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ABSTRACT As an aggregator involved in various renewable energy sources, energy storage systems, and

loads, a virtual power plant (VPP) plays a key role as a prosumer. A VPP may enable itself to supply energy

and ancillary services to the utility grid. This paper proposes a novel scheme for optimizing the operation

and bidding strategy of VPPs. By scheduling the energy storage systems, demand response, and renewable

energy sources, VPPs can join bidding markets to achieve maximum benefits. The potential uncertainties

caused by renewable energy sources and the demand response are considered in a robust optimization model.

Moreover, the robust VPP optimization accounts for its influence on markets to ensure optimal energy

and reserve capacity bidding transactions in the day-ahead market and deals balancing in the real-time

market. To demonstrate the performance of the proposed scheme, markets comprising various participants

and managed by the system operator are implemented using mathematical models. The proposed method

is evaluated using an illustrative system and the practical Taiwan power (Taipower) system with diverse

uncertainty levels. The numerical results demonstrate the promising performance and the efficiency of

the proposed method. The results also verify the effectiveness of the proposed method VPP with various

combinations of renewable energy sources, energy storage systems, and loads.

INDEX TERMS Virtual power plant, demand response model, ancillary service, energy storage system,

electricity markets, renewable energy source, robust optimization, game theory, mixed integer programming.

ACRONYM AND NOMENCLATURE

ACRONYM

RES Renewable Energy Source
PV Photovoltaic
IPP Independent Power Producer
VPP Virtual Power Plant
ESS Energy Storage System
DA Day-Ahead
RT Real-Time
DR Demand Response
RO Robust Optimization
WT Wind Turbine
SoC State of Charge
ToU Time 0f Use
MO Market Operator
MILP Mixed Integer Linear Programing
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NOMENCLATURE

ett , ett ′ Self-elasticity and cross-elasticity

d0t , dt Initial and modified demand response

ctdeg Degradation cost for ESS

µt
cha, µ

t
dis The state of charging and discharging

η ESS charge/discharge efficiency

SOCt State of Charge of ESS

ecap Capacity of ESS

CESS Price for ESS

ptcha, p
t
dis Energy charging/ discharging for ESS

m Slope of battery life degradation

ctope,VPP The operating cost in the DA market

r tcap,VPP The revenue obtained by selling

reserve capacity

r tbal,VPP The revenue of selling

regulation energy in balancing

market
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ptDA The buying or selling of

energy in DA market

λtene,VPP The bidding price for buying

or selling energy in DA

market

r timp/exp,up, r
t
imp/exp,down Reserve-up or reserve-down

capacity selling in DA market

at import or export state

λ
t,up
cap,VPP, λ

t,down
cap,VPP The price for Reserve-up or

reserve-down capacity selling

in DA market

ptimp/exp,up, p
t
imp/exp,down Reserve-up or reserve-down

energy selling in RT market

at import or export state

λ
t,up
bal,VPP, λ

t,down
bal,VPP The price for Reserve-up or

reserve-down energy selling

in RT market

ptload,VPP The RT energy consumption

within VPP

λtToU ,VPP ToU price

ctpen The penalty cost

ptnetload,VPP,pre, The predicted net load,

ptload,VPP,pre, p
t
RES,VPP,pre load and RES generation

r tDR,VPP, r
t
dis,reserve The regulation-up capacity

offered from DR and ESS

discharge

r tRES,VPP, r
t
cha,reserve The regulation-down capacity

offered from RES

management and ESS charge

λ
t,up
bal,mp, λ

t,down
bal,mp The marginal price of RT

market

etnetload,VPP,pre The prediction error

ctpar,n Cost for energy in DA market

ctpar,res Cost for reserve capacity

in DA market

λteg,n, λ
t,up
cap,n, λ

t,down
cap,n Bidding price for energy,

reserve-up capacity, and

reserve-down capacity

provided by participant n

in DA market

ctbal,n The cost paid for the

balancing power

ctoutage The outage cost

3VPP The bidding price

matrix of VPP

9VPP The bidding quantity

matrix of VPP

13step,VPP The bidding price

adjustment matrix

3MP The clearing price matrix

of the markets

I. INTRODUCTION

RESs, mainly PV and wind power generation, are being

increasingly integrated into power systems worldwide [1].

Because RESs exhibit the characteristic of uncontrollable

power generation, they cause more inflexibility and uncer-

tainty to power systems. The phenomenon of high RES pene-

tration changes the operating patterns and quantities of energy

as well as ancillary services needed by utilities and electricity

markets [2]. In Taiwan, energy policy calls for a 20% RES

penetration in the year 2025. An electricity market, including

energy sources, reserves, and a balance of IPPs and a VPP,

is thus imperative and put on the schedule.

Energy storage systems have been integrated with RESs

in many studies to accommodate variability [3]–[5]. Doing

so not only compensates for sudden variations in RES gen-

eration and maintains stable operating conditions, but also

helps to provide increased flexibility. The aggregation of

energy storage systems with a PV power plant [6] and a wind

farm [3] improves the bidding efficiency of participating

in energy and reserve markets, namely the DA market and

RT market.

DR is one of most promising components to use to

achieve system load balance management, benefits related to

peak shaving, and RES efficiency enhancement with a short

response period and relatively low cost. It has been proved

to have the ability to compensate for the mismatch between

short-term supply and demand in many studies [7]–[9].

DR will definitely play a progressively influential role in

future grids.

