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OPTIMAL-ORDER QUADRATIC INTERPOLATION

IN VERTICES OF UNSTRUCTURED TRIANGULATIONS*

Josef Dalík, Brno

(Received February 2, 2007)

Abstract. We study the problem of Lagrange interpolation of functions of two variables
by quadratic polynomials under the condition that nodes of interpolation are vertices of
a triangulation. For an extensive class of triangulations we prove that every inner vertex
belongs to a local six-tuple of vertices which, used as nodes of interpolation, have the
following property: For every smooth function there exists a unique quadratic Lagrange
interpolation polynomial and the related local interpolation error is of optimal order. The
existence of such six-tuples of vertices is a precondition for a successful application of
certain post-processing procedures to the finite-element approximations of the solutions
of differential problems.
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1. Introduction

Lagrange interpolation of functions in several variables belongs to the classical

topics of numerical analysis. See for example Beresin, Shidkow [3], Prenter [14] or

the basic recent results in Liang, Lü, Feng [12], Sauer, Xu [16] and Gasca, Sauer [8].

We denote by (x1, x2) the cartesian coordinates of a point x ∈ R
2 and put

D(a, b, c) =
1

2

∣

∣

∣

∣

a1 − c1 a2 − c2

b1 − c1 b2 − c2

∣

∣

∣

∣

for arbitrary points a, b, c ∈ R
2. It is known that D(a, b, c) > 0 if and only if the

ordered triple (a, b, c) is oriented positively and A(abc) = |D(a, b, c)| is the area of

the triangle abc.

*This work was supported by the grant GA ČR 103/05/0292.
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We denote by P2 the space of (real) polynomials of total degree less than or equal

to two of the (real) variables x1, x2. As for every P ∈ P2 there exist α1, . . . , α6 in R

such that

(1) P (x) = α1 + α2x1 + α3x2 + α4(x1)
2 + α5x1x2 + α6(x2)

2,

one would expect that interpolants from P2 are determined by their values in six

nodes of interpolation. This is not the case in general.

According to Sauer, Xu [16], we call points b1, . . . , b6 poised whenever for arbitrary

given p1, . . . , p6 ∈ R there exists a unique P ∈ P2 such that

(2) P (bi) = pi for i = 1, . . . , 6.

If we write P (bi) in the form (1), conditions (2) assume the form

(3) Mα = p

with

M =


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2
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




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.

We can see from (3) that the points b1, . . . , b6 are poised if and only if the matrixM is

non-singular and this is equivalent to the fact that only the trivial linear combination

of the columns of M is a zero vector. This means exactly that the points b1, . . . , b6

cannot be located on any quadratic curve.

In Section 2 we present a simple construction of a quadratic polynomial l1(x)

for given points b1, . . . , b6 such that l1(b
i) = 0 for i = 2, . . . , 6 and formulate the

statement 16 l1(b
1) = |M |. From this essential identity we derive basic properties

of l1 and of the related polynomials l2, . . . , l6. In Section 3 we denote by F a strongly

regular family of triangulations of a fixed bounded domain Ω ⊂ R
2 whose triangles

have no obtuse inner angles. For every triangulation Th ∈ F we describe a simple

procedure which selects a five-tuple b1, . . . , b5 from the set of neighbours of any

given inner vertex a = b6 of Th and prove that the set b1, . . . , b6 is poised and

stable in a certain sense. Analogous result has been proved for the so-called rings of

vertices b1, . . . , b6 around triangles from Th in Dalík [5]. In Section 4 we prove for

all the above-mentioned poised sets {b1, . . . , b6} that for every function u ∈ C
3(Ω)

the quadratic interpolation polynomial L of u in b1, . . . , b6 satisfies the estimates
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|∂(u − L)|m|/∂xm| < C h3−|m| for all multiindices m with |m| 6 2 in a convex local

set containing b1, . . . , b6. The parameter C depends on the function u only.

