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Abstract: The optimal P-Q control issue of the active and reactive power for a microgrid in the

grid-connected mode has attracted increasing interests recently. In this paper, an optimal active and

reactive power control is developed for a three-phase grid-connected inverter in a microgrid by using

an adaptive population-based extremal optimization algorithm (APEO). Firstly, the optimal P-Q

control issue of grid-connected inverters in a microgrid is formulated as a constrained optimization

problem, where six parameters of three decoupled PI controllers are real-coded as the decision

variables, and the integral time absolute error (ITAE) between the output and referenced active

power and the ITAE between the output and referenced reactive power are weighted as the objective

function. Then, an effective and efficient APEO algorithm with an adaptive mutation operation is

proposed for solving this constrained optimization problem. The simulation and experiments for a

3 kW three-phase grid-connected inverter under both nominal and variable reference active power

values have shown that the proposed APEO-based P-Q control method outperforms the traditional

Z-N empirical method, the adaptive genetic algorithm-based, and particle swarm optimization-based

P-Q control methods.

Keywords: power control; grid-connected inverter; extremal optimization; design optimization;

evolutionary algorithms

1. Introduction

As an important distribution system, a microgrid integrates a variety of renewable and traditional

distributed generations and different loads [1]. How to design optimal controllers to guarantee that

the microgrid operates well in both islanded and grid-connected modes is one of the critical issues

in the microgrid research area [2–6]. More specifically, it is important to control the voltage and

frequency of each power converter connected to each distributed generation, called the VF control,

in the islanded mode while it is necessary to regulate the output active and reactive powers of each

distributed generation, called the P-Q control in the grid-connected mode. Some recent works have

studied the optimal voltage control issue of the distribution systems in the presence of distributed

energy resources [7,8]. This paper focuses on the optimal P-Q control issue of a microgrid in the

grid-connected mode.

In the past decade, some P-Q control methods have been proposed for distributed

generations [9–15]. Dai [9] developed an effective power flow control method for a distributed
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generation unit in the grid-connected mode by adopting a robust servomechanism voltage controller

and a discrete-time sliding mode current controller on the basis of Newton–Raphson-based parameter

estimation and feed forward control approaches. The research work [11] studied the control

problem of active and reactive powers using a second-order generalized integrator in a single-phase

grid-connected fuel cell system based on the boost inverter. In Reference [12], an individual-phase

decoupled P-Q control method based on six control degrees was proposed for a three-phase

voltage source converter. Adhikari and Li [13] proposed a P-Q control method with solar

photovoltaic, maximum power point tracking (MPPT), and battery storage in the grid-connected mode.

Adhikari et al. [14] proposed a two-selected control method using theP-Q control in the load-following

mode while the P-V control was in the maximum power point tracking mode. Unfortunately, the design

processes of multivariable parameters used in P-Q controllers in the above works rely on deeply

empirical rules of the engineers, so the performance under dynamic loads variations often becomes

poorer. In fact, the design issue of P-Q controllers is essentially optimally solving a constrained

optimization problem, but there are only a few reported works concerning the design of P-Q controllers

from the perspectives of constrained optimization. Al-Saedi et al. [16] presented a particle swarm

optimization (PSO)-based P-Q control method in grid-connected operation under variable loads

conditions. This seminal work has demonstrated the importance of PSO in the automatic tuning of

P-Q control parameters for optimized operation during abrupt loads change, but two current control

parameters in the designed control system lack the optimization process based on PSO, so it may be

considered as an incomplete optimization process for designing P-Q controllers. On the other hand,

some popular evolutionary and swarm algorithms have been applied successfully to the optimal

control of power converters and power systems [17–19], which motivate us to design an effective

and efficient optimization algorithm to the optimal P-Q control issue of three-phase grid-connected

inverters in a microgrid.

