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OPTIMAL-ORDER ERROR ESTIMATES FOR THE FINITE ELEMENT
APPROXIMATION OF THE SOLUTION OF A NONCONVEX

VARIATIONAL PROBLEM

CHARLES COLLINS AND MITCHELL LUSKIN

Abstract. Nonconvex variational problems arise in models for the equilibria
of crystals and other ordered materials. The solution of these variational prob-
lems must be described in terms of a microstructure rather than in terms of a
deformation. Moreover, the numerical approximation of the deformation gra-
dient often does not converge strongly as the mesh is refined. Nevertheless, the
probability distribution of the deformation gradients near each material point
does converge. Recently we introduced a metric to analyze this convergence. In
this paper, we give an optimal-order error estimate for the convergence of the
deformation gradient in a norm which is stronger than the metric used earlier.

1. INTRODUCTION

Nonconvex variational problems often arise in the modeling of the equilibria
of crystals or other ordered states [2-9], [11-20], For instance, the free energy
for a solid crystal which has symmetry-related (martensitic) variants will have
multiple, distinct energy wells. These variational problems may fail to attain
a minimum value for any admissible deformation. Rather, the deformation
gradients of minimizing sequences can have oscillations which do not converge
strongly enough to evaluate nonlinear integrals of the deformation gradient such
as the bulk energy functional. Nevertheless, the solution to these variational
problems can be described in terms of an appropriate mathematical description
of microstructure such as the Young measure [2-5], [15-20].

A continuum theory to describe the equilibria of crystals such as CuZn,
CuAINi, NiAl, and InTl which have symmetry-related variants has been recently
developed [2-9], [11-20]. A corresponding theory of microstructure using the
concept of the Young measure, or parametrized measure, has also been recently
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622 CHARLES COLLINS AND MITCHELL LUSKIN

developed to describe solutions to the variational problems given by the above
continuum theory [2-5], [15-20]. This theory of microstructure gives a calculus
for the computation of macroscopic properties of the crystals.

We have reported computational results for two- and three-dimensional mod-
els which give oscillations in the gradient on the scale of the mesh [7-9]. These
oscillations do not converge strongly in any Lp space, even locally, as the mesh
is refined. However, the probability distribution of the deformation gradients
near each material point does converge to a Young measure (or parametrized
measure). We introduced a metric to analyze this convergence in [6], and we
obtained a 0(hx' ) convergence rate in this metric for a one-dimensional model
problem by obtaining error estimates for the probability distribution of the de-
formation gradient near each point. In this paper, we utilize some new analytic
methods to obtain an optimal-order 0(h) error estimate for the deformation
gradient in a norm with a stronger topology than the metric in [6] as well as
other improved estimates.

We define the mathematical problem and the norm in §2, and we give the
main results in that section. In §3 we prove the main results for problems with
unconstrained boundary conditions. We give the extension of these results to
the Dirichlet problem in §4. The optimality of the order of the error estimates
is given in §5.

2. Convergence of the deformation gradient

We denote by Lp for 1 < p < oo with norm \v\LP the usual space of
Lebesgue measurable functions [21] on / = (0, 1) such that

v ,p =

and

f\v(Jo
x)fdx

ii//>
< oo       for 1 < p < oo

|?j|L3o = esssup|v(x)| < oo.
xei

We then denote the Sobolev space H   by [1, p. 44]

H  = {v £ L  :v £ L }.

The energy density (p(s) for our model of a one-dimensional crystal satisfies

Xxmin{(s-sL)2, (s-sv)2} < <f>(s) <X2(\s\ + X)2       for all 5 el,
4>(sL) = <¡>(su) = 0,

where Xx and X2 are material constants, 5 is the linear strain, and sL and sv
with sL < sv represent the transformation strains for the martensitic variants.
We note that by Lemma 2 it follows that the energy density need be defined (and
satisfy) (2.1) only in a neighborhood of {sL, sv}. A derivation of the energy
density (2.1) from a three-dimensional physical model with one-dimensional
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NONCONVEX VARIATIONAL PROBLEMS 623

symmetry is given in [2], We model the bulk energy of a martensitic one-
dimensional crystal [2] by