According to these error-estimates, the gradient ∇L is an approximation of ∇u

with a local error of size O(h2). As is outlined in Křížek [9], this gives rise to a

recovery operator in the sense of Křížek, Neittaanmäki [10], investigated in Durán,

Muschietti, Rodríguez [6], Durán, Rodríguez [7], Ainsworth, Craig [1] and in a large

amount of recent papers and books. See Ainsworth, Oden [2], Ovall [15] and the

references therein.

2. Poised six-tuples of points

We derive the polynomial l1 in a natural way and present a “geometric charac-

terization” of the determinant |M | in Lemma 1. By this statement, Lemma 2 and

Corollaries 1, 2 follow immediately. Let us put

Q0(x) = D(x, b5, b6)D(x, b2, b3), Q1(x) = D(x, b3, b5)D(x, b6, b2)

and

Q(x) = αQ0(x) + βQ1(x)

for arbitrary points b2, . . . , b6 and real numbers α, β. It is easy to see that

Q0(x) = Q1(x) = Q(x) = 0 for x = b2, b3, b5, b6.

Setting α = D(b4, b5, b3)D(b4, b6, b2) and β = D(b4, b5, b6)D(b4, b2, b3), we get

Q(x) = 0 for x = b4, too. In this case, we write l1 instead of Q.

Definition 1. For arbitrary points b1, . . . , b6 ∈ R
2, we put

l1(x) = D(x, b5, b6)D(x, b2, b3)D(b4, b5, b3)D(b4, b6, b2)

+ D(x, b3, b5)D(x, b6, b2)D(b4, b5, b6)D(b4, b2, b3)

and

l(b1, . . . , b6) = l1(b
1).

Properties of the expression l(b1, . . . , b6), formulated in Lemma 2 and in Corollar-

ies 1, 2, can be easily derived from the following basic statement.
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Lemma 1. For arbitrary points b1, . . . , b6 ∈ R
2 we have

|M | = 16 l(b1, . . . , b6).

P r o o f. This statement has been proved by a symbolic computation using the

symbolic algebra system MAPLE. �

We denote by tr(i1, . . . , i6) the number of transpositions transforming the permu-

tation (1, . . . , 6) to the permutation (i1, . . . , i6).

Lemma 2. For arbitrary points b1, . . . , b6 ∈ R
2 and for every permutation

(i1, . . . , i6) of indices 1, . . . , 6 we have

(4) l(bi1 , . . . , bi6) = (−1)tr(i1,...,i6)l(b1, . . . , b6).

We adopt the following convention.

C o n v e n t i o n. For arbitrary points x1, . . . , xk ∈ R
2, operations + and − on the

set {1, . . . , k} of indices mean addition and subtraction modulo k.

Definition 2. For arbitrary points b1, . . . , b6 ∈ R
2 and for i = 1, . . . , 6 we put

li(x) = l(x, bi+1, . . . , bi+5).

Corollary 1. The following statements a)–c) are valid for arbitrary points

b1, . . . , b6 ∈ R
2 and index i ∈ {1, . . . , 6}:

a) li ∈ P2,

b) li(b
j) = 0 for all j 6= i,

c) li(b
i) = (−1)i−1l1(b

1).

Corollary 2. The following statements a)–c) are equivalent for arbitrary points

b1, . . . , b6 ∈ R
2:

a) b1, . . . , b6 are poised,

b) li(b
i) 6= 0 for some i ∈ {1, . . . , 6},

c) li(b
i) 6= 0 for all i ∈ {1, . . . , 6}.
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3. Poised six-tuples of vertices

In this section we define our class F of strongly regular triangulations and discuss

the notion of a ring of vertices around a triangle. Then we describe the process of

reduction of the set of neighbours of any inner vertex of a triangulation from F and

prove Theorem 2 saying that the result of this process is a poised set satisfying a

uniform stability condition.

Definition 3. We denote by Th a non-empty finite set of triangles such that the

meshsize h is the longest length of their sides, by Vh the set of vertices of triangles

from Th and put

Ωh =
⋃

T∈Th

T.

We call Th a triangulation of Ω whenever Ω is a bounded domain in R
2 and the

following conditions a)–c) are satisfied:

a) The intersection of any two different triangles T1, T2 from Th is either a common

side of T1, T2 or a common vertex of T1, T2 or an empty set.

b) Vh ⊆ Ω and Vh ∩ ∂Ω = Vh ∩ ∂Ωh.

c) The interior of Ωh is connected.