As a novel optimization framework originally inspired by the far-from-equilibrium dynamics

of self-organized criticality (SOC) [20], extremal optimization (EO) [21,22] is different from other

evolutionary algorithms because it merely selects against the bad instead of favoring the good based

on a uniform random or power-law probability distribution. According to the iterated mechanism,

EO can be classified into two categories. The first one is the individual-based discrete EO such as

the standard EO [21,22] and the self-organized optimization algorithm [23,24] for combinatorial

optimization problems, where an individual often represents a discrete sequence, e.g., a cyclic

permutation of cities for the traveling salesman problem, and individual-based iterated operations

including selection and discrete mutations, e.g., the 2-Opt, 3-Opt, and Lin–Kernighan (LK) rules for

TSP are adopted. In the binary-coded EO (BCEO) algorithm [25], a set of decision variables of a

continuous optimization problem are coded as a binary string, and the power law-based selection and

binary mutation operate on this binary string. The second is the population-based continuous EO by

using population iterated operations, e.g., polynomial mutations and multi-non-uniform mutations.

A variety of simulation and experimental results on different kinds of benchmark and real-world

engineering optimization problems have shown that EO and its modified algorithms perform better

than or at least the same as other popular evolutionary algorithms such as genetic algorithm (GA) and

PSO [26]. In the past decade, some modified EO algorithms have been applied to the optimal design

issue of PID and fractional-order PID controllers for complex control systems [27–33]. To the best of

the authors’ knowledge, the applications of EO to the optimal P-Q control of power converters have

never been reported.

Encouraged by the aforementioned analysis, a novel intelligent P-Q control method is proposed for

three-phase grid-connected inverters in a microgrid by using an adaptive population-based extremal

optimization (APEO). The proposed method formulates the optimal P-Q control issue of three-phase

grid-connected inverters in a microgrid as a typical constrained optimization problem firstly, where

six parameters of decoupled PI controllers are real-coded as the decision variables and the integral

time absolute error (ITAE) between the output and referenced active power and the ITAE between the
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output and referenced reactive power are weighted as the objective function. Then, an effective and

efficient APEO algorithm with an adaptive mutation operation is proposed to solve this optimal issue.

The major contributions of this work are described as follows:

(1) To the best of the authors’ knowledge, the adaptive population-based extremal optimization

is applied firstly to the optimal P-Q control issue of three-phase grid-connected inverters in

a microgrid.

(2) The superiority of the proposed method is demonstrated by both the simulation and experimental

results for a three-phase grid-connected inverter in a microgrid. In fact, the previous reported

PSO-based P-Q control method [16] was tested only using its simulation results.

(3) In cases of both nominal and variable reference active power values, the proposed APEO-based

P-Q control method can improve the performance of a three-phase grid-connected inverter in a

microgrid compared to the traditional Z-N empirical method, the adaptive GA-based, and the

PSO-based P-Q control methods.

The rest of this paper is structured as follows. Section 2 presents the preliminaries concerning

grid-connected inverters and extremal optimization. In Section 3, an intelligent P-Q control method

is designed for grid-connected inverters in a microgrid based on adaptive population EO. Section 4

gives the simulation results on a three-phase grid-connected inverter. Moreover, in order to further

validate the superiority of the proposed APEO-based P-Q control method, the experimental results

on a real 3 kW three-phase grid-connected inverter in a microgrid are presented in Section 5. Finally,

the conclusion and open problems are given in Section 6.

2. Problem Formulation

Figure 1 shows the circuit diagram and the corresponding P-Q control scheme for a three-phase

grid-connected inverter in a microgrid [16,34]. Here, Vdc is the DC voltage provided by a distribution

generation unit, Cd and Cf are the capacitance of the DC side and the LC filter, respectively, Lf

represents the equivalent inductance of the LC filter, and Rf is the equivalent resistance of the LC filter.

The P-Q control scheme consists of the following key operations: the grid-side voltage, a current and

phase detector, an inverter-side voltage and current detector, active and reactive power calculation,

an active power PI controller, a reactive power PI controller, a current PI controller, abc/dq and dq/abc

transformations, and space vector pulse width modulation (SVPWM).

 

Figure 1. The P-Q control scheme of a three-phase grid-connected inverter in a microgrid.
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The block diagram of decoupled P-Q controllers for a three-phase grid-connected inverter in a

microgrid is presented in Figure 2. The active and reactive powers of the inverter denoted as P and Q,

respectively, are computed as follows:

P = 1.5 × (vod × iod + voq × ioq) (1)

Q = 1.5 × (voq × iod − vod × ioq) (2)

where vod and voq are the d-coordinate and q-coordinate of the grid-side voltage, respectively, and iod

and ioq are the d-coordinate and q-coordinate of the grid-side current, respectively.

