rest of the paper),
here xrand has entries which are not ordered, so that the cost definition in (1) applies,
while the one in (5) does not.

The following result describes the asymptotic behavior of E[C(xrand)], where E

denotes expectation with respect to the random positions of sensors. Note that the
cost C(x) defined in (3) is itself averaged with respect to sensor failures.

Theorem 13 (cost of random placement). Let xrand be the above-defined random
sensor placement. Then,

E[C(xrand)] =
1

2(1− p)

logn

n
+O

(
1

n

)
for n → ∞ .

From Theorem 13 we can argue that E[C(xrand)] has the same order of growth as
C(xeq), but with a larger constant, thus leading to an asymptotically worse perfor-
mance: this comparison is illustrated in Figure 2. The rest of the section describes the
main steps of the proof, while some lengthier details are postponed to the appendix.
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From the definition in (3) and by linearity of expectation,

E[C(xrand)] =
∑

A⊆[n]

Pr(EA)E[C0(x
rand
A )] .

The key remark is that all sets A having the same cardinality m have the same
average cost E[C0(x

rand
A )], which corresponds to the average cost of a vector of m

active sensors in random positions. Then, we define xrand,m as a vector with m
entries xrand,m

1 , . . . , xrand,m
m , i.i.d. uniform in [0, 1]. With this notation, E[C0(x

rand
A )] =

E[C0(x
rand,m)] with m = |A|, so that

(18) E[C(xrand)] =
n∑

m=0

Pr(|A| = m)E[C0(x
rand,m)] .

Hence, we focus on finding bounds for E[C0(x
rand,m)]. To do so, we make use

of classic results about lengths of segments when cutting a rope at random points,
as described below. We introduce the notation V1, . . . , Vm+1 for the lengths of the
segments obtained when cutting the [0, 1] interval at points from xrand,m. More pre-
cisely, let y = (y1, . . . , ym) be the vector obtained reordering entries of xrand,m in
nondecreasing order; also define y0 = 0 and ym+1 = 1; finally define Vi = yi − yi−1,
for i = 1, . . . ,m+ 1. The average cost E[C0(x

rand,m)] is related to the distribution of
the segment lengths V1, . . . , Vm+1, as follows.

Lemma 14. For any m ≥ 1,

(19) E[C0(x
rand,m)] =

∫ 1

0

Pr(C0(x
rand,m) > v)dv ,

where Pr(C0(x
rand,m) > v) = Pr({V1 > v}∪{V2

2 > v}∪· · ·∪{Vm

2 > v}∪{Vm+1 > v}).
Proof. By computing the expectation as the integral of the survival function, (19)

immediately follows. From (5) applied to y, we have C0(x
rand,m) = max(V1,

V2

2 , V3

2 , . . . ,
Vm

2 , Vm+1), which implies the second equality.
We will then take advantage of the following result about the distribution of the

segment lengths V1, . . . , Vm+1.
Lemma 15 (see [6, sect. 6.4]). Let V1, . . . , Vm+1 be the above-defined segment

lengths. Given r ≤ m+ 1 nonnegative parameters c1, . . . , cr such that
∑

i ci ≤ 1, and
distinct indices i1, . . . , ir ∈ [m+ 1], then

Pr(Vi1 > c1, . . . , Vir > cr) = (1− c1 − · · · − cr)
m .

The above lemmas, together with inclusion-exclusion principle, allow us to find
the following bounds for E[C0(x

rand,m)]. The bounds involve the harmonic numbers
Hm =

∑m
h=1

1
h . The details of the proof are given in Appendix C.

Lemma 16. For all m ≥ 0,

E[C0(x
rand,m)] ≥ Hm+1

2(m+ 1)
.

Moreover, for all m ≥ 2,

E[C0(x
rand,m)] ≤ Hm−1 + 4

2(m+ 1)
.
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Then, using Lemma 16, we can find the following bounds for E(C(xrand)). The
proof is described in detail in Appendix D.

Lemma 17. For any ε ∈ (0, p),

E[C(xrand)] ≥ (1− e−2ε2n)
H
(1−p+ε)n�

2
(1− p+ ε)n� .

Moreover, for any ε ∈ (0, 1− p),

E[C(xrand)] ≤ e−2ε2n +
H
(1−p−ε)n� + 4

2
(1− p− ε)n�+ 2
.