(2.2) %(v) = ¡\<p(v'(y)) + (v(y)-f(y))2]dy,
Jo

where v(y) is a scalar-valued displacement and

f(y) -sy + b      for y £ I

for í satisfying sL < s < sv . The functional ÏÏ(v) is well-defined for v £ Hx.
It is well known (see Lemma 1 below, for instance) that

inf £» = 0,
veH'

but that there does not exist u £ H such that i?(u) = 0. (To see this, assume
that W(u) = 0. Since J0X(u(x) - f(x))2 dx = 0, we have that u(x) = f(x) a.e.
Thus, (f)(u) = ^(f) = <f>(s) > 0. So, /0 4>(u'(x)) dx > 0. This contradicts the
assumption that ïï(u) = 0.)

We shall give an optimal-order error analysis for the minimization of the
functional % over finite element spaces, Jth . To define J(h , let the mesh length
h = X /M for some M £ N ; let the vertex points x¡ = ih for i = 0,..., M ;
and let the subintervals 7, = (x;_,, x;) for i = X, ... , M. The finite element
space Jih is defined to be the space of piecewise linear, continuous functions

Jth = {v £ C(I) :v\j is linear for i = X, ... , M}.

The approximate solutions uh£J!h satisfy

(2.3) ïï(uh)= min£(vh) = Eh.

The following lemma was proven in [6], For completeness, we give a more
elementary proof in §3.

Lemma 1. The energy Eh converges to 0 at the rate given by

(sv-sL)2h2
En< -4-•

However, u'h(x) does not converge as h -> 0 in any Ü space, even locally.
In [6], it was shown that u'h(x) and nonlinear functions of u'h(x) converge
weakly, though. We introduced a metric for this convergence in [6], and we
showed that the convergence rate was 0(hx' ). In this paper, we give a proof
that the convergence rate is 0(h) in a norm with a stronger topology than the
metric in [6] and we show that this convergence rate is optimal.

Before we define the norm for the convergence of u'h(x) we need to recall
that we proved in [6] that uh(x) oscillates about a small neighborhood of sL
and su . More precisely, we proved a variant of the following lemma in [6]
which we also review in S3.
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624 CHARLES COLLINS AND MITCHELL LUSKIN

Lemma 2. The approximate strain uh(x) satisfies the bound

(2.4) maxmin{(wá(x) - sL)2, (u'h(x) - sv)2} <  Su ^L—.

For jel and a > 0 denote the closed ball of radius a at î by

3Sa(s) = {s:s-ol<s<s + ol)

and denote the closed neighborhood JVa of {sL, sv} by

JITn =3B(s,)\J&{stI).

It follows from Lemma 2 that if h < 4a2Xx/(su - sL)2, then

uh(x)£jVa       forx£l.

Equivalently,
»IW^iVj/af      forx€/.

Our first main theorem states that the approximate strains, u'h(x), are locally
in the state sL with probability

(2.5)
Srj-S

y = -¡¿--SU      SL

and are locally in the state sv with probability 1 - y = (s - sL)/(su - sL). In
the jargon of the calculus of variations, the measure

(2.6) vx = yô. + ( 1 - y)ô.        for 0 < x < 1,
*u

where ôs is the Dirac delta function with unit mass concentrated at s for
s = sL, sv ,  is the unique Young measure associated with minimizing (2.2).

We define the Sobolev space y to be the space of functions F(x, s): I x
jy -> R such that

(2.7)

and
^£L2(I,L°°W)

-¡^[F(x,su)-F(x,sL)]£LX(I)

with norm (which depends on a > 0 )

IFII     = fJo
dF_
ds (x,-)

l'/2
dx

¿°°K)
/    /   \F(x, s)\dsdx

Jo Jjf

+ \F(0, sv) - F(0, sL)\ +f\§¿ [F(x,sv) - F(x,sL)}

We will prove the following theorem.

dx.
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NONCONVEX VARIATIONAL PROBLEMS 625

Theorem 1. For h < min{4A,, 4aXx/(su - sL)2} and F £ 'V we have the
estimate

/   \F(x, uh(x))-yF(x, sL)-(X-y)F(x,su)  dx

(2.8)
< {$v-S¿ + A= + 4

2XXI2 2X1/2 \F\\Th.