 

             
             

                          

Figure 2. The block diagram of decoupled P-Q controllers for a three-phase grid-connected inverter in

a microgrid.

The transfer functions of active and reactive power PI controllers denoted as GP(s) and GQ(s) are

defined as follows:

GP(s) =
idr(s)

Pre f (s)− P(s)
= Kp1 +

Ki1

s
(3)

Q = 1.5 × (voq × iod − vod × ioq) (4)

where Pref and Qref are the reference values of active and reactive powers, respectively; idr and iqr1 are

the output values of the active and reactive PI controllers, respectively; Kp1 and Ki1 are the proportional

and integral parameters of the active PI controller, respectively; Kp2 and Ki2 are the proportional and

integral parameters of reactive PI controller, respectively.

The reference voltage signals in the dq frame of SVPWM is defined as follows:

[

Vdo

Vqo

]

=

[

−Kp3 −ωL f

ωL f −Kp3

][

id

iq

]

+

[

Kp3 0

0 Kp3

][

idr

iqr

]

+

[

Ki3 0

0 Ki3

][

xd

xq

]

+

[

vod

voq

]

(5)

xd = (idr − id)/s (6)

xq = (iqr − iq)/s (7)

where id and iq are the d-coordinate and q-coordinate of the inverter-side current, respectively; Kp3

and Ki3 are the proportional and integral parameters of the current PI controller, respectively; w is

the angular frequency; and iqr is the reference input of the q-coordinate of the current PI controller,

i.e., iqr = w × Cf × vod−iqr1. Note that idr is also the reference input of the d-coordinate of the current

PI controller.
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In order to manage the active and reactive power of each distributed generation in a microgrid

under the grid-connected mode, the design issue of an optimal P-Q controller with six parameters,

including Kp1, Ki1, Kp2, Ki2, Kp3, and Ki3, can be formulated as a typical constrained optimization

problem. More specifically, six parameters of decoupled PI controllers are real-coded as decision

variables and the integral time absolute error (ITAE) between the output and referenced active power

and the ITAE between the output and referenced reactive power are weighted as a minimized function.

The complete formulation of the optimal P-Q control issue for a three-phase grid-connected inverter is

as follows:

minF(x) = w1

∫ Tmax

0 t
∣

∣

∣
Pre f − P

∣

∣

∣
dt + w2

∫ Tmax

0 t
∣

∣

∣
Qre f − Q

∣

∣

∣
dt

x = (Kp1, Ki1, Kp2, Ki2, Kp3, Ki3)

s.t. Equations (1) ∼ (7)

l1 ≤ Kp1 ≤ u1

l2 ≤ Ki1 ≤ u2

l3 ≤ Kp2 ≤ u3

l4 ≤ Ki2 ≤ u4

l5 ≤ Kp3 ≤ u5

l6 ≤ Ki3 ≤ u6

(8)

where Pref and Qref are the referenced active and reactive powers, respectively; w1 and w2 are the

weighted coefficients; Tmax is the maximum time of the time window; l1, l2, l3, l4, l5, and l6 are the

lower limits of Kp1, Ki1, Kp2, Ki2, Kp3, and Ki3, respectively; and u1, u2, u3, u4, u5, and u6 are the upper

limits of Kp1, Ki1, Kp2, Ki2, Kp3, and Ki3, respectively.

3. The Proposed Method

In this section, an intelligent P-Q control method is presented for three-phase grid-connected

inverters in a microgrid by using an adaptive population-based extremal optimization algorithm

(APEO). The key idea behind the proposed method is firstly formulating the optimal P-Q control

of grid-connected inverters in a microgrid as a typical constrained optimization problem shown as

Equation (8). Then, an effective and efficient APEO algorithm with an adaptive mutation operation is

designed to solve this optimization problem.

The detailed steps of the proposed algorithm are described as follows:

Input: The model of a three-phase grid-connected inverter with P-Q controllers, a sampling

period Ts, the lower limits constraints (l1, l2, l3, l4, l5, l6) and upper limits constraints (u1, u2, u3, u4, u5,

u6) of the P-Q control parameters (Kp1, Ki1, Kp2, Ki2, Kp3, Ki3), the weight coefficients w1 and w2 used

for evaluating the objective function, a population size of N, the maximum number of iterations Imax,

and the shape parameter b of the adaptive mutation operation.