The statement of Theorem 13 follows from Lemma 17, by taking ε =
√

logn
n and

by exploiting the fact that the asymptotic growth of harmonic numbers is Hm ∼ logm
for m → ∞.

7. Cortés model. As mentioned in the introduction, the paper [3] studies the
coverage problem in one dimension with the following failure model for the sensors.
The number of failing sensors is known (and indicated with k) but which sensors fail is
unknown and random: more precisely, the set of the k failing sensors is sampled from
a uniform distribution over the subsets of {1, . . . , n} with k elements. The problem
can be summarized as follows.

Problem 3 (constant number of failures—Cortés model). For given positive in-
tegers k, n with k < n, find x ∈ [0, 1]n that minimizes C(x) = Pr(E∅)+

∑
A �=∅ Pr(EA)

C0(xA), where C0(x) is defined by (1) and Pr(EA) = ( n!
k!(n−k)! )

−1 if |A| = k and 0

otherwise.
Observe that the only difference with our Problem 1 is that the probabilities

Pr(EA) have changed. The following lemma indicates how the Cortés model can be
approximated by the independent failure model.

Lemma 18. For any x ∈ [0, 1]n, k < n, and 0 < ε < min(k/n, 1− k/n),

C
k
n−ε(x)− e−2εn2 ≤ Ck,n(x) ≤ C

k
n+ε(x) + e−2nε2 ,

were we use the notation Ck,n for the cost of the Cortés model and Cp for the inde-
pendent failure model.

Proof. Problem 3 involves uniformly randomly selecting a subset A of k failed
sensors among n possible ones. One way of doing this is to first build a set B obtained
by selecting independently every sensor with a probability p. Then, if |B| > k, one
obtains A by removing |B| − k uniformly randomly selected sensors from B. If on
the other hand |B| < k, one adds k − |B| randomly selected sensors to B. Observe
that A then always contains k sensors and that all sets A with cardinality k are
equiprobable, so it is a valid selection process with respect to Problem 3. The cost of
x can be decomposed as the contributions of the event |B| > k and |B| ≤ k.

Ck,n(x) = E(C0(xA)) = E (C0(xA)| |B| ≤ k) Pr(|B| ≤ k)(20)

+E (C0(xA)| |B| > k) Pr(|B| > k).

When |B| ≤ k, the set A contains the set B from which it was built, and the cost
C0(xA) is thus smaller than or equal to C0(xB). As a result, E (C0(xA)| |B| ≤ k) ≤
E (C0(xB)| |B| ≤ k). On the other hand, the cost C0(xB) is always bounded by 1, and

D
ow

nl
oa

de
d 

02
/0

4/
16

 to
 1

30
.8

9.
13

.3
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ONE-DIMENSIONAL COVERAGE BY UNRELIABLE SENSORS 3133

thus there always holds C0(xB) ≤ 1 + C0(xA). In particular, E (C0(xA)| |B| > k) ≤
1 + E (C0(xA)| |B| > k). Reintroducing these two bounds in (20) yields

Ck,n(x) ≤ E (C0(xB)| |B| ≤ k) Pr(|B| ≤ k)

+ E (C0(xB)| |B| > k) Pr(|B| > k) + Pr(|B| > k)

= E (C0(xB)) + Pr(|B| > k) = Cp(x) + Pr(|B| > k),(21)

where the last inequality follows from the fact that the sets B are built by randomly
taking each sensor with a probability p as in Problem 1. Now the size of B follows
a binomial distribution with parameters n and p. Hoeffding’s inequality implies then

that Pr(|B| > k) ≤ exp(−2 (np−k)2

n ). Taking p = k
n − ε, we obtain Pr(|B| > k) ≤

e−2ε2n, and the upper bound of this lemma follows then from (21). The lower bound
is obtained in a parallel way.

Results analogous to those presented in the previous sections can then be obtained
for the model in [3]. We collect them in the following theorem.

Theorem 19 (constant number of failures—Cortés model).
(a) Linear program. Theorem 1 is directly valid for Problem 3.
(b) Asymptotic cost of xeq. For fixed k/n and n → ∞, C(xeq) approximates

1
2 log n

k

logn
n . More precisely, for any 0 < ε < min(k/n, 1− k/n) we have

1

2 log n
k−nε

logn

n
+O

(
1

n

)
≤ C(xeq) ≤ 1

2 log n
k+nε

logn

n
+O

(
1

n

)
for n → ∞,

where the O(1/n) term can depend on ε and k/n.
(c) Near-optimality of xeq. Let x∗ be the optimal solution to Problem 3. There

holds

C(xeq) ≤ C(x∗) +
2

n

k

n− k
.