We note that the thermodynamic properties of materials depend nonlinearly
on the strain 5 . Theorem 1 shows that even though uh(x) —► f(x) uniformly
as h -* 0 (see Lemma 5), the material property described by the microscopic
density F(y, s) has the macroscopic density (weak limit)

yF(x, sL) + (X-y)F(x,su)

for the minimizing microstructure for the energy (2.2).
To estimate the rate of convergence of u'h(x) we define the operator norm

on the dual T* of T by

\(L,F)\(2.9) \\L\\y = SUP
y

for L £ °y*. For h < 4a2Xx/(su-sL)2, we can identify with u'h the functional
Lu, £ T* defined by

(L , ,F)= I  F(x, uh)dx,
h Jo

and we identify with v = yôs + (1 - y)Ss   the functional Lv £ "V* defined by

(Lv,F)= f  [yF(x,sL) + (X-y)F(x,sv)]dx.
Jo

We then have the following theorem which is a direct consequence of (2.8).

Theorem 2. For h < min{4A1, 4a Xx/(su —sL) } we have that

\sv-sL) ,     1
(2.10) \Lu[-LJ^.< 2X1/2 +

2X1/2 + 4

We also have that

(Lu'h > F) < II^IIlviCW)    for F € L'(/' C(^)}-
Thus, L i  is uniformly bounded in the operator norm (with norm 1 ) in the

h

dual of LX(I, C(jTa)). Since T is dense in LX(I, C{JQ), the above result
implies that Lu, -> Lv as /i -> 0 in the weak*-topology of L (I, C(J/"a))*. It
is known [10, 22] that

LX(I, C(jra))" = L°°(I, C(jraf) = L°°(I, M(jra)),
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626 CHARLES COLLINS AND MITCHELL LUSKIN

where M(JVa) is the space of real Borel measures on yVa with bounded varia-
tion.

Results similar to those described above are given in §4 for the Dirichlet
problem to minimize l?(f) over W where

W = {v£Hx :u(0) = /(0)andu(l) = /(l)}.

We note that the variational problem

(2.11) inf / (p(v')dy

may have many solutions, both in the sense that the limit of the displacements
v(x) of a minimizing sequence need not be unique and in the sense that the
possible Young measure for the strains v'(x) need not be unique. However, the
simplest limit displacement in this case is affine and the unconstrained problem

(2.12) inf %(v)
VÇH1

has this as its unique limit displacement. Moreover, in our present situation,
the Young measure so generated is also unique. Since the multidimensional
Dirichlet problem corresponding to (2.11) gives a unique Young measure for
appropriate affine boundary conditions [4], we utilize the term

(2.13) f (v(y)-f(y))2 dy
Jo

in the definition of %(v) to select a unique Young measure analogous to the
selection of a unique Young measure for multidimensional problems by appro-
priate Dirichlet boundary conditions. Thus, we consider (2.2) in place of the
more traditional variational integral. A mechanical interpretation of the term
(2.13) can be obtained from a model of a thin crystal plate glued to a rigid
substrate [2].

3. Error estimates for the deformation gradient

We can assume in the following without loss of generality that

f(y) = o
and

SL<0< Srj.

To see this, note that vh(x) + f(x) e Jfh if vh £ J?h and that

?(v + f)= f [<p(v'(y)+s) + v(y)2]dy.
Jo

Further, (p(s + s) satisfies (2.1) with sL replaced by sL + s and sv replaced by
sv + s if <p(s) satisfies (2.1). We first give a simplified proof of Lemma 1 [6].
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NONCONVEX VARIATIONAL PROBLEMS 627

Proof of Lemma X. Define vh(x) £ Jfh by vh(0) = 0 and for k = 0, ..
M- X,

vh(x<
_   Í VhiXk> + hsL       if \VhiXk) + hsL\ ^ \Vh(Xk) + hsu\ >

k+{>       \Vh(Xk) + hsU      ii\Vh(Xk) + nSL\>\Vh(Xk) + hsu\-

Since v'h(x) = sL or v'h(x) = sv for x £ I we have that cp(v'h(x)) = 0.
Next, we shall show that

vh(x) < (sv - sL)h/2      for x £ I.