Definition 4. Let Th be a triangulation of Ω and a ∈ Vh. We say that

Nh(a) = {b ∈ Vh : ab is an edge of Th}

is the set of neighbours of a and call a an inner vertex of Th whenever a /∈ ∂Ω.

Definition 5. A family (Th)h∈I of triangulations of a fixed Ω is called strongly

regular whenever I is a set of positive meshsizes such that 0 belongs to the closure I

and there exists a ν0 > 0 with the property

(5) A(T ) > ν0h
2

for all T ∈ Th and h ∈ I.

It is easy to see that each triangle from a triangulation belonging to a strongly regu-

lar family has all sides longer than 2ν0h and all inner angles greater than arcsin(2ν0).

N o t a t i o n.

1. We denote by F a strongly regular family of triangulations Th with at least six

vertices and without obtuse inner angles of triangles.

2. We reserve the symbols C, C, C0, C0, . . . for generic constants independent of

the meshsize h.
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Definition 6. Let Th ∈ F, T1 ∈ Th and b1, . . . , b6 ∈ Vh. We call b
1, . . . , b6 a ring

around T1 if T1 = b1b3b5 and the triangles

T2 = b1b2b3, T3 = b3b4b5, T4 = b1b5b6

belong to Th − {T1}.
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Figure 1.

In Fig. 1, a ring around the triangle T1 is illustrated. The following theorem and

condition (5) say that rings around triangles are poised.

Theorem 1. There exists a constant C > 0 such that for any ring b1, . . . , b6

around a triangle T1 ∈ Th ∈ F we can find k ∈ {1, . . . , 4} satisfying

|l1(b
1)| > CA(Tk)A(T2)A(T3)A(T4).

P r o o f. It is the content of Dalík [5]. �

We prove an analogous statement for rings around inner vertices of triangulations

from F.

Definition 7. Let a be an inner vertex of a triangulation Th ∈ F.

a) We call b1, . . . , bk an orientation of a set B ⊆ Nh(a) if {b1, . . . , bk} = B,

D(a, bi−1, bi) > 0 for i = 1, . . . , k and α1 + . . . + αk = 2π for αi = 6 bi−1abi. In

this case we say that the set B is oriented and put βi = 6 bibi−1a, γi = 6 abibi−1

for i = 1, . . . , k. See Fig. 2.
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b) We call b1, . . . , bn, a a ring (around a in Th) whenever b
1, . . . , bn is an orientation

of the set Nh(a). In this case we put T1 = abnb1, T2 = ab1b2, . . . , Tn = abn−1bn.

It is easy to see that T1, . . . , Tn are just the triangles from Th with vertex a and,

as αi 6 π/2 for i = 1, . . . , n, n > 4.

Definition 8. Let a be an inner vertex of a triangulation Th ∈ F with n neigh-

bours.

a) In the case n > 5 we say that b1, . . . , b5, a is a reduced ring (around a in Th) if

B5 = {b1, . . . , b5} is an oriented subset of Bn = Nh(a) such that B5 = Nh(a)

in the case n = 5 and B5 is a result of the following process of reduction in the

case n > 5: Successively for k = n, n− 1, . . . , 6, we put Bk−1 = Bk − {bi} for a

vertex bi ∈ {b1, . . . , bk} whenever b1, . . . , bk is an orientation of Bk and

αi + αi+1 = min{αj + αj+1 : j = 1, . . . , k}.