Integrated with various RESs, energy storage systems, and

types of loads, the framework of a VPP enables an operator to

maintain a system’s inner stability, while importing/exporting

energy and services. As a market participant, a VPP operates

as a ‘‘prosumer’’ (producer+consumer) in today’s power

system. References [10]–[16] propose various models and

configurations for optimizing the control strategy of a VPP

according to different roles of components. Reference [14]

undertakes the most comprehensive consideration of control-

lable components of virtual power plants, as assessing the

DR model, ESS model, and RES uncertainty. However,

participation in DA or RT markets is not discussed in

reference [14]; and it is described in [10] and [12].

A VPP, microgrid [17]–[18], RES [19]–[20], and

hydropower system [2] are mostly treated as price takers,

indicating that acceptance of the assumption that all partic-

ipants’ actions do not influence the price in the market and

do not influence other participants’ actions. However, when

the amounts of energy and reserves provided by participants

increase, bidding effects warrant consideration. Mathemati-

cal models have thus been proposed in some studies to imitate

the operating modes in a real market that includes multiple

agents, such as IPPs, multi-microgrid systems [21], and large-

scale Energy storage systems [17].

Table 1 summarizes various perspectives covered by pre-

vious studies and our proposed method, where ‘O’ indi-

cates for ‘considered’ and ‘X’ represents as ‘not considered’.
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TABLE 1. Features covered by related works.

As clarified in the table, with the RES management, ESS

model, DR model, and associated uncertainties considered,

our strategy aims to maximize profits by bidding for energy

and reserve capacities in DA and RT markets as a price

maker. Moreover, the features as indicated in Table 1 are

not comprehensively considered in previous works which are

indeed needed to be counted for a more practical application.

Comparatively, the overall contribution of the study consists

of the following:

• Market MechanismDesign: To formulate a realistic sit-

uation in which the VPP can sufficiently supply energy

and services to influence markets, the joint DA and

RT markets are constructed using a two-level model.

Instead of treating the VPP as a price-taker, each bid-

ding action of participant in the markets is modeled

mathematically. The structure ensures the realistic sim-

ulation of VPP operating scenarios and thus facilitates

the derivation of a practical bidding strategy.

• DR Model: As one of the major resources in a VPP,

DR is modified with self- and cross-elasticity to

evaluate the real actions and load shifting taken by

end-users according to various price signals. Despite

using a simple value or ratio to represent the DR

quantities, the proposed model achieves a great

improvement by quantifying the load shedding and

shifting.

• Uncertainty Treatment: Dealing with the uncertainties

associated with loads and RES generation is one of

the key issues in our approach. The employment of

RO realizes a bidding strategy for the VPP by arranging

ESS, RES, and DR based on the considered uncertainty

margin.

This paper is organized as follows. The framework of

the market and bidding rules employed is discussed in

Section III. The models of the VPP and markets as well as the

FIGURE 1. Overall framework of bidding system.

bidding actions are mathematically formulated in Section IV.

Following is the evaluation of the performance of our pro-

posed scheme in a test system and a practical system as

presented in Section V. Finally, the conclusion is given in

Section VI.

II. SYSTEM FRAMEWORK

Fig. 1 presents the overall framework of market and bidding

actions considered in this study. VPPs are defined to have

various combinations of PV,WT, ESS, and load. The distance

between each generation unit and load is assumed to be short,

and thus no power loss or congestion is considered. The

VPP is treated as an aggregator to participate in the market

held by the systemMO. Various IPPs and other VPPs are also

participants in the markets with the bidirectional information

exchange on bidding.

The DA market opens between 4 p.m. and 6 p.m. in the

day prior to the one on which energy will be consumed. All

participants offer their bids and adjust the quantity and price

during this duration. The competitors’ bidding information is

disclosed to all participants. The bidding in the RT market

is assumed to begin every hour. The market is then cleared

hourly [22]. The successful bid should be strictly followed.

Otherwise, a penalty is levied on the supplier who does not

follow the rules and dispatch.

This paper assumes the VPP has knowledge of other partic-

ipants’ bidding information. Considering other participants’

bidding strategies in the market models, how the VPP opti-

mizes its bidding strategy while operating each apparatus and

is the key concern to be discussed.

III. PROBLEM FORMULATION AND PROPOSED

METHODOLOGY

A. VPP BIDDING STRATEGY

The VPP aims to minimize the total cost by scheduling all

the components, e.g. RES, ESS, and variable loads. The

DR and ESS model are discussed individually in this section

and the objective function of the bidding strategy is detailed

as follows.
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1) DR MODEL

Our proposed DR model imitates the real DR participants’

bidding action. Two components are thus introduced that have

an effect on the bidding capacity, namely self-elasticity and

cross-elasticity. The percent change of demand reduction ∂dt
with respect to the percentage change in incentive price ∂λt
during the same time interval is self-elasticity ett , whereas the

percentage change of demand reduction ∂dt with respect to

the percentage change in the price ∂λt ′ of the other period t
′ is

represented as cross-elasticity ett ′ [9]. These two coefficients

are expressed in

ett =
∂dt/dt

∂λt/λt
, (1.1)

ett ′ =
∂dt/dt

∂λt ′/λt ′
, (1.2)

where the ett denotes as the response modification when

the price changes at time t , while ett ′ refers to load shifting

encouraged by price changes at other time except t . The

incentive-based DR is thus described in

dt = d0t ×
∏

t
= 124(

λt ′

λ0
t ′

)
ett′

. (1.3)

The VPP operator considers the DR from the initial

value d0t to a modified level dt during period taccording

to any price deviation [23]. Normally a 24 × 24 elasticity

matrix is employed to quantify the elasticity within a 24-hour

time interval. To simplify that, we divide a day into peak,

semi-peak, and off-peak periods and list the elasticity value

between the pairs as

E3×3 = (

eop,op esp,op ep,op
eop,sp esp,sp ep,sp
eop,p esp,p ep,p

), (1.4)

where peak, semi-peak, and off-peak are written as ‘‘p,’’

‘‘sp,’’ and ‘‘op,’’ respectively, as above.