(d) Asymptotic cost of xrand. The average cost of the random placement has the
asymptotic behavior

E[C(xrand)] =
logm

2m
+O

(
1

m

)
for m → ∞ ,

where m = n− k is the number of active sensors.
Proof. (a) The proof of Theorem 1 does not depend on the values of the prob-

abilities Pr(EA). It applies thus directly to other models of probabilities, including
that of Problem 3. Moreover, the polytope of admissible solutions does not depend
on Pr(EA) either. Therefore, whenever the optimal solution is unique, it must belong
to the (finite) set of vertices of that polytope, independently of the model.

(b) This part of the result is obtained by combining the bound (10) in Theorem 2
with Lemma 18.

(c) The proof follows the reasoning held in section 4. Specifically we can introduce
a variation of Problem 3 on the circle. As explained in Remark 6, Proposition 5 implies
then that xeq is an optimal solution of that problem (though not necessarily the only
one since the probability for all sensors to be active is zero if k > 0). Lemmas 7 and 8
can then directly be extended with the same proof, so that C̃(xeq) ≤ C(x∗) ≤ C(xeq).
The bound (c) follows then from a variation of Lemma 9 showing that C(xeq) −
C̃(xeq) ≤ 2

n
k

n−k .
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(d) Similarly to the proof of Theorem 13, we get EC0(x
rand
A ) = EC0(x

rand,m) for
any A with |A| = m, and hence also EC(xrand) = EC0(x

rand,m). Then, applying
Lemma 16, we get

Hm+1

2(m+ 1)
≤ EC(xrand) ≤ Hm−1 + 4

2(m+ 1)
,

which concludes the proof.
Our results on the asymptotic behavior of solutions to Problem 3 complement

those in [3], which focus on general properties of the optimization problem and on
deriving explicit formulas for certain values of k, n.

8. Conclusion. In this paper we have presented our findings on a new model of
coverage by unreliable sensors, which extends the well-known disk-coverage problem
to allow for independent sensor failures. We have shown that the resulting optimiza-
tion problem is a linear program and thus solvable by standard methods. However,
since the space of possible solutions grows exponentially with the size of the problem,
we do not know whether a solution can be found in a polynomial time. Although the
optimal solution possibly can be hard to find, and even if its properties are difficult to
describe precisely, we have been able to present a suboptimal solution which asymp-
totically achieves the optimal performance as the number of sensors grows to infinity.
Remarkably, this near-optimal solution is just the equispaced placement, which is op-
timal in the case without failures. We have also compared the performance of random
sensor placement to the equispaced setting to find that there is a constant factor de-
terioration of the cost: nevertheless, the rate of growth is the same as the number of
sensors increases.

This paper opens several research directions. First, a natural direction is the
extension to higher dimensions. As mentioned in the introduction, the coverage per-
formance of two-dimensional sensor networks has been extensively investigated. Con-
sistent with the results in [17] and some preliminary results that we have obtained,

we believe that both C(xeq) and C(xrand) are asymptotically proportional to
√

logn
n .

However, characterizing the proportionality constant and the optimality is an open
question. In fact, our optimality analysis hinges on the assumption of dimension one:
crucially, the linear programming characterization is unlikely to effectively extend to
higher dimensions. Second, in this paper we have chosen a min-max disk-coverage
cost: different cost functions would lead to interesting alternative problems. For
instance, one can consider the weighted integral of a nondecreasing function of the
distance to the closest sensor. Third, one might consider the case of heterogeneous
sensors, where the failure probability can depend on the sensor itself or on its lo-
cation. Finally, a challenging question is finding feedback control laws that enable
autonomous deployment of self-propelled sensors, in such a way to take random fail-
ure into account. This problem has been recently studied in relation to the Cortés
model in [22] but is completely open for the failure model proposed in this paper.