Output: The best solution Sbest (the best control parameters Kpo1, Kio1, Kpo2, Kio2, Kpo3, Kio3),

the corresponding global fitness Fbest, the real-time curve of the active and reactive power, and the

current waveform of the transformer.

Step1: Generate a random initial real-coded population PI = {S1, S2, . . . , SN}, where the population

size N is generally set as an even number, each solution Si represents a real-coded sequence of six control

parameters including Kp1, Ki1, Kp2, Ki2, Kp3, Ki3, and set P = PI. More specifically, the generated process

of Si is Si = L + Ri(U − L), i = 1, 2, . . . , N, where L = (l1, l2, l3, l4, l5, l6) and U = (u1, u2, u3, u4, u5, u6),

and Ri is a set of randomly generated values between 0 and 1.

Step 2: Evaluate the fitness {Fi, i = 1, 2, . . . , N} of each solution Si in population P by means of

Equation (8) firstly. Then rank all the solutions {Si, i = 1, 2, . . . , N} in ascending order of the fitness

values {Fi, i = 1, 2, . . . , N}, which means obtaining a permutation Π of the labels i such that. Set the

best fitness of the current iteration as Fbest = FΠ(1) and the corresponding best solution Sbest = SΠ(1).



Energies 2018, 11, 2107 6 of 19

Step3: Select the solutions whose fitness ranks are from Π(1) to Π(N/2) to replace those solution

whose fitness rank from Π(1+N/2) to Π(N), and set the intermediate population PM = {SM1, SM2, . . . ,

SMN}, where SMj = SM(j+N/2) = SΠ(j), j = 1, 2, . . . , N/2.

Step4: Generate a new population PN = {SN1, SN2, . . . , SNN} from PM by adopting a

multi-non-uniform mutation (MNUM). To be more specific, SNi is computed by the following equations:

SNi =











SMi + (U − SMi)A(t), if r < 0.5 and L ≤ SNi ≤ U;

SMi + (SMi − L)A(t), if r ≥ 0.5 and L ≤ SNi ≤ U;

SMi, if SNi < L or SNi > U;

(9)

A(t) =

[

r1

(

1 −
t

Imax

)]b

(10)

where t is defined as the current number of iterations, r and r1 are the randomly generated

numbers between 0 and 1, and b represents the shape parameter, which adjusts the dynamics of

the mutation operation.

Step 5: Set SNN = Sbest and accept P = PN unconditionally.

Step 6: Repeat step 2 to step 5 until some stopping criterion, e.g., the maximum number of

iterations Imax, is satisfied.

Step 7: Output the best control parameters solution Sbest = (Kpo1, Kio1, Kpo2, Kio2, Kpo3, Kio3),

the corresponding global fitness Fbest, the real-time curve of the active and reactive power, and the

current waveform of loads.

Figure 3 presents the flowchart of APEO-based P-Q controllers design algorithm for three-phase

grid-connected inverters. From the design perspective of the evolutionary algorithm, the proposed

APEO-based P-Q controller design algorithm for three-phase grid-connected inverters has only the

selection and mutation operations. Moreover, the proposed APEO method has fewer adjustable

parameters than the adaptive genetic algorithm (AGA) [35] and the particle swarm optimization

(PSO) [16]. More specifically, except for the maximum number of iterations Imax and the population

size N, only one shape parameter b needs to be tuned in the proposed APEO algorithm. However,

two additional adjustable parameters in AGA and five additional parameters in PSO need be tuned

for a specific practical three-phase grid-connected inverter. In this sense, the proposed APEO-based

P-Q controller design algorithm can be considered as being simpler than the AGA and PSO-based

P-Q control methods. In addition, the superiority of the proposed APEO method to the AGA and

PSO-based P-Q algorithms will be verified by the simulation and experimental results on a three-phase

grid-connected inverter in a microgrid under both nominal and variable reference active power values

in the next two sections.



Energies 2018, 11, 2107 7 of 19

 
Figure 3. The flowchart of APEO-based P-Q controllers’ design algorithm for three-phase

grid-connected inverters.

