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Abstract In this paper optimal outpatient appointment
scheduling is studied. A local search procedure is de-
rived that converges to the optimal schedule with a
weighted average of expected waiting times of patients,
idle time of the doctor and tardiness (lateness) as ob-
jective. No-shows are allowed to happen. For certain
combinations of parameters the well-known Bailey-
Welch rule is found to be the optimal appointment
schedule.

Keywords Patient scheduling · Health care ·
Local search · Multimodularity

1 Introduction

Outpatient appointment scheduling has been the sub-
ject of scientific investigation since the beginning of the
fifties of the previous century when Bailey and Welch
wrote [1]. The objective of appointment scheduling
is trading off the interests of physicians and patients:
the patients prefer to have a short waiting time, the
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physician likes to have as little idle time as possible,
and to finish on time. Bailey and Welch [1] introduced
the first advanced scheduling rule and tested it through
simulation. Since then many papers have appeared that
analyzed appointment scheduling in various settings
(see Cayirli and Veral [2] for an overview). Most of
them use simulation to analyze the performance of
different appointment scheduling rules. A new method
is introduced to determine optimal scheduling rules for
arbitrary numbers of patients. Service time durations
are exponentially distributed and patients arrive on
time. No-shows are allowed to happen. The setting is
discrete time, i.e., there is a finite number of (equally
spaced) potential arrival moments.

A local search method is described that, starting
from an arbitrary appointment schedule, tries to find
neighboring appointment schedules that are better.
From Koole and Van der Sluis [7] it follows that when
the objective has a certain property related to con-
vexity (called multimodularity) then a locally optimal
schedule is globally optimal. The main technical result
of this paper is the proof that our objective is indeed
multimodular. This objective is a weighted sum of the
average expected patient waiting time, the idleness
of the doctor during the session length, and the tardi-
ness. The tardiness is the probability that the session
exceeds the planned finishing time multiplied by the
average excess.

The local search method is also implemented and
available for public use on the world wide web at
http://obp.math.vu.nl/healthcare/software/ges. For big
instances (many intervals) the computation times can
be quite long. A faster local search method with a
smaller neighborhood is also implemented. It is not
guaranteed that it terminates with a global optimum

http://obp.math.vu.nl/healthcare/software/ges
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solution, but it gives very good results, also for big
instances, within a reasonable amount of time.

We give a short literature overview. The sem-
inal paper on outpatient scheduling is Bailey and
Welch [1]. For an overview of the results obtained
since then, see Cayirli and Veral [2]. Roughly speak-
ing we can classify the papers as follows: there are
those that evaluate schedules (often using simulation)
and those that design algorithms to find good sched-
ules. A recent example of the former, not included
in [2], is Hutzschenreuter [6]. In addition to no-shows
she considers patients not arriving on time, and non-
exponential service times. Those papers that present
algorithms to design schedules can also be divided in
two: those that focus on continuous time, which deal
with finding the optimal interarrival intervals, and those
that focus on discrete time, where the question is how
many arrivals should be scheduled at each potential
arrival moment. Pegden and Rosenshine [10] consider a
continuous-time model. Their algorithm finds the opti-
mal arrival moments, assuming convexity of the objec-
tive in the interarrival times. Also Lau and Lau [8] give
a procedure for finding optimal arrival instants, again
assuming convexity. Hassin and Mendel [5] extend this
work to no-shows. Wang [16, 17] proves optimality, for
phase-type service-time distributions, but for a limited
number of patients. Denton and Gupta [3] formulate
the problem as a two-stage stochastic linear program.
Their algorithm is a good approach for quickly ap-
proximating large-scale systems. Also Robinson and
Chen [12] consider a stochastic linear program. They
derive a fast heuristic for finding good and robust in-
terarrival times, using the fact that interarrival times
are dome-shaped, meaning that they are shorter at the
beginning and near the end of the session, and longer in
the middle.

Let us now consider papers that are most relevant
to the current work as they are dealing with discrete
time, i.e., a finite number of potential arrival moments.
In Liao et al. [9] a branch-and-bound method is used
to find the optimal schedule. This works only for small
instances. Vanden Bosche, Dietz and Simeoni [15] use
a method that resembles the method of this paper
in a number of ways. They derive upper and lower
bounds for the optimal appointment schedule. To show
these bounds they use what they call submodularity
(Lemma 1 of [15]), which is in fact multimodularity on
a subset of the equations that we use (see the appen-
dix). Using the results of [15] upper and lower bound
schedules (which often coincide) can be made starting
from specific schedules. Our results give convergence
to the optimal schedule starting from any schedule. The
results of [15] are extended to different types of patients

in Vanden Bosche and Dietz [13], and also to no-shows
in Vanden Bosche and Dietz [14]. The inclusion of
different types of patients is relatively straightforward,
the sequence is optimized using local search, and for
each sequence the optimal schedule is determined using
the method of [15]. Also our proofs nowhere use the
fact that service times are equally distributed. Summa-
rizing, compared to the work of Vanden Bosche and co-
authors, our stronger sub/multimodularity results allow
us to formulate an algorithm that converges from any
initial schedule to the optimal one.