Appendix A. Proof of Proposition 11. We propose the alternative sensor
placement

xalt =
1

2n− 2
(1, 2, 4, 6, . . . , 2n− 2, 2n− 4, 2n− 3)

and we show that, for some p = c/n and for sufficiently large n, this placement gives
a better (expected) cost than xeq. In order to do so, we estimate the cost difference
C(xalt)− C(xeq).
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We first compare the cost difference for any fixed set of active sensors A. If A is
empty, the two costs are trivially the same. Now consider a nonempty fixed A, and let
k be the length of the longest sequence of consecutive failed sensors among the middle
ones 2, 3, . . . , n− 1. In the following, we are going to prove the following bounds:

(a) C0(x
alt
A )− C0(x

eq
A ) ≤ Ik := k+1

2n(n−1) ;

(b) if k ≤ 1 and sensor 1 fails, then C0(x
alt
A )− C0(x

eq
A ) ≤ −J := − n−5

2n(n−1) .

Both bounds are based on the following observation:

(22) C0(x
eq
A ) = max

{
k + 1

2n
,
2h+ 1

2n

}
, C0(x

alt
A ) ≤ max

{
k + 1

2(n− 1)
,

h

n− 1

}
,

where h = max{A1− 1, n−A|A|} is the longest between the runs of failures involving
the first and last sensors. Notice that 0 ≤ h ≤ k + 1.

To prove (a), consider two cases. If k ≥ 2h, then both maxima in (22) are
achieved by the term involving k, and C0(x

alt
A ) − C0(x

eq
A ) ≤ k+1

2(n−1) − k+1
2n = Ik.

If k < 2h, then both maxima in (22) are achieved by the term involving h, and

C0(x
alt
A ) − C0(x

eq
A ) ≤ h

n−1 − 2h+1
2n = 2h−(n−1)

2n(n−1) ; the claim then follows using in the

numerator the bounds h ≤ k + 1 and n − 1 ≥ k + 1 (the latter is true since by
definition k ≤ n− 2).

To prove (b), notice that the assumption that sensor 1 fails implies h ≥ 1; also
recall that h ≤ k + 1 and that by assumption k ≤ 1, so that we have k ≤ 1 ≤
h ≤ 2. In this case, both maxima in (22) are achieved by the term involving h, and

C0(x
alt
A )− C0(x

eq
A ) ≤ 2h−(n−1)

2n(n−1) ; the claim follows from the bound h ≤ 2.

Now we come back to the averaged costs. We denote by Ek the set of sets A for
which the longest sequence of failed sensors among the middle ones has length k, and
by F1 the set of sets A for which sensor 1 fails. We study

C(xalt
A )− C(xeq

A ) =
n−2∑
k=0

Pr(Ek)E[C0(x
alt
A )− C0(x

eq
A )|Ek] .

For all terms with k ≥ 2, we use the bound (a) to get E[C0(x
alt
A )−C0(x

eq
A )|Ek] ≤ Ik.

For k = 0 and k = 1, we separate the case where sensor 1 fails or is active:

1∑
k=0

Pr(Ek)E[C0(x
alt
A )− C0(x

eq
A )|Ek]

=

1∑
k=0

Pr(Ek ∩ F1)E[C0(x
alt
A )− C0(x

eq
A )|Ek ∩ F1]

+

1∑
k=0

Pr(Ek ∩ F̄1)E[C0(x
alt
A )− C0(x

eq
A )|Ek ∩ F̄1].

For the first term, we can use the tighter bound (b) to get E[C0(x
alt
A )−C0(x

eq
A )|Ek ∩

F1] ≤ −J ; for the second term we use bound (a), together with the remark that
I0 < I1, to get E[C0(x

alt
A )−C0(x

eq
A )|Ek ∩ F̄1] ≤ I1. Notice that E0 and E1 are disjoint

and that F1 is an independent event from any Ek since sensor failures are independent
by assumption, with Pr(F1) = p. Hence, we have

∑1
k=0 Pr(Ek ∩ F1)E[C0(x

alt
A ) −D
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C0(x
eq
A )|Ek ∩F1] ≤ −Pr(E0 ∪E1)pJ and

∑1
k=0 Pr(Ek ∩ F̄1)E[C0(x

alt
A )−C0(x

eq
A )|Ek ∩

F̄1] ≤ Pr(E0 ∪E1)(1 − p)I1.
Collecting all terms, we have

C(xalt)− C(xeq) ≤
n−2∑
k=2

Pr(Ek)Ik + Pr(E0 ∪ E1)(1 − p)I1 − Pr(E0 ∪E1)p ,

which we can rewrite as

C(xalt)−C(xeq) ≤
n−2∑
k=2

Pr(Ek)Ik − Pr(E0 ∪ E1)p
J

2︸ ︷︷ ︸
(α)

+Pr(E0∪E1)

(
(1− p)I1 − p

J

2

)
︸ ︷︷ ︸

(β)

.