4. Simulation Results

4.1. Test for Benchmark Functions

Here, five benchmark functions shown in Table 1 are chosen from the literature [36] to illustrate

the superiority of the proposed APEO algorithm to other popular optimization algorithms, such as the

genetic algorithm (GA) [36], PSO [36], the original population-based extremal optimization version

with lévy mutation termed as PEO [37], the hybrid PSO-EO algorithm [36], and the real-coded PEO

with polynomial mutation termed as RPEO-PLM [38]. For the fair comparison, the parameters settings

of GA, PSO, PEO, PSO-EO, and RPEO-PLM algorithms are the same as those in Reference [36,38].

The shape parameter b used in the APEO algorithm is set as b = 5. The number of maximum iterations

is set the same as that in References [36,38], which is 20,000 for F1, F2, and F3; 10,000 for F4;and 100,000

for F5. Similarly, the popular size is set as follows: N = 10 for F1 and F3, and N = 30 for the other three

functions. Each algorithm has been implemented by 20 independent runs for each function.

Table 2 compares the performance of APEO, GA, PSO, PEO, PSO-EO, and RPEO-PLM for the

five test functions. Note that their performance is evaluated by the statistical results including the

best values, average values, worst values, and the standard deviation of the 20 optimized fitness.

The best performance is in bold. Clearly, APEO achieves the best performance for F1, F2, and F5,

and the same performance as PSO, PSO-EO, and RPEO-PLM yet better than GA and PSO for F3

and F4. As a consequence, APEO performs better than or at least competitive with GA, PSO, PEO,

PSO-EO, and RPEO-PLM for the five test functions. In other words, APEO can be considered as

more suitable than the other popular optimization algorithms for the optimal P-Q control issue of

three-phase grid-connected inverters in a microgrid.
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Table 1. The five benchmark functions.

Function Function Expression Search Space n
Global

Optimum

Michalewicz F1 = −
n
∑

i=1
sin(xi) sin2m(

ix2
i

π
), m = 10 (0, π)n 10 −9.66 min

Schwefel F2 = −
n
∑

i=1
xi sin(

√
xi) (−500, 500)n 30 −12,569.487 min

Rastrigin F3 =
n
∑

i=1
[x2

i − 10 cos(2πxi) + 10] (−5.12, 5.12)n 30 0 min

Ackley F4 = 20+ e− 20 exp

(

−0.2

√

1
n

n
∑

i=1
xi

2

)

− exp

(

n
∑

i=1

cos(2πxi)
n

)

(−32.768,
32.768)n 30 0 min

Rosenbrock F5 =
n−1
∑

i=1
[100(xi+1 − xi

2)
2
+ (xi − 1)2] (−30, 30)n 30 0 min

Table 2. The comparative performance of APEO and the other popular optimization algorithms for

test functions.

Test
Function

Algorithm Best Average Worst
Standard
Deviation

Rank

F1

APEO −9.66 −9.66 −9.66 1.45 × 10−15 1

RPEO-PLM [38] −9.66 −9.66 −9.66 5.767 × 10−5 2

PSO-EO [36] −9.66 −9.66 −9.66 2.15 × 10−3 3
PSO [36] −9.66 −9.52 −9.06 0.17 6
GA [36] −9.66 −9.62 −9.50 0.06 4
PEO [37] −9.61 −9.55 −9.50 0.03 5

F2

APEO −12,569.5 −12,569.5 −12,569.5 1.82 × 10−5 1

RPEO-PLM [38] −12,569.5 −12,569.5 −12,569.5 1.052 × 10−5 2
PSO-EO [36] −12,569.5 −12,568.0 −12,562.6 2.01 3

PSO [36] −9577.7 −10,139.3 −11,026.2 625.7 5
GA [36] −9549.3 −8846.0 −8404.5 481.0 6
PEO [37] −12,214.2 −12,083.3 −11,977.3 90.3 4

F3

APEO 0 0 0 0 1
RPEO-PLM [38] 0 0 0 0 1

PSO-EO [36] 0 0 0 0 1
PSO [36] 0 0 0 0 1
GA [36] 0.046 0.014 9.93 × 10−4 0.014 5
PEO [37] 2.47 2.14 1.85 0.25 6

F4

APEO −8.88 × 10−16 −8.88 × 10−16 −8.88 × 10−16 0 1

RPEO-PLM [38] −8.88 × 10−16 −8.88 × 10−16 −8.88 × 10−16 0 1

PSO-EO [36] −8.88 × 10−16 −8.88 × 10−16 −8.88 × 10−16 0 1

PSO [36] −8.88 × 10−16 −8.88 × 10−16 −8.88 × 10−16 0 1
GA [36] 0.094 0.054 0.03 0.02 5
PEO [37] 0.12 0.11 0.09 8.4 × 10−3 6