The paper is structured as follows. In Section 2
a model is defined, in which we can compute for
an arbitrary appointment schedule the objective. In
Section 3 the local search algorithm is described.
Section 4 is devoted to numerical results. The proof that
our objective is multimodular is given is Appendix A.

2 Model

For the scheduling problem we have to introduce some
variables. A treatment/operation room is operational
during T intervals with length d (for example a day
from 8:00 am till 4:00 pm split in intervals with length
10 min gives T = 48 and d = 10). Within these T inter-
vals a total of N patients should be scheduled. Patient
service times are assumed to be exponentially distrib-
uted with rate μ (and expectation μ−1).

Let xt ∈ {0, . . . , N} be the number of patients sched-
uled at the start of interval t. A schedule is a vector
(x1, . . . , xT) with

∑T
t=1 xt = N. So we have:

– β = 1
μ

: average service time
– T: number of intervals
– d: length of interval
– N: total number of patients
– xt: number of patients scheduled at the start of

interval t, t = 1, . . . , T

In the model we make the following assumptions:

– The service times of patients are independent and
exponentially distributed.

– Patients always come on time (no-shows are mod-
eled later on).

In the following sections we will give the formulas for
calculating for a given schedule the mean waiting time,
idle time and tardiness (lateness), which we call W(x),
I(x) and L(x), respectively. To compare schedules we
give weights αW , αI , and αL to the three main factors to
obtain the overall objective function C(x) = αW W(x) +
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αI I(x) + αL L(x). Our problem can now be stated as
follows:

min

{

αW W(x) + αI I(x) + αL L(x)

∣
∣
∣

∑
t xt = N

xt ∈ N0

}

(1)

For a given schedule (x = (x1, . . . , xT)) the proba-
bilities of having i patients in the queue just before
new arrival(s) and just after arrival(s) can be calculated.
This can be used to calculate the mean waiting time,
idle time and tardiness. We introduce the following
notation:

pt−(i)=P ( i patients in queue just before the arrival(s)
at interval t ) and

pt+(i)=P( i patients in queue just after the arrival(s)
at interval t ).

We start empty, thus p1−(0) = 1. Iteratively the other
probabilities can be calculated as follows:

p1−(0) ≡ 1,

pt+( j) = 0, 0 ≤ j < xt,

pt+( j) = pt−( j − xt), j ≥ xt,

p(t+1)−(0) = ∑N
i=0 pt+(i)bi,

p(t+1)−( j) = ∑N
i= j pt+(i)ai− j, j ≥ 0.

where

ai = P(# potential departures = i) = (μd)i

i! e−μd

and

bi = P(# potential departures ≥ i) = 1 −
i−1∑

j=0

ai.

Because of the exponential service time distributions
the potential number of departures in any interval has
a Poisson distribution.

2.1 Mean waiting time of a patient

If a patient arrives and finds k patients in the queue
(including the patient who is currently being treated),
then the mean waiting time of that patient will be k/μ.
In our model patients arrive just before a new interval
alone or in groups. The ith one of that group has a
mean waiting time of

∑N
j=0 pt−( j) · ( j + i − 1) 1

μ
. This is

just the mean waiting time of one patient, so we must
sum them all over the groups and intervals an divide

that through all N patients. Thus we find the following
formula for the mean waiting time:

W(x) = 1

N

T∑

t=1

xt∑

i=1

N∑

j=0

pt−( j) · ( j + i − 1)
1

μ
(2)

2.2 Mean idle time of a doctor

For calculating the mean idle time of a doctor, we
calculate first the mean makespan M(x), which is the
time the last patient finishes. Then it is easy to find the
mean idle time I(x), because I(x) = M(x) − N/μ.

Set t̃ ≡ {max t|xt > 0}. Now we know for sure that the
makespan is greater than (t̃ − 1)d. The distribution of
the number of patients in the queue at time t̃ is known.
So the average makespan is

M(x) = (t̃ − 1)d +
N∑

j=1

pt̃+( j) · j
μ

.

So now we obtain the following formula for the mean
idle time:

I(x) =
(

(t̃ − 1)d +
N∑

j=1

pt̃+( j) · j
μ

)

− N
μ

(3)

2.3 Mean tardiness

For the mean tardiness of the day we look at the end of
the last interval. Now if there are j patients in queue,
then the extension is on average j 1

μ
. We know the

patient distribution just after the last interval T, so the
tardiness function is as follows:

L(x) =
N∑

j=1

p(T+1)−( j)
j
μ

(4)

2.4 Including no-shows

We can add no-shows to our model. This is an im-
portant generalization as no-shows occur frequently
in practice. Every patient now has a probability ρ of
not showing up. We assume that ρ is the same for all
patients and that the patients are independent. Thus
the number of arrivals at time t has a Binomial(xt, ρ)
distribution.