We now show that (α), (β) are both negative when p = c
n for a suitable c and

sufficiently large n. Substituting the values of I1 and J in (β) leads to (β) =
1

4n(n−1) (4− pn+ p) , which is negative for sufficiently large n when p = c/n for any
c > 4.

To analyze (α), we start by bounding Pr(Ek). There are n − k − 1 possible
sequences of k consecutive middle sensors and the probability that all the sensors fail
in one such sequence is pk. Therefore,

(23) Pr(Ek) ≤ (n− k − 1)pk < npk

and as a consequence

(24) Pr(E0 ∪ E1) = 1−
n−2∑
k=2

Pr(Ek) > 1−
∞∑
k=2

npk = 1− n
p2

1− p
.

The first part of inequality (23) allows bounding the first term in (α):

n−2∑
k=2

Pr(Ek)Ik <

n−2∑
k=2

(n− k − 1)pk
k + 1

2n(n− 1)
<

1

2n

n−2∑
k=2

pk(k + 1)

<
1

2n

(
1

(1− p)2
− 2p− 1

)
=

3p2 − 2p3

2n(1− p)2
.

Reintroducing this bound in (α) and using (24) leads then to

(α) <
3p2 − 2p3

2n(1− p)2
− p

(
1− n

p2

1− p

)
n− 5

4n(n− 1)

=
p

2n

(
3p− 2p2

(1 − p)2
−
(
1− n

p2

1− p

)
n− 5

2(n− 1)

)
.

Choosing p = c/n for any positive c, the expression in the parentheses converges to
−1/2 as n → ∞. Therefore it is negative for large enough n, which is what we needed.

Now, let us fix some c > 4. We have shown above that there exists a n0 such
that, for any n ≥ n0, if p = c

n , then C0(x
alt) < C0(x

eq). This shows that for n ≥ n0

the size of the neighborhood of p = 0 where xeq is optimal is at most c/n. On the
other hand, for n < n0, trivially the size of such neighborhood is at most 1 < n0/n.
Hence, for any n, such size is at most c0/n with c0 = max(c, n0).
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Appendix B. Proof of Proposition 12. The result is trivial for n ≤ 3, so we
assume in what follows that n > 3. We compare the cost of the single cluster with
another candidate with three clusters as follows:

k n− 2k k

0 1/4 1/2 3/4 1

The numbers below the dots indicate the number of sensors aggregated at that point;
k will be chosen later. If we show that this new placement is better than the single
cluster for a certain p, it implies that having a single cluster is not optimal. For the
single cluster, the cost is always 1/2. For the three clusters we get

• 1/4 if the left and right clusters are active,
• 1/2 if the left and/or right cluster fails, but the middle cluster is active,
• 3/4 if the left or right and the middle cluster fails.

We get less than 1/2 in expectation if the probability of getting 1/4 is higher than
getting 3/4. The relation needed for the probabilities is

(1 − pk)2 > 2pkpn−2k(1 − pk).

Multiplying by pk/(1− pk) this is equivalent to

(25) pk(1− pk) > 2pn.

We need to confirm this inequality with an appropriate choice of k. If p ≤ 1/3,
then (25) holds with k = 1 (and n > 3). Otherwise, observe that

(26) 2pn < 2

(
1− 3

n

)n

< 2e−3 <
3

16
.

We have to choose pk from the sequence p, p2, . . . , p
n/2�. This sequence starts at
p > 1/3 and ends at p
n/2� < 1/2, and the ratio of consequent elements is greater
than 1/3. Therefore there is an element pk in the interval (1/4, 3/4). The left-hand
side of (25) is a quadratic function in pk so it is easy to verify that

pk ∈
(
1

4
,
3

4

)
=⇒ pk(1 − pk) >

3

16
.

Combining this with (26) we arrive at (25), which completes our proof.

Appendix C. Proof of Lemma 16. We start by proving the lower bound. The
case m = 0 is true, since in this case the cost is 1, and H1 = 1 so that H1

2 < 1. Then
consider m ≥ 1. From Lemma 14 we obtain the following lower bound:

Pr(C0(x
rand,m) > v) ≥ Pr

(
m+1⋃
i=1

{
Vi

2
> v

})
.