Suppose there were a smallest positive integer P such that

(3.1) vh(xp)>(su-sL)h/2.

Since vh(xp) > vh(xp_x), it follows from the definition of vh(x) above that

vh(xP) = vh(xP_x) + hsu.

However, by (3.1),

vh(xp) = vh(xp-i) + hsu > (% - sL)h/2>

or equivalently, after some elementary algebra,

|uA(*/._i) + Ait/l =vh(xp_l) + hsu >-vh(xP_x) - hsL.
Since sL < sv we also have that

\vh(xP_x) + hsv\= vh(xP_x) + hsv > vh(xp_x) + hsL.

Thus, the previous two inequalities imply that

\vh(xp-i) + nsu\ > \vh(xp-i) + Hsl\-
This contradicts the definition of vh(x). The proof that

-vh(x) < (sv - sL)h/2      for x £ I
is similar. Thus, we have shown that

(3.2) |i>A(jt)|<(j£/-.sJA/2       forxe/.
Hence, it follows that

Eh<^(vh)<max\vh\2<{^-^)h .   D

We next prove Lemma 2 which gives a pointwise estimate of the oscillation
of u'h(x) about sL and sv.

Proof of Lemma 2. Since uh(x) is piecewise constant on the finite element mesh
of length scale h , it follows from (2.1) and Lemma 1 that

2   2

A, min{(M;(x) - sL)2, (u'h(x) - sv)2}h < <t>(uh(x))h < {S(J "^ h

for x £ I. The result (2.4) follows directly from the above estimate.   D
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628 CHARLES COLLINS AND MITCHELL LUSKIN

The next lemma gives an L2 estimate of the oscillation of u'h(x) about sL
and sv. It will be useful to have the projection operator n : R -> {sL, sv}
defined by

Yls sL    for s < (sL + sv)/2,
for s > (sL + sv)/2.

Note that
s - Us\2 = min{(s - sL)2, (s - sv)2},

so by (2.1)

(3.3) <f>(s) > Xx \s - n?|2.
Lemma 3. We have the estimate

(3.4) jf ' \u'h(x) - nu'h(x)\2dx < {Su~4lfh2.
Proof. The estimate follows easily from (2.1) and Lemma 1, since they imply
that

xx Ç \uh(x) - n¿h(x)\2 dx<Eh< {Su ~s4l) h . D

Lemma 4. We have the bound

max |wA(x)| < max < max |w),(x)|, sv, \sL\ \ h.
.tfci I    ■íti I

Proof. Set
v = max I max |mJ,(x)| , sv, \sL\ >.

We assume that

(3.5) max Im, (x)| > vh
X&I       "

and we shall show that this leads to a contradiction by constructing uh(x) £ J(h
such that

9(ûk)<9(uh).

By (3.5), there exists p such that \uh(xp)\ > |«A(x/)| for I = 0, ... , M and
\uh(x )\ > vh. First, we show that xp ¿ 0 and xp ^ 1. If uh(0) > vh, then
we construct ûh(x)£Jth by

- (    ) = i uh(x0-sun   fork = 0,
Uh[Xk)     \uh(xk) fork=X,...,M.

Now uh(xx) > 0 since uh(0) > vh and since |«¿(x)| < v for x £ Ix. Also,
uh(0) = uh(xx) -svh > -vh, so \uh(x)\ < uh(x) for x £ Ix. Further, uh(x) =
sv for x £ 7, and uh(x) = uh(x) for x £ (x,, 1). Thus, we have that

%(ùh)<ïï(uh).