A ratio α is employed to represent the percentage

of DR participants among the total initial DR quantity.

Equation (1.3) is thus accomplished to (1.5) as follows:

dt = αd0t

24
∏

t=1

(

λ
t
′

λ0
t
′

)ett′

. (1.5)

For example, after the modification, the adjusted DR quan-

tities are compared with the original one represented in Fig. 2.

Following the bidding price, it is simulated that the higher

price encourages more DR participants to shift the quantity

to this time period, while the quantity decreases at which

the price is low. The adjustment shows the realistic effect

of DR, and the corresponding operation of the VPP is made

accordingly. Specifically, by adjusting the bidding price λ
t
′ ,

the VPP arranges the quantity dt that is supplied by DR.

2) ESS MODEL

As charging and discharging actions are made by the ESS,

the fraction of ESS capacity decreases due to degradation of

FIGURE 2. Example of DR model modification.

the battery. In this paper, the degradation cost of ESS ctdeg is

assumed to follow a linear pattern and to be sensitive only to

the energy utilized per cycle. The model is described in (4.a)

of reference [24], where the degradation cost is determined

by

ctdeg=

∣

∣

∣

m

100

∣

∣

∣

∑

t∈T max[0, SoC t−1 − SoC t ]

ecap
CESSecap. (2.1)

The percentage of discharging energy is calculated by

max[0, SoC t−1 − SoC t ] of an ESS and the total cost is

determined by unit cost CESS and installation capacity ecap
for ESS. A linear approximation factor m of battery life is

evaluated by the battery manufacturer’s datasheets and is

assumed to be−0.0017, according to current technology [25].

The state of charge value SoC t at time t is calculated and

restricted by equations below:

SoCt = SoCt−1 + ηptcha − ptdis/η, (2.2)

SoC1 = SoC24 = 0.2ecap, (2.3)

0.2ecap ≤ SoCt ≤ 0.8ecap, (2.4)

where η refers to the efficiency of charging/discharging. The

charging/discharging energy ptdis/cha and reserve arrangement

r tdis/cha,res should follow the charging and discharging limit of

battery pdis/cha,limit :

0 ≤ ptdis/cha ≤ µt
dis/cha pdis/cha,limit , (2.5)

0 ≤ ptdis/cha + r tdis/cha,res ≤ µt
dis/cha pdis/cha,limit . (2.6)

where µt
dis/cha means µt

cha or µt
dis. The terms µt

cha and µt
dis

refer to the state of ESS, the terms which are set to ensure

either charging (µt
cha = 1, µt

dis = 0) or discharging state

(µt
cha = 0, µt

dis = 1) is on and thus incur separately

either charging or discharging limitation in Equations (2.5)

and (2.6).

3) VPP MANAGEMENT METHOD

The bidding quantity and price are determined according

to (3.1). The goal of the VPP operator is to maximize the

benefit on any given day. The equation can be used for the
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VPP consisting of various energy sources by calculating the

associated cost and revenue.

maxBenefit=
∑24

t=1
(r tcap,VPP+r tbal,VPP−ctope,VPP). (3.1)

The details of each cost or revenue within a time interval t

can be calculated using

ctope,VPP = λtene,VPP
∗
ptDA

∗
− ctdeg, (3.2)

r tcap,VPP = λ
t,up
cap,VPPr

t
imp/exp,up

∗

+ λ
t,down
cap,VPPr

t
imp/exp,down

∗
, (3.3)

r tbal,VPP = λ
t,up
bal,VPPp

t
imp/exp,up

∗
+λ

t,down
bal,VPP p

t
imp/exp,down

∗

+ λtToU ,VPPp
t
load,VPP − ctpen − ctdeg,bal . (3.4)

The operating cost in the DA market ctope,VPP is calculated

using the difference between the buying and selling of energy

ptDA based on the bidding price λtene,VPP and the degradation

cost of ESS ctdeg. The term r tcap,VPP represents the revenue

obtained by selling reserve-up r timp/exp,up and reserve-down

capacity r timp/exp,down with the price λ
t,up
cap,VPP and λ

t,down
cap,VPP,

respectively, where the subscripts ‘imp’ and ‘exp’ refer,

respectively, to the state ‘import’ or ‘export’ at time t .

Similarly, r tbal,VPP denotes the revenue of selling

regulation-up ptimp/exp,up and regulation-down energy

ptimp/exp,down in the RT market with the price λ
t,up
bal,VPP and

λ
t,down
bal,VPP as well. Moreover, the revenue of selling energy

ptload,VPP to consumers in VPP according to time-of-use

prices λtToU ,VPP, the penalty cost ctpen when the regulation

requirement is not well supplied, and ESS degradation cost

are also counted in r tbal,VPP.

By subtracting the predicted RES generation and load com-

bined with the ESS schedule, the mentioned import or export

state of the VPP operator is determined in

ptnetload,VPP,pre = ptload,VPP,pre − ptRES,VPP,pre, (3.5)

ptDA = ptnetload,VPP,pre + ptcha − ηptdis, (3.6)

where positive ptDA denotes import and negative ptDA denotes

export. The predicted net load ptnetload,VPP,pre is first calcu-

lated with the load prediction ptload,VPP,pre and RES gener-

ation prediction ptRES,VPP,pre. Combined with the arranged

ESS charge and discharge energy, ptDA is obtained.