In Fig. 3, the process of reduction is illustrated.
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b) In the case n = 4, let b1, . . . , b4, a be a ring around a. Because |Vh| > 6 and

the interior of Ωh is connected, there exists a triangle T5 in Th different from

T1, . . . , T4 whose one side is the segment b1b2, b2b3, b3b4 or b4b1. We choose

an orientation b1, . . . , b4, so that T5 = b1b4b5. See Fig. 4. Then we say that

b1, . . . , b5, a is a reduced ring (around a in Th).
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Lemma 3. Let a be an inner vertex of a triangulation Th ∈ F with n > 5

neighbours and let b1, . . . , b5, a be a reduced ring. If

αmin = min{α1, . . . , α5} and αmax = max{α1, . . . , α5}

then the following statements a)–d) are valid:

a) max{αmax,
1
2π} 6 αi + αi+1 for i = 1, . . . , 5,

b) arcsin(2ν0) 6 αmin, αmax 6 2
3π,

c) π < αi + αi+1 for at most one index i,

d) βi 6 1
2π, γi 6 1

2π for i = 1, . . . , 5.

P r o o f. 1. Assume that n = 5. As αmax 6 1
2π and α1 + . . . + α5 = 2π, we have

1
2π 6 αi + αi+1 6 π for i = 1, . . . , 5 and a)–d) follow immediately.

2. In the case n > 5, we first prove the following statements i), ii).

i) αi + αi+1 < αj =⇒ αj 6 1
2π for i, j = 1, . . . , 5: If αi + αi+1 < αj , then the

angle αj is not a sum of smaller angles constructed during the process of reduction

because the construction of αi + αi+1 would precede the construction of αj . But

then αj is an inner angle of a triangle from Th and we have αj 6 1
2π.

ii) 1
2π 6 αi + αi+1 for i = 1, . . . , 5: If αi + αi+1 < 1

2π and j /∈ {i, i + 1} then

αj 6 αi + αi+1 =⇒ αj < 1
2π obviously and αi + αi+1 < αj =⇒ αj 6 1

2π by i). But

then α1 + . . . + α5 < 2π, a contradiction.

Statement a) follows by i), ii) immediately.

Proof of b): We already know that arcsin(2ν0) 6 αmin. Let αmax = α1 for unicity.

Then α1 6 α2 + α3, α1 6 α4 + α5 by a) and, as α1 + . . . + α5 = 2π, we conclude

α1 6 2
3π.

Proof of c): Assume that π < α1 +α2. Then α3 +α4 < π and α4 +α5 < π because

α3 + α4 + α5 = 2π − α1 − α2 < π. The implications

α5 + α1 > π =⇒ α2 + α3 + α4 6 π < α1 + α2 =⇒ α3 + α4 < α1

and statement a) lead to α5 + α1 < π. The relation α2 + α3 < π can be proved

analogously.

Proof of d): Let b1, . . . , bn be an orientation of Nh(a). Then βi 6 1
2π, γi 6 1

2π for

i = 1, . . . , n, so that the n-gon b1b2 . . . bn is convex. A successive removal of vertices

during reduction preserves convexity and the angles βi, γi do not increase. �

Theorem 2. There exists a constant C > 0 such that

l(a, b1, . . . , b5) > Ch8

for all reduced rings b1, . . . , b5, a in triangulations Th ∈ F.
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P r o o f. For brevity, we write D(abc) instead of D(a, b, c) in this proof. Let

b1, . . . , b5, a be a reduced ring around an inner vertex a in a triangulation Th ∈ F

with n neighbours. We first assume that n > 5. The value of

l = l(a, b1, . . . , b5) = D(ab4b5)D(ab1b2)D(b3b4b2)D(b3b5b1)

+ D(ab2b4)D(ab5b1)D(b3b4b5)D(b3b1b2)

does not depend on the choice of orientation b1, . . . , b5 due to (4). According to

Lemma 3 c), we can choose such an orientation that

α3 + α4 6 π, α5 + α1 6 π and α1 + α2 6 π.

The inequalities α3 + α4 6 π and β4 + γ3 6 π, see Lemma 3 d), imply

(6) D(ab2b4) + D(b3b4b2) = D(ab2b3) + D(ab3b4)

and

(7) D(ab2b4) > 0, D(b3b4b2) > 0.

As D(ab5b1) > D(b3b5b1) implies α2 +α3 < γ1 or α4 +α5 < β1 and these conclusions

are in contradiction to Lemma 3 a), d), we have

(8) D(ab5b1) 6 D(b3b5b1).