This changes the formulas used in the model as
follows. pt−(i) remains the same. pt+(i) is somewhat
different, because it is not known how many patients
are exactly coming. We must sum over the distribution
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Fig. 1 Base-case scenario
with different weights
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of how many patients will be arrive. This gives for pt−(i)
and pt+(i):

p1−(0) ≡ 1,

pt+( j) =
xt∑

k=0

(xt
k

)
ρxt−k(1−ρ)k · pt−( j−k), j ≥ 0,

p(t+1)−(0) =
N∑

i=0
pt+(i)bi,

p(t+1)−( j) =
N∑

i= j
pt+(i)ai− j, j ≥ 0.

2.4.1 Mean waiting time of a patient

For the mean waiting time, for all intervals we must ad-
ditionally sum the waiting time over the distribution of
the number of arriving patients. This gives the following
equation:

W(x) = 1

N(1 − ρ)

T∑

t=1

xt∑

k=1

(
xt

k

)

ρxt−k(1 − ρ)k

×
( k∑

i=1

N∑

j=0

pt−( j) · j + i − 1

μ

)

(5)

2.4.2 Mean idle time of a doctor

Again we first calculate the makespan. Now we do
not know when the last patient is coming. But we can
calculate the probability that the last patient is coming
at interval t. This probability is

P(last patient is coming at interval t)
= P(all patients after interval t are no-shows)

P(# arrivals at time t ≥ 1)

= ρN−∑t
i=1 xi(1 − ρxt).

If the last patient is coming at interval t, we know for
sure the makespan is greater than (t − 1)d. To calculate
the excess after interval t, we sum over the distribution
of the number of patients that come (having in mind
that at least one patient comes) times the mean excess.

What we find is then:

M(x)=
∑

t:xt>0

P(last patient is coming at time t)

× E(mean makespan|last patient is coming

at time t)

=
∑

t:xt>0

ρN−∑t
i=1 xi(1 − ρxt)

×
(

(t − 1)d +
xt∑

k=1

(xt
k

)
ρxt−k(1 − ρ)k

1 − ρxt

×
N∑

i=0

pt−(i) · i + k
μ

)

The mean idle time is then given by:

I(x) = M(x) − N(1 − ρ)
1

μ
(6)

The question can be asked how important this mean
idle time is, because now the time between the real last
patient and the last planned patient is not added as idle
time. So in the case of no-shows the idle time is less
relevant as objective and should have a relatively low
weight.

2.4.3 Mean tardiness

The formula of the mean tardiness is the same (of
course with the new probabilities pt−(i) and pt+(i)).

Table 1 Outcome values for different schedules

αW = 0.5 αW = 1 αW = 2 αW = 10 Individual Bailey–Welch

Mean waiting time 26.46 19.90 15.35 9.85 12.37 16.75
Mean idle time 21.86 36.69 54.02 88.58 72.14 50.07
Mean tardiness 7.99 9.60 12.61 29.79 19.62 11.42
Object value (αW = 0.5) 25.59 40.23 29.81
Object value (αW = 1) 36.83 46.41 38.18
Object value (αW = 2) 54.12 58.78 54.94
Object value (αW = 10) 146.00 157.72 188.95
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Fig. 2 a Optimal schedules
(ρ against β) b Optimal
schedules (N against β)
c Optimal schedules (N
against ρ)
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3 Local search

To compute the schedule with the lowest objective
value we could try all possible schedules (the solution
space) and look which one has the lowest objective
value. But the number of all possible schedules is huge
(it is

(N+T−1
N

)
), so we need a search algorithm to reduce

the computation time. A local search algorithm starts
with a feasible solution and tries iteratively to improve
the current solution by searching a better solution in its
neighborhood until a local minimum is found.

In general the local minimum is not a global mini-
mum, but for the current problem and a well-chosen
neighborhood it is possible to show that the local search
algorithm finishes in the global minimum.

We introduce our neighborhood. Define the vectors

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u1,

u2,

u3,
...

uT−1,

uT

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(−1, 0, . . . , 0, 1),

(1, −1, 0, . . . , 0),

(0, 1, −1, 0, . . . , 0),
...

(0, . . . , 1, −1, 0),

(0, . . . , 0, 1, −1)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

,

and take V∗ = {u1, . . . , uT}. As the neighborhood of
schedule x we take all vectors of the form x + v1 + · · · +
vk with v1, . . . , vk ∈ V∗ such that x + v1 + · · · + vk ≥ 0.
Then the algorithm is as follows.

Algorithm for computing an optimal schedule
1. Start with some schedule x
2. For all U � V∗:

for y = x + ∑
v∈U v such that y ≥ 0 compute C(y);

if C(y) < C(x) then x := y and start again with step
2

3. x is the optimal schedule

A vector ut can be interpreted as moving a patient
from time slot t to time slot t − 1. Thus the neighbor-
hood of x consists of all combination of single-interval
shifts starting from x. In Appendix A we prove that with
this neighborhood the local search algorithm converges
to the global optimal solution.

In the online tool we also implemented a smaller
neighborhood that gives much faster results. Under this
option we simply take y = x + u for all u ∈ U in step 2
of the algorithm, thus we only consider U with |U | = 1.