F5

APEO 1.21 × 10−19 4.47 × 10−17 4.67 × 10−16 1.15 × 10−16 1

RPEO-PLM [38] 3.050 × 10−10 8.360 × 10−7 1.050 × 10−5 2.283 × 10−6 2

PSO-EO [36] 9.99 × 10−4 9.88 × 10−4 9.54 × 10−4 2.39 × 10−5 3
PSO [36] 26.8 26.0 25.4 0.59 5
GA [36] 39.7 33.1 30.1 3.95 6
PEO [37] 9.63 9.42 9.30 0.13 4

4.2. Simulation Study for P-Q Control of Three-Phase Grid-Connected Inverter

In order to demonstrate the effectiveness of the proposed APEO-based P-Q controllers design

method, this section presents the simulation results for a 3 kW three-phase grid-connected inverter

in a microgrid. The six control parameters of P-Q controllers are tuned by traditional Z-N empirical

method [39], AGA [35], PSO [16], and APEO. The system parameters for a three-phase grid-connected

inverter are as follows: Vdc = 320 V, Cd = 1120 µF, Rf = 0.15 Ω, Lf = 2.5 mH, Cf = 45 µF. The lower

and upper limits of the six parameters used in three decoupled PI controllers are set as l1 = 0.01,

l2 = 30, l3= 0.01, l4 = 0.00001, l5 = 0.00001, l6 = 0.00001, u1 = 0.03, u2 = 50, u3 = 0.03, u4 = 10, u5 = 25,

u6 = 500. The sampling time Ts is set as 2 × 10−6 s and the weights parameters w1 and w2 are set as 1

and 1, respectively.
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The adjustable parameters of AGA, PSO, and APEO for the optimal design of P-Q controllers

used in the following simulations are shown in Table 3. It should be noted that all the simulations have

been run on the MATLAB2012b software on a 2.50 GHz PC with an i7-6500U processor running on

8 GB of RAM.

Table 3. The adjustable parameter settings of APEO, PSO, and AGA used for the optimal design of the

P-Q controllers in a microgrid.

Algorithm Parameters Setting

AGA [35]
Population size N = 30, Imax = 30, the crossover probability pc = 0.9, the mutation probability
pm = 0.1 − 0.01 × n/N, where n = 1, 2,..., N.

PSO [16]
Population size = 30, Imax = 30, inertia weight w = 0.6, the upper limit of velocity Vmax = 0.05,
the lower limit of velocity Vmin = −0.05, acceleration factors c1 = 2.0, c2 = 2.0.

APEO N = 30, Imax = 30, b = 0.1.

4.2.1. Case 1: Under Nominal Condition

In the first case, the reference values of the active and reactive powers for the above described

three-phase grid-connected inverter are set as Pref = 2500 W and Qref = 0 Var. Here, each

evolutionary algorithm for the parameters optimization of the P-Q controllers has been implemented

for 30 independent runs. Table 4 presents the statistical results of AGA, PSO, and APEO such as the

minimum (f min), median (f median), maximum (f max), mean (f mean), and standard deviation (f sd) values

of the final global fitness obtained by the30 independent runs. It is clear that the APEO-based

P-Q control method is better than the AGA and PSO-based P-Q controllers in terms of all the

performance indices.

Table 4. The statistical performance of AGA, PSO, and APEO for designing P-Q controllers.

Algorithm f max f median f mean f min f sd

AGA [35] 0.2646 0.2589 0.2586 0.2531 0.0038
PSO [16] 0.2532 0.2495 0.2494 0.2462 0.0023

APEO 0.2434 0.2430 0.2431 0.2427 0.0002

In order to illustrate the convergence characteristics of the proposed method, Figure 4 presents

the comparative convergence process of an independent run associated with the f min value shown in

Table 4. Clearly, although the best fitness Fbsest of APEO is worse than that of AGA and PSO at the

beginning because APEO starts its optimization process from a completely random solution, APEO

outperforms AGA and PSO after six iterations. The premature convergence of AGA and PSO for

the P-Q controller design is very obvious because their best fitness values have not been improved

since the third and fourth iteration in AGA and PSO, respectively. Furthermore, Figure 5 presents the

evolutionary process of the six P-Q controller parameters in APEO. In conclusion, APEO is better able

to explore the problem space of the P-Q controller for a three-phase grid-connected inverter than AGA

and PSO.
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Figure 4. The comparison of the convergence process of APEO, PSO, and AGA for P-Q controllers.