The convexity of the pentagon b1b2b3b4b5 and (8) give us

(9) D(b3b4b5) > 0, D(b3b1b2) > 0, and D(b3b5b1) > 0.

As the segments ab1, . . . , ab5 are sides of triangles from Th, |abi| > 2ν0h for i =

1, . . . , 5. These inequalities and Lemma 3b) say that

(10) D(abi−1bi) > 4ν3
0h2 for i = 1, . . . , 5.

If D(ab2b4) 6 D(b3b4b2) then the second term of l is non-negative due to (10),

(7), (9) and, after omitting it, we obtain

l > D(ab4b5)D(ab1b2)
1

2
[D(ab2b3) + D(ab3b4)]D(ab5b1) > C h8

by (6), (8) and (10).
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In the case D(b3b4b2) < D(ab2b4), the valid inequalities α1 + α2 6 π, α5 + α1 6 π

lead to

D(b3b4b2) < D(ab3b4) =⇒ D(ab3b4) < D(b5b3b4),(11)

D(b3b4b2) < D(ab2b3) =⇒ D(ab2b3) < D(b1b2b3).(12)

If either D(b3b4b2) > D(ab3b4) or D(b3b4b2) > D(ab2b3) then the second term of l is

non-negative due to (9), (10). After its omission, we obtain

l > D(ab4b5)D(ab1b2)min{D(ab3b4), D(ab2b3)}D(ab5b1) > Ch8

by (8) and (10). If both the assumptions in (11), (12) are valid then we omit the

first summand from l (it is non-negative due to (10), (7), (9)) and obtain

l >
1

2
[D(ab2b3) + D(ab3b4)]D(ab5b1)D(ab3b4)D(ab2b3) > Ch8

according to (6), (11) and (12).

If n = 4 and b1, . . . , b5, a is a reduced ring from Definition 8 b) then, as is illustrated

in Fig. 4, vertices b1, b2, a, b3, b4, b5 create a ring around the triangle T1 ∈ Th. The

statement follows by Theorem 1 and by (5). �

4. Quadratic interpolation in poised six-tuples of vertices

We prove local uniform optimal-order error-estimates of interpolation of functions

from C
3(Ω) by quadratic polynomials in the poised sets from Theorems 1 and 2.

These are generalizations of the estimates from Dalík [4].

Definition 9. Let Th ∈ F and let b1, . . . , b6 be either

a) a ring around a triangle from Th or

b) a reduced ring around an inner vertex a = b6 in Th.

Then we call {b1, . . . , b6} a local poised set. We put B = {b1, . . . , b6} in the case a),

B = {a} ∪ Nh(a) in the case b) and call the set

E(b1, . . . , b6) = {x ∈ Vh : xyz ∈ Th for some y, z ∈ B}

an extension of {b1, . . . , b6}. For every nonempty set E ⊆ Vh we denote by conv(E)

the convex closure of E. Instead of conv(E(b1, . . . , b6)) we briefly write conv(E).
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For any local poised set {b1, . . . , b6} we approximate functions u ∈ C
3(Ω) by

quadratic interpolation polynomials in the nodes b1, . . . , b6 and estimate the local

interpolation error on the set conv(E). Fig. 5 illustrates the fact that conv(E) 6⊆ Ω

may occur. In this case we take an open ball Ωe such that Ω ⊂ Ωe. Obviously,

conv(E) ⊆ Ωe for all local poised sets. Due to the Whitney Theorem, see Theo-

rem 1.8.10 in Kufner, John, Fučík [11], each function u ∈ C
3(Ω) has an extension

U ∈ C
3(Ωe) and we identify u with its extension U on Ωe. In this sense we guarantee

that functions u ∈ C3(Ω) belong to C3(conv(E)) for all poised sets.
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Definition 10. We relate the Lagrange basis functions

Li(x) =
li(x)

li(bi)
for i = 1, . . . , 6

to each local poised set {b1, . . . , b6} in Th ∈ F. Then

L(x) =

6
∑

i=1

u(bi)Li(x)

is the Lagrange interpolation polynomial of a function u ∈ C(Ω) at the points

b1, . . . , b6.