Equations (3.7) and (3.8) indicate the up and down

reserve quantities that are individually supplied by various

VPP components. The regulation-up capacity is offered

from DR r tDR,VPP and ESS discharge r tdis,reserve, whereas the

regulation-down capacity is offered from RES management

r tRES,VPP and ESS charge r tcha,reserve. Because the import

and export modes do not occur simultaneously, r timp,up and

r texp,up or r timp,down and r texp,down exist on the basis of which

mode of VPP in the energy market at time t is.

r timp,up, r
t
exp,up = r tDR,VPP + r tdis,reserve (3.7)

r timp,down, r
t
exp,down = r tRES,VPP + r tcha,reserve (3.8)

As mentioned, based on the market rule, a penalty is levied

if a successful DA bid is not strictly followed. The penalty

cost ctpen is then calculated by multiplying the mismatch

between the bid and the real contribution in the balancing

market by the marginal price λ
t,up
bal,mp and λ

t,down
bal,mp, as presented

in

ctpen = λ
t,up
bal,mp((p

t
imp/exp,up

∗
− ptimp/exp,up)

+ max
(

0, ptimp/exp,DA
∗

− ptexp,DA

)

)

+ λ
t,down
bal,mp((p

t
imp/exp,down

∗

− ptimp,down)+max
(

0, ptimp/exp,DA
∗
−ptimp/exp,DA

)

).

(3.9)

All the preceding equations are constrained by power

balance (3.10), ESS constraints, VPP import and export

reserve capacity allowances, and RT energy import and

export boundaries (limited by the reserve capacity bid in the

DA market) (3.11). The constraints set by (3.12) and (3.13)

ensure that the overall VPP can supply energy to twomarkets.
(

ptimp,DA−ptimp,up+p
t
imp,down

)

−(ptexp,DA
∗

+ ptexp,up−p
t
exp,down)

= ptload,VPP,real − ptRES,VPP,real + ηptdis − ptcha, (3.10)

0 ≤ r timp,up/down
∗
, r texp,up/down ≤ dt + µt

dis/chap
t
dis/cha,

(3.11)

0 ≤ ptimp,up/down
∗
, ptimp,up/down ≤ r timp,up/down

∗
, (3.12)

0 ≤ ptexp,up/down
∗
, ptexp,up/down ≤ r texp,up/down

∗
. (3.13)

and constraints (1.1)–(1.5), (2.1)–(2.8).

4) FORMULATION WITH UNCERTAINTIES

Uncertainties associated with the load and RES are the key

issues that induce the levying of a penalty to the VPP. The

uncertain net load must be considered accordingly on the

basis of Equation (3.5). To take into account the prediction

error etnetload,VPP,pre, the equation is thus substituted in (4.1).

The objective function (3.1) is further formulated to a max-

min problem in (4.2).

ptnetload,VPP,pre = ptload,VPP,pre − ptres,VPP,pre

+ max etnetload,VPP,pre, (4.1)

max
ptcha,p

t
dis

min
etnetload,VPP,pre

∑24

t=1
(Rtcap,VPP

+Rtbal,VPP − C t
ope,VPP). (4.2)

As an uncertainty-modeling scheme, RO is suitable for

addressing conditions in which the range of uncertainty

is well known but the distribution of the uncertainty is

unknown [26]. The deviations of net load are

modeled

ptnetload,VPP,pre ∈ [ptnetload,VPP,pre,min, p
t
netload,VPP,pre,max],

(4.3)
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where

ptnetload,VPP,pre,max = ptnetload,VPP,pre,min

+1ptnetload,VPP,pre.1p
t
netload,VPP,pre (4.4)

1pnetload,VPP,pre is the largest expected variation in time t .

On the basis of the RO model proposed in [27], ŴRO is

employed to determine the protection level against the uncer-

tainty. The variation range of Ŵ is controlled within [0, M ],

where [M = t| 1ptnetload,VPP,pre > 0]. As the value of ŴRO

is adjusted to be equal to 0, no uncertainty is considered, and

the solution is the same as the deterministic one. By contrast,

|M | is used to represent ŴRO, and the most conservative

solution is obtained. The employed RO model enables the

selection of any Ŵ value in the range [0, M ] to ensure a

tuned conservation level. The formulation of (4.5) can thus

be remodified as

max

24
∑

t=1

(Rtcap,VPP + Rtbal,VPP − C t
ope,VPP) − ŴROzRO,

(4.5)

s.t. ytRO + zRO ≥ 1ptnetload,VPP,preλ
t
bid,energy,VPP, (4.6)

ytRO ≥ 0, (4.7)

zRO ≥ 0, (4.8)

and constraints (1.1)–(1.5), (2.1)–(2.8), (3.2)–(3.13).

Here, zRO and ytRO are two positive RO variables that

account for the known bounds of the net load combined

with ŴRO. The updated objective (4.5) is bounded by the

original constraints (1.1)–(1.5), (2.1)–(2.8), and (3.2)–(3.13)

as well as the new ones (4.6)–(4.8). The worst scenario is

represented in (4.6) to constrain the variation in each time

interval. The term zRO represents the level of uncertainty

considered. Using the equation, the worst ŴRO periods are

fully considered in the RO algorithm to worsen the objective

function value.

Because most of the worse cases are considered in the

model, almost no penalties (except for some extreme cases)

are levied. Because of the RO formulation, the VPP operator

may achieve the maximum benefit and flexible bidding strat-

egy. Consequently, by becoming embedded in the following

market structure, the VPP obtains the scheduling of ESS,

RES, and DR along with the bidding price determined in

the market through the objective function. The discussion

of the VPP management solution and its interaction with

other participants and market operator will be pictured in

Subsection IV.C.