Table 2 Outcome values(ρ against β)

ρ = 0, β = 18 ρ = 0.1, β = 20 ρ = 0.25, β = 24 ρ = 0.5, β = 36

Mean waiting time 13.43 15.35 18.93 27.29
Mean idle time 51.67 54.02 56.96 60.66
Mean tardiness 10.04 12.61 17.28 28.59
Object value 47.24 54.12 66.53 95.29
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Table 3 Outcome values(N against β)

N = 8,β = 25 N = 10,β = 20 N = 16,β = 12.5 N = 20,β = 10

Mean waiting time 16.74 15.35 11.83 11.09
Mean idle time 54.82 54.02 53.53 49.30
Mean tardiness 15.56 12.61 8.10 5.60
Object value 60.00 54.12 42.47 37.63

4 Numerical examples

In this section we give some numerical examples.
All these computations were done with our webtool
which is available for experimentation at http://obp.
math.vu.nl/healthcare/software/ges.

Let the following be the base-case scenario. A
medical practice is operational between 8:00 am and
12:00 am. We split this interval up in 48 intervals of
5 min. Thus T = 48 and d = 5. A treatment duration is
on average 20 min (1/μ = 20) and the percentage of no-
shows is 10% (ρ = 0.10). We want to plan ten patients
(N = 10).

To analyze this model with the small neighborhood
(which is not guaranteed to give the optimal solution)
took a few seconds, analyzing the full neighborhood
(what we did for all cases considered in this section)
took around 12 h for each instance.

First we compute for base-case scenario the the op-
timal schedule, for different weights in our objective
function. The weight for the tardiness is taken 1 (αL =
1), for the idle time it is taken 0.2 (αI = 0.2). The idle
time has a relatively low weight because of the no-
shows. We took four different weights for αW (0.5, 1,
2, and 10), and determined the optimal schedules for
each of these cases. The schedules are given in Fig. 1.

It is seen that if the waiting time has given a bigger
weight then the patients are more spread out to the end
of the schedule, as one would expect. In the optimal
schedule with αW = 0.5 there are two patients sched-
uled at the beginning of the day. Note that the optimal
schedule for αW = 0.5 is close to the Bailey–Welch
rule. In all cases the times between consecutive arrivals
first increases and then decreases again. This is the
dome-shaped form that we discussed in the literature
overview.

To have a better look on the results we compare
the optimal schedules with two existing schedules: the
individual block schedule and the Bailey–Welch rule.
With the individual block schedule the working day is
divided in the same number of intervals as there are
patients. In each block exactly one patient is sched-
uled. The Bailey–Welch rule is similar as the individual
block schedule, but with the last patient moved to the
beginning of the day. So in our base-case scenario the
individual block schedule and the Bailey–Welch rule
plan every 24 min a patient, with the exception that
the Bailey–Welch rule schedules two patients at 8:00 am
and none at 11:36 am.

The results of the schedules are given in Table 1.
The optimal schedules are of course better than the
two existing schedules, but it can been seen for αW = 2
that the Bailey–Welch schedule is almost as good as the
optimal one.

Now we will look what happens with the optimal
schedules if we change some parameters. The changes
are chosen such that the total workload does not
change. The workload for the base-case scenario is
Nβ(1 − ρ)=10 ∗ 20 ∗ 0.9=180 minutes. We change the
parameters two at a time, ρ and β, N and β, and N and
ρ, respectively. Let αW = 2 and the other parameters
fixed as in the base-case scenario. The optimal sched-
ules are given in Fig. 2. The corresponding outcome
values are shown in Tables 2, 3, 4.

From Table 2 we see that if ρ becomes larger (thus
β decreases) the mean waiting time, idle time and
tardiness all becomes larger, because of the higher un-
certainty. From the results of Table 3 it is seen that if β

becomes smaller (thus N increases) then the mean wait-
ing time, idle time and tardiness all becomes smaller
because of reduced uncertainty. The results of Table 4
show us that if ρ becomes larger (thus N decreases) the

Table 4 Outcome values(N against ρ)

N = 9, ρ = 0 N = 10, ρ = 0.1 N = 12, ρ = 0.25 N = 18, ρ = 0.5

Mean waiting time 14.44 15.35 17.48 21.73
Mean idle time 50.12 54.02 56.43 58.07
Mean tardiness 10.83 12.61 14.63 17.35
Object value 49.73 54.12 60.89 72.43

http://obp.math.vu.nl/healthcare/software/ges
http://obp.math.vu.nl/healthcare/software/ges
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mean waiting time, idle time and tardiness all becomes
larger because of the higher uncertainty.

A final change in parameters would be changing T
and d. This would evidently lead to more simultaneous
arrivals.

5 Conclusions

In this paper a method is presented to obtain optimal
outpatient schedules in case of a finite number of pos-
sible arrival epochs. The proof of the optimality relies
on showing that the objective is multimodular, which is
a generalization of convexity to lattices.

Numerical results are presented. The interarrival
times have a dome shape, as observed earlier in the
literature: the first interarrival times are short, then they
get longer, and become again short. Note that in certain
cases the optimal rule is close to the Bailey-Welch rule.
For certain parameter values the Bailey-Welch rule is
indeed optimal.