0 10 20 30
0.01

0.02

0.03

K
P

1

0 10 20 30
30

40

50

K
I1

0 10 20 30
0.01

0.02

0.03

K
P

2

0 10 20 30
6

8

10

K
I2

0 10 20 30
15

20

25

K
P

3

Iterations

0 10 20 30
400

450

500

K
I3

Iterations

Figure 5. The evolutionary process of the P-Q controller parameters in APEO.

Table 5 presents the best P-Q controller parameters and the corresponding best performance

values, including the f min value, the settling time of the active and reactive powers denoted as tsP and

tsQ, respectively, obtained by the traditional Z-N empirical method, AGA, PSO, and APEO. The active

and reactive powers under different control parameters obtained by different methods when the DG

unit is connected to the grid are compared in Figure 6. It is clear that the tsP and tsQ obtained by APEO

are the least among the four methods. In other words, the response of active and reactive powers

obtained by APEO is faster than those by the other methods.

Table 5. The parameters of the best-decoupled PI controllers and the corresponding best performance

obtained by different P-Q control methods.

Algorithm Kpo1 Kio1 Kpo2 Kio2 Kpo3 Kio3 Fmin TsP(s) TsQ(s)

Z-N method 0.0219 31.4093 0.0292 2.8040 10.7959 303.2478 0.6870 0.0501 0.0783
AGA 0.0242 41.4078 0.0267 7.1365 24.7489 429.25268 0.2531 0.0406 0.0582
PSO 0.0299 30 0.03 10 25 500 0.2462 0.0450 0.0461

APEO 0.0285 49.9947 0.0299 9.9600 24.9999 499.9615 0.2427 0.0324 0.0375
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Figure 6. The comparison of active (a) and reactive (b) power obtained by different methods when the

distributed generation (DG) unit is connected to the grid.

4.2.2. Case 2: Robustness Test

In order to test the robustness against the variable reference values Pref of different methods,

this subsection presents the comparison of the dynamic response of the active and reactive powers

under different control parameters obtained by the Z-N empirical method, AGA, PSO, and APEO

under the variable reference values of the active power. Here, the variable conditions of the reference

active power values are set as the Pref value increases suddenly from 500 W to 2500 W at 0.10 s while

Pref decreases suddenly from 2500 W to 500 W at 0.20 s. The dynamic response of the active and

reactive powers are compared in Figure 7. The overshoots and settling times of the active and reactive

powers obtained by APEO are all the least among the four methods under Pref variance.
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(b) Reactive power 
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Figure 7. The dynamic response of the active (a) and reactive (b) powers under different control

parameters obtained by different methods when the set value of the active power Pref increases

suddenly from 0.5 kW to 2.5 kW at 0.10 s and decreases suddenly from 2.5 kW to 0.5 kW at 0.20 s.

5. Experimental Results

IN order to further demonstrate the superiority of the proposed APEO-based P-Q control method

compared to the traditional Z-N method, AGA, and PSO-based P-Q controllers design method,

this section presents the experimental results on a real 3 kW three-phase grid-connected inverter.

The system parameters of the three-phase grid-connected inverter are the same as those in the

simulation studies. Figure 8 shows the experimental platform for the P-Q control of a three-phase

grid-connected inverter in a microgrid.

 

Figure 8. The experimental platform of the P-Q control for three-phase grid-connected inverters in

a microgrid.

Two experiments have been designed to compare the performance obtained by the traditional

Z-N method, AGA, and PSO-based P-Q controllers design methods when the reference value of the

active power Pref increases suddenly from 500 W to 2500 W and decreases suddenly from 2500 W

to 500 W. The P-Q controller parameters are the same as those shown in Table 3. The experimental

dynamic response of the active and reactive powers obtained by the Z-N method, AGA, PSO, and

APEO are shown in Figures 9–12, respectively. It is evident that the fluctuation of the experimental

active and reactive power obtained by APEO is the least while the fluctuation obtained by Z-N method
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is the worst. In other words, the transient performance including the overshoots and settling time of

the active and reactive powers obtained by APEO are all the best. On the other hand, the experimental

results have also indicated that the P-Q control performance obtained by an evolutionary algorithm

such as AGA, PSO, and APEO is obviously better than the traditional Z-N empirical method.