B. MARKET STRUCTURE

Market formulation is crucial for VPP operations in this

research, with the participants’ bidding considered. The MO

schedules the operations in the DA market, which includes

unit commitment and reserve arrangement, and RT market

for real-time balance. Simultaneously, the marginal price is

cleared in the markets.

1) DA MARKET

The objective function of the DA market is expressed in

min

24
∑

t=1

N
∑

n=1

(ctpar,n + ctpar,res). (5.1)

The operating cost involves the cost for energy C t
par,n

in (5.2) and that for reserve capacity C t
par,res in (5.3).

ctpar,n = λteg,np
t
DA,n

∗
, (5.2)

ctpar,res = λt,upcap,nrn
t,up∗ + λt,downcap,n rn

t,down∗. (5.3)

All the participants’ bidding offers are considered in

the optimization, where the bidding price for energy λteg,n,

regulation-up reserve λ
t,up
cap,n and regulation-down reserve

λt,downcap,n serve as parameters in this optimization problem and

vary for different suppliers. To be specific, n denotes the

name or number of a participant. The power balance and

reserve requirements, e.g. r
t,up/down
req , are ensured by con-

straints in
∑N

n=1
ptDA,n

∗
= ptload,DA, (5.4)

∑N

n=1
rn
t,up/down∗ = r t,up/downreq . (5.5)

The variables with ‘‘*’’ indicate successful bidding that

has a boundary set in the bid offer for both energy ptDA,n

in (5.6) and capacity r
t,up/down
n in (5.7). When n refers to

the VPP we managed, the ptDA,VPP equals the ptDA obtained

by the objective function (3.1), similarly hereinafter. The rest

n-related variables are employed in the same manner to all

participants.

0 ≤ ptDA,n
∗

≤ ptDA,n, (5.6)

0 ≤ rn
t,up/down∗ ≤ r t,up/downn . (5.7)

The bidding result is obtained by using equation (5.1) and

the constraints described above. After the result is sent to the

participants, they can choose whether an adjusted bid should

be submitted before the market is cleared. The optimization

is executed every time a new offer is submitted, while all the

results are revealed to all participants.

2) RT MARKET

Similarly, the objective in the RT market is to minimize the

cost of energy to balance the mismatch between RT demand

and load prediction hourly. For each tǫ [1, . . . ,T ], the math-

ematical model of this market is represented by an objective

function in

min

N
∑

n=1

ctbal,n + ctoutage, (6.1)

as well as the constraints
∑N

n=1
(ptDA,n

∗
+ pn

t,up∗ + pn
t,down∗)

= ptload,real − ptoutage, (6.2)
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ctbal,n = λ
t,up
bal,npn

t,up∗ + λ
t,down
bal,n pn

t,down∗, (6.3)

ctoutage = λtoutagep
t
outage, (6.4)

0 ≤ pn
t,up/down∗ ≤ rn

t,up/down∗. (6.5)

Because only energy bidding occurs in this stage, the cost

ctbal,n is paid for increasing or decreasing power generation

in IPPs1 and for adjusting the import or export energy in the

VPP to ensure system balance. System balance is guaranteed

by (6.2), whereas the total cost of energy is determined on the

basis of (6.3). Moreover, the outage cost ctoutage is considered

by (6.4).

According to the market rule that the quantity of energy is

bound by the reserve capacity determined in the DA market,

the bidding result in this market is optimized on the basis of

constraint (6.5). The up and down balancing energy bound-

aries rn
t,up/down∗ are decision variables in the DA market.

Once determined, these variables are treated as parameters

in the RT market.

C. THE TWO-LEVEL GAME STRUCTURE AND

METHODOLOGY

As observed in the objectives of the participants (3.1) and

MOs (5.1) and (6.1), all participants aim to maximize the

benefit, while MOs to minimize the cost. A two-level market

gaming system [21] is introduced into the scheme to study

the operating strategies of the participants and MOs. As pre-

sented in Fig. 3, the two-level structure is constructed to

simulate the conditions. Using this structure, the objectives

of the participants and MOs are finally achieved through

bidding, price adjustment, and concessions in the two-level

market gaming system in the light of the decision variables

of lower level being the parameters of upper level, vice versa.

In the lower level, the VPP and IPP initiate the bidding

prices according to the successful bidding of previous sim-

ilar days. The DR quantity limitation can thus be deter-

mined through Equation (1.5). The optimal scheduling of DR,

RES, and ESS is solved based on Equation (3.1). It should

be noted that, from the mechanism of our proposed solu-

tion, to make Equation (3.1) solved by MILP, the prices

3VPP
def
=

[

λtene,VPP, λ
t,up
cap,VPP, λ

t,down
cap,VPP, λ

t,up
bal,VPP, λ

t,down
bal,VPP

]

all set as constant values at each iteration. Then for the

calculation at each iteration, Equations (3.2), (3.3), and

(3.4) are all linearized. Afterwards, the bidding is sub-

mitted to the upper level of the markets, which offers

the prices, e.g. 3VPP, optimized schedule and quan-

tity of energy, reserve capacity, and regulating reserve,

e.g. 9VPP
def
= [ptDA, r

t
imp/exp,up, r

t
imp/exp,down, p

t
imp/exp,up,

ptimp/exp,down]. These are given by other participants in the

same manner and all employed as constant parameters in the

upper level, a process which then leads to the decision ofMO.

The upper level is a cooperative trading game and

represents the MO costs that are minimized through an

1The objectives employed by the IPP, another type of participant, are
described in the APPENDIX.

