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Abstract

In the packed string matching problem, each machine word accommodates α characters, thus

an n-character text occupies n/α memory words. We extend the Crochemore-Perrin constant-

space O(n)-time string matching algorithm to run in optimal O(n/α) time and even in real-time,

achieving a factor α speedup over traditional algorithms that examine each character individually.

Our solution can be efficiently implemented, unlike prior theoretical packed string matching work.

We adapt the standard RAM model and only use its AC0 instructions (i.e., no multiplication)

plus two specialized AC0 packed string instructions. The main string-matching instruction is

available in commodity processors (i.e., Intel’s SSE4.2 and AVX Advanced String Operations);

the other maximal-suffix instruction is only required during pattern preprocessing. In the absence

of these two specialized instructions, we propose theoretically-efficient emulation using integer

multiplication (not AC0) and table lookup.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity,

F.2.2 Nonnumerical Algorithms and Problems—Pattern Matching

Keywords and phrases String matching, Bit parallelism, Real time, Space efficiency

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.423

1 Introduction

Hundreds of articles have been published about string matching, exploring the multitude

of theoretical and practical facets of this fundamental problem. For an n-character text T

and an m-character pattern x, the classical algorithm by Knuth, Morris and Pratt [21] takes

O(n + m) time and uses O(m) auxiliary space to find all pattern occurrences in the text,

namely, all text positions i, such that T [i..i + m ≠ 1] = x. Many other algorithms have

been published; some are faster on the average, use only constant auxiliary space, operate

in real-time, or have other interesting benefits. In an extensive study, Faro and Lecroq [12]

offer an experimental comparative evaluation of some 85 string matching algorithms.

Packed strings. In modern computers, the size of a machine word is typically larger

than the size of an alphabet character and the machine level instructions operate on whole

words, i.e., 64-bit or longer words vs. 8-bit ASCII, 16-bit UCS, 2-bits biological DNA, 5-bits

amino acid alphabets, etc. The packed string representation fits multiple characters into one
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424 Optimal Packed String Matching

larger word, so that the characters can be compared in bulk rather than individually: if the

characters of a string are drawn from an alphabet Σ, then a word of ω Ø log2 n bits fits up

to α characters, where the packing factor is α = ω

log
2

|Σ| Ø log|Σ| n.1

Using the packed string representation in the string matching problem is not a new idea

and goes back to early string matching papers by Knuth, Morris and Pratt [21, §4] and Boyer

and Moore [6, §8-9], to times when hardware character byte addressing was new and often less

efficient than word addressing. Since then, several practical solutions that take advantage of

the packed representation have been proposed in the literature [2, 4, 11, 15, 16, 25]. However,

none of these algorithms improves over the worst-case O(n) time bounds of the traditional

algorithms. On the other hand, any string matching algorithm should take at least Ω(n/α)

time to read a packed text in the worst case, so there remains a gap to fill.

Existing work. A significant theoretical step recently taken introduces a few solutions

based on either tabulation (a.k.a. “the Four-Russian technique”) or word-level parallelism

(a.k.a. “bit-parallelism”). Fredriksson [15, 16] used tabulation and obtained an algorithm

that uses O(nεm) space and O( n
log|Σ| n

+ nεm + occ) time, where occ denotes the number of

pattern occurrences and ε > 0 denotes an arbitrary small constant. Bille [5] improved these

bounds to O(nε + m) space and O( n
log|Σ| n

+ m + occ) time. Very recently, Belazzougui [3]

showed how to use word-level parallelism to obtain O(m) space and O( n
m

+ n
α

+ m + occ)

time. Belazzougui’s algorithm uses a number of succinct data structures as well as hashing:

for α Æ m Æ n/α, his time bound is optimal while space occupancy is not. As admitted by

the above authors, none of these results is practical. A summary of the known bounds and

our new result is given in Table 1, where our result uses two instructions described later on.

Table 1 Comparison of packed string matching algorithms.