Similar arguments for the other cases show that xp ^ 0 and x  ^ X.
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NONCONVEX VARIATIONAL PROBLEMS 629

We may now assume that p is chosen so that 0 < xp < X, that \uh(xp)\> vh,
and that \uh(xp)\ > \uh(xp_x)\ and \uh(xp)\ > \uh(xp+x)\. In this case, we
construct uh(x) £ J?h by

Û (x ) = {u^xP-^ + u^xP+^-uh^xp)   fork=p,
h[ k)     \uh(xk)   fork = 0,...,p-X,p+X,...,M.

Then uh(x) = u'h(x + h) for x £ Ip , uh(x) = u'h(x-h) for x £ Ip+X, \uh(x)\ <
\uh(x)\ for x £ Ip U Ip+X, and ûh(x) = uh(x) for x £ (0, xp_x) U (xp+x, 1).
Hence, we have that

g{ùh) < %(uh).

Thus, we have proved the lemma by contradiction.   D

Next, we give an estimate for the convergence of uh(x) to 0. It is shown in
§5 that this rate of convergence is optimal.

Lemma 5. If h < 4XX, then

(3.6)
Proof. It follows from Lemma 2 that if h < 4XX, then

max \uh(x)\ < 2(sv - sL)h.

max\uh(x)\ <2(su-sL).

The result (3.6) now follows from Lemma 4.   D

Proof of Theorem X. We estimate the error as follows
• i

/   [F(x, uh(x)) - yF(x ,sL)-(X- y)F(x, sv)] dx
Jo

/ [F(x,u'h(x))-F(x,nu'h(x))]dx
Jo

/  [F(x, Ylu'h(x))-yF(x,sL)-(X - y)F(x, sv)]dx
Jo

+

= SX+S2.

**jf !£<*■•>i
<L

I ds

x\dF

Then we have by Lemma 3 and the Cauchy-Schwarz inequality that

(^(x) -Uu'h(x)\dx

1/2 r
• fv    .1 rlY

ds
(sv - sL)h

L°°{^„)

2

<
2X1/2 F\\

L°°W
fX     i/   \u'h(x) - nwl(x)| dx

Jo

1/2
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630 CHARLES COLLINS AND MITCHELL LUSKIN

Let G(x) = F(x, sL) - F(x, sv). If Uu'h(x) = sL , then

(3.7) F(x, Uuh(x)) - yF(x ,sL)-(X- y)F(x, %) = (1 - y)G(x)

and if Huh(x) = sv , then

(3.8) F(x, Uuh(x)) - yF(x,sL) - (1 - y)F(x,sv) = -yG(x).

Note that by (2.5) (where s = 0 ),

m^(x) _ \ y- 1   if Uu'h(x)=sL,
SU      SL if\luh(x) = su.

Thus, it follows from (3.7) and (3.8) that

Í3 9) F(x,Uu'h(x)) - yF(x,sL) - (X - y)F(x,sL
n^(x)
SU ~ SL

G(x)

for x £ I.

^2

<
SU       SL

SU      SL

SV      SL /  uh(x)G(x)
Jo

Hence, we can estimate J^ by

f1 nw'(xl       N ,
Jo    sf! - SL

/ (nu'h(x)-u'h(x))G(x)dx
Jo

(SJ+jr4).

Now by Lemma 3 and the Cauchy-Schwarz inequality we have that

/  [u'l(x) - Ylu,(x)]G(x)dx
Jo

^'[M;(x)-nw;(x)]2^x|  ¡j^G2(x)dx

dx\

y =

1/2

(3.10) <

< (^ - f )/»
2/ 1/2 r ■

since

UX G2(x)dx\     < \\G\\L-(I) < \G(0)\ + J* dx G(x) dx < \\F\ r-
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NONCONVEX VARIATIONAL PROBLEMS 631

Next, use integration by parts on J. and Lemma 5 to obtain that

? - MA(1)G(1)-«Ä(0)G(0)- ( uh(x)G'(x)dx
Jo

\G(X)\ + \G(0)\+f\G'(x)\dx
Jo

2|C7(0)| + 2 / \G'(x)\dx
Jo

<max\uh(x)\

< max|w.(x)|- xei ' hK  n

<4(su-sL)h\\F\\7r.
Combining these results, we obtain that

/   [F(x, u'h(x)) - yF(x, sL) - (X - y)F(x, sv)]dx
Jo

"(%-*l) ,     1
2A¡/2 +

2X1/2
+ 4 \F\\^h.   D

4. The Dirichlet problem
In this section we consider the numerical approximation of the Dirichlet

problem to compute uh£^hV\W satisfying

(4.1) [uh)=    min    &(vh).

