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Abstract - The use of a paraunitary �lter bank for
image processing requires a special treatment at im-
age boundaries to ensure perfect reconstruction and
orthogonality of these regions. Using time-varying
boundary �lter banks, we will discuss a procedure that
explores all degrees of freedom of the border �lters in
a method essentially independent of signal extensions,
allowing us to design optimal boundary �lter banks,
while maintaining fast implementation algorithms.

I Introduction

The applications of multirate �lter banks [1] in ima-
ge processing are receiving increasing attention and so
are the problems resulting from the processing of �nite
length signals. This work is a continuation of the one
in [2], and here we explore the concept of time-varying
orthogonal �lter banks so that �lter banks near the
borders are changed to force overall orthogonality [3]{
[8].

We use a PR critically-decimated paraunitary uni-
form �lter bank [1] of M FIR �lters. The �lters are
assumed to have a maximum length L = NM , where
N is also called the overlap factor, and the analysis and
synthesis �lters have impulse reponses fk(n) and gk(n)
(k=0,1,: : : ,M -1, n=0,1,: : : ,L-1), respectively. We will
refer to such system shortly as a paraunitary �lter bank
(PUFB). The input signal, x(n) is, thus, transformed
by the analysis �lter bank into the subband signals
yk(m). In a PUFB, we can de�ne a lapped transform
matrix P with elements pij as

pij = fi(L� 1� j) = gi(j); (1)

and P can be segmented into N square matrices as

P = [P0 P1 � � � PN�1]; (2)
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Figure 1: Flow graph for tha analysis section of a pa-
raunitary FIR �lter bank where E(z) can be factorized
using symmetric delays and N stages.

Let the input signal x(n) be expressed in its polyphase
components xi(m) = x(mM + i) and de�ne a signal
y(n) whose polyphase components are the subbands,
such that yi(m) = y(mM + i). Thus, the two sets of
M signals are related by a polyphase transfer matrix
(PTM) E(z) [1] which is paraunitary, i.e. E�1(z) =
ET (z�1). We will consider the PUFBs which can be
parameterized using the symmetric delay factorization
(SDF). Let

�(z) =

�
z�1IM=2 0

0 IM=2

�
: (3)

The SDF of the PTM is given by

E(z) = B0

N�1Y
i=1

(�(z)Bi) (4)

where all stages Bi are allowed to be arbitraryM �M
orthogonal matrices. The 
ow graph for implement-
ing a PUFB which can be parameterized using SDF is
shown in Fig. 1. The use of SDF is not very restric-
tive in practice, as, for M even, most PUFBs with any
practical advantage can be expressed in this way. Ex-
amples of such �lter banks are linear-phase PUFBs [10],
cosine modulated �lter banks [1, 9], and, of course, all
2-channel PUFB. Its great advantage is that it spares
us the task of developing di�erent algorithms for each
border of the signal.

If the vectors x and y contain the signals x(n) and
y(n), respectively, then the analysis and synthesis sec-
tions can be represented in matrix notation as



y = T1x x = TT
1
y (5)

where

T1 =

2
66664

. . .
. . .

. . . 0
P0 P1 � � � PN�1

P0 P1 � � � PN�1

0
. . .

. . .
. . .

3
77775 :
(6)

It is easy to show that the paraunitariness constraint
implies that T1 is orthogonal.

Suppose the signal x(n) has only Nx samples and
assume Nx = NBM , where NB is an integer represent-
ing the number of blocks, with M samples per block.
To avoid the expansion of the number of samples, we
require y(n) to have Nx samples, so that each subband
would have NB samples. It is clear that there is a size-
limited linear transform T leading x into y so that

y = Tx x = T�1y: (7)

II Boundary filters

Let T be composed of time-varying �lter banks as

T =

2
6664
P(0)

P(1)
. . .

P(NB � 1)

3
7775 : (8)

Let K be the greatest integer smaller than N=2 (the
same as integer division as K = N=2). Hence, there
are K �lter banks, at each border, which have their
basis functions crossing the signal boundaries. We call
this the minimal complete design (MCD) when only
K �lter banks at each border are changed in order to
achieve orthogonality of T. We could change all NB

�lter banks but only 2K of them have any in
uence to
the borders, so that we will often assume MCD. Then,
we have

P(m) = P for K � m � NB �K � 1 (9)

and the remaining �lter banks are redesigned, but re-
maining instantaneously paraunitary [4, 12], and obey-
ing PR rules for time-varying �lter banks.