Acknowledgements The authors would like to thank the three
anonymous referees for their valuable suggestions.

Appendix A: Local search method

To prove that the local search algorithm converges
to the global optimum, we first show that our objec-
tive function is multimodular. We start by defining
multimodularity.

A.1 Multimodularity

Multimodularity (Hajek [4]) is a property of functions
on Z

m. Define the vectors v0, . . . , vm ∈ Z
m as follows:

v0 = (−1, 0, . . . , 0)

v1 = (1, −1, 0, . . . , 0)

v2 = (0, 1, −1, 0, . . . , 0)

...

vm−1 = (0, . . . 0, 1, −1)

vm = (0, . . . , 0, 1)

Let V = {v0, . . . , vm}. Now:

Definition A.1 A function f : Z
m → R is called multi-

modular if for all x ∈ Z
m, v, w ∈ V, v �= w,

f (x + v) + f (x + w) ≥ f (x) + f (x + v + w) (7)

Central in the theory of multimodular functions is
the concept of an atom.

Definition A.2 For some x ∈ Z
m and σ a permuta-

tion of {0, . . . , m}, we define the atom S(x, σ ) as the
convex set with extreme points x + vσ(0), x + vσ(0) +
vσ(1), . . . , x + vσ(0) + · · · + vσ(m).

It is shown in Hajek [4] that each atom is a simplex,
and each unit cube is partitioned into m! atoms; all
atoms together span R

m.
In Koole and Van der Sluis [7] the following theorem

is shown. It forms the basis of our neighborhood choice.

Theorem A.3 For f multimodular, a point x ∈ Z
m is a

global minimum if and only if f (x) ≤ f (y) for all y �=
x such that y ∈ Z

m is an extreme point of S(x, σ ) for
some σ .

Our problem (1) is a T − 1 dimensional problem:
given x1, . . . , xT−1 we derive xT by xT = N − ∑T−1

t=1 xt.
We will show that it has a multimodular objective
function. The set of allowable solutions is given by {x ∈
Z

T−1|x ≥ 0,
∑T−1

t=1 xt ≤ N}. This domain is not equal to
Z

T−1, so the question arises if the local search algo-
rithm still converges to the global minimum. According
Lemma 2 in Koole and Van der Sluis [7] Theorem A.3
remains valid for this subset of Z

T−1. Proving that
our objective function is multimodular for the T − 1-
dimensional problem (1) is equivalent to showing that
the objective function in T dimensions satisfies Eq. 7
for v, w ∈ V∗, where

V∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u1,

u2,

u3,
...

uT−1,

uT

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(−1, 0, . . . , 0, 1),

(1, −1, 0, . . . , 0),

(0, 1, −1, 0, . . . , 0),
...

(0, . . . , 1, −1, 0),

(0, . . . , 0, 1, −1)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.

Note that ut is nothing else then moving a patient
from time slot t to time slot t − 1. Now we show
that our objective function is multimodular and that it
can be minimized by a local search algorithm that is
guaranteed to terminate in the global minimum. Our
neighborhood is the set of all possible combinations of
the vectors ut added to the current schedule.

Theorem A.4 The waiting time function W(x), the idle
time function I(x) and the tardiness function L(x), as
defined in Eqs. 2, 3, and 4, are multimodular for all
ui, u j ∈ V∗ for which i �= j.
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Proof of Theorem A.4 It is easy to see that if the
makespan is multimodular then also the idle time is
multimodular. Thus it is sufficient to show that the
makespan, the waiting time and the tardiness are mul-
timodular. Thus it has to be shown that

W(x + ui) + W(x + uj) ≥ W(x) + W(x + ui + uj) ,

M(x + ui) + M(x + uj) ≥ M(x) + M(x + ui + uj) and

T(x + ui) + T(x + uj) ≥ L(x) + T(x + ui + uj)

for every possible i and j with 1 ≤ i < j ≤ T. We use
coupling (see Righter [11]) for this proof, to compare
the different schedules x, x + ui, x + uj and x + ui + uj.
For every possible combination of i and j, all different
possibilities of patient flows are distinguished to detect
the difference between the number of patients in queue

for each schedule for each time interval. First the proof
is given for 2 ≤ i < j ≤ T.

In Fig. 3, different paths are shown for the different
schedules.