 
(a) The active power P obtained by theZ-N empirical method (P: 0.8kW/div, time: 100ms/div) 

 

(b) The reactive power Q obtained by theZ-N empirical method (Q: 0.3kVar/div, time: 100ms/div) 

Figure 9. The experimental dynamic response of the active and reactive powers obtained by the Z-N

empirical method when the reference value of the active power Pref increases suddenly from 0.5 kW to

2.5 kW and decreases suddenly from 2.5 kW to 0.5 kW.
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(a) The active power P obtained by AGA(P: 0.8kW/div, time: 100ms/div)

(b) The reactive power Q obtained by AGA (Q: 0.3kVar/div, time: 100ms/div)

Figure 10. The experimental dynamic response of the active and reactive powers obtained by AGA

when the reference value of the active power Pref increases suddenly from 0.5 kW to 2.5 kW and

decreases suddenly from 2.5 kW to 0.5 kW.
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(a) The active power P obtained by PSO (P: 0.8kW/div, time: 100ms/div) 

 
(b) The reactive power Q obtained by PSO (Q: 0.3kVar/div, time: 100ms/div) 

Figure 11. The experimental dynamic response of the active and reactive powers obtained by PSO

when the reference value of the active power Pref increases suddenly from 0.5 kW to 2.5 kW and

decreases suddenly from 2.5 kW to 0.5 kW.
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(a) The active power P obtained by APEO (P: 0.8kW/div, time: 50ms/div)

(b) The reactive power Q obtainedby APEO (Q: 0.3kVar/div, time: 50ms/div)

Figure 12. The experimental dynamic response of the active and reactive powers obtained by APEO

when the reference value of the active power Pref increases suddenly from 0.5 kW to 2.5 kW and

decreases suddenly from 2.5 kW to 0.5 kW.

The above experimental results of active and reactive power responses obtained by different

methods are slightly worse than the corresponding results, but the superiority of the APEO-based P-Q

control method to other methods is still demonstrated by these experimental results. The difference

between the simulation and experimental results is due to the ideal characteristics of the three-phase

transformer used in the simulations. In fact, the experimental P-Q control performance of a real

three-phase grid-connected inverter in a microgrid is further improved by adopting more effective

evolutionary algorithms and other advanced control structure, e.g., model predictive control.
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6. Conclusions and Open Problems

This paper presents a novel APEO-based intelligent decoupled P-Q control method for the

optimal P-Q control issue of three-phase grid-connected inverters in a microgrid. The key ideas

behind this proposed APEO-based P-Q control method include encoding six parameters of three

decoupled PI controllers in a P-Q controller as the real-coded decision variables, evaluating the

control performance of a P-Q controller by considering the integral time absolute error (ITAE) between

the output and referenced active power and the ITAE between the output and referenced reactive

power, and updating the population by using selection and MNUM operations. The APEO-based P-Q

control method is simpler than the existing popular evolutionary algorithms such as AGA-based [35]

and PSO-based P-Q control algorithms [16] because of the fewer adjustable parameters and simpler

operations in the population-based iterated optimization mechanism of the APEO-based P-Q control

method. Furthermore, the simulation and experimental results for a 3 kW three-phase grid-connected

inverter in a microgrid have demonstrated that the proposed APEO-based P-Q controller is superior

to the traditional Z-N empirical method [39], AGA-based P-Q controllers [35], and PSO-based [16]

P-Q controllers in terms of the control performances under nominal and variable control objective

conditions. As a consequence, the proposed APEO-based P-Q controller design method can be

considered as a promising intelligent P-Q control method for the optimal P-Q control issue of

power converters in practical engineering systems. Of course, the P-Q controllers of three-phase

grid-connected inverters can be optimized by other theoretical PID methods [40]. However, the P-Q

control performance of three-phase grid-connected inverters can be further improved by adopting

multi-objective evolutionary algorithms. Additionally, in future, how to extend the basic idea of the

APEO-based P-Q controller to more complex power converters and power systems will be studied.
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