ForT orthogonal, the entries of the boundary �lters
are such that there is no overlap of the �lters across the
signal borders [12]. For an in�nite-length signal, we can
draw the 
ow-graph relating the input and output of
the analysis section, which accounts for permutations

and orthogonal matrices [4, 5, 12], and represents an
orthogonal system as

T1 = ~B0

N�1Y
i=1

W ~Bi (10)

where ~Bi = diagf� � � ;Bi;Bi;Bi; � � �g and W is a per-
mutation matrix that can be derived from the factor-
ization of E(z) [4, 5, 12]. Hence, the synthesis process,
de�ned by TT

1
, would be represented by the same 
ow-

graph reversing the direction to follow the paths and
substituting the orthogonal matrices by their trans-
poses. Since the transform cannot allow overlap across
the signal borders, the two adjacent size-limited trans-
forms have to be completely independent. So, the algo-
rithm described by Fig. 1 is applied to a hypothetical
unlimited-length signal and the stages Bi are modi-
�ed (however, orthogonality is maintained) along the
time-index so that transitions among SDF PUFBs are
achieved. The input and output signals are segmented
into blocks of M samples, and blocks are labelled 0
through NB � 1 for the actual support region of x(n)
and y(n). A simple way to �nd the complete SDF rel-
evant for the signal is: (i) Construct the 
ow-graph
for the hypothetical in�nite-length signal; (ii) Elimi-
nate unnecessary paths and boxes, used for the signal
outside the bounds. (iii) From the remaining boxes,
those which are connected to output blocks numbered
K through NB �K � 1 are the same as in the time-
invariant SDF and are not changed for an MCD, while
the remaining can be any orthogonal matrix (maintain-
ing their sizes) and are responsible for the degrees of
freedom in the transitory boundary �lter banks.

A straightforward algorithm to perform steps (ii)
and (iii) is now presented. Let the i-th stage be the
one with all matrices Bi. Note that each box labelled
Bi has two input or output branches (each carrying
M=2 samples). To prune unnecessary branches and
boxes, start by disconnecting the input samples outside
signal bounds from the 
ow-graph. For i varying from
i = N � 1 through i = 0, check all boxes in stage
N � 1, then proceed with stage N � 2 towards stage 0.
For each box in each stage, check its input branches.
If both of its input branches are disconnected, erase
this box and its output branches. If only one input
branch is disconnected, erase one output branch and
make the box in question a M=2 � M=2 orthogonal
matrix. If both input branches are connected, leave
the box as a M �M orthogonal matrix. For example,
for N = 4 and NB = 6 the resulting 
ow-graph is
shown in Fig. 2, where the generic orthogonal matrices
of sizes M=2�M=2 or M �M are marked by � and �
respectively.
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Figure 2: Flow-graph for a size-limited orthogonal im-
plementation of a PUFB for N = 4 and NB = 6. Each
branch carries M=2 samples.

When the prunning process is complete, and the
boxes belonging to the transitory boundary �lter banks
are selected, we will have some orthogonal matrices
as degrees of freedom. An n � n orthogonal matrix
has n(n� 1)=2 degrees of freedom corresponding to its
plane rotation angles. The reader can check that, for
each border, the number of generic orthogonal bound-
ary matrices is
stage 2i: K � i matrices of size M �M
stage 2i+1: K� i�1 matrices of size M �M and one
of size M

2
� M

2

The number of degrees of freedom for each border is

� =

 
KX
i=1

i+

K�1X
i=1

i

!
M(M � 1)

2
+K

M
2
(M
2
� 1)

2

= [(4K + 1)(M � 1)� 1]
KM

8
(11)

In the design of the boundary �lter banks, for an op-
timal orthogonal solution we shall span all degrees of
freedom in a search for the minimum of a speci�c cost
function. As the relation among the plane rotations
and cost functions is generally non-linear, an optimiza-
tion algorithm would generally have slow convergence
and lead to a local minimum. So, a large number of
variables to optimize can be burdensome. Note that �
can be a very big number.