We further assume that there exist X2 and a > 0 such that

(4.2) 4>(s) < X2\s - ïls\2      for s £JC.
We can now prove the following variant of Lemma 1 for the Dirichlet problem.

Lemma 6. For h < 2ä/(su - sL), we have that

Proof. We define wh£JihC\W by

wh(x) = vh(x)-vh(l)x

where vh(x) £ Jfh is the function defined in the proof of Lemma 1. Now by
(3.2),

/  wh(x)2dx<2     [vh(x)2 + (vh(x)-wh(x))2]dx
Jo Jo

<j(sv-sL) h .

Further, since w'h(x) £ JC for x £ I, we have that

(t>(w'h(x))<X2vh(X)2 < -f(sv-sL)2h2,       x£l.
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632 CHARLES COLLINS AND MITCHELL LUSKIN

Thus,

Lemmas 2-5 and Theorems 1-2 for the Dirichlet problem can now be proven
by the identical arguments used for problem (2.3). (The constants in these
results must be changed to reflect the different constants in the bounds for the
energy in Lemma 1 and Lemma 6.)

Finally, we note that the results of Lemmas 2-5 and Theorems 1-2 can be
extended to the Dirichlet problem when the minimal energies attained in the
wells of (j>(s) are not equal. More specifically, we can allow the energy density
<p(s) to have the property that (¡>(s) = <f>(s) + l(s) satisfies (2.1) where l(s) is
an affine function. To see this, note that if

i(v)= [\kv'(y)) + (v(y)-f(y))2]dy,
Jo

then for v £ W,

i(v) = £(v) + l(v(X) - v(0)) = W(v) + l(f(X) - f(0)).

Thus, uh £ ¿&h n W satisfies

W(uh ) =    min    g(vh)

if and only if uh£j^hV\W satisfies

(4.3) £(«*)=    min    §(vh).

The analyses of Lemmas 1-5 and Theorems 1-2 can now be applied directly to
problem (4.3).

5.  OpTIMALITY OF THE MAIN RESULTS

We next discuss the optimality of our results for problem (2.3). First, we set

á = min{-T'y}>0-

It then follows from Lemma 2 that for h < 4ä2Xx/(su - sL)2 we have that

| wa(jc)| > a      for x £ I.

Hence, since u'h(x) is linear on each interval 7;, we have for i* = X, ... , M
that

(5.1) max|«,(x)| > ah/2      forx£l¡,
x€f

and

(5.2) Í uh(x)2dx>ahiIX2.
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NONCONVEX VARIATIONAL PROBLEMS 633

Thus, from (5.2) we see that

(5.3) [ uh(x)2dx>ah2/X2
Jo

and hence, that

(5.4) Eh>ah2/X2.
The estimate (5.4) shows the optimality of the order of the error bound for Eh
given in Lemma 1 and the estimate (5.1) shows the optimality of the order of
the error bound for uh(x) given in Lemma 5. Bounds similar to the above
bounds are also clearly valid for the Dirichlet problem (4.1) .

To demonstrate the optimality of the bounds given in Theorem 1 and Theo-
rem 2, we consider the example

(5.5) <p(s) = (s-X)2(s+X)2

for problem (2.3) In this case, sL = -X, sv = X, and y = 1/2. For this
example, we can calculate analytically the displacement, uh(x), at which the
minimum of the energy §* is attained to be

/ 2\ '/2

(5.6) uh(Xi) = (-l)'l I 1 - ^ I for i = 0,..., M.