FIGURE 3. Two-level bidding structure and corresponding methodology in
DA and RT markets.

interaction scheme. The DA market solves the joint problem

(Equation (5.1)) accordingly and then broadcasts the result

at each iteration. According to the result and bidding offers,

the solution to the hourly RT market is achieved sequentially.

After each interval, the market clears the price, and the

VPP and IPP adjust the price by setting the marginal price

as the upper bound of the bidding price. Afterwards, the par-

ticipants involved in the lower level are in a noncooper-

ative state. The VPP determines the updated price with

min
(

3VPP + 13step,VPP, 3MP

)

, where 13step,VPP is a pre-

determined adjusted step matrix for various price categories.

Once set, the value of 13step,VPP is regarded as constant,

while its sign (positive or negative) is determined based on the

prices of the same category in 3VPP and 3MP. Take λtene,VPP
in 3VPP as an example, if λtene,MP is higher than λtene,VPP,

1λtene,VPP is set to be positive, vice versa. The updated price

affects the operation strategy of related VPP power appara-

tuses, as the strategy is decided by the objective of VPP, due to

the trade-off relationship among the participants with respect

to revenue.

The proposed structure enables self-adaptability among

participants. Any of them may adjust their bidding offers via

cost recalculation after referring to others’ bidding offers.

Once the updated objective value is higher than the bene-

fit gained from previous iteration, the participant offers the

updated bidding; otherwise, it keeps the same one. In other
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words, the updated bidding needs to be ensured a better

benefit gained. The proposed structure thus helps to finally

achieve the equilibrium that is treated as the clearing price.

The proof of the equilibrium is as follows: In the proposed

algorithm, the strategies of the lower-level parties always

attain nonempty values for the price and quantity of energy,

reserve capacity, and regulating reserve as the parameters of

the upper-level problem. Conversely, in response to the lower

level, the MOs solve their DA and RT problems in succession

and provide the clearing price as the parameters to VPPs and

IPPs. Therefore, the proposed methodology is guaranteed to

reach the unique equilibrium.

IV. NUMERICAL RESULTS

The performance of the proposed method is investigated

using an illustrative system and the Taipower system. The

algorithm is developed using the MILP model of CPLEX in

MATLAB. Monte Carlo simulations are employed to create

various scenarios that a VPP may face for various prediction

errors of load and RES generation in the VPP to evaluate the

overall performance of the proposed method. The prediction

errors are based on normal distribution function preal,error ∼

N (0, σ 2). The proposed method is compared with two bench-

marks (Benchmark 1 and Benchmark 2):

Benchmark 1. The research in [4] discusses how a PV power

station containing ESS participates in the DA

market, especially the reserve capacity mar-

ket. The method used is modified to address

an ESS-equipped, price-taker VPP joining the

DA and RT markets.

Benchmark 2. In [17], the research considers a price-maker

and ESS-equipped VPP joining the DA and

RT markets. However, the risk caused by

uncertainty due to load and RES is ignored.

The method used is modified to address an

ESS-equipped price-maker VPP joining the

DA and RT markets.

The hourly maximum reserve capacity bidding supplied by

RESmanagement is assumed to be 10%,whichmeans 10%of

the total RES generation at time t is considered for regulation-

down. The DR participant rate α is supposed to be 10% as

well. The outage price λtoutage is assumed to be 10 times the

ToU price. All this settings can be customized to fit the VPP’s

requirement.

A. ILLUSTRATIVE SYSTEM

The VPP in the test system considered in this study comprises

one PV power station (installed capacity: 400 MW), two

WT power plants (installed capacity: 100 MW + 50 MW),

and one ESS (installed capacity: 120 MWh and 120MW

having a charge–discharge cycle efficiency of 0.95) with a

contract capacity of±220MW. The regional system contains

10 IPPs and various loads. Data for the PV, WT, and loads are

modified from Elia [28], and data for the IPPs and ToU are

TABLE 2. RT market bidding strategies and corresponding reserve
capacities of Benchmark 2 and the proposed method.

modified from the generation units and three-phase electricity

tariff structure in the Taipower system.

1) IMPORTANCE OF CONSIDERING UNCERTAINTIES

To demonstrate the importance of considering uncertainties

due to load and RES, as both being the price-maker VPP,

the proposed method is compared with Benchmark 2 rather

than Benchmark 1 in this subsection. The reason is that the

uncertainty consideration is not the sole difference between

proposed method and Benchmark 1, but it is the key dif-

ference laying between proposed method and Benchmark 2.

A typical day of the month in which the error of net load

prediction varies between [−15%, +15%] is tested among

the methods. No matter the prediction errors considered in

these two methods, the VPP can obtain its bidding strategy

individually.

However, performance can be easily evaluated by compar-

ing the bidding strategies presented in Table 2. The bidding

result in the RTmarket is examined to evaluate whether one of

the compared methods is more robust than the other method.

As observed, the upward regulation is initiated during

1:00–9:00 and 21:00–24:00, whereas downward regula-

tion is initiated during 10:00–20:00. The corresponding

RT marginal prices are listed. The RT bidding strategies

provided by the two methods differ in terms of the prices and

quantities.

The strategy of Benchmark 2 places great emphasis on

bidding during 10:00–15:00 for the downward regulation in

the DA market. However, it fails to provide a balance in

the market because large prediction errors appear between

16:00 and 19:00, as marked in red. By contrast, by consid-

ering uncertainty through properly managing the DR, RES,

and especially the ESS, the proposed method is assessed zero

penalty while balancing the market.
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FIGURE 4. Scheduled ESS charging–discharging energy compared with
the predicted net load and scheduled net load by using (a) benchmark 2
and (b) proposed method. SoC compared with DA energy marginal price
in (c) benchmark 2 and (d) proposed method.