If {b1, . . . , b6} is a local poised set in Th ∈ F then |li(bi)| > Ch8 for i = 1, . . . , 6

by Theorems 1, 2 and assumption (5). Moreover, |li(x)| 6 C1h
8 and |∂li/∂xι(x)| 6

C2h
7 for all x ∈ conv(E) and ι = 1, 2 are obvious. Hence the following estimates are

valid.
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Lemma 4. There exists a constant ν1 > 0 such that

(13) |Li(x)| 6 ν1,
∣

∣

∣

∂Li

∂xι

(x)
∣

∣

∣
6 ν1h

−1

for all triangulations Th ∈ F, all local poised sets {b1, . . . , b6} in Th, all x ∈ conv(E),

i = 1, . . . , 6 and ι = 1, 2.

Lemma 5. Assume that {b1, . . . , b6} is a local poised set in Th ∈ F and P ∈ P2

satisfies

|P (bi)| 6 ch3 for i = 1, . . . , 6

for some c > 0. Then

|P (x)| 6 6ν1ch
3 ∀x ∈ conv(E).

P r o o f. P (x) =
6
∑

i=1

P (bi)Li(x) and (13) yield the statement. �

Lemma 6. For every function u ∈ C
3(Ω) and every C1 > 0 there exists C2 > 0

such that
∣

∣

∣

∂|m|(u − P )

∂xm
(x)

∣

∣

∣
6 C2h

3−|m| ∀x ∈ conv(E)

for all multiindices m, |m| 6 2, all poised sets {b1, . . . , b6} in Th ∈ F and all P ∈ P2

satisfying |(u − P )(x)| < C1h
3 in conv(E).

P r o o f. Let us consider u ∈ C
3(Ω), a local poised set {b1, . . . , b6} in Th ∈ F and

P ∈ P2 satisfying |(u−P )(x)| < C1h
3 in conv(E). Let T be the second degree Taylor

polynomial of u at a point y ∈ conv(E). Then for every multiindex m with |m| 6 2,

∂|m|T/∂xm is a Taylor polynomial of ∂|m|u/∂xm at point y of degree 2 − |m| and

(14)
∣

∣

∣

∂|m|(u − T )

∂xm
(x)

∣

∣

∣
< C2h

3−|m| ∀x ∈ conv(E)

for C2 depending on u only. This result for |m| = 0 and our assumption give

|(T −P )(x)| < (C1 +C2)h
3 for all x ∈ conv(E). As T −P ∈ P2, conv(E) is a convex

compact domain in R
2 whose width corresponds to h, we obtain

(15)
∣

∣

∣

∂|m|(T − P )

∂xm
(x)

∣

∣

∣
6 C3h

3−|m| ∀x ∈ conv(E)

for all m, |m| 6 2 by the generalization from Wilhelmsen [17] of Markov’s inequality

published in Markov [13] originally. Our conclusions (14), (15) yield the statement

for C2 = C2 + C3. �

558



Theorem 3. For every function u ∈ C
3(Ω) there exists a constant C > 0 such

that

(16)
∣

∣

∣

∂|m|(u − L)

∂xm
(x)

∣

∣

∣
6 Ch3−|m| ∀x ∈ conv(E)

is valid for all multiindices m with |m| 6 2, all Th ∈ F, all local poised sets

{b1, . . . , b6} in Th and for the Lagrange interpolation polynomial L of u at the points

b1, . . . , b6.

P r o o f. Let us consider a triangulation Th ∈ F and a local poised set {b1, . . . , b6}

in Th. The interpolant L ∈ P2 exists and is unique by the poisedness of b1, . . . , b6. If

T is a second-degree Taylor polynomial of u at a point y ∈ conv(E) then |(u−T )(x)| <

C1h
3 in conv(E) by the Taylor theorem. Then |(T − L)(bi)| < C1h

3 for i = 1, . . . , 6

and |(T − L)(x)| < C2h
3 in conv(E) by Lemma 5. But then |(u − L)(x)| < C1h

3 for

C1 = C1 + C2 and the statement follows by Lemma 6. �
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