(The minimum energy is also attained at -uh(x), of course.) We also have that

/    h2V'2(5.7) M;(x) = (_i)'h__j forxe7,.

and

(5.8) g(uh) = f2 (l - !) .
To see this, note that the minimum of

%i(vh) = j [<Kv'h(y)) + vh(y)2]dy      for vh £ Jth

is attained at uh£jfh such that

~<   ï W,  h2\12     -, ,   hd h2\12«*(*/-i) = ±2    1_24        '        tt*W = =F2    1_24

with minimum energy
h3 (.     h2'

Wh) = r 'L2 ̂       48y
Hence, we see that the order of the bounds in Lemma 2 and Lemma 3 are not
optimal for this example and that

(5.9) j\u'h(x)-Ylu'h(x)\dx<^.
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However, by asymptotic methods (nonrigorous) we have found that the order
of the estimate in Lemma 3 is optimal for the Dirichlet problem. We have
further found for the Dirichlet problem that in general the pointwise result
u'h(x) - Uu'h(x) = 0(h) holds.

A review of the proof of Theorem 1 shows for the energy density (5.5) and
problem (2.3) that

Thus,

Jr.<ß.h2/24      and      Jri<ß2h2/24.

I fx
/   [F(x, u'h(x))-yF(x,sL)-(X - y)F(x, sv)]dx

\Jo

(5.10) > - + h

+

h
24 ' 24(sv-sL)

uh(X)G(X) - uh(0)G(0) - f uh(x)G'(x)dx
JoSU      SL

Now

(5.11) /   u,(x)G'(x)dx =      uh(x)(G'(x) - G'(x))dx,
Jo Jo

where G'(x) is the piecewise constant function which takes the average value
of G'(x) on each interval 7;, defined by

G'(x)=llj¡G'(y)dy      forxe7,,

since

Further,

/"'
(x)dx = 0       for i = X, ... , M.

(5.12)

¡■i
i   u.(x)(G'(x)-G'(x))dx\

Jo I

<max|w.(x)|/   \G'(x)-G'(x)\dxxei    n       Jo

<max\u,(x)\h      \G"(x)\dx*e/    "        Jo

f \G"(x)\dx.
Jo

<h- i-*-
-  2 24

o
2\ '/2
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Hence, by using the estimates (5.10) and (5.12) we obtain

/  [F(x,u'h(x))-yF(x,sL)-(X -y)F(x, sv)]dx
Jo

635

> - ^T + +
1 ,2\l/2

+

24     24^ - sL)     2(sv - sL)

|wA(l)G(l)-«A(0)G(0)|.

24 f \G"(x)Jo
dx

SU      SL

M+lThus, for t7(0) = 1 and G(X) = (-X)m^1, we have

.2\i/2
(5.13) \uh(X)G(X) - uh(0)G(0)\ = 2\uh(0)\ = h\ X - 2̂4

So, we finally obtain the estimate

fx i I
/   [F(x, u'h(x))-yF(x,sL)-(X -y)F{x,sv)]dx\
Jo

(5.14)      >- ß̂
T  +

A + X 2\l/2

24     24(5^ - sL)     2(sv - sL)

2\!/2

24 f \G"(x)\Jo
dx

+ h
SU      SL

■ -*: 24

The above estimate shows that the order of the error bound in Theorem 1 (and,
therefore, Theorem 2) is optimal.

We note that if F(x, s) is independent of x, i.e., F(x, s) = F(s), then
(7(1) = (7(0). Now if M is even, we have that uh(0) = uh(X), so

uh(X)G(X)-uh(0)G(0) = 0

and

/   [F(x, u'Jx)) - yF(x ,sL)-(X- y)F(x, sv)] dx
Jo

< ^7 +24     24(5,,-

I il

&—, + ör-^T í1 - S)    f lc"WIdxu-sL)     2(sv-sL) \      24J     J0

Hence, for this example we obtain a higher-order error estimate for Theorem
1 when F(x, s) is independent of x and M is even. When M is odd and
F(x, s) is independent of x, we have that uh(0) = -uh(X), and (5.13) and
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(5.14) are valid. So, when M is odd and F(x, s) is independent of x , Theo-
rem 1 gives the optimal-order error estimate.
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