The schedules of energy import and export as well as ESS

are presented in Fig. 4. The planned import–export energy of

the two methods is compared with the ESS charge–discharge

agenda and the predicted load profile, as separately shown

in Fig. 4(a) and 4(b). The primary difference between these

two schedules can be observed during 14:00–17:00. The

export energy arranged by the proposed method during this

time interval is less than that arranged by the reference to

prevent the risk of penalty. To prevent the risk, the ESS is

scheduled to charge at this time. Moreover, as illustrated

in Fig. 4(c) and 4(d), the charge or discharge action is influ-

enced by the price in the market.

In both schedules, the ESS is restrained to take as little

action as possible yet nevertheless maintain the maximum

benefit. Benchmark 2 is noted to set the ESS to charge when

the price is low and discharge when the price is highest.

However, because of the import/export limitation at PCC as

given in (3.14), the ESS is managed to charge energy during

the peak time to decrease export. In the meantime, the ESS

in the proposed method is determined to cycle the charge

and discharge operations more frequently than the sched-

ule in Benchmark 2. The ESS of the VPP in the proposed

method is also noted to be more flexible, because it allows

a higher quantity to charge during the peak hours of export

(12:00–14:00 and 20:00) and discharge during the import

hours (15:00–17:00) because of the uncertainty margin

consideration.

To conclude the performance in considering uncertainties,

in the event of a high-capacity shortage in the system, theVPP

in Benchmark 2 and proposed method may inevitably face a

situation in which it cannot provide the quantity of generation

needed, thus resulting in a penalty. Nevertheless, the VPP

operation strategy optimized by using the proposed method

can arrange more margin than Benchmark 2 by consider-

ing uncertainties. Moreover, as a price-maker, the opera-

tion strategy is able to avoid being dispatched by raising

its RT bidding price when the prediction error is beyond

consideration.

FIGURE 5. Average overall benefit with the corresponding components
when various methods are used.

2) ECONOMIC PERFORMANCE

Whether with respect to the VPP or overall system, the stan-

dard deviation of prediction error σ is set to 15%. As can

be found in the initial net load shown in Fig. 4 (a) and (b),

the VPP in this case mostly imports energy rather than

exports.

The average operating costs of the VPP obtained from

1000 scenarios using the mentioned methods are presented

in Fig. 5. The DA costs, including the price for buying energy,

the revenue for selling energy (including import and export),

and reserve capacities are presented as histograms with the

revenue earned and the penalties levied in the RT market.

Different colored histograms signify the results from using

various methods, with gray for proposed method, blue for

Benchmark 1, and orange for Benchmark 2.

For Benchmark 1, the VPP sold the reserve capacity and

energy on the basis of the market price. This situation entails

the least VPP operating cost in the DA market. However,

when bidding ability and risk are neglected, the VPP in

Benchmark 1 has comparable DA costs and RT revenues

because the effect of uncertainties cannot be avoided and the

market price is simply considered. In this structure, penalties

are directly levied on the VPP by Benchmark 1 on the basis

of the prediction error of the net load.

By contrast, the VPP using Benchmark 2 gains higher

revenues because of the price-maker ability. Moreover, when

the bidding strategies in the RT market are adjusted, revenue

is clearly increased to eliminate the influence of uncertain-

ties. When the margins for preventing risks and selling are

considered in the process of balancing the market, the VPP

in the proposed method is determined to have a higher cost

for DA market operation compared with those obtained from

the other two methods. Nevertheless, the advantage of this

conservative arrangement is observed in the RT market rev-

enue and penalty proportion. When the proposed bidding

strategy is used, the VPP gains more in a balanced market

with considerably less penalty. The optimal performance of

the proposed method is thus demonstrated by the overall

benefits.
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FIGURE 6. Predicted values of the net load profile in VPP1 and VPP2.

When the test time series is extended to a month on the

basis of the data for July, 2016, overall benefits achieved by

Benchmark 1, Benchmark 2, and the proposed method are

$13,149, $94,481, and $124,836, respectively, using the real-

istic corresponding data. Accordingly, the proposed method

enabled the VPP to earn $111,687 and $30,355 more benefits

relative to the ones that use the other two methods during the

month. The overall model is calculated within 10.80 s using

the proposed method.

B. TAIPOWER SYSTEM

Currently, no actual power markets exist in the Taipower sys-

tem. However, separating the responsibilities of generation,

transmission, and distribution of utilities is being planned by

Taipower. To assess the ability of the proposed method to

model bidding actions and the applicability of the proposed

method to different VPPs, this study regards all existing

generators as IPPs and two regional distribution systems

as VPPs.

In the test market system, 84 IPPs and 2 VPPs are

considered the market participants. They bid for energy,

reserve, and balance on the basis of their capacity, gener-

ation cost, and ramp abilities. These two VPPs comprise

ESS, PV power stations, and wind power plants, and all

predicted and real data for loads and RES generation are

obtained from Taipower. VPP1 comprises two PV stations

(installed capacity: 400 MW + 600MW), one wind power

plant (installed capacity: 100 MW), and one ESS (installed

capacity: 200MWh, 200MW). A 300-MWPV power station,

a 150-MW wind power plant, and a 50-MWh (50 MW) ESS

are included in VPP2.

Fig. 6 illustrates the initial predicted net load profiles of

VPP1 and VPP2. As indicated in the profile, VPP1 mainly

exports energy, especially during 10:00–18:00. By contrast,

the net load for VPP2 appears to exhibit a relatively flat shape.