(A) Let us start with Case A. Schedule (A1) and
schedule (A3) are following the same path until
time j − 1. Also Schedule (A2) and schedule
(A4) are following the same path until that
time. In Case A the queue empties between
time i and time j − 1, so from that time on all
the paths are the same. Thus just before time
j − 1, there are say k patients in queue. Let
k′ = k + x j−1. Then just after time j − 1 there
are k′ patients in queue for schedules (A1) and
(A2) and k′ + 1 for schedules (A3) and (A4).
Thus after time j − 1 schedule (A1) and sched-
ule (A2) are following the same path and also
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schedule (A3) and schedule (A4) are following
the same path.
Now say that until time j − 1 schedule (A1)
has a total waiting time α1, then schedule (A3)
also has that total waiting time α1. Say that
until time j − 1 schedule (A2) has a total wait-
ing time α2, then schedule (A4) has the same
total waiting time. Just after time j − 1 sched-
ules (A1) and (A2) follow the same path, so
they have the same total waiting time, say
β1. Schedule (A3) and (A4) also follow the
same path, thus they also have the same to-
tal waiting time, say β2. Now it is easy to see
that the waiting time satisfies α2 + β1(A2)+α1 +
β2(A3)=α1 + β1(A1)+α2 + β2(A4).
For the makespan and tardiness only the end of
a day is important, so we want to know what
happens at the end of the path of each schedule.
Schedules (A1) and (A2) follow after time j − 1
the same path, and therefore they have the
same makespan and tardiness. Schedules (A3)
and (A4) follow after time j − 1 the same path,
therefore they also have the same makespan
and tardiness. So (A2)+(A3)=(A1)+(A4) for
the makespan and the tardiness.

(B) Now look at “Case B.” The queue does not
empty between time i and j − 1, so now just
before time j − 1 it can be that for schedules
(B2) and (B4) there is one patient less in queue,
because one patient more could be treated (be-
cause the movement of one patient from time i
to time i − 1). Otherwise all different schedules
will have the same number in queue and then
“Case A” applies. So for schedule (B2) and
(B4) there are then k − 1 patients in queue and
for schedules (B1) and (B3) there are k patients
in queue. Concerning the waiting time, let us say
again that schedules (B1) and (B3) have a total
waiting time of α1 and that schedules (B2) and
(B4) have a total waiting time of α2.
Define again k′ = k + x j−1. Then just after time
j − 1 there are k′ patients in queue for schedule
(B1), k′ − 1 for schedule (B2), k′ + 1 for path
(B3), one more because of the movement of
one patient from time j to time j − 1 and k′ for
schedule (B4).
Now we distinguish between the following three
possibilities for the number of departures be-
tween time j − 1 an j. Let l′ = l + x j.

(a) The number of departures is less than k′.
– For schedule (Ba1) there will be say

l(≥ 1) patients left just before time j

and just after time j it will be then l′.
Let the total waiting time between time
j − 1 and j be β and after time j γ1.

– For schedule (Ba2) the number of pa-
tient is l − 1 just before time j. So just
after time j there are l′ − 1 patients in
queue and the total waiting time be-
tween time j − 1 and j is then β − d and
after time j γ2.

– For schedule (Ba3) the number of pa-
tient is l + 1, just before time j. Just af-
ter time j there are l′ patients in queue
(one patient less arrives) and the total
waiting time between time j − 1 and j
is then β + d and after time j again γ1.

– For schedule (Ba4) the number of pa-
tient is l, just before time j. Just after
time j there are l′ − 1 patients in queue
(one patient comes less) and the total
waiting time between time j − 1 and j
is again β and after time j again γ2.

Now we see that the waiting time satisfies α2 +
β − d + γ2(Ba2)+α1 + β + d + γ1(Ba3) = α1 +
β + γ1(Ba1)+α2 + β + γ2(Ba4)
The end of the path (after time j) of sched-
ules (Ba1) and (Ba3) is the same. The same
holds for (Ba2) and (Ba4). So in this case
(Ba2)+(Ba3)=(Ba1)+(Ba4), for the makespan
and tardiness.

(b) The second possibility is that there are
exactly k′ departures between time j − 1
and j.

– For schedule (Bb1) there will be k′ −
k′ = 0 patients left just before time j
and just after time j it will be l′. Let the
total waiting time between time j − 1
and j β and after time j γ1.

– For schedule (Bb2) the number of pa-
tients is also 0, just before time j. So
just after time j there are l′ patients in
queue and the total waiting time be-
tween time j − 1 and j is then β − d and
after time j again γ1.

– For schedule (Bb3) the number of
patients is k′ + 1 − k′ = 1, just before
time j. So just after time j there are l′

patients in queue and the total waiting
time between time j − 1 and j is then
β + d and after time j again γ1.

– For schedule (Bb4) the number of pa-
tients is k′ − k′ = 0, just before time
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j. So just after time j there are l′ − 1
patients in queue and the total waiting
time between time j − 1 and j is then
β (same as (Bb1)) and after time j γ2

which is of course smaller then γ1.

Now we see that the waiting time satisfies
α2 + β − d + γ1(Ba2)+α1 + β + d + γ1(Ba3)≥
α1 + β + γ1(Ba1)+α2 + β + γ2(Ba4).
The end of the path (after time j) of sched-
ules (Bb1), (Bb2) and (Bb3) are the same
so the makespan and tardiness are the same
for these schedules. At the end of the path
of schedule (Bb4) there is one patient less
(or in the worst case the same), so the
makespan and tardiness is also less or equal
than the other schedules. So we can con-
clude that (Bb2)+(Bb3)≥(Bb1)+(Bb4), for the
makespan and tardiness.