III Design examples

In a simple example, for M = 2, N = 4 and NB = 6
(see Fig. 2) we have 4 degrees of freedom at each bor-
der. (M=2 = 1 and the 1 � 1 \orthogonal" matrices
are set to 1.) We started with a 2-channel 8-tap PR
PUFB shown in Fig. 3(a) and used an unconstrained
non-linear optimization routine to optimize the bor-
der matrices (one plane rotation angle per matrix),

P(0)P(0)

P(1)P(1)

P(2)=PP(2)=P

P(3)=PP(3)=P

P(4)P(4)

P(5)P(5)}

}
}
}

}
}
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Figure 3: Design example of orthogonal boundary �lter
banks based on a 2-channel PUFB.

where the function maximized was an average of the
stopband atenuation of the boundary �lters. The 12
resulting bases for the 12-sample signal are shown in
Fig. 3(b), where the relation of the basis functions
and P(m) (m = 0; : : : ; 5) is indicated. Note that
P(2) = P(3) = P for MCD, and the 4 bases in the
middle of Fig. 3(b) are the same as those in Fig. 3(a).

As a second example, more tuned to image coding
applications, we used the modulated lapped transform
(MLT) [9] with N = 2 andM = 8. We have 34 degrees
of freedom at each border since just one �lter bank
needs to be optimized because K = 1. Malvar [9] pro-
vided a standard boundary solution for the MLT which
is orthogonal and, therefore, it is a special case among
all solutions wherein the 34 degrees of freedom per bor-
der would span. Here, we maximized the transform
coding gain GTC [11] for the boundary �lter bank. As-
suming x(n) has autocorrelation rx(n) = 0:95jnj and an

autocorrelation matrixRxx with entriesRij = 0:95ji�jj

(0 � (i; j) � L�1), and denoting the diagonal elements
of PRxxP

T as �2
0
through �2M�1

, then

GTC = 10 log
10

 
1

M

M�1X
i=0

�2i

! 
M�1Y
i=0

�2i

!�1=M
: (12)

In one border, the GTC for the optimal boundary �lter
bank is 9.19dB, compared to 5.66dB from that of Mal-
var. As a reference, the MLT has GTC ranging from
8.25dB through 9.22dB (it depends upon a design pa-
rameter [9]) and the popular discrete cosine transform
(DCT) has GTC = 8:83dB.

We carried image coding tests, using the MLT,
a 48 � 48-pels image and adopting M = 8. For a
two-dimensional separable implementation, there are



Figure 4: High-compression simulation with theM = 8
MLT. From top to bottom and left to right: original
image; periodic extension; standard boundary MLT;
boundary �lter bank optimized for maximum GTC .

82 = 64 subbands, and 36 coe�cients in each subband,
where 20 of them result from boundary �lter banks. So,
as each basis function (�lter) has 16 elements (N = 2),
boundary PUFBs will a�ect a 12-pixels-deep region of
the reconstructed image starting at each border. We
carried a comparison, using periodic extension (circular
convolution), the standard boundary orthogonal solu-
tion proposed by Malvar [9] and our optimal solution
(maximum GTC). We quantized only 8 out of 64 sub-
bands and the results are shown in Fig. 4, where it can
be seen that the optimal boundary solution is free of
border distortion at high-compression rates, while the
other methods are not.

IV Conclusions

We have developed a technique to construct orthogo-
nal boundary �lter banks for PUFBs. The restrictions
imposed are minimal, and the results can be changed
to accomodate an odd number of channels M or a
non-symmetric factorization, in which case the basic
ideas would not change, but the presentation would
be greatly complicated. Simpli�cation, in fact, is the
reason behind the choice for restricting the length of
the signal Nx to be a multiple of M . The motivation
for studying �nite-length signals is for the application
of PUFBs in image processing/coding. In this case,
the image dimensions are often chosen as a multiple

of M , otherwise, the image is arti�cially extended, as
do most of the image coders. Methods to construct
orthogonal boundary �lter banks have been reported
earlier [4]{[8], however we have presented a general so-
lution (as long as the PUFB obeys the SDF), and have
explicitely pointed the degrees of freedom of such tran-
sitions. This allowed us to easily design optimal bound-
ary �lter banks. The absence of border distortion is
also clear from our image coding tests using optimized
boundary �lter bank, providing a great improvement
in relation to existing orthogonalization methods for
the MLT.

A more complete discussion of the work in this pa-
per and of [2] can be found in [5, 12].
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