VPP1 behaves more as an RES generation supplier, although

it faces a high risk of prediction failure. VPP2 has a char-

acteristic similar to a traditional microgrid—it occasionally

consumes energy from or delivered energy to the utilities

system. The advantage of the proposed method is adequately

validated by these two VPPs which have different strategies

but operating in the same markets.

FIGURE 7. The benefits obtained by three methods for different
prediction errors σ of 5%, 10%, and 15% for (a) VPP1 and (b) VPP2.

To demonstrate the advantage of the proposed method in

diverse situations, three methods are tested by 1000 scenarios

created by Monte Carlo simulations that vary σ from 5% to

10% and 15%. Joining in the RTmarket and selling balancing

energy by the Benchmark 1, Benchmark 2, and proposed

method yield profits for VPPs. The benefits obtained by the

methods are represented as a box plot in Fig. 7. Because of

uncertainties not considered, more penalties are levied on

Benchmark 1 and Benchmark 2. The ESS helps to reduce

the penalty amount by supplying some margins for VPP1 and

VPP2 in all these methods.

Similarly, Benchmark 1 appears to have less flexibility

without adjusting the bidding strategy function or consid-

ering uncertainties. Benchmark 2 can avoid some penalties

by adjusting RT bidding, but the proposed method achieves

overall better performance because of its consideration of

uncertainties in advance.

The bidding strategy optimized by the proposed method

enables VPP1 and VPP2 to contribute in the markets as

price makers and consider uncertainty. The results indicate

an apparent overall advantage whether in terms of aver-

age or whole stable performance with less benefit variation.

Moreover, the most benefit is obtained from the proposed

method when dealing with the high uncertainty situations.

The results obtained using the proposed method are calcu-

lated within 147.30 s on average for each scenario.

V. CONCLUSION

VPPs are expected to become crucial components of electric-

ity markets, chiefly DA and RT markets, in the future. This

paper has described a method for determining the bidding

strategy of VPP. The method enables the calculation of the

optimization schedule of ESS, DR, and RES management.

Uncertainties caused by RES and loads are also considered
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in the method to avoid penalties. Additionally, to construct

a practical market environment, a bi-level multiagent model

is employed to simulate the market structure by embedding

bidding actions. Mathematical models of the VPP, IPPs, DA

market, and RT market were embedded in this structure. Bids

provided by different parties are continually calculated in the

market model until convergence is achieved. A successful

bid can thus be obtained, when the VPP generates the corre-

sponding optimized bidding strategies under the price cleared

by MO.

Two test systems—an illustrative system and the Taiwan

power system—were evaluated in this study. Different types

of VPPs were discussed under scenarios generated by Monte

Carlo simulations based on realistic data. The results reveal

that the proposed method can successfully solve the strategy

determination problems irrespective of the RES penetration

level. Moreover, even for various situations of uncertainty,

the proposed method achieved superior economic solutions

to the other methods. An evaluation of longer-term operation

of up to one month in this study also reveals a clear improve-

ment when the proposed method is employed with acceptable

computational efficiency.

APPENDIX

IPP BIDDING STRATEGY

As the conventional generation, IPPs bid in the market to

maximize their benefits. The benefit is calculated using (7.1),

which is expressed as the revenue obtained by selling the

energy νtene,IPP and reserve capacity νtcap,IPP minus the cost

of generation and penalty ctpen. As presented in (7.2), the cost

of generation ctope,IPP differs from the values of a, b, and

c, which correspond to the unit characteristic and fuel cost.

The revenue νtene,IPP obtained by selling energy in the DA

and RT markets is considered in (7.3), whereas the revenue

for reserve capacity bidding νtcap,IPP is considered in (7.4);

moreover, the penalty cost ctpen is considered in (7.5). The

energy contributed by generation is limited due to its capacity

Pgen,n,capacity, as indicated in (7.6) and (7.7). The ramp ability

is also considered in (7.8). Due to constraint (7.9), the energy

quantity of RT bidding for the balance market is limited by

the reserve capacity bid in the DA market.

maxBenefit =

24
∑

t=1

(νtcap,IPP+νtene,IPP−ctope,IPP−ctpen)

(7.1)

ctope,IPP = a(ptgen,n,DA + ptgen,n,realup

− ptgen,n,realdown)
2

+ b
(

ptgen,n,DA + ptgen,n,realup

−ptgen,n,realdown

)

+ c (7.2)

νtene,IPP = λtbid,ene,np
t
gen,n,DA

+ λtbid,bal,up,np
t
gen,n,realup

+ λtbid,bal,down,np
t
gen,n,realdown (7.3)

νtcap,IPP = λt,upcap,nrgen,n
t,up∗ + λt,downcap,n rgen,n

t,down∗

(7.4)

ctpen = λ
t,up
bal,mp(p

t
gen,n,realup

∗
− ptgen,n,realup

+ max
(

0, ptgen,n,DA
∗

− ptgen,n,DA

)

)

+ λ
t,down
bal,mp(p

t
gen,n,realdown

∗

− ptgen,n,realdown

+max
(

0, ptgen,n,DA

−ptgen,n,DA
∗
)

) (7.5)

0 ≤ ptgen,n,DA ≤ Pgen,n,capacity (7.6)

0 ≤ ptgen,n,DA + ptgen,n,realup

− ptgen,n,realdown ≤ Pgen,n,capacity (7.7)

1ramp−down,gen,n ≤ ptgen,n

− pt−1
gen,n ≤ 1ramp−up,gen,n (7.8)

0 ≤ ptgen,n,realup/down ≤ rgen,n
t,up/down∗

(7.9)
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