(c) The last possibility is that there are more
than k′ departures between time j − 1 and
j. So for all paths ((Bc1), (Bc2), (Bc3) and
(Bc4)) there will be no patients left just
before time j.
Just after time j there will be for schedule

(Bc1) and (Bc2) l′ patients in queue and
have a total waiting time of γ1. (Bc3) and
(Bc4) have then l′ − 1 patients in queue
and a total waiting time of γ2.
Now the total waiting time between
time j − 1 and time j, if there are
s > k departures is

∑m
n=1

(n−1)d
s = m(m−1)d

2s
(the first patient has a waiting time of
0, the second d

s , the third 2d
s , etc. . .),

with m the number of patients just af-
ter time j − 1. Because this is a con-
vex function it is clear that the waiting
time function satisfies α2 + (k−1)(k−2)d

2s +
γ1(Bc2) + α1 + (k+1)kd

2s + γ2 (Bc3) ≥ α1 +
k(k−1)d

2s + γ1(Bc1)+α2+ k(k−1)d
2s +γ2 (Bc4).

The ends of the paths of schedule
(Bc1) and (Bc2) are the same and
the ends of paths of schedule (Bc3)
and (Bc4) are the same. Therefore is
(Bc2)+(Bc3)=(Bc1)+(Bc4), for the
makespan and tardiness.

All cases for 2 ≤ i < j ≤ T are done. Now for 1 =
i < j ≤ T. For “Case C” until “Case E” (Fig. 4) counts
that before time j − 1 the queue somewhere empties,
so after that time all schedules will following the same

path and just before time j − 1 there are k patients in
queue for all schedules. until time j − 1 schedule (1)
and (3) have a total waiting time α1 and schedule (2)
and (4) a total waiting time α2.

Just after time j − 1 there will be k′ patients for
schedule (1) and (2) and k′ + 1 patients for schedule
(3) and (4). Now after time j − 1 we can distinguish the
following four possibilities.

(C) Now for “Case C” there are equal or less than
k′ departures so just before time j there are
for schedule (C1) and (C2) l patients left and
for schedule (C3) and (C4) l + 1 patients left.
Between time j − 1 and j schedule (C1) and
(C2) have the same total waiting time, say β1

and schedule (C3) and (C4) have the same total
waiting time, say β2.
Just after time j there are for all schedules l′
patients. So after time j follows schedule (C1)
and (C3) the same path and have a total waiting
time of γ1 and follows schedule (C2) and (C4)
the same path and have a total waiting time of
γ2. Now is easy to see that the waiting time sat-
isfies α2 + β1 + γ2(C2)+α1 + β2 + γ1(C3)=α1 +
β1 + γ1(C1)+α2 + β2 + γ2(C4).
The ends of paths of schedule (C1) and (C3)
are the same and the ends of paths of sched-
ule (C2) and (C4) are the same. Therefore is
(C2)+(C3)=(C1)+(C4), for the makespan and
tardiness.

(D,E) Now for “Case D” and “Case E” there are
more than k′ departures between time j − 1
and time j. So just before time j there are no
patients left for all schedules. Between time
j − 1 and j schedule (1) and (2) have the same
total waiting time, say β1 and schedule (3) and
(4) have the same total waiting time, say β2.
Just after time j there are for schedule (1)
and (2) l′ patients in queue and for schedule
(3) and (4) l′ − 1. Between time j and time T
schedule (1) and (2) have a total waiting time
of say γ1 and schedule (3) and (4) have a total
waiting time of say γ2. Between time j and T
can happen the following two cases:

(D) The queue empties. So for all schedules
there are say m patients left just before
time T (”Case D”). Let m′ =m+xT . Just
after time T there will be then m′ pa-
tients for schedule (D1) and (D3), with
a total waiting time of δ1 and m′+1 pa-
tients for schedule (D2) and (D4), with
a total waiting time of δ2. So the wait-
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Fig. 4 Case C, D & E (1 = i < j ≤ T)

ing time function satisfies α2+β1+γ2+δ2

(D2) + α1 + β2 + γ1 + δ1 (D3) = α1 +
β1+γ1+δ1(D1)+α2 + β2 + γ2 + δ2(D4).
The ends of paths of schedule (D1) and
(D3) are the same and the ends of paths
of schedule (D2) and (D4) are the same.
Therefore is (D2)+(D3)=(D1)+(D4),
for the makespan and tardiness.

(E) Now empties the queue not between
time j and time T, so now just before
time T there is one patient less (m′−1)

in queue for schedule (E3) and (E4).
Just after time T there will be for
schedule (E1) and (E4) m′ patients, for
schedule (E2) m′ + 1 and for schedule
(E3) m′ − 1 in queue. Now the total
waiting time if there is m patients

left is given by
m(m−1) 1

μ

2 . Because this
is a convex function it is clear that

the waiting time function satisfies

α2 + β1 + γ2 + (m′+1)m′ 1
μ

2 (D2)+α1 + β2+
γ1 + (m′−1)(m′−2) 1

μ

2 (D3) ≥ α1 + β1 + γ1+
m′(m′−1) 1

μ

2 (D1) + α2 + β2 + γ2 + m′(m′−1) 1
μ

2×(D4).
Let s=d(T − 1). The main finishing time
of the day will be at s+m′ 1

μ
for schedule

(E1) and (E4), s + (m′+1) 1
μ

for sched-
ule (E2) and s+(m′−1) 1

μ
for sched-

ule (E3). So s+(m′+1) 1
μ

(E2)+s+(m′−
1) 1

μ
(E3)=s+m′ 1

μ
(E1)+s + m′ 1

μ
(E4) for

the makespan and tardiness.