Time Space Reference

O( n

log|Σ| n
+ n

ε

m + occ) O(nε

m) Fredriksson [15, 16]

O( n

log|Σ| n
+ m + occ) O(nε + m) Bille [5]

O( n

α
+ n

m
+ m + occ) O(m) Belazzougui [3]

O( n

α
+ m

α
+ occ) O(1) This paper

Our results. We propose an O(n/α + m/α) time string matching algorithm (where the

term m/α is kept for comparison with the other results) that is derived from the elegant

Crochemore-Perrin [9] algorithm. The latter takes linear time, uses only constant auxiliary

space, and can be implemented in real-time following the recent work by Breslauer, Grossi and

Mignosi [7] – benefits that are also enjoyed in our settings. The algorithm has an attractive

property that it compares the text characters only moving forward on two wavefronts without

ever having to back up, relying on the celebrated Critical Factorization Theorem [8, 22].

We use a specialized word-size packed string matching instruction to anchor the pattern

in the text and continue with bulk character comparisons that match the remainder of the

pattern. Our reliance on a specialized packed string matching instruction is not far fetched,

given the recent availability of such instructions in commodity processors, which has been a

catalyst for our work. Our algorithm is easily adaptable to situations where the packed string

matching instruction and the bulk character comparison instruction operate on different

word sizes. The output occurrences are compactly provided in a bit-mask that can be spelled

1 Assume that |Σ| is a power of two, ω is divisible by log2 |Σ|, and the packing factor α is a whole integer.
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out as an extensive list of text positions in extra O(occ) time.

Unlike the prior theoretical work, our solution has a cache-friendly sequential memory

access without using large external tables or succinct data structures, and therefore, can also

be efficiently implemented. The same specialized packed string matching instruction could

also be used in other string matching algorithms, e.g. the Knuth-Morris-Pratt algorithm [19,

§10.3.3], but our algorithm also works in real-time and uses only constant auxiliary space.

Model of computation. We adapt the standard word-RAM model with ω-bit words and

with only AC0 instructions (i.e., arithmetic, bitwise and shift operations but no multiplication)

plus two other specialized AC0 instructions. The main word-size packed string matching

instruction is available in the recent Advanced String Operations in Intel’s Streaming SIMD

Extension (SSE4.2) and Advanced Vector Extension (AVX) Efficient Accelerated String and

Text Processing instruction set [18, 20]. The other instruction, which is only used in the

pattern preprocessing, finds the lexicographically maximum suffix. Specifically, adopting the

notation [d] = {0, 1, . . . , d ≠ 1}, the two instructions are the following ones:

Word-Size String Matching (wssm): find occurrences of one short pattern x that fits in

one word (up to α characters) in a text y that fits in two words (up to 2α≠1 characters). The

output is a binary word Z of 2α ≠ 1 bits such that its ith bit Z[i] = 1 iff y[i..i + |x| ≠ 1] = x,

for i œ [2α ≠ 1]. When i + |x| ≠ 1 Ø α, this means that only a prefix of x is matched.

Word-Size Lexicographically Maximum Suffix (wslm): given a packed string x that

fits in one word (up to α characters), return position i œ [α] such that x[i..α ≠ 1] is

lexicographically maximum among the suffixes in {x[j..α ≠ 1] | j œ [α]}.

If these instructions are not available, then we can emulate them, but our proposed

emulations cause a small slowdown of log log ω as shown in Table 2.

Table 2 Bounds in the word-RAM when the ω-bit wssm and wslm instructions are not available.

Time Space Reference

O
!

ω + n log log ω

α
+ m

α
+ occ

"

O(1) This paper

2 Packed String Matching

In this section we describe how to solve the packed string matching problem using the two

specialized word-size string matching instructions wssm and wslm, and standard word-RAM

bulk comparisons of packed strings.

I Theorem 1. Packed string matching for a length m pattern and a length n text can be

solved in O(m
α

+ n
α

) time in the word-RAM extended with constant-time wssm and wslm

instructions. Listing explicitly the occ text positions of the pattern occurrences takes an

additional O(occ) time. The algorithm can be made real-time, and uses just O(1) auxiliary

words of memory besides the read-only m
α

+ n
α

words that store the input.

The algorithm behind Theorem 1 follows the classical scheme, in which a text scanning

phase is run after the pattern preprocessing. In the following, we first present the necessary

background and then describe how to perform the text scanning phase using wssm, and the

pattern preprocessing using wslm.

FSTTCS 2011



426 Optimal Packed String Matching

2.1 Background

Critical Factorization. Properties of periodic strings are often used in efficient string

algorithms. A string u is a period of a string x if x is a prefix of uk for some integer k, or

equivalently if x is a prefix of ux. The shortest period of x is called the period of x and its

length is denoted by π(x). A substring or a factor of a string x is a contiguous block of

symbols u, such that x = xÕuxÕÕ for two strings xÕ and xÕÕ. A factorization of x is a way to

break x into a number of factors. We consider factorizations of a string x = uv into two

factors: a prefix u and a suffix v. Such a factorization can be represented by a single integer

and is non-trivial if neither of the two factors is equal to the empty string.

Given a factorization x = uv, a local period of the factorization is defined as a non-empty

string p that is consistent with both sides u and v. Namely, (i) p is a suffix of u or u is a

suffix of p, and (ii) p is a prefix of v or v is a prefix of p. The shortest local period of a

factorization is called the local period and its length is denoted by µ(u, v). A non-trivial

factorization x = uv is called a critical factorization if the local period of the factorization is

of the same length as the period of x, i.e., µ(u, v) = π(uv). See Figure 1.

a | b a a a b a

b a b a

(a)

a b | a a a b a

a a a b a a a b

(b)

a b a | a a b a

a a

(c)

Figure 1 The local periods at the first three non-trivial factorizations of the string abaaaba. In

some cases the local period overflows on either side; this happens when the local period is longer

than either of the two factors. The factorization (b) is a critical factorization with local period aaab

of the same length as the global period abaa.

Crochemore-Perrin algorithm. Although critical factorizations may look tricky, they

allow for a simplification of the text processing phase of string matching algorithms. We

assume that the reader is familiar with the Crochemore-Perrin algorithm [9] and its real-time

variation Breslauer-Grossi-Mignosi [7]. Observe that Crochemore and Perrin use Theorem 2

to break up the pattern as x = uv for non-empty prefix u and suffix v, such that |u| Æ π(x).

I Theorem 2. (Critical Factorization Theorem, Cesari and Vincent [8, 22]) Given any

|π(x)| ≠ 1 consecutive non-trivial factorizations of a string x, at least one is critical.

Then, they exploit the critical factorization of x = uv by matching the longest prefix z

of v against the current text symbols, and using Theorem 3 whenever a mismatch is found.

I Theorem 3. (Crochemore and Perrin [9]) Let x = uv be a critical factorization of the

pattern and let p be any local period at this factorization, such that |p| Æ max(|u|, |v|). Then

|p| is a multiple of π(x), the period length of the pattern.

Precisely, if z = v, they show how to declare an occurrence of x. Otherwise, the symbol

following z in v is mismatching when compared to the corresponding text symbol, and the

pattern x can be safely shifted by |z| + 1 positions to the right (there are other issues for

which we refer the reader to [9]).

To simplify the matter in the rest of the paper, we discuss how to match the pattern

suffix v assuming without loss of generality that |u| Æ |v|. Indeed, if |u| > |v|, the Crochemore-

Perrin approach can be simplified as shown in [7]: use two critical factorizations, x = uv

and xÕ = uÕvÕ, for a prefix xÕ of x such that |xÕ| > |u| and |uÕ| Æ |vÕ|. In this way, matching

both uÕ and vÕ suitably displaced by |x| ≠ |xÕ| positions from matching v, guarantees that x
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occurs. This fact enables us to focus on matching v and vÕ, since the cost of matching uÕ is

always dominated by the cost of matching vÕ, and we do not need to match u. For the sake

of discussion, it suffices to consider only one instance, namely, suffix v.

We now give more details on the text processing phase, assuming that the pattern

preprocessing phase has correctly found the critical factorization of the pattern x and its

period π(x), and any additional pattern preprocessing that may be required (Section 2.3).

While other algorithms may be used with the wssm instruction, the Crochemore-Perrin

algorithm is particularly attractive because of its simple text processing. Therefore, it is

convenient to assume that the period length and critical factorization are exactly computed

in the pattern preprocessing burying the less elegant parts in that phase.

2.2 Text processing

The text processing has complementary parts that handle short patterns and long patterns.

A pattern x is short if its length is at most α, namely, the packed pattern fits into a single

word, and is long otherwise. Processing short patterns is immediate with wssm and, as we

shall see, the search for long patterns reduces to that for short patterns.

Short patterns. When the pattern is already short, wssm is repeatedly used to directly

find all occurrences of the pattern in the text.

I Lemma 4. There exists an algorithm that finds all occurrences of a short pattern of length

m Æ α in a text of length n in O
!

n
α

"

time using O(1) auxiliary space.

Proof. Consider the packed text blocks of length α + m ≠ 1 that start on word boundaries,

where each block overlaps the last m ≠ 1 characters of the previous block and the last block

might be shorter. Each occurrence of the pattern in the text is contained in exactly one such

block. Repeatedly use the wssm instruction to search for the pattern of length m Æ α in

these text blocks whose length is at most α + m ≠ 1 Æ 2α ≠ 1. J

Long patterns. Let x be a long pattern of length m > α: occurrences of the pattern in the

text must always be spaced at least the period π(x) locations apart. We first consider the

easier case where the pattern has a long period, namely m Ø π(x) > α, and so there is at

most one occurrence starting within each word.

I Lemma 5. There exists an algorithm that finds all occurrences of a long-period long pattern

of length m Ø π(x) Ø α, in a text of length n in O
!

n
α

"

time using O(1) auxiliary space.

Proof. The Crochemore-Perrin algorithm can be naturally implemented using the wssm

instruction and bulk character comparisons. Given the critical factorization x = uv, the

algorithm repeatedly searches using wssm for an occurrence of a prefix of v of length min(|v|, α)

starting in each packed word aligned with v, until such an occurrence is discovered. If more

than one occurrence is found starting within the same word, then by Lemma 3, only the

first such occurrence is of interest. The algorithm then uses the occurrence of the prefix

of v to anchor the pattern within the text and continues to compare the rest of v with the

aligned text and then compares the pattern prefix u, both using bulk comparison of words

containing α packed characters. Bulk comparisons are done by comparing words; in case of

a mismatch the mismatch position can be identified using bitwise xor operation, and then

finding the most significant set bit.

A mismatch during the attempt to verify the suffix v allows the algorithm to shift the

pattern ahead until v is aligned with the text after the mismatch. A mismatch during the

FSTTCS 2011



428 Optimal Packed String Matching

attempt to verify u, or after successfully matching u, causes the algorithm to shift the pattern

ahead by π(x) location. In either case the time adds up to only O
!

n
α

"

. J

When the period of the pattern is shorter than the word size, that is π(x) Æ α, there

may be several occurrences of the pattern starting within each word. The algorithm is very

similar to the long period algorithm above, but with special care to efficiently manipulate

the bit-masks representing all the occurrences.

I Lemma 6. There exists an algorithm that finds all occurrences of a short-period long

pattern of length m, such that m > α > π(x), in a text of length n in O
!

n
α

"

time using O(1)

auxiliary space.

Proof. Let p be the prefix of x of length π(x), and write x = prpÕ, where pÕ is a prefix of p.

If we can find the maximal runs of consecutive ps inside the text, then it is easy to locate

the occurrences of x. To this end, let k Æ r be the maximum positive integer such that

k · π(x) Æ α while (k + 1) · π(x) > α. Note that there cannot exist two occurrences of pk

that are completely inside the same word.

We examine one word w of the text at a time while maintaining the current run of

consecutive ps spanning the text word wÕ preceding w. We apply wssm to pk and wÕw, and

take the rightmost occurrence of pk whose matching substring is completely inside wÕw. We

have two cases: either that occurrence exists and is aligned with the current run of ps, and

so we extend it, or we close the current run and check whether p’ occurs soon after. The

latter case arises when there is no such an occurrence of pk, or it exists but is not aligned

with the current run of ps. Once all the maximal runs of consecutive occurrences of ps are

found (some of them are terminated by pÕ) for the current word w, we can decide by simple

arithmetics whether x = prpÕ occurs on the fly. J

Real-time algorithm. As mentioned in Section 2.1, the Crochemore-Perrin algorithm can

be implemented in real time using two instances of the basic algorithm with carefully chosen

critical factorizations [7]. Since we are following the same scheme here, our algorithm reports

the output bit-mask of pattern occurrences ending in each text word in O(1) time after

reading the word. Thus, we can obtain a real-time version as claimed in Theorem 1.

2.3 Pattern preprocessing

Given the pattern x, the pattern preprocessing of Crochemore-Perrin produces the period

length π(x) and a critical factorization x = uv (Section 2.1): for the latter, they show that

v is the lexicographically maximum suffix in the pattern under either the regular alphabet

order or its inverse order, and use the algorithm by Duval [10]. The pattern preprocessing of

Breslauer, Grossi and Mignosi [7] uses Crochemore-Perrin preprocessing, and it also requires

to find the prefix xÕ of x such that |xÕ| > |u| and its critical factorization xÕ = uÕvÕ where

|uÕ| Æ |vÕ|. Our pattern preprocessing requires to find the period π
Õ for the first α characters

in v (resp., those in vÕ), along with the longest prefix of v (resp., vÕ) having that period. We

thus end up with only the following two problems:

1. Given a string x, find its lexicographically maximum suffix v (under the regular alphabet

order or its inverse order).

2. Given a string x = uv, find its period π(x) and the period of a prefix of v.

When m = O( n
α

), which is probably the case in many situations, we can simply run the

above algorithms in O(m) time to solve the above two problems. We focus here on the case

when m = Ω( n
α

), for which we need to give a bound of O( m
α

) time.
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I Lemma 7. Given a string x of length m, its lexicographically maximum suffix v can be

found in O( m
α

) time.

Proof. Duval’s algorithm [10] is an elegant and simple linear-time algorithm that can be

easily adapted to find the lexicographically maximum suffix. It maintains two positions i

and j, one for the currently best suffix and the other for the current candidate. Whenever

there is a mismatch after matching k characters (x[i+k] ”= x[j +k]), one position is “defeated”

and the next candidate is taken. Its implementation in word-RAM is quite straightforward,

by comparing α characters at a time, except when the interval [min(i, j), max(i, j) + k]

contains less than α positions, and so everything stays in a single word: in this case, we can

potentially perform O(α) operations for the O(α) characters (contrarily to the rest, where we

perform O(1) operations). We show how to deal with this situation in O(1) time. We employ

wslm, and let w be the suffix thus identified in the word. We set i to the position of w in the

original string x, and j to the first occurrence of w in x after position i (using wssm). If j

does not exist, we return i as the position of the lexicographically maximum suffix; otherwise,

we set k = |w| and continue by preserving the invariant of Duval’s algorithm. J

I Lemma 8. The preprocessing of a pattern of length m takes O( m
α

) time.

3 Word-Size Instruction Emulation

Our algorithm uses two specialized word-size packed string matching instructions, wssm

and wslm, that are assumed to take O(1) time. In the circuit complexity sense both are

AC0 instructions, which are easier than integer multiplication that is not AC0, since integer

multiplication can be used to compute the parity [17]. Recall that the class AC0 consist of

problems that admit polynomial size circuits of depth O(1), with Boolean and/or gates of

unbounded fan-in and not gates only at the inputs.

While either instruction can be emulated using the four Russians’ technique, table lookup

limits the packing factor and has limited practical value for two reasons: it sacrifices the

constant auxiliary space and has no more cache friendly access. We focus here on the easier

and more useful main instruction wssm and propose efficient bit parallel emulations in the

word-RAM, relying on integer multiplication for fast Boolean convolutions.

I Lemma 9. After a preprocessing of O(ω) time, the ω/ log log W -bit wssm and wslm

instructions can be emulated in O(1) time on a ω-bit word RAM.

3.1 Bit-parallel emulation of wssm

String matching problems under general matching relations were classified in [23, 24] into

easy and hard problems, where easy problems are equivalent to string matching and are

solvable in O(n + m) time, and hard problems are at least as hard as one or more Boolean

convolutions, that are solved using FFT and integer convolutions in O(n log m) time [1, 14].

To efficiently emulate the wssm instruction we introduce two layers of increased complexity:

first, we observe that the problem can also be solved using Boolean convolutions, and then,

we use the powerful, yet standard, integer multiplication operation, that resembles integer

convolutions, to emulate Boolean convolutions. In the circuit complexity sense Boolean

convolution is AC0, and therefore, is easier than integer multiplication.

String matching and bitwise convolution via integer multiplication. Consider the

Boolean vectors t0 · · · tn≠1 and p0 · · · pm≠1: we need to identify those positions k, such that

tk+i = pi, for all i œ [m]. Given a text and a pattern, where each of their characters is

FSTTCS 2011



430 Optimal Packed String Matching

encoded in log2 |Σ| bits, we can see them as Boolean vectors of length log2 |Σ| times the

original one. We can therefore focus on binary text and pattern. We want to compute the

occurrence vector c, such that ck indicates if there is a pattern occurrence starting at text

position k œ [n] (so we then have to select only those ck that are on log2 |Σ| bit boundaries

in c). In general, we have

ck =
fi

i=0,...,m≠1

(tk+i = pi) =

Q

a

fl

i=0,...,m≠1

(tk+i · pi)

R

b ‚

Q

a

fl

i=0,...,m≠1

(tk+i · pi)

R

b.

Define the OR-AND Boolean convolution operator ĉ = a “ b for the Boolean vectors

a = an≠1 · · · a0, b = bm≠1 · · · b0, and ĉ = ĉn+m≠1 · · · ĉ0, to be

ĉk =
fl

i=max{0,k≠(n≠1)},...,min{m≠1,k}

(ak≠i · bm≠i≠1).

Then, the occurrence vector c can be computed by taking the least n significant bits

from the outcome of two convolutions, ĉ = (t “ p) ‚ (t “ p). Treating the Boolean vectors as

binary integers with the left shift operator π, we can compute a “ b using standard integer

multiplication a ◊ b, but the sum has to be replaced by the OR operation:

a “ b =
fl

i=0,...,m≠1

[(a π i) ◊ bi] = a ◊ b (where + is replaced by ‚).

Observe the following to actually use the plain standard integer multiplication a◊b. Since

the sum of up to m Boolean values is at most m, it can be represented by L = Álog m + 1Ë

bits. If we pad each digit of a and b with L zeros, and think of each group of L + 1 bits as

a field, by adding up at most m numbers the fields would not overflow. Thus, performing

the integer multiplication on the padded a and b gives fields with zero or non-zero values

(where each field actually counts the number of mismatches). Adding the two convolutions

together we get the overall number of mismatches, and we need to identify the fields with

no mismatches, corresponding to occurrences and compact them. In other words, if we use

padded vectors tÕ, tÕ, pÕ, and pÕ, we can compute r = (tÕ ◊ pÕ) + (tÕ ◊ pÕ) and set ĉk = 0 if and

only if the the corresponding field in r is non-zero.

We use the constant time word-RAM bit techniques in Fich [13] to pad and compact.

Note that in each field with value f we have that 0 ≠ f is either 0, or borrows from the next

field 1s on the left side. Take a mask with 1 in each field at the least significant bit, and

subtract our integer m from this mask. We get that only zero fields have 0 in their most

significant bit. Boolean AND with the mask to keep the most significant bit in each field,

then shift right to the least significant bit in the field. The only caveat in the above “string

matching via integer multiplication” is its need for padding, thus extending the involved

vectors by a factor of L = Θ(log m) = O(log w) since they fit into one or two words. We now

have to use L machine words, incurs a slowdown of Ω(L). We next show how to reduce the

required padding from L to log log α.

Sparse convolutions via deterministic samples. A deterministic sample (DS) for a

pattern with period length π is a collection of at most Álog πË pattern positions, such that any

two occurrence candidate text locations that match the pattern at the DS must be at least π

locations apart [26]. To see that a DS exists, take π consecutive occurrence candidates. Any

two candidates must have at least one mismatch position; add one such position to the DS

and keep only the remaining minority candidates, removing at least half of the remaining

candidates. After at most Álog πË iterations, there remains only one candidate and its DS.

Moreover, if the input characters are expanded into log2 |Σ| bits, then the DS specifies only
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Álog πË bits, rather than characters. Candidates can be eliminated via Boolean convolutions

with the two bit vectors representing the 0s and 1s in the DS, that is, sparse Boolean vectors

with at most Álog πË set bits. The period π, the DS, and the other required masks and

indices are precomputed in O(ω) time.

Consider now how we performed string matching via integer multiplication in the previous

paragraph. Then, the padding in the bitwise convolution construction can be now reduced

to only LÕ = Álog log π + 1Ë bits instead of L bits, leading to convolutions of shorter

O(ω log log π) = O(ω log log ω) bit words and slowdown of only O(log log ω) time. Using

ω-bit words and O(ω)-time preprocessing, we can treat O(ω/ log log ω) bits in O(1) time

using multiplication, thus proving Lemma 9.

3.2 wssm on contemporary commodity processors

Benchmarks of packed string matching instructions in "Efficient Accelerated String and Text

Processing: Advanced String Operations" Streaming SIMD Extension (SSE4.2) and Advanced

Vector Extension (AVX) on Intel Sandy Bridge processors [18, 20] and Intel’s Optimization

Reference Manual [19] indicate remarkable performance. The instruction Packed Compare

Explicit Length Strings Return Mask (PCMPESTRM) produces a bit mask that is suitable

for short patterns and the similar instruction Packed Compare Explicit Length Strings Return

Index (PCMPESTRI) produces only the index of the first occurrence, which is suitable for

our longer pattern algorithm.

Faro and Lecroq kindly made their String Matching Algorithms Research Tool (SMART)

available [12]. Benchmarks show that for up to 8-character patterns, the raw packed string

matching instructions outperformed all existing algorithms in SMART. The Crochemore-

Perrin algorithm with packed string matching instructions performed very well on longer

patterns. These preliminary experimental results must be interpreted cautiously, since on

one hand we have implemented the benchmarks very quickly, while on the other hand the

existing SMART algorithms could benefit as well from packed string matching instructions

and from other handcrafted machine specific optimization; in fact, a handful of the existing

SMART algorithms already use other Streaming SIMD Extension instructions.

4 Conclusions

We demonstrated how to employ string matching instructions to design optimal packed

string matching algorithms in the word-RAM, which are fast both in theory and in practice.

There is an array of interesting questions that arise from our investigation. (1) Compare

the performance of our algorithm using the hardware packed string matching instructions

to existing implementations (e.g. Faro and Lecroq [12] and platform specific strstr in glibc).

(2) Derive Boyer-Moore style algorithms that may be faster on average and skip parts of the

text [6, 27] using packed string matching instructions. (3) Extend our results to dictionary

matching with multiple patterns [3]. (4) Improve our emulation towards constant time with

ω-bit words and AC0 operations. (5) Find critical factorizations in linear-time using only

equality pairwise symbol comparisons: such algorithms could also have applications in our

packed string model, possibly eliminating our reliance on the wslm instruction.
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