Using inclusion-exclusion principle and applying Lemma 15 with c1 = · · · = cr = 2v,
we obtain

Pr(C0(x
rand,m) > v) ≥

∑
1≤r≤m+1 s.t. 2rv<1

(−1)r−1

(
m+ 1

r

)
(1 − 2rv)m .
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Then, substituting this in (19), we get

EC0(x
rand,m) ≥

∑
1≤r≤m+1

(−1)r−1

(
m+ 1

r

)∫ 1
2r

0

(1− 2rv)mdv .

By computing
∫ 1

2r

0 (1−2rv)mdv = 1
2r(m+1) and recalling that

∑
1≤r≤m+1(−1)r−1

(
m+1
r

)
1
r = Hm+1, we end the proof of the lower bound.

For the upper bound we proceed similarly. By Lemma 14 and the union bound,
we get

Pr(C0(x
rand,m) > v) ≤ Pr(V1 > v) + Pr(Vm+1 > v) + Pr

⎛
⎝ ⋃

2≤i≤m

{Vi

2 > v}
⎞
⎠ ,

and then, by Lemma 15,

Pr(V1 > v) = Pr(Vm+1 > v) = (1− v)m,

and by the same lemma together with the inclusion-exclusion principle,

Pr

⎛
⎝ ⋃

2≤i≤m

{Vi

2 > v}
⎞
⎠ =

∑
1≤r≤m−1 s.t. 2rv≤1

(−1)r−1

(
m− 1

r

)
(1− 2rv)m .

From this and using (19), we get

EC0(x
rand,m) ≤ 2

∫ 1

0

(1− v)mdv +

m−1∑
r=1

(−1)r−1

(
m− 1

r

)∫ 1
2r

0

(1 − 2rv)mdv

= 2
1

m+ 1
+

m−1∑
r=1

(−1)r−1

(
m− 1

r

)
1

2(m+ 1)r

=
2

m+ 1
+

Hm−1

2(m+ 1)
,

which proves the upper bound.

Appendix D. Proof of Lemma 17. To get the lower bound, we consider (18).
By discarding terms with large m and using Lemma 16, we get

EC(xrand) ≥

(1−p+ε)n�−1∑

m=0

Pr(|A| = m)
Hm+1

2(m+ 1)

≥ Pr(|A| < 
(1− p+ ε)n�) min
m<
(1−p+ε)n�

Hm+1

2(m+ 1)
.

It is easy to show that Hm

m is decreasing with m, so that

min
m<
(1−p+ε)n�

Hm+1

2(m+ 1)
=

H
(1−p+ε)n�

(1− p+ ε)n� .
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Then,

Pr(|A| < 
(1− p+ ε)n�) = 1−
n∑


(1−p+ε)n�

(
n

m

)
(1 − p)mpn−m

= 1−

(p−ε)n�∑
m′=0

(
n

m′

)
pm

′
(1− p)n−m′

and, by the Hoeffding inequality,
∑
(p−ε)n�

m′=0

(
n
m′
)
pm

′
(1− p)n−m′ ≤ e−2ε2n, which ends

the proof of the lower bound.

For the upper bound, we proceed similarly. From now on, we assume that �(1−
p− ε)n� ≥ 2; notice that the bound is trivially true otherwise. We consider (18) and
we split the summation into two terms: a first term with m ≤ �(1−p−ε)n�, in which
we use the trivial bound C0(x

rand,m) ≤ 1, and the remaining sum in which we use the
upper bound from Lemma 16, as follows:

EC(xrand) ≤ Pr (|A| ≤ �(1− p− ε)n�)
+ Pr (|A| > �(1− p− ε)n�) max

m>
(1−p−ε)n�
4 +Hm−1

2(m+ 1)
.

By the Hoeffding inequality, Pr (|A| ≤ �(1− p− ε)n�) ≤ e−2ε2n. For the second term,

it is easy to show that Hm−1+4
m+1 is decreasing with m and hence

max
m>
(1−p−ε)n�

4 +Hm−1

2(m+ 1)
=

H
(1−p−ε)n� + 4

2(�(1− p− ε)n�+ 2)
.

Finally we use the trivial bound Pr (|A| > �(1 − p− ε)n�) ≤ 1.

Then, the formulation of the upper bound stated in the proposition, which is
slightly weaker but has the advantage of not explicitly requiring us to assume �(1 −
p − ε)n� ≥ 2, is obtained since H
(1−p−ε)n� ≤ H
(1−p−ε)n� and in the denominator
2�(1− p− ε)n�+ 4 ≥ 2
(1− p− ε)n�+ 2.
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