For “Case F” until “Case I” (Fig. 5) counts that
before time j − 1 the queue does not empty, so just
before time j − 1 there are k patients in queue for
schedule (1) and (3) and for schedule (2) and (4) one
less, so k − 1. Until time j − 1 schedule (1) and (3) have
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Fig. 5 Case F, G, H & I (1 = i < j ≤ T)

a total waiting time α1 and schedule (2) and (4) a total
waiting time α2.

Just after time j − 1 there will be k′ patients fore
schedule (1) and (4), k′ − 1 patients for schedule (2)
and k′ + 1 patients for schedule (3).

(F) For “Case F,” after time j − 1 we can distinguish
the following four possibilities.

– For schedule (F1) there are say l patients
left just before time j and just after time j it
is l′. Say that the total waiting time between
time j − 1 and j is β and after time j γ1.

– For schedule (F2) the number of patient is
l − 1 just before time j. So just after time
j there are l′ − 1 patients in queue and the
total waiting time between time j − 1 and j
is then β − d and after time j γ2.

– For schedule (F3) the number of patient is
l + 1 just before time j. Just after time j

there are l′ patients in queue (one patient
comes less) and the total waiting time be-
tween time j − 1 and j is then β + d and
after time j again γ1 (same path as schedule
(F1)).

– For schedule (F4) the number of patient is l
just before time j. Just after time j there are
l′ − 1 patients in queue (one patient comes
less) and the total waiting time between
time j − 1 and j is again β and after time j
again γ2 (same path as schedule (F2)).

Now we see that the waiting time satisfies
α2 + β − d + γ2(F2)+α1 + β + d + γ1(F3)=α1 +
β + γ1(F4)+α2 + β + γ2(F4)
The end of the path (after time j) of sched-
ules (F1) and (F3) are the same, and also
(F2) and (F4) are the same. So in this case
(F2)+(F3)=(F1)+(F4), for the makespan and
tardiness.
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(G) Now for “Case G” there are exactly k′ depar-
tures between time j − 1 and j.

– For schedule (G1) there will be k′ − k′ = 0
patients left just before time j and just after
time j it will be l′. Say that the total wait-
ing time between time j − 1 and j is β and
after time j γ1.

– For schedule (G2) the number of patient
shall also be 0 just before time j. So just after
time j there are l′ patients in queue and the
total waiting time between time j − 1 and j
is then β − d and after time j γ2.

– For schedule (G3) the number of patient
shall be k′ + 1 − k′ = 1 just before time j.
So just after time j there are l′ patients in
queue and the total waiting time between
time j − 1 and j is then β + d and after time
j again γ1 (same path as schedule (G1)).

– For schedule (G4) the number of patient
shall be k′ − k′ = 0 just before time j. So
just after time j there are l′ − 1 patients in
queue and the total waiting time between
time j − 1 and j is then β (same as (G1))
and after time j γ3 which is of course smaller
than γ2, because 1 patient is less to do.

Now we see that the waiting time satisfies α2 +
β − d + γ2(G2) + α1 + β + d + γ1 (G3) ≥ α1 +
β + γ1(G1)+α2 + β + γ3(G4).

The end of the path (after time j) of schedules
(G1) and (G3) are the same so the makespan
and tardiness are the same for these schedules.
At the end of the path of schedule (G4) there
are one patient less (or in the worst case the
same) than at the end of path (G2), so the
makespan and tardiness shall also be less or
equal than schedule (G2). So we can conclude
that (G2)+(G3)≥(G1)+(G4), for the makespan
and tardiness.

(H,I) Now for Case “H” and “I” there are more than
k′ departures between time j − 1 and time j. So
just before time j there are no patients left for all
schedules. Between time j − 1 and j schedules
(1) and (4) have the same total waiting time of
k′(k′−1)d

2s , schedule (2) (k′−1)(k′−2)d
2s and schedule

(4) (k′+1)k′d
2s (same as in “Case Bc”).

Just after time j the schedules will follow the
same path as in ”Case D” and “Case F,” which
we already discussed, so for the makespan and

tardiness it is immediately clear that it satisfies
the multimodularity.
Now for the waiting time it is also clear because
before time j it satisfies the multimodularity,
and after time j also.

Now we distinguished all possible cases and we
proved that in each case the waiting time, makespan
and tardiness are multimodular. Thus the same holds
for the idle time.

The proof can easily be extended to include no-
shows. This is done by conditioning on the no-shows:
we get the same model as without no-shows but with
less patients planned.
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