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Preface

The name of R.A. Bradley ( together with that of M.E. Terry ) is associ-
ated with a model that is widely employed in paired comparisons. Therefore, it
seems appropriate to begin this thesis with a quotation from Bradley (1976).

Consulting statisticians are familiar with the consultee who, after describ-
ing his proposed experiment in several sentences has only one question:
"How many observations do I need 7",

In particular the consultee might be tempted to ask this question when paired
comparisons are involved. In paired comparison experiments observations are
made by presenting pairs of objects to one or more judges. This method is used
extensively in experimental situations where objects can be judged only subjec-
tively, that is to say, when it is impossible or impracticable to make relevant
measurements in order to decide which of two objects is preferable. When all
pairs are presented to each of n judges (round robin), then the number of paired

comparisons is n (;), where ¢ is the number of objects. This number is often too

large for practical purposes. Bradley and Terry postulate the existence of param-
eters, 7; for T;, where I; is the i-th object or treatment. In many cases these
parameters are functions of quantities determining the objects and a linear
model can be formulated. The information from this model can be used to con-
struct designs, that are more efficient than the round robin design, i.e, less com-
parisons are needed to measure the parameters of the linear model with the same
accuracy as the round robin design. The aim of this thesis is to construct such
designs.

The method of paired comparisons provides a simple experimental tech-
nique. However, many models have been formulated for paired comparison
experiments. Some of these models and procedures are discussed in section 1.
These procedures yield covariance matrices of the estimators for the unknown
parameters. These covariance matrices are in particular important with regard to
the construction of optimal designs, because many criteria depend on the covari-
ance matrix of the estimators. However, these matrices depend in general on the
unknown parameters, Therefore, the assumption of no differences in treatment is
made in order to construct optimal designs. In section 1 it is shown that in this
case an ordinary linear model can be applied for constructing optimal designs.
In section 2 a general approach for the construction of D-optimal designs for
paired comparisons is given. This approach assumes an underlying structure. It
uses the equivalence of the D-criterion and the G-criterion, when adapted to the
situation of paired comparisons, This approach is more general than the above
approach, where the objects are fixed. Now they may be chosen in a given experi-
mental region. The concept of exact and discrete designs is introduced. The
latter designs are useful in constructing optimal designs. A discrete design con-
sists of, say, N pairs with weights p;, such that p; + -+ + py = 1. Exact
designs can be used in practical applications. They can de defined as discrete
designs with rational p, ,
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Applications are given in sections 3, 4 and 5.

Section 3 deals with a factorial model with main effects and first-order interac-
tions. Exact D-optimal designs are given both for the case of a hypersphere as
experimental region and for the case of a hypercube as experimental region.
Some of these results are known in the literature, Sections 4 and § deal with a
quadratic model, in section 4 with a hypersphere as experimental region, in sec-
tion § with a hypercube as experimental region. In both sections discrete D-
optimal designs are presented. Some of these designs have a large number of
pairs, in particular in the case of a hypercube of high dimension, Therefore
discrete D-optimal designs are given for which the number of pairs is reduced
considerably. Using these discrete designs we construct exact designs with a high
efficiency and with a relatively small number of pairs. The robustness of the
discrete designs is investigated, i.e. we discuss the efliciency of the designs when
the assumption of no differences in treatment does not hold.



1. Formulation of models for paired comparisons

1.1. Introduction

In paired comparison experiments observations are made by presenting
objects in pairs to one or more judges. The word “object” may stand for item,
treatment, stimulus, and the like. The judge has to declare which object of the
pair presented he prefers. In the simplest situation the observations are QO or 1,
indicating the preference for one of the two objects. More generally the prefer-
ence may be recorded on some finer scale, for example a 7-points scale
(—3,~2,~1,0, 1, 2, 3), implicitly allowing ties to be declared. The method of
paired comparisons may be used in cases where objects can be judged only sub-
jectively. So, applications have been to taste testing, consumer tests, psychophy-
sical analysis, and more generally to situations where quantification through
measurement is difficult.

Many models have been formulated with regard to paired comparison experi-
ments. Some of these will be discussed in the following sections,

1.2. The Bradley-Terry model

A model, which is widely employed, is the model provided by Bradley
and Terry (1952). The paired comparison experiment has t objects, Ty, ..., T} ,
with n;; judgements or comparisons of T; and T, n;; 2 0, ny = 0, ny; = ny;,
i, j=1,...,t. Let n; ,; be the number of times 7, has been preferred to T,
when 7; and 7; were compared, n; ;; = ny 4, 7.y + 1y = ng; (2 7). Soin
the model it is not allowed to declare ties.
Bradley and Terry postulate the existence of parameters, w; for I;, w; > O,
such that the probability 7, ;; of selecting I; when compared with T; is

Ty

T =) (1.2.1)

Tig =

Since {1.2.1) is not dependent on parameter scale, convenient scale-determining
constraints are formulated like
¢

Im=1, | (1.2.2)
i=1
or
t
logm; = 0. (1.2.3)
im=1 i

Likelihood methods can be used to estimate these parameters. On the assump-
tion of independent selections, the likelihood function is

o=
IO (m, + )™

1<

L{m)= (1.2.4)




where
a; = z i »
F]

and
7= (..., m)" .
Maximizing (1.2.4), subject to (1.2.2), gives the likelihood equations

a; nij
—_—— — 0 =1, ..., , (1.2.5)
P }éi pi tp;

t
=1, (1.2.6)
i=1
where p; is the likelihood estimate of ;.

Ford (1957) describes an iterative solution of the likelihood equations. Brad-
1ey (1955) gives large sample results and the asymptotic distribution of the
maximum likelihood estimators. These results will be discussed later,

1.3. Generalizations of the Bradley-Terry model

There are many generalizations of the Bradley-Terry model. Rao and
Kupper (1967) generalize the model by introducing a threshold parameter
Mo 2 0. This parameter is interpreted as the threshold of sensory perception for
the judge. They model the probabilities of preference and no preference as '

T =T
L m; + 917'1 ’
i ;(0%=1)
= s 1.3.1
To.is (mwy + 0m;)(m; + 8my) (1.3.1)
- 7y
Ty = Ty + 9?73 ’
where
=, (1.3.2)

For § = 1 the Rao-Kupper model coincides with the Bradley-Terry model. Rao
and Kupper show that the maximum likelihood estimates p; (i=1,...,¢) and
O of 7w, (i=1,...,t)and # are the solutions of the equations

(1.3.3)
b ne.y + . (o +ny.)0
2 RLLEL R T R 0 T T =0 L i=1,...,t,
Pi J#i p + Opj Josi Pj + Hpi

where



b= 2 (noy +nmiy)
J

and

L1

prxl.

i=1

Beaver and Gokhale (1975) generalize the model in order to incorporate within-
pair  order effects. They assume the existence of parameters
8;.i,j=1,...,t,8;; = 8;,, associated with the pair (i,j) such that the
preference probabilities for the ordered pair (¢ ,j ) are

my, = T8y
bea ’”}‘}"ﬂ"j
17'3"'81}
= T =% . 1.3.4
44 ’ﬂ"“‘*"ﬂ')‘ ( 3 )
where

183_;1 < min{m ,‘F}}.

In this model the likelihood equations are rather complicated. We refer to
Beaver and Gokhale (1975) who also describe an iterative technique to find solu-
tions. ‘

1.4. Weighted least squares approach

Beaver (1977} presents a general approach to the models defined above. His
results concerning the covariance matrix of the estimators are used later on.
Therefore, some results are given here, Beaver uses a method described by Griz-
zle, Starmer and Koch (1969), who present a unified approach to the analysis of
data resulting from an experiment involving s multinomial populations, each
having r categories.

Let m; M <omy be the observed cell counts for the i-th multinomial

2! [
r
population resulting from m; = z m;; observations, i=1,...,s.
i=1
Let
ﬁ = (pflo . oP:’, ): > (1-401)

be the sample estimate of the cell probabilities
F, = (ml, CeL T ) . (1.4.2)

and let V(p;) be the usual sample estimate of the covariance matrix of
poG=1,...,5)



Define (1.4.3)
T 3(?1',...,73’)‘ [}
5 5(51’:""13;')'»
V(p) = block diagonal matrix of dimension rs x rs having

V(p; ) as the i -th diagonal block,
Fm(7) = any function of the elements of 7 having continuous
partial derivatives up to second order with respect to

theelementsof #,m = 1,...,u,withu € (r—1)s ,
F(‘?—F) ?(fl(f).--~.fa(’—r))| ’
H = a matrix of dimensionu x rs with
Hy = agk(") , where { and j are such that
Ty
l=j(modr), 08 j<r,i=0U~j)r+1,
s =H V(F) H"' of dimension u x u

When the u parametnc and possibly nonlinear funct:ons Fm are functionally

independent of one another and of the sums Z my ((=1,...,5), then

i=1
‘both H and S are of rank u.
Let
F(m)=X8 , (1.4.9)

where X is a known matrix of dimension z x v and of rank v, and 8 is a vector
of unknown parameters. As Beaver (1977) points out, weighted regression pro-
duces the best asymptotic normal estimate of 8 given by

B=(X's1'X)'X" 'S F(F) . (1.4.5)

The elements of S are stochastic, If they are not stochastic, then the covariance
‘matrix of 8 is equal to

varB = (X' S"1x)1 . (1.4.6)

‘Therefore, one can expect that equation (1.4.6) is asymptotically correct if the
elements of S are stochastic. An important special case of F(7) involves a
loglinear function of 7. For a positive matrix A of dimension &k x1 we define

logA by (logA); = log(Ay), for all i=1,...,k,j=1,...,l. When

F(7) = K log(A 7) with X of dimension ¢ x u and of rank ¢ < u, then
H=KkKkD1tA ,

and

S= KD TAV@E)K DAY



where D, is a diagonal matrix with the elements of A 5 on the diagonal. The
use of log 7; instead of m; will be discussed later.
The model of Beaver specializes to the Bradley-Terry model as follows.

Let
r =2,
o= (M1 Ma02, T3 T3.180 0 0 Fe—1.-11,Trt~12)
P = (p;.xz,Pz.lz,Px.xs,Ps.ls. s .p¢~1.z-lnpz.z—u)' >
where

Di i =n1.u/nu ,anestimateof’n‘i_fj ;
Fi(FY = log(mi oy /7m;.45)
F () (fiFusee FusFomeeo Frore) .

Now, V(7) is a block diagonal matrix of dimension 2(%) x 2(%) having as blocks
g 2 2 g

the matrices

1 Pi.ijPj.ty TPi.ijPj.t}

ng; | TPi.isPi.yp Pi.iiPj.i

and S is a diagonal matrix with diagonal elements (n;; p; .4 pj.i;) "' .
Let, according to the Bradley-Terry model,

log (77'1.1)/7?';.:;)= logm; — logm; ,
and so
F(#)= K logm ,

with

[«

0 00 O0...1-1

If we writea; = logw; — logm, (i=1,...,t~1) ,
then



1-1 0...0 0
1 0-1...0 0

x1

. . . . . (23]
1 0 0...0-1
F@=17 0 0...0 0

0 1-1...0 of .

g -3
0 0 0...0 1

Now, the o; can be estimated by use of (1.4.5), and the estimates of the ; are
easily obtained from the estimates of the o; with the constraint (1.2.6).

1.5. Response surface fitting

Springall (1973) assumes that the 7; (i=1,...,t) are functions of con-
tinuous independent variables x4,...,x;. As in the classical regression situa-
tion, the most useful functions are those that are linear in the unknown parame-
ters, i.e.

s
IOg my = Zl Xig Bk . (1.5.1)
™

Using a method similar to that of Rao and Kupper (1967), Springall obtains
results concerning the covariance matrix (¥, )~ of his estimators 6 of 0 and £,
of £;, where

fx - eB’ (i:Ip-'-,S) s
and
9 as defined in (1.3.1) .

His results are listed as

2
Voo = 2ng St 1_ _ z<£ ey #5071,
i<}

02— 1)?
Vor = 1 Zzni} ¢i'j(xjr_xb~) r=1,...,s ,
£.0 75
Vg = 1 X ny b (xp —xp)(xy —x5) rg=1,...,5,(1.52)
£r£q i<j
' where
! = 02m w; [0 (w?+ 7]+ 2m,m,]
ij —

(771 + 917'))2(?{; + 017'1)2



These results contain some mistakes, even when the random variable nq is
replaced by its expectation. They should read

02+3 ., Am?m}
- 4 S
Voo ;<§ j 0262 — 1) ij (r +0m;)2(m; +0m,)? |’

Ly, T 02 (m}— 7)) (xy — x,)
gr i<j Y (‘ﬂ',' + 017'))2(17') + 977'1)2

Vor

, (1.5.3)

v, asabove,
In deriving the covariance matrix (A,,)™! of the estimators of B Springall uses
Aor = vor[€or >
Mg = vrgl (€080
This is not correct, it should be
Arg = &r &g Vry -

When the Bradley-Terry model is used without the threshold parameter no the
results concerning the covariance matrix (A, )~! of the estimators 8, of B are

Arq = Ez nyj ¢ij (xif - xir)("iq - qu) ’ (1.5.4)
i<}
where
$=mom,/(m +mP =Ty (15.5)

1.6. The covariance matrices of the estimators

For convenience we formulate (1.5.4) in a different fashion. Let X be a
matrix of dimension ¢ x s, the elements of which are the x; from (1.5.1). This
matrix plays the role of design matrix in the standard experimental situation
with log 7; as observations.

Define
1 -1 0. o O
1 0-1. o O
G=J]1 0 O0...0-1], (1.6.1)




a matrix of dimension (;) xt having one +1, one -1, and t—2 zeroes in each

row, such that

-1 Jfi=j,
(GG )ij =
t—1 Jif i = j.
The matrix G corresponds to a design where every two items are compared just
once (ny; = 1;i,j=1,...,t, i#j).
Define
D=GX, ' (1.6.2)

®(7r) = diag(na$12n13d1s, - - - 1 Pre o 2aPos, - - o oy beo1,),(1.6.3)

a matrix of dimension ( ;) x (;). It is easily verified that (1.5.4) may be rewrit-
ten as follows: ‘

A =LY xpnybyxy — LY Xpnuybyxy
T<] 1<]
+2 X xpnybyxy + LY xpnybiixg
i<j 1<}
= LT xpl—nydydxy + L xeC L nijdis)xig
iv ) i Foti

= T % (G 'O(m)G )iyxj + Lxy (G'O(T)G )y 1y -

i»j H
Hence
Q)= (D ®(m)D)? . (1.6.4)

The methods of Beaver and Bradley-Terry can also be used to estimate the
parameters of the model (1.5.1). Actually, El-Helbawy and Bradley(1978)
analyse factorial models and give large-sample results. Asymptotically, the
covariance matrix of the estimators of the parameters coincides with the matrix
given in {1.6.4). This is to be expected since the methods are based on maximum
likelihood estimation of the parameters. It may also be verified as follows.

n
Let n be the number of factors, the i -th factor has b; levels, so thatt = [] 5.
i=1

The general problem in the model of El-Helbawy and Bradley is to estimate the
parameters i, ,i=1,...,¢t under the conditions

1’
By,

= 0,
s (1.6.5)

where

F73 ‘(ul»""ﬂl)‘7



i = logw; ,
lz "‘(1:0'0:1). 5
1.’ is the constraint (1.2.3),

B, p = O means that m specified orthonormal contrasts  are
zero.

-

This problem is solved by estimating the other ¢t —m —1 orthonormal contrasts;
these can be written as linear combinations of the yu,; :

01 = B:; “ * (1.6.6)
where B} is a (t —m —1) x ¢t matrix, and
13'/\/{ [1@[\&_ Bm' ;’]21
By,
Bn
1t follows that
= B:.' 91 .
The result is

Asymptotically (B, — 0y) has the asymptotic (t —m—1) variate (1.6.7)
normal distribution with zero expectations and covariance matrix
(B A(w) By')™, where

—nydy HAf 1=},
T nuda Af i=j.

kot

Alr) =

We can reformulate these results as follows,
I

X =t By,

then X can be regarded as the design matrix in the standard experimental situa-
tion with an appropriate model of type (1.5.1). Hence (1.6.6) is equivalent to

p=X8,
and the estimator of 8 is ﬁ = (31/ N7
pr
var (8,/VE)= By A(w) Ba)Y ' = (X' G ®(m)G X)*.
SS, (1.6.7) may be rewritten as
var B= (D' ®(m)D)" , : (1.6.8)

which coincides with (1.6.4).
The estimation procedure of Beaver is asymptotically eguivalent to0 maximum
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likelihood, so we may expect both procedures to lead to the same asymptotic
covariance matrix when applied to the parameters of model (1.5.1). It can be
shown that the results given in (1.4.3) and (1.4.6) can be rewritten as follows,

FHF)=Gloggr=G X B8=DB. (1.6.9)
In section 1.4 we have seen that
S t= ®(%) ,

where ®(77) is the matrix ®(n) in which the 7; ;;, have been replaced by the
estimates p; ;. Substituting this in (1.4.6) we find

varB = (D' ®(F#)D)!. (1.6.10)

-1.7. Generalized linear models

Generalized linear models provide a unified approach and computational
framework for analysing data. McCullagh and Nelder (1983) give an extensive
account of the applications generalized linear models have. Computer packages
have been designed for analysing data by means of generalized linear models.
One of them, GLIM, is widely used now.

McCullagh and Nelder formulate the generalized linear model in the following
tripartite form.

i) The random component: a vector of observations y of lenght N is
assumed to be a realization of a random vector ¥ with stochasti-.
cally independent components, The components of ¥ have a dis-
tribution of an exponential family, These distributions are of the
same form (e.g. all normal, or all binomial, etc.). The vector of
expectations ism = (my,...,my) .

il) The systematic component: the independent variables (or covari-
ates) xy, Xz, ...,xs produce a linear predictor % given by (1.7.1)

n=X8,
where X is the design matrix with elements x;;.

4ii) The link function between the random component and the sys-

tematic component

m = glm). »
This link function g may be any monotonic differentiable func-
tion.

The Bradley-Terry model may be formulated as a generalized linear model. Let
N be the number of pairs for which n;; > 0. Let N be the i-th row of the
matrix X be denoted by x;¢' and the k ~th column of X by x:,. An object can
be characterized by its row in the design matrix. Let y; be the observation
related to the pair characterized by X and x; e Now, the observation y; is a

realization of a random variable Y, having a binomial distribution with param-

etersmy 4, and ;. We choose the logit function g (x ) = log (x/(1—x)) as
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the link function. This function maps the unit interval (0,1) onto the real line
(—o0, ). So, we have

n: = g(my ,4,)= log —Wi——/(l-— — 1 = log-m—l ,
1'r2 i, t 7, T, tm, i,

or

N = log my — log m;, . (1.7.2)
The independent variables produce the 7, given by

M = i Z‘u B,

1=1

where

Zip T Xig T Xiyl -
Substituting this in (1.7.2), we obtain

logm — logm,, = él Geig = xig) B, (1.7.3)

in which we can recognize the model (1.5.1).

Now, the advantage of using log 7, instead of ; is becoming clear. The use of
log m; will be discussed also when dealing with Thurstone’s model in section
1.9.

Fienberg and Larntz(1976) give a log linear representation for paired comparis-
ons (and for multiple comparisons). They reformulate the model and show that
it coincides with a log linear model of quasisymmetry for a t x t contingency
tabel. The likelihood equations for this model can be solved using a version of
the general iterative scaling technique described by Darrock and Ratcliff (1972).

1.8. Ordinary linear model

It is possible to formulate an ordinary linear model by choosing an
appropriate distribution and link function in (1.7.1).
If the assumption is made that

i) The Y; in (1.7.1) are independent and normally distributed with
.constant variance ¢ ? and expectation m;, (1.8.1)
ii) The link function is the identity function,

then the geﬁeralized linear model coincides with an ordinary model.
We have

Y=D'B+e , (1.8.2)

where
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Y = (Y,,Yg.,..,YNI)',

Y; = arandom variable indicating difference or preference,

Ny=ZXYn,; ,

i<]
D' = the design matrix of dimension Ny x s,
ﬁ a(Blt"‘vﬁs)"

e . = the disturbance vector withEe = 0 ,var e = a?],

In general the assumption var ¢ = 02 I does not hold when paired comparisons
are made. The matrix D' may be written as follows

DP=¢G'xX , (1.8.3)

where X is the usual design matrix in a classical experiment, G* is a matrix
analogous to G. It has in each row one +1, one ~1 and t-2 zeroes; a row is
repeated n;; times, when the objects T, and T; are compared n;; times,

The least squares estimator for 8 is

B= " DH'D"Y ,
and

var B= (D*'D*)Y 102, (1.8.4)
This may be rewritten as:

D'D'=X'G"G'X=4X'G"'®1,)G X)=4D'®(1,) D .

Hence
var B = i——oz(D‘ ®(1,) D). (1.8.5)

The matrix (1.8.5) is proportional to the matrix in (1.6.4), if
r=(1,...,1). (1.8.6)

Quenouille and John (1971) use the ordinary linear model when constructing
designs for 27 -factorials. However, if one uses the generalized linear model when
constructing optimal designs, then the covariance matrix depends on the unk-
nown parameters. In general there are no estimates of the parameters, since the
parameters should be estimated from the experiment which is being designed,
Therefore, assumption (1.8.6) is made very often. But in that case the general-
ized linear model coincides with the ordinary linear model. Actually the designs
given by Springall (1973) and El-Helbawy and Bradley (1978) for 2" -factorials
may be found by using the method developed by Quenouille and John. Hence,
the ordinary linear model is very useful in constructing optimal designs for
paired comparison experiments.
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1.9. Thurstone’s model

The method of paired comparisons has applications in the fields of psycho-

physics and its use has been stimulated especially by the work of L.L.Thurstone,
The method of paired comparisons is very useful in these fields, since the objects
or the effect of stimuli can be judged only subjectively. A problem which has
-attracted much attention in phychophysics is: how is the subjective sensation in
the consciousness of the subject related to the intensity of a continuously vary-
ing stimulus, Thurstone(1927) called the processes by which the subject
discriminates or reacts to stimuli "discriminal processes’, and he formulated the
following model.
Each stimulus gives rise to a subjective value in a so-called sensory continuum.
This subjective value is interpreted as the realization of a random variable which
is real-valued and normally distributed. Following Bock and Jones (1968) in
formulating this, one may represent the discriminal process associated with a
stimulus 7; as a random variable v,:

vi = g te o, (1.9.1)

where u,; is the fixed component and e; is the random component. For 7'; we
havev; = u; + ¢; , s0

vi—vy = (g — )+ (e —ej). (1.9.2)

The joint distribution of ¢; and e; is assumed to be bivariate normal with expec-
tations 0, variances 0 ? and ¢ 7 , and correlation coefficient p;; .
The probability that I; will be preferred to T; is given by

_ 1 1, Y=Hiy 2
P(T; > T;)= ———Jexp| —=(—— ) | dy, (1.9.3)
‘V‘2'ﬂ'0’i) 2 T4y
where
ci=ol+a}-2p0,0; ,
and
Hig = My — K.
So
P(T, > T,) = & £iLy | (1.9.4)
Ty

where ®g is the standardnormal distribution function. Usually, the following
assumption is made

o,;=1,i,j=1,...,t (Thurstone’s case 5). (1.9.5)

Then the model coincides with the generalized linear model of (1.7.1) with the
observations coming from a binomial distribution and the probit function as the
link function. Note that there is only one difference with the Bradley-Terry
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model: the link function. The relation between the Bradley-Terry model and
Thurstone’s model can also be formulated as follows, If we substitute the "logis-
tic" density function for the normal density function, then we have

P, >T)= % [ secn?Zdz. (1.9.6)
s 2
This yields
‘;"‘i} ';’f“:; #
— ij
P, >Ty=Ll14+8—¢ |- (1.9.7)
2 evp"u + e“y“e; 1+e ¥

If we define u; = log 7, then "/ = m,/m; and (1.9.7) gives

milm, i
1+ m/nm; w +

P(T; > T)) = (1.9.8)
which we recogninize as the Bradley-Terry model. So values log 7; correspond
to values u; on a subjective continuum. This yields another argument in favour
of model (1.5.1).

Bock and Jones(1968) discuss procedures for estimating the parameters in the
Thurstonian model. The results concerning the covariance matrix of the estima-
tors are analogous to the results of section 1.6. When, analogous to (1.8.6), the
assumption is made that the u; have the same value, then the covariance matrix
coincides with the matrix given in (1.8.5). Hence the designs constructed under
this assumption are also useful in the Thurstonian concept.

Remark

The models discussed in this chapter assume a unidimensional continuum.
Davidson and Bradley (1969) derive a model for multivariate paired comparis-
ons. In this model ¢t objects are to be compared on p attributes,. However, it is
not always possible to examine a priori whether a certain attribute is unidimen-
sional or not. Gokhale, Beaver and Sirotnik (1983) provide a model-robust
approach to the analysis of paired comparison experiments. Their approach
makes it possible to examine the assumption of unidimensionality.
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2. A method to construct optimal designs and an adapted criterium

2.1. Introdaction

In chapter 1 we have seen that the design of a paired comparison experi-
ment may be indicated by its ¢ objects and the n;;, where n;; is the number of
.comparisons of the i-th and j-th object. When n;; is constant for all i and j,
the experiment is called a balanced paired comparison experiment. It is also
called a round robin design. This name refers to a round robin tournament as
used in many sports where each of the t teams plays every other team 2 fixed
number of times. The experiment may also be seen as an experiment designed for
the standard experimental situation, since the problem of design is the same
whether we have for two objects an expression of preference or two separate
values. In the standard experimental situation the experiment is known as a bal-
anced incomplete block design (BIB), the block size being two. A balanced
incomplete block design is a design with the properties:

i} all objects occur equally frequently,
ii) all pairs of objects occur in each block equally frequently.

The number of observations of a round robin design depends on the number of
objects, When the number of the objects is 50 and all objects are compared once,

the number of observations amounts to (520 J, or 1225, This gives a practical

difficulty in paired comparison experiments, Therefore many incomplete paired
comparison designs have been constructed. These are designs in which not all
possible pairs occur. There is a relation between these designs and designs in the
standard experimental situation, The partially balanced incomplete block
designs (PBIB) of the standard experimental situation can be used to design
experiments in the situation of paired comparisons. David (1963) gives a survey
of the results obtained in this area and gives references,

2.2. The use of underlying information on the objects when constructing
optimal designs; some results in the literature

In the design of experiments discussed above one does not use any informa-
tion on the underlying structure of the objects. Sometimes there is no informa-
tion available, However, if a model of type (1.5.1) can be formulated, then it
gives information on the objects. This information can be used in the design of
experiments, Using this information it is possible to design experiments which
are more efficient, according to some criterion, in estimating the parameters of
the model than the round robin design, In this area only a few results are avail-
able. The results obtained are by Quenouille and John{1971), Springali (1973)
and El-Helbawy and Bradley (1978). These results will be discussed in the next
sections.
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2.2.1. The results of Quenouille and John for 2" -factorials

Quenouille and John (1971) present 2" -factorial paired comparison designs,
which can be constructed in order to reduce the number of pairs required by
ignoring information on higher-order interactions. Following Quenouille and
John we illustrate the method by considering designs for 2?-experiments. In a

. 2%-experiment there are four objects (1), a , b and ab in the usual notation. Ina
round robin design we have 6 comparisons or blocks in terms of the standard
experimental situation. These 6 blocks can be broken up into three sets of blocks

(a): ((1),ab), (a, b);
(b) : ((1)9 B) , ( b,ab);
(c) : ((1),0),(aab).

If one is not interested in the interaction AB, then it is better to use the set (a)
only. Set (a) measures the main effects A and B, but gives no information on the
interaction AB. Sets (b) and (c¢) both measure the interaction AB and a main
effect. So, in a round robin a main effect is measured in 4 out of 6 blocks. In the
design consisting of set (a) a main effect is measured in 2 out of 2 blocks. There-
fore, the set (a) gives 50 percent more information on A and B than the round
robin design. Now, in a 2" -experiment the .}2” (2"—1) paired comparisons can
be broken up into 2" —1 sets of 277! blocks. Each set may be generated from an
initial block consisting of object (1) and another object. Now, depending on the
effects on which information may be ignored, a design can be composed of one or
more of these sets. When considering the efficiency, Quenouille and John compare
the new design with a round robin design for each effect to be estimated. For a
specified effect the efficiency is defined to be the ratio of the accuracy with which
the same effect is measured in a round robin design. Some of the designs con-
structed by Quenouille and John will be given in chapter 3 where these designs
will be discussed in a more general context, In computing the accuracy with
which an effect is measured Quenouille and John assume that the observations in
the paired comparison experiment have the same variance. Their analysis of
paired comparison experiments can be described by the ordinary linear model
(1.8.2). A drawback of the criterion Quenouille and John use is that the design
constructed is compared with the round robin design. Therefore, it is only pos-
sible to give relative efficiencies. When a more efficient design is found, it only
may be claimed that the new design is better than the round robin design.
However, there might be a design which is better than the new design. Another
disadvantage of the criterion is that the efficiency of the design must be given for
each effect separately. In the 22-factorial mentioned above the efficiency of a
main effect for the design consisting of the pairs ((1),ab) and (a, b) is 1.5,
whereas the efficiency of the interaction is zero.
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2.2.2. Analogue designs

Springall (1973) obtained some results in the design of paired comparison
experiments. As we have seen in section 1.5 Springall uses model (1.5.1). When
constructing designs Springall considers properties based on the elements of the
covariance matrix. He introduces the concept of analogue designs. Analogue
- designs are designs for which the covariance matrix of the estimators is propor-
tional to the covariance matrix in the standard experimental situation with the
same designpoints. Without mentioning it explicitly, Springall uses in this con-
text a slightly adapted model for the standard experimental situation:

].Og m; = Bo + Z 'xaﬁg . . (2.2.1)
k=1

Compared to the model (1.5.1) the parameter B, has been added. If one does not
assume the model (2.2.1) for the standard experiment, then the results of
Springall are not correct. However, there seems to be no clear argument for com-
paring the paired comparison experiment in the case of model (1.5.1) with the
standard experiment in the case of model {(2.2.1).

The main result is

Theorem 2.2.1
An -gpproximate- analogue design may be found by choosing

ny = [N (8} );?':‘ (B8)°H) + 051 , . (2.2.2)

where [x ] denotes the integral part of x and N = Y. Y ny; (N should be chosen
(<]

in advance ), and ¢; as defined in (1.5.2).

Of course, the n;; depend on the ¢, , which are unknown. The n;; give an exact
analogue design, if all n,; are integers before the integerization stage, The covari-
ance matrix of the estimators is, when the n;; from (2.2.2) are chosen, propor-
tional to the matrix in (1.8.5). It can easily be seen that this matrix is propor-
tional to the covariance matrix in the standard experimental situation in the case
of model (2.2.1), It follows that, when (1.8.6) holds, the round robin design is
an analogue design. The analogue design obtained by use of (2.2.2) is -as
Springall points out- one out of many and does not necessarily yield the covari-
ance matrix with the smallest elements. Therefore, linear programming methods
are used to obtain analogue designs with the smallest elements. However, the
objective functions in this linear programming problem depend on the é.; and
when giving an example Springall makes the assumption (1.8.6).

The concept of analogue designs has the advantage that it enables certain desir-
able properties -for example rotatibility- to be readily reproduced. However,
other properties are not reproduced, for example D-optimality, a criterion which
will be defined in the next section. Actually, these designs are in general not
efficient with regard to D-optimality. Starting from a more general concept in
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the design of paired comparison experiments D-optimal designs can be con-
structed. This concept will be given in section 2.3,

2.2.3. Results of El-Helbawy and Bradley

El-Helbawy and Bradley {(1978) consider some optimality criteria for
- designs and some applications to factorials. First, they consider the situation
where some specified null hypothesis is tested. They construct designs for which
the asymptotic power of the test is maximized. The asymptotic power depends
on 7, and assumption (1.8.6) is made. This assumption is ~as they point out-
consistent with the null hypothesis that some specified effects are zero and the
concept that any other effects present are of the same order of magnitude rela-
tive to N as the factorial effects or interactions under test. They give three
examples of a null hypothesis for a 2%-factorial and construct the appropriate
designs. The designs found can also be constructed by the method of Quenouille
and John.
They further discuss a method to construct D- , A- and E-optimal designs for
factorials. D-optimal designs minimize the generalized variance or the deter-
minant of the covariance matrix, A-optimal designs minimize the average vari-
ance, E-optimal designs minimize the largest eigenvalue of the covariance matrix.
They give results for one example: a 23-factorial, where one is interested only in
the three interactions involving a specified factor. The criteria mentioned above
depend on the covariance matrix, which is a function of the unknown parame-
ters. Again, assumption (1.8.6) is made, and El-Helbawy and Bradley find a
design which is A-, D- and E-optimal. The design coincides with the design they
obtained before when maximizing the asymptotic power in testing the null
hypothesis that the three interactions are zerc. This idea can be used in a more
general context, as will be seen in section 2.3,

2.3. A general concept for the design of paired comparison experiments

For convenience we reformulate model (1.5.1):

logr = fq(x )B4+ Ffalx)Be , (2.3.1)
where

x €X,

X c R,

f; : X — R , continuous on the experimental region X .

In Fedorov’s (1972) notation for designs in the standard experimental situation,
the design of a paired comparison experiment may be written as a collection of
variables

(ulsvl) ,(u2,v2) R (um ,Vm) N
ny y Mz L, ee, Ty . N,

(2.3.2)

where
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M=

nizN,andui,VgGX.

i=1

The design should be interpreted as follows. In a pair (v;,v;) n; comparisons
are made, Now a design may be constructed by choosing both the (u;,v; ) and the
n;. This is a more general viewpoint. Mostly the objects have been specified and
so the pairs (u; ,v; ) are fixed. In that case only the n; can be chosen. This was the
situation in the previous section, where results in the literature were discussed.
In the construction of a design as defined in (2.3.2) both the pairs -and therefore
the objects- and the n; have to be chosen. In the notation of Fedorov (1972) the

design (2.3.2) is denoted by €(N) or just €. In the standard experimental
situation several criteria have been formulated for constructing optimal designs
and many results have been obtained. A main result is a theorem about the
equivalence of some criteria. Since the same criteria are applicable in paired com-
parison experiments, we like to formulate analogous theorems in this case.
Therefore we give some well-known results for the standard experimental situa-
tion, Three criteria are mentioned in section 2.2.3 : A-, D- and E-optimality.
Another important criterion is G-optimality. A G-optimal design minimizes the
maximum variance {over X ) of the estimated response function. All four cri-
teria depend on the covariance matrix, or on its inverse, called the information
matrix. In the standard experimental situation the collection of variables

Uy, Uz .., Un

43 TRAY TR £ 77} ,N, (2-3.3)
where

m

Z = N s

t=1

is called the design of an experiment €(N). If we assume model (2.3.1) and an
ordinary least squares method, then the information matrix M( €) may be
written as

ME) = T f @ @) | (2.3.4)
=1

where
Cf )= ), £, fau)) (2.3.5)

Fedorov (1972) discusses the concept of a loss function A(x),x € X , This
function can, for example, take into account the losses in time, money or
material that come about and it will be used later on. Assuming this loss func-
tion A(x ), we may generalize the information matrix as follows

ME)= T ny Aw) £ @) (f @) - (2.3.6)
i=1
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The information matrix in (2.3.6) coincides with that in (2.3.4) when A(x )= 1
forallx € X. A normalized design €(N ) is a collection of variables

Uy Uz, ..., Ung,

P:P2 e s DPms (2-3.7)
where

2 = n; /N,
and

m

Lp=1. (2.3.8)

i=1

The design (2.3.7) is called an exact normalized design as distinct from a discrete
normalized design, in which the p;, can take on any nonnegative value, satisfying
(2.3.8). In a more general case a continuous normalized design will be character-
ized by a probability measure £ on the region X. Continuous designs have no
practical interest, but they are very useful in proving theorems concerning the
optimality of designs. The information matrix of a continuous normalized
design can be expressed by

M(e) = [ M) £ ) (F ) dEG) (2.3.9)
or in the case of an absolutely continuous measure

M(e) = Ix(x )p(x) £ () (F x)) dx (2.3.10)
where

:[p (x)dx = 1. (2.3.11)
Remark

In Fedorov{(1972) exact designs are called discrete and both discrete and con-
tinuous designs are called continuous. In Kiefer (1961) both exact and discrete
designs are called discrete (or exact). ]

Now, i} is possible to formulate some theorems about D- and G-optimality. A
design € is called D-optimal when

det (M (€)) = max det (M (¢)). (2.3.12)
€
A design €is called G-optimal when
max d (x ,€) = min max d (x,€) , (2.3.13)
xex € rxex

where

dx.e)= (f(x)) M ¥e) F (x) , (2.3.14)
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the variance of the estimated response at a point x € X,
The main theorem is ’

Theorem 2.3.1

a) The following assertions are equix;alenz:
(1) the design € maximizes det (M (€)),

(2) the design € minimizes max A(x ) d (x ,€),
x€X

(3) maxA(x)d(x,€) =k, (2.3.1%)
xEX

where k is the number of parameters.
b) The information matrices of all designs satisfying {1)-(3) coincide.
c) A linear combination of designs that satisfy (1 3) satisfies (1) 3).

This theorem plays an important role in constructing D-optimal designs. In par-
ticular it follows that if A(x) = 1 for all x, the continuous G-optimal designs
are equivalent to continuous D-optimal designs. In the situation of paired com-
parisons theorem 2.3.1 does not apply. In general a D-optimal design is not G-
optimal. Example 4.2.12 in chapter 4 will show this. But also statement
(2.3.15) of theorem 2.3.1 does not apply. This can easily be seen as follows.
Consider the situation where the model is defined by

y=ﬂlx1 ,ulelﬁl.

The design € that is concentrated at the pair ( (1),{(~1)) is D-optimal. Now
ME)=4ifA(x)=1for—1<x €1.
But

_ 1,2= 1
m:xk(x)d(x,e)-m‘:x?x =1<1

Moreover, one can question the usefulness of the G-criterion, because in paired
comparison experiments one is interested in differences between objects. There-
fore we define

dx,y,6)= (f(x)= fONI MU (F))—FGYN, (2.3.16)

the variance of an estimated response difference between the points x and y.
N . .
Now, a design € is called é-opnmal if

max d(x,y,€) = min max d(x,y,e). (2.3.17)
x,yex € x.yex

If the concept of a loss function is also introduced in the case of paired com-
parisons, then the information matrix can be generalized as follows

M@© = F M) m (F @) = £ ) (F ) = £ ), (2.3.18)
i=1
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where A(u; ,v;) is the loss function. Note that if we take

my, Ty
)\(u ,V) - m N (2.3.19)
where
logmy, = f1w)By+ -+ few)Bs , (2.3.20)

then the information matrix of (2.3.18) coincides with the inverse of the covari-
ance matrix in (1.6.4). This can easily be seen by using the expression of (1.5.4).
A discrete normalized paired comparison design can be introduced by defining
the p, analogous to (2.3.8). A continuous normalized design will be character-
ized by a measure, or in the case of an absolutely continuous measure by a den-
sity function. In the latter case the information matrix takes the form

(2.3.21)
M(€)=I[p(x,y))\(x,y)(f(x)-—f(y))(f(x)—f(y))'dxdy ,

[[p(x,y)dxdy =1.

Now many theorems, analogous to theorems in the standard experimental situa-
tion, apply. We mention a few of them.

where

Theorem 2.3.2
For any design € the matrix M (€) can be represented in the form

M@= 3 p Maw) (F @)= F ) (F @)= F GO, (23.22)
i=1

where

mS,}k(k+l)+l,

m
Osp,SI, 2p1=1.
i=1
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Theorem 2.3.3
The weighted sum of the variance of the estimated response differences, taken over
all pairs of the design € is equal to the number of unknown parameters k :

m
Z D A(u,- Vi ) d (u; »Vi ,e) =k , (2.3.23)
i=1

or in the case of a continuous normalized design with an absolutely continuous
measure

[[P(x SIAx,y)d(x,y.€)dxdy = k .

Theorem 2.3.4
The minimal value of max A(x ,y) d (x,v,€) isat least k.
z.y

max Alx,y)d(x,y,€) 2 k. (2.3.24)
x,y

Theorem 2.3.5

a) The following assertions are equivalent:
(1) the design € maximizes det (M (€)),

(2) the design € minimizes max A(x v)d(x,y.€),
X yex

(3) max A(x,y)d(x,y.&)=k, (2.3.25)
X ,yEX

where k is the number of parameters.
b} The information matrices of all designs satisfying (1)-(3) coincide.
¢} A linear combination of designs that satisfy (1)-(3) satisfies (1)-(3).

Theorem 2.3.6
If X is compact and the functions A(x,y) and f{(x) are continuous, then a
discrete D-optimal design exists with a number of pairsm € Jk(k +1).

Theorem 2.3.7 , .
At the pairs of a discrete D-optimal design € the function A(x,y) d (x,y,€) at-
tains its maximal value k .

The proofs of these theorems are analogous to the proofs of Fedorov(1972). We
only give the proof of theorem 2.3.4 for a continuous normalized design with an
absolutely continuous measure,
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Proof of theorem 2.34
max Au,v) du,v,€)= mex Au,v)du,v.e I!p(x ,y ) dxdy

u.,v u,v

> qu,y)ptx,ym(x,y,e)dxdy

= [Ik(x,y)p(x,y)(f(x)-f(y))’M"(e)(f(x)—-f(y))dxdy

tr [ml«) I [A(x WP G yNF )= F ) (F ()= £ (3)) dxdy

I

tr

M) M(e) ] —rI=k. | 0

The theorems 2.3.2 - 2.3.7 can be used to find procedures to construct D-optimal
designs. It is possible to show that the following iterative procedure converges
and that its limit design is D-optimal. The steps of the procedure are as fol-
lows,

Iterative procedure 2.3.8

(1) Let €5 be nondegenerate and not D-optimal. We compute its information
matrix

M= 5 o Murw) (f @) = £ ) (f @) = £ W) .
i=1

(2) A pair (ug,ve) is found at which Mx,y) d(x,y,€) is maximal. The design
consisting of the pair (ug,vy) is called €((ug,v0)).

(3) The design €, = (1 — o) €g + g €((ug,vo)) is constructed for some value
og , 0 < ag < 1. The value of oy can be chosen such that

det (M (€,)) > det (M (&) .

The increase in the determinant of the information matrix is maximal if
ag = §of[8g + (m — 1)Im |, where
8¢ = Alugve) d(ug,ve€) — m .

(4) The information matrix M (€,) of the design €, is constructed.

Now operations (2)-(4) are repeated with €, replaced by €,, and € replaced by €, ,
etc.
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Theorem 2.3.7 is very useful in checking the D-optimality of a design. An
advantage of the criteria and the method discussed above is that it is possible to
define the D-efficiency and é-eiﬁciency of any design € :

1k
D —efficiency = | det (M (€))/det (M(¢)) , - (2.3.26)
where €is a D-optimal design;
G—efficiency = & /( max A(x ,y) d(x,y,€) ). (2.3.27)
X,y

These efficiencies do not have the disadvantages of a relative efficiency, as is the

case with the efficiency defined in section 2.2.1. These efficiencies are absolute. If

the efficiency equals one, then the design is D-optimal. The method discussed

above will be used in the next chapters to construct D-optimal designs. Some-

times the computation of max det (M (€)) is cumbersome. Then it is not easy to
€

compute the D-efficiency. However, the C’remciency can be used to obtain a
lower bound for the D-efficiency.

Theorem 2.3.9
For any design €

D—eff(e) 2 exp

_ 1
1 m‘ . (2.3.28)

This theorem can be proved in the same way as the analogous theorem in the
standard experimental situation.
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3. D-optimal designs in the case of a factorial model with main effects and
first-order interactions «

3.1. The model

In this chapter D-optimal designs will be constructed for factorial models
with n factors. Some of the designs constructed in this chapter have been found
by Quenouille and John(1971) and by El-Helbawy and Bradley (1978) (see
also section 2.2 ). We will compare their results with the results of this chapter
at the end of section 3.2. The model considered is model (2.3.1) where

Fx)=(xq, ..., XnsX1X2, « o+, X3Xn X 2X3%, -+ » , Xn-1%n ) , .11
where

x € X , the experimental region , X C R" ,
so

lOg w o= ;81:61 4o 4 B,,x,, + anpcg SRR o B,,..mx,,-lxu . (3.1.2)
When constructing optimal designs, we make the assumption (1.8.6), or
~equivalently- when dealing with a loss function :

AMx,y)=1 forallx,y € X . (3.1.3)
In section 3.2 the experimental region X is chosen to be a hypercube, in section
3.3 X is a hypersphere.
The number of parameters ¥ equals n + (g) 80k = 1n(n + 1) and according
to theorem 2.3.6 the following holds.
A discrete, D-optimal design exists with m pairs, where

mS%n(n-&-l)(nz'%n +2). (3.1.4)

. For reasons of symmetry and in analogy to the standard experimental situation
. . . : st

‘one may expect that the information matrix of a D-optimal design € has the fol-

lowing structure

pl

M& =

|
: ’ (3.1.5)
i

zl

where pl is related to the main effects and has dimensionn xn,
and z/ is related to the first-order interactions and has dimension (g) X (g).

The covariance matrix M () is denoted by

yI

M) =

I
: (3.1.6)
|

57
The function d(x,y.€) given in (2.3.16) plays an important role in the
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construction of D-optimal designs and will be used many times. The function
d{(x,y,€) is an expression for the variance of an estimated response difference
between the points x and y. It will be called variance function, The variance
function depends on the covariance matrix, The definition of the variance func-
tion implies the following statement.

If a design € has a covariance matrix of type {(3.1.6),then

d(x,y,€)= Y 2 (x; ~ )’1)2 + 8 22 (xlxj - yiy;)z , 3.1.7)
ie=] i<j

and conseguently,
dl{xe,co e Xiver X0 )P0 e e e s Fiv e ¥ )sE) (3.1.8)
= d(xg 0o =X, e X B T e =V e Yn LE)

and (3.1.9)
L (O T A S TRIIE 2 X 7 P U TR X 3 )
=dxg, 000 X5, 00, %, 0, X ¥ o Y Ve Y €D

wherelSz‘Sn,l-ﬁan.

In order to construct D-optimal designs we must find pairs (x,3) € X2, such
that d (x,y,e) is maximal,

3.2. A hypercube as experimental region
The experimental region is defined by
x € Xifandonlyif—1 € x; €S 1forall1 €£i €n, (3.2.1)
where

x =(x1,o-o,xn)'-

The following lemma is useful in finding pairs where the variance function
attains its maximum .

Lemma 3.2.1

Let € be a design with covariance matrix of type (3.1.6), and let X be as in
(3.2.1). For a pair (u v) € X2, where the variance function d(.,.,€) attains its
maximum , one has

lyl=lvl=1fral 1€i<€n. (3.2.2)
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Proof
Suppose that for some { wehave ly; | < loriv;l <1,
Without loss of generality we may assume luy! < 1 (see (3.1.9) ).
Definedy = d{( Lusg «v. tn vy, «v.,vn )€E) ,
dy= d((—=Luz, ..., ux ) vy, ... vy )€).
Since d (x ,y ,€) is maximal at the pair {u,v ), we have
di—dluv,e) €0,
dy—d(u,v,e <0.
So,

dl - d(u,v,€)=

vy [(1=v)? = (uy— vl + 8 f: [w; — vyv; P — (uyu; — vyvy )l
j=2

i

y (A —uf = 2vy(1—uy)) + 8 i [uf(1—uf) — 2vyv u; (1—uyl

=2

= Q=~up) |y Q+uy;—2v )+ 8 in [(A+uup — 2vu;v,]] € 0. (i)
and similarly

dy— du,v.e)=

= (14up) |y Qurt2v) + 6 ,2: [Q=upuf + 2vayv,]| €0, (i)
From (i) and (ii) it follows that

y (M+uy=2v) + 8 122 [A+udup = 2vu;v;1 €0,

vy (I—uy+2v) + 8 jé [(A—updu? + 2vu;v;1 €0
Hence

2y +8 T u? <o (i)

i=2

Note that y 2 0 and 8 2 O since M~'(€) is a covariance matrix of a nondegen-~
erate design. So (iii) yields a contradiction and the proof is completed. N

From lemma 3.2.1 it follows that the elements of all pairs of a D-optimal design
are vertices of the hypercube X . So the objects of the pairs of a D-optimal
design are objects in a 2" -factorial.

It is useful to define the following sets
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Definition 3.2.2 :
S{k 1,k 3) is the set of all pairs with k factors at the same level, ky + k= n .

It can easily be seen that each object is compared with ( ’?1) other objects. A set
S (k 1k 3) can be broken up into (knl) blocks of 2" ! pairs, in which all 2”7 objects

occur, So the set S (k,k;) contains ( ; ‘)2"’"’ pairs.
The set S(0,3), for example, contains the pairs

(( 19 ly 1):('1 ""1"1))y

((-1’ 1’ 1),( 17"1!-1)))

(( 1"'11 1))("’11 1""1))’
(1, 1,-1),(-1,-1, 1)),

The set S{k 1,k ) can be seen as a design with, in the notation of (2.3.2), n; = 1,
1€i€m,andm =N = (,fl)z"*l.

The information matrix of this design is denoted by M (k .k ,).

Lemma 3.2.3
24 ;
M(k 1,1' 2) = f s . (3.2.3)
U 27
where
p=Cg b, | (3.2.4)

TS (e +2
z= (kl_l)‘.?.” .

Outline of the proof
This lemma can be proved by using the expression (4.2.20). Some of the argu-

ments are given here. The set S(k 1,k ;) can be broken up into ( ’?1) blocks of 2771
‘pairs. One set of 2"7! pairs measures &, main effects and kk, first-order
interactions. The information matrix of one set of 2"™! pairs is a diagonal

matrix with diagonal elements 4 277! or zero. A diagonal element is 4 27! if the
particular main effect or first-order interaction, to which it relates , is measured

by that particular block of 277! pairs. There are (I? l) of these blocks. For rea-

sons of symmetry we have

=1l¢n 1= (M1 s+t
p-n(kl)4k22" —(kl)2n s
2= L (M) akyk,2nt = (P T2y e 0
K, 41ka k-1 :

()
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The normalized design SN (k,,k;) is a design with the same pairs but with
weights 1/N, where N = (k"l') 2""1 The information matrix of this normalized

design is denoted by MN (& 1,k ;). In view of (3.2.3) the information matrix of
this normalized design can be expressed by

pl }
MN{(k ,k3) = h ) (3.2.5)
Iz
where
k
p= 4 r2 , (3.2.6)
n
o 8k |k2
z
n{n—1)

The value of the variance function is the same for all pairs of the set §{(k,k,).
This can be seen by using (3.1.8) and (3.1.9). Therefore, we may describe this
value as follows:

d (k 1,k 2,€) is the value of d(x,y.,€) where € is a design with  (3.2.7)
information matrix of type (3.1.6) and (x,y) is a pair of the
set S (k l,k 2).

From (3.1.7) it follows that
dlky k€)= 4k, y + dkk, 8. (3.2.8)

A D-optimal design is composed of pairs where the function d (x,y,€) is maxi-
mal. According to lemma 3.2.1 and the fact that the variance function has the
same value for all pairs of a set Ski,ks) a D-optimal design exists which is the
union of some S{(k,k,). To give such D-optimal designs we have to distinguish
between two cases: n is even and n is odd. The D-optimal designs are given in
the following theorem.

Theorem 3.2.4

a) The following design € is D-optimal
i) Let n be odd.
Choose
- the pairs of S (1(n—1),1(n +1)),
- the same. weights for all pairs: 1/N,
where N is the number of pairs;
- n n-1

So,



I |
MN(n=1),1n +1) = } :
|z
wherep = z = 2n+1 ,
n
, =8§= 1.0
and in the notation of (3.1.6) y = § = e

ii} Let n be even.
Choose
- the pairs ofS(,‘fn—-l,‘n +1) and the pairs ofs(;n A1n),
- the same weight for all pairs: 1/N ,
where N is the number of pairs;
N = (n{:l) 2n

¥
SO,
Me)= v MN(%n wy) + (=) MN(Gn—1,2n+1),
. n+2
where v = —2(3‘*_1) .
So,
.24 :
M(e)= i y
Y

. — e e Aan+2
withp = z = 2—n+1 ,
and in the notation of (3.1.6} y = § = ;_m;}“% .

b) The set of pairs of any D-optimal design is contained
in the set of pairs of the design € .

Proof

31

3.2.9)

(3.2.10)

a) The expression for M(€) can be found by using (3.2.3) and (3.2.5). Accord-
ing to theorem 2.3.5 the proof of the D-optimality of € is complete if it is
shown that d (x,y.€) € in(n+1) for all x,y€X. So we have to find the

maximal value of d{x,y,6). From lemma 3.2.1 and (3.2.7) it follows that
the maximal value is obtained by maximizing d(ky.ky€) over k&,
0K k;S$n—~1;k,= n—ky So,according to (3.2.8), we have to maximize
[4(n—k ) + 4k (n=k )] y. If &k, can take all values in { 0,1,...,n~1},

then this function is maximal for k == .;_(n —1).

i) n is odd.

Now ;.(n-1) is an integer, so the maximal value of d(x,y,€) equals

d(%_(n--l},’(n +1),€) = %n (n+1).
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ii) n is even.

Now 1(n—l) is not an integer, so the maximal value of d (x,y,.€) is one
of the values d(‘n 3 £€) and d(‘n-—-l %.n +1,e). Using (3.2.8) and the

expression for M (e) we find
1, 1 = d(lpn~—1.1 -1
d(}.n g n €)="d (?n 1L, +1,e)= in (n+1).
and the proof of the D-optimality of the design € is complete.

b) The information matrix of any D-optimal design coincides with the matrix
of the design mentioned in a). Therefore, the set of pairs where the variance

function is maximal coincides with the set of pairs of the design € .

0

The D-efficiency and Crefficiency ,as defined in (2.3.26) and (2.3.27), of the

round robin design are given in the following theorem.

Theorem 3.2.5

The D-efficiency and the é—eﬁciency of the round robin design have the same

value:
ntl 2% if n even
n+2 2°—1 "’ ’
—eff = d—eﬁ=
n 2" y
n 1l 2"—1 Sif n odd.

The information matrix M of a round robin design can be expressed by

ol
M= { :
bozr
2n+1
wherep = z = 27 —1

Proof

The number of pairs N of the round robin design is N = 212"(2"—1).

So, according to lemma 3.2.3 we find

n—1

2n+l
- 2n+l — ,
P Z 12"(2" (e, D 2" — 1
and
a~-1

1 2u+2
- 2n+2... .

‘ ké} 127(2"—1) (k ) 27—1

(3.2.11)

(3.2.12)

Now the expression for the D-efficiency can be computed (see definition
(2.3.26)). In order to compute the ('}—eﬁ':ciency, we need the maximal value of the
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variance function. From the expression (3.2.12) it follows that the variance
function of the round robin design €, has the value d (.;.(n-l),‘ (n+1)e) if n

is odd and the valued (Jn,1n,€) if n is even. Using (3.2.8) we find

LI~
4G4 —D.4n + D) = a1 TL
and
"
d(%n ,_;.n €)= nin +2)%n—+—11—
Substitution into (2.3.27) completes the proof. I

In table 3.2.6 some results of theorems 3.2.4 and 3.2.5 are givenfor2 £ n £ 7.
In this table a value m is listed defined by m = .;.n (n+1¥n3+n+2). This

value is important because according to (3.1.4) a discrete D-optimal design can
be found with a number of pairs N, , where Ny € m . In section 5.4 a method
will be given to reduce the number of pairs of designs. Some of the results will
be used in this section. These results are given between brackets in table 3.2.6.
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Table 3.2.6
Values of quantities related to D-optimal designs
n 2 3 4 5 6 7
Number of pairs of
=S(jn—1,1n+1) 2 32 480
(240)
_5(%,,,%,1) 4 48 640
(24) (320)
=5 (4(r=1),1(n +1)) 12 160 2240
(80) (560)
—the D-optimal design 6 12 80 160 | 1120 | 2240
given in theorem 3.2.4. (56) | (80) | (560) | (560)
m = In(n+1)(n%+n+2) 6 21 55 | 120 | 231 | 406
7,9 3/8 | 3/8 | 5712 | 5712 | 7/16 | /16
Round robin:
—number of pairs 6 28 120 | 496 | 2016 | 8128
—D—efficiency 1 086 | 0.89 | 0.86 | 0.89 | 0.88

It is also possible to construct designs having a considerably smaller number of
pairs than the D-optimal designs given in theorem 3.2.4 and with a relative high
D-efficiency. Such designs may be attractive for practical applications. In table
3.2.8 the D-efficiency and ('}eﬂiciency are given of some designs SN (k y,k,) . The
values given in the table can be computed by use of the following lemma .

Lemma 3.2.7

Let € be the design constructed by choosing

-the pairs of S (k 1,k 2)
-equal weights for all pairs .
Then the following holds:

n-1

k k T
D—eff = 42 2Ky (7
n

n—1

where

(3.2.13)
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1_n .
Th 41 JBf n odd ,

1 n+l
Zn+2

JAf n even .

The d-eﬁciency of € can be found by minimizing

sn(n+1) _ Kk oln +1)
d (1;,32,6)

. (3.2.18)
1112(271- + (n—1))
1

over 15,1 € 1, € n, 1, is integer-valued.
If the restriction that ly is an integer is dropped, then the variance function

d {Ly,l2,€) is maximal for 1= ln+ ks
1% 2! 2 5 n—1 .
Proof
From the definition of the D-efficiency and (3.2.5) we have
2/n(n+1)
4k 8kk, intn-v Latn-1)
D—eff = | (—=2) (———2)7 [ mzT ) .
n n{n—1)
where p and z have the value given in theorem 3.2.4.
So,
4, | 2%, |5
D—eff = L 252 | XL
p n n-—1

The statement concerning the é—eﬂiciency is proven by lemma 3.2.1 and the fact
that

Lyla€) = 4l " + a1,2,2n=D)
d(14,0,€) 2, T, ]

In table 3.2.8 the numbers between brackets can be found by using results of
chapter S concerning the reduction of the numbers of pairs of a design.



Table 3.2.8
Exact designs and values of quantities related to these designs
Number
n Design of pairs ¥ 8 D-eff Geff
2 SN(1,1) 4 172 1/4 0.94 0.75
4 SN(2,2) 48 1/2 3/8 0.99 0.95
(24)
SN(1,3) 32 1/3 172 0.98 0.94
5 SN(1,4) 80 5/16 5/8 0.84 0.80
(40)
6 SN (3,3) 640 1/2 5/12 0.997 0,98
(320)
SN{(2,4) 480 3/8 15/32 0,995 0.98
(240)
SN(1,5) 192 3/10 3/4 0.76 0.69
(96)
7 SN(2,5) 1344 7/20 21/40 0.92 0.91
(336) ' :
SN(1,6) 448 7/24 7/8 0.66 Q.60
(124)

Some of the designs mentioned in tables 3.2.6 and 3.2.8 are known in the litera-
ture. As we have seen in section 2.2.1 Quenouille and John(1971) present 2% -
factorial paired comparison designs. They give a table of designs and their
efficiencies for 2 € n € 8. Among these designs are the D-optimal designs of
theorem 3.2.3 for 2 £ n € 5. The designs of table 3.2.7 can be found in the
table of Quenouille and John but the efficiency they give is the efficiency of the
design compared with the round robin design for each effect to be estimated,

3.3. A hypersphere as experimental region
The experimental region X is defined by

n
X=|x€R" | L x*<1}. (3.3.1)
i=1

The following lemma is useful for finding pairs at which the variance function
attains its maximum .
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Lemma 3.3.1
Let € be a design with covariance matrix of type (3.1.6). For a pair (u,v) € X?
where the variance function d (. , . ,€) is maximal the following holds :

2 u52z Z \4’32: 1. (3.3.2)

Proof
The proof is analogous to the proof of lemma 3.2.1. Suppose that statement

n
(3.3.2) is not true and assume without loss of generality that } u,? < 1.

i=1
. . s N .
Consider d1 = d (u,v ,€), whereu = (uq,usz, ... ,u, ), with
*
U= J1=(u? + - +ud), souy > uy,
- —
and dy= d{(F,v,6), whered = (—uq,us ...,us).

Since d {x ,y,€) is maximal at (i ,v) we have

~du,v,e) L0,

- d{uw,e) € 0.
These expressions yield a contradiction similar to the one found in the proof of
lemma 3.2.1, and this completes the proof. |

Lemma 3.3.2
Let € be a destgn with covariance matrix of type (3.1.6). For a pair (x,y) with

z 2= E ¥ = 1 the variance function takes the form
=1 1=1

d(x,y,€)= 2y (1-— Z x:yz)+8(1-(z x; 3 )%) (3.3.3)

i=1

~—’8E(x:—y)

(=1
An upperbound for d{(x,y,e€) is given by d (u,v ,€) where (u ) is a pair, such
that

n

n
Yul= Y v®=1,and z vy = -1, (3.3.4)

=1 i=1 &

Proof
The expression (3.3.3) can be found by using (3.1.7):

dx,y€)=y L (x; ~y)?+8 Z<Z (xix; — wiy; P
i=1 i<j

n
2y = 2y Z x;y; + O E(Z (xtzsz + vy - 2x,%;3:5;)

2y (1~ Z xiy) + ‘8[(2 xR + (Z ¥?]

i=} i=1
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n n n ”
- .%8(2 x* + z -8 (Z xn)P+38 Z x;%yi?
i=1 i=1 i=1

i=1
=2y(1—- Y xy)+ 801 —-(X x,-y;)’]—%ﬁ PN CTEERL) LN
i=1 i=1 i=1

The statement concerning the maximal value of the variance function can be
proved by using the fact that ‘

n n
dlx,y€) €2y (1—- Y ) +8Q (X xy)D ,
i=1 i=1

and the fact that the right-hand side of this inequality attains is maximum for

Exiyi = "“%‘-

i=]

Many D-optimal designs can be found by use of (3.3.4). We just give one of the
D-optimal designs for which the number of pairs is small,
Consider the pairs

(uivy) = (( sing, cosd,0,...,0)( sind,~cos$,0,...,0)),
(uy,v3) = ((—sing, cos$,0,...,0),(—sind,~cos$,0,...,0)),
(ug,vy) = (( cosp, sing,0,...,0),(—cosd, sing,0,...,0)),
(wove) = (( cosd,~sing,0,...,0),(—cosd,—sing,0,...,0)).

1 1
where sing = ,}\/5[15—2—1-]’ , cos¢ = _12_\/'2'[""41]2 and (u; v;) € X2,
Let S be the set defined by
S =|{Fw)F(v;)) 1 1 €£i S 4, Fis a permutation of order n} . (3.3.5)
The set § contains 4(’2‘) pairs,
Theorem 3.3.3
The design € constructed by choosing
-the pairs of the set § which is defined in (3.3.5)

-equal weights for all pairs: 1/N , where N is the number of pairs
is D-optimal.

M(e) =

(3.3.6)

where p = 2n+1 z =20
n?
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Proof
The expression (3.3.6) can be found as follows.

The set S can be broken up into (g) blocks of 4 pairs. Consider the block €,
consisting of the pairs (u;,v;) ,1 < i € n . Then
M (ey) = diag (2c0s?¢,2c0s%¢,0, . . . , 0,4sin’$cos?9,0, . . ., 0).

The information matrices of the other blocks are diagonal matrices, where the
diagonal elements have been permuted. For reasons of symmetry we find

2(n—1) cos’ _ ,n+1

= 2
2 b4

n n

;) )

and
, = 4sin’dcos’d _ yntl
n nd
;)

The D-optimality can be proved by computing the maximal value of d (x,y,€) .
The pairs (u,v) of the design € satisfy the conditions mentioned in (3.3.4) in
theorem 3.3.2. So, an upperbound for the variance function is the value
d (u4,v1,€) and this is the maximal value of d (x ,y,€) .

The fact that d (u4,vy,€) = ,;_n (n +1) completes the proof. ]

In table 3.3.4 some results are shown.

Table 3.3.4
Values of quantities related to D-optimal designs
n 2 3 4 5 6 7
Number of pairs of 4 12 24 40 60 84
the D-optimal design (6) (20) (42)
of theorem 3.3.3
%n n+1)Xn%+n +2) 6 21 55 120 231 406
Yy 2/3 9/8 8/5 |25/12 | 18/7 | 49/16
8 4/3 | 27/8 | 32/5 (125/12( 128/7 (343/16

Between brackets a reduction of the number of pairs is given. This is a result of
section 4.3.
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4. D-optimal designs in the case of a quadratic model with a hypersphere
as experimental region

4.1. The model

In this chapter the design for quadratic models will be discussed. The
model (2.3.1) will be considered, where

F )= Ceqynn e X XE e s XX 12 e oo, XpetXn) (4.1.1)

where X is defined by

n
X=|x€eR | L x*<1}. : 4.1.2)
i=1
So
10872 B;x1+°"+ﬁnxn +}311x{" +"'+Bnnxn2 (4.1.3)
+ Buxixz 4+ Bao1aXn-1%n
When constructing optimal designs we make the assumption 7 = (1,...,1)

(1.8.6). In section 4.2 we will give the necessary conditions for a design to be
D-optimal and we compute the information matrix of such a design. In section
4.3 discrete D-optimal designs are given having a relatively small number of
pairs. In section 4.4 exact designs are constructed. In section 4.5 the efficiency of
the designs is discussed when the assumption (1.8.6) does not hold. The number
of parameters equals 2n + (g), ie. & = 1n(n+3) and according to theorem

2.3.6 the following holds:
A discrete D-optimal design exists with m pairs, where

m £ %n (n+1)n+2)Xn+3). “4.14)

For reasons of symmetry and in analogy to the standard experimental situation
one may expect that the information matrix of a D-optimal design € has the fol-
lowing structure: ‘

j24

s 4.1.5)

—— — ity oo oo

]
|
. i
Mle) = : sl +tJ
I
i zl

where pl is related to the main effects,
sI + tJ is related to the quadratic effects,
2zl is related to the interactions;
J is a matrix with J;; = 1 foralli,j .

The covariance matrix M~ (¢) is denoted by



a1

VA 1

4 ] |

| |
M e) = : al +£7 : , (4.1.6)

I 1

| Y 4
The parameters in (4.1.5) and (4.1.6) are related by
1 1 1
=—,s=—,s+m= 2= = . 1L

P . 8 s+ praray z 5 4.1.7)

Again the variance function plays an important role in the construction of D-
optimal designs. It can be expressed as follows.
If € is a design with covariance matrix of type (4.1.6), then

n n
dxye)=y XL Gy —y)P+a X (x*- 3?2 (4.1.8)
i=1 i=1

FET =y + 8 L Gux, — i) P
i=1

i<j

4.2. Conditions to be satisfied by D-optimal designs

We shall investigate the variance function, If the variance function can be
expressed by (4.1.8), then (3.1.8) and (3.1.9) hold. Due to the fact that the
experimental region is a hypersphere and in analogy to the standard experimen~
tal situation one might expect that a D-optimal design is rotatable in the sense

that the variance function d (x ,y ,€) only depends on
n

n
r¢ =Y x?,r3 = ¥ y? and on the angle between the position vectors of x
i=1 i=1
and y.

We formulate this property as follows.

Definition 4.2.1
A design € is called strongly rotatable if the variance function d(x,y ,€) only
depends on ry, ry and 8, where

n n
ri= Lxtri= Xy
i=1 =1

and 4.2.1)
n
0 is such that ryrycosd = Y xy; .
i=1

This property is called strong rotatibility as distinct from rotatability which is
defined as follows,
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A design € is called rotatable if the function d (x ,€) only depends on (4.2.2)
ry, with d (x ,€) as defined in (2.3.14) .

Strong rotatability implies rotatability. In the following lemma a relation is
given between strong rotatibility and the structure of the information matrix.

Lemma 4.2.2
Let € be a design with covariance matrix of type (4.1.6). Then the following holds.
The design € is strongly rotatable if and only if

20 = & , (4.2.3)

Proof
According to (4.1.8) we have

n

n
xi4 + a Z )’i‘
=1

i=1

n
dx,y€)= yri+yri—2y L xy +a
i=1 i

i

-2« i 2P+ EGE-rEP+ G- 20) LY (xix; — yiy;

i=1 i< j
+2a zz x,-zsz + 2« ZE yizyjz - ZaZZ x,»x,-yiyj
t<j i<j . [

n n n
= y@i+r)—2y L xyi ta (X y2P + a (X x2)?
i=1 i=1 i=1

1
n
=20 (Y xy P+ EGCE—rEP+ G -2 LY (x;x; — yiy;)?.
i=1 i<j
Now it is obvious that if 2ac = § then the function d (x,y,€) only depends on

n
ry,raand Y oxy; .
i=1

Let the design € be strongly rotatable. Then d (w;,w2,€) = d (w3,w4,€), where

wy = (1,0,0,...,0),
wy= (1v3,10,..., 0),
w3 = (%\/3,_;_,0, )
we= (1,1430,...,0).
A simple computation yields 2a = 6. i

It will be proved in theorem 4.2.11 that a D-optimal design is strongly rotat-
able. Therefore, assumption (4.2.3) will be made very often in this chapter. If €
is a design with covariance matrix of type (4.1.6) for which the assumption
(4.2.3) holds, then the variance function can be expressed by

dix,y€)= yri+yri—2yriracos@ +arf +arf (4.2.4)

+2arf rf cos®0 + £ (rf — r2)?,



43

where

"‘w

it
-

”u
'Mz
%
~

= ¥«
and 8 is such that
n
ryria cosf = z XV -
i=1

This is easily seen by using the expression given in the proof of lemma 4.2.2,
The following lemma is useful in finding the maximal value of the variance
function.

Lemma 4.2.3
Let € be a design for which the variance function can be expressed by (4.2. 4) ¥
the variance function is maximal at (u ,v ), then

r;—Zu, =1, or rz—Zv =1,
=1 i=1

Proof
Suppose that ry < 1 andr, < 1.

n
R - - 2
Consider dy = d (i7,v ,€) , where & = Lu ,s0 Y Oy = 1;
ri .

] L 3
dy= d{uyv,€), whereu = -1, R
ry
da= d(u,’,€), where v = ~1—v R
ra
* & 1
and d 4= d{u,v,€), wherev= —— v,
ra

Since the variance function is maximal at (u,v) we haved; — d{u,v,€) £ 0
So

~d{uv.€)=
= y(1=rf)— 2y rycos@(i—ry) + a (1~r{)
—~20xrf cos?®@ (1—rd)+ £ (Q—r?)— 26 Q—r)r}
= (1=r) [y (0471) = 2y rycos® + (a+E)XA+r+ri+4r)
~2a (1+ry) rf cos®® — 26 rf (1+rd} €0, (i)
and similarly
dy—d(u,v,e)=
= (1+ry) [y (0—r) + 2y rycos8 + (a+E)A~ry+rf—rd)
—2arf cos?® (1-ry)) — 26 (1=-r)ri]<o0. (ii)
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From (i) and (ii) it follows that

2y + a+EX1+r)— 4o rf cos’0 — 4f ri € 0. (i)
Usingd3— d(u,v.€) € Oand d4— d{u, ,€) € O it can be seen that
2y + 2a+EX1+rd)— da rf cos®™® — 4f r¥ £ 0. (iv)

So with (jii) and (iv) we have ,

4y + 2a+E)2+ri+rf)—4a (rif+r})dcos’0 — 4 (r{+r3) <0
However,

4y + 2a+E)2+ri4r?)— da (ri+r?)cos®® — 4f (rf+rd)

Z 4y + 2a+E)24ri+ri) = da (ri+r})—4E G2+r3)

= 4y + 2at+tf)2—ri—-ri) > 0.
This is a contradiction and completes the proof. i
Corollary 4.2.4

If the variance function of a design € can be expressed by (4.2.4), then the maxi-
mal value of the variance function is equal to the maximum of

d=vy+yri—2yrcos+a+art—2ar?cos?® + £ (1~r2?, (4.2.6)
where '

o8 2r,0<r £1.

Lemma 4.2.5
Let € be a design for which the variance function can be expressed by (4.2.4). Let
(12 ,v) be a pair where the variance function is maximal and such that

n n V

Zuizzrlzs V!2=r22’

‘ =1 i=1
and
n
8 is such that riracosé = z U v .
i=1

Then the following holds

0= m and ry,ryhave the values 1 and L — 11— ;—3’?]}', 4.2.7)

or

8 = arccos (——21&‘) and ry=rp;= 1. (4.2.8)
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Proof

Assume without loss of generality ry = 1. According to corollary 4.2.4 we have
1o maximize

FOUr8)=y+yri—2yrcosd +a+ar®— 20r2cos?® + £ (1—-r?)?,
where 0 £ 8 < 27,05 r £ 1. We have

Q[a(; 0) 2y rsind + 4a r? cosh sin

= 4o 2 sinf (cos b + %r— ). , (i)

Consider the region defined by 0 € r < 3]:; and 0 £ 8 € 27 . Using (i) we
find that the function f (r,0) is maximal when 6 = 7. Substituting this in

1
-1 __2Y 17
F(r®wefindr = % %[1 ‘—x—_zig—]? .

Consider the region defined by ‘fg £r<€1,and0<6 < 27.

For fixed r the function 7 (r ,8) is maximal when

9 = arccos — —L— .
2ar
Substituting this we find
2
Fro=y+a+ -%;-%—yrzi-ar‘-irf(l-—rz)z.
This function is maximal when r =1 . This completes the proof. 0

Coroliary 4.2.6
The maximal value of a variance function of type (4.2.4) equals one of the values

2
2y + 2a + g—a- , (4.2.9)

1
+la + - yI1--2L17 . (4.2.10)

Sy + Mo+ ) - pary

S A
Aa+§)

If one assumes that.a D-optimal design has a covariance matrix that satisfies
(4.1.6), and (4.2.3), which means that it is strongly rotatable, then a D-optimal
design consists of pairs of the type mentioned in lemma 4.2.5. Therefore, it is
useful to consider pairs (x ,y) and (w, —rw } for which

n n n
Z x‘-2 = 2 y,z - 2 w!‘? = 1. ‘ (4.2.11)
i=1

i=1 i=1

We define the following sets of pairs.
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Definition 4.2.7
S ((u,v)) is the set containing all 2" pairs that can be found by multiplying pairs
of coordinates (u; ,v;) of w,v)by—1or +1.

SP((u,v)) is the union over all permutations p of the sets S{ (pu),p(v))),
where p is a permutation of order n . In general the set SP((u,v)) contains
2" n! pairs. The information matrix of SP((u v )) is denoted by MP{(u v )).

The design matrix in the case of a 2" -factorial can be used to compute the infor-
mation matrices M ((u,v)) and MP((u,v)). This design matrix contains only
+1’sand -1 ’s. '

Define
Xin)=(Xuyn) 1 K | Xualn)), (4.2.12)
where
Xuln—1) —u -1 ;
Xnun)= , Xu()= l 1 ] R ' (4,2,13)
Xuln—1) u

u=14Q,...,1) ,

K is a matrix with X;; = 1 forall{ and j ,

Xn(n—l) “Xu(n-l)
Xun)= , X)) =@ . (4.2.14)
Xpn—1) Xypyln—1)

X 13(n ) is the notation for the main effects of a 2" -factorial,
K is related to the quadratic effects,
X 1a(rn ) is related to the first-order interactions.

It is easy to prove that

7 I I
I I
| |
XinNXn)=2" { J : . (4.2.15)’
| !
i I 4
Now the design matrix D of §((u,v)) can be expressed by
D=X,xn)WU-V), (4.2.16)

where

U=diag (wy,....un | uf,... .t | uguz ... tg_gun),

V=diag (vy,...,va | v, .o vd 1 vva, oo, vgova) . (4.2.17)
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So, the information matrix M({u,v)) is

I | 1
I {
| |
M{uyv)) =22 (U=-V) : J : (U~ V).(4.2.18)
| [
| L 4
If M ((u,v)) is denoted by
i
My :
| |
MGy = | Mn | ,
| |
: : M3y
(4.2.19)
My = 2" diag ((u 1-"’1)2: von (Uy—vy »,
M)y = 28 wP=v®) wi-vi),
M = 2" diag (uyuz=vva) ... (Up-stin—Va-1va ) .
The information matrices MP((uz ,v }) can be written as
| |
pol i i
| I
MP((uv)) = | sol+to] | , (4.2.20)
] |
E—
where

n
Po =2" (n=1N } (u ~ w)?,
i=1

n
sogttg= 27 (n—1n Z (uiz - ng)z ’
i=1
te = 2" (-2 T ¥ WP~ vIAup-vP,
i<y
Zo b 2n+l (n—Z)! zz (uﬂl; - V}Vj)z N
i<y

As will be seen in theorem 4.2.11 a D-optimal design € can be constructed by
choosing the pairs of SP((x,y)) and SP((w,—rw)) ,0 € r < 1, with suitable
weights vy and 7, and suitable x, y and w that satisfy (4.2.11),

The weights must satisfy

22 nt{yvy+vy)=1. (4.2.21)
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The information matrix M(€) of such a design € can be computed by using

(4.2.20).

M(e)= M, + M,,

with

M,;

It

where

P
sy + 1,y
[ 1

Zy

P2

sa+t,
ta

Z

pil

Sg]'*"tg.] (f = 1,2),

=

z;I

n
11 28 (-1 201~} xv)
i=]

n
¥12° (n—1n Z {x;2 — y;’)’ s

i=1

vy 27 (n—2) 22 2= 92— 3P,
i<j

v 2" (a=2n 3 Y (x;x; -y,
i<j

vy 2% (=10 (147 )2,
n
v 2" (n=1Q1-r2? Y w?,

te )

v 2" (=20 (1-r22 T T wiw}?,
1<y
v, 2" 1 (n=20 A-r?P T T wiw?.

i<jp

With the notation of (4.1.6) we find

y =

a+nf=

=1

p1+p2’
1
sy 4+ 52

1

1
(sy+nty) + (sy+nty)

Z,‘l‘Zz.

(4.2.22)

(4.2.23)

(4.2.24)

From lemma 4.2.5 and theorem 2.3.7 it follows that, if 2o = 8 thenx, y and r
must satisfy the conditions
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2 Xy = __'2'_ =:cosBy, (4.2.25)
i=1

= 1 1 2 =irg. 2.
r=1-10 —La+§] : (4.2.26)

A condition equivalent to 2o = § is given in the following lemma.

Lemma 4.2.8

Let x ,y and w satisfy(4.2.11).

Let € be a normalized design consisting of the pairs of SP((x,y)) with weights v,
and of the pairs of SP({w ,~rw)) with weights v, . The condition 2a = § is
equivalent to

20y (n+2) LY (ix; — wmiy; P+ 21)2 (n+2)A-r?? LT wlw}
<7

1<]
= 2n vy sin?0 + v, (n~1) (1~r2)?, (4.2.27)
where
n
cosf = z Xy .
i=1
I (4.2.27) holds, then
z = n-1|-2 27t n yy (=2 sin%8 + -—‘1{_2— 2%y, (n=10 (1—-r3)?,
p=2012" (n—1N (1—cosB) + v, (n— 1) (14r)?, (4.2.28)
s+nt=2"vy(n=-1N0-r2)?,
where
’Z:Z;""Zg, p=p,+p2, s=s1+s2andt=t1+t2.
Proof
The condition 2a = & is equivalent to 53 — 2z1 = —(s3 — 2z3).

From (4.2.23) we have
81“221 =
n
= 220 =20 [(n—DF G* + 34— 229D~ 4L Y (xix; — »iy; )
i=1 1<)
"’222 ("'2sz + 3’:23?;2 - xfz)’)z - x}zyiz)]
i<y

= 2"py(n—2N [2(n 1)~ 2(n— I)ZZ x2xf - 2n— 1)22 vyt

-—2(n—1)z x2y? —4L Y (xix; — yiy,; P
=1 i<J
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n
"222 x;zx;*’ it 222 y;’y;’ +2— 22 xggyiz ]
1<j I<j =1

= 2" vy (n—=2)[2n — 2(n +2) 2}(2): (xix; — 33,2 — 2n (é xyi )],
Sp— 22, =

= 2% vy (n—2)1 (1=r2) [(n-z)f_1 wit = 6L wiw ]

=2" v (=20 (1—-r? [(n—1) - 2(n—1) 2‘:%‘, wiwp — 6}{',(2): wiw? ]

=2" v, (n=2N A~rD? [(n=1) = 2(n+2) LY wiw}?].
i<}

Substituting these expressions in s; — 2z, = —(s, — 2z,) completes the first
part of the proof. The correctness of expressions (4.2.28) can be verified by sub-
stituting (4.2.27) in (4.2.23). i

The weights v; and v, may be found by use of the following lemma.

Lemma 4.2.9
Let € be a design of the type defined in lemma 4.2.8 and let (4.2.27) be satisfied.
The determinant of the information matrix det (M (€)) satisfies

det (M) = C w3 (avs + ) ey + IPY (4.2.29)

where

C is a constant not depending on vy and v, ,
a = (14r)* = 2(1—cosh) ,
1
b = 2(1—cosb .
(1=cosb) 2" nt
¢ = (n—1) (1~r?? — 2nsin?@ ,
i o2,
d = 2n sin‘@
2" nt
The value of v, at which det (M {€)) is maximal is a solution of the equation:

vi .;.n(n+3)ac + 2;(n+1Xad + ;,n bc)+bd =0 (4.2,30)

Proof
From (4.2.28) we have

det (M(€)) = Cv, comy

vo(14r P + 2(1—cost X( 1 "1’2)]

Gytn-1)

2%n!

2nsin?e ( 1__ va) + (n—1)w,(1—r2)? l
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This gives the expression (4.2.29). Differentiation of this expression with respect
to v, gives the second part of the theorem. 1

It is possible to construct a D-optimal design € of the type defined in lemma

4.2.8. Then x,y,w and r must satisfy the conditions (4.2.25), (4.2.26) and
(4.2.27). Since the covariance matrices of D-optimal designs coincide, cosfy and
rg are fixed. By a procedure similar to procedure 2.3.8 the values of cosfy and ry
can be computed as follows. Choose 0¢g and rgp , for example 099 = ;_7r and

roo= 0. Let € be a design of the type defined in lemma 4.2.8 with 0 = 09,
r = rop , satisfying (4.2.27) and let v, be as given in lemma 4.2.9. The infor-
mation matrix M(€g) can be computed and the variance function can be
expressed by (4.2.4). Use of lemma 4.2.5 yields pairs where the variance func-
tion attains its maximum. This gives new values 6y; and rg; . Now this pro-
cedure is repeated with €; , cosf¢; and rg, , etc.

This process converges and the values of cosd, and ¢ can be computed. A priori
it is not obvious that this procedure converges. The condition 2a = § is used,
which will be proved to hold for D-optimal designs in theorem 4.2.11. This
knowledge enables us to prove the convergence. Note that it is not necessary to
give the designs €; explicitly. When computing the information matrix M (e,),
one only needs the values of cosfg; and ro; . Some results are given in table
4.2.10; the condition 2ac = § is satisfied there. As can be seen from this table, r¢
and 0, are decreasing functions of n, and «, 8, y, £ and det (M~1(e)) are all
increasing with n. The design consists for 68% of pairs of SP((x,y)) when
n = 2, and for 95% whenn = 7.
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where rg and 84 have the value given in table 4.2.10. The design €
consisting of the pairs of SP({x,y)) with weights vy, and of the
pairs of SP((w, —rw)) with weights v,, that satisfy (4.2.21) and
(4.2.30) is D-optimal. The design is strongly rotatable.

b)

Now v satisfies

vV = —-reu ,

or

n
Let (u,v) be a pair of a D-optimal design, and let } u?= 1.
i=1

Table 4.2.10
Values of constants determining the information matrix
of a D-optimal design
n 2 3 4 5 6 7
o 1.4475 2.9972 5.0307 7.5558 | 10.576 | 14,092
8 2.8950 5.9944 10.0613 | 15.1115 | 21.151 28.183
Y 0.9096 1.3507 1.8071 2.2733 2.7462 3.224
é 2.5241 45181 7.0152 | 10.0133 | 13.5119 | 17.5108
re 0.1319 | 0.0998 | 0.08168 | 0.06953 | 0.06069 | 0.05392
6o 108.3° 103.0° 100.3° 98.7° 97.5° 96.6°
2" nty, 0.6811 0.8151 0.8775 0.9124 0.9340 0.9485
det (M~Y(e)) 22.5 7.89 10* | 4.66 10'® | 7.08 10 | 3.9510% |0.914 10%
Now the following theorem can be formulated.
Theorem 4.2.11
a) Let x,y,w and r be such that they satisfy the conditions
E = ¥ yt= Lwl=1, (4.2.11)
=1 i=1
2 Xy = COSOQ N (4.2.25)
i=1
r= -~ 1 [1... ..,....x._.f foosed re, (4.2¢26)
2v4(n +2)22 (xix; — wiy; 2 + 2v2(n +2YA~r2P L T wiw}
1<j i<}
= 2nv,sin®d + v(n—1)(1-r2)?, (4.2.27)
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n n
Y vi=1land }J v, = cosy.
i=1 i=1

Proof

From lemma 4.2.5 it follows that the variance function attains is maximum at
the pairs of the design. According to corollary 4.2.6 this maximum is one of the
values given in (4.2.9) and (4.2.10). Computation of these values completes the
Lrst part of the proof. Part b) of the theorem is proved by applying lemma 4.2.5
and theorem 2.3.7. 0

When discussing theorem 2.3.1 in chapter 2, we mentioned that in the case of
paired comparisons D-optimality and G-optimality are not equivalent. Now we
can give an example that shows this.

Example 4.2.12

Let n = 2 and consider the information matrix of a D-optimal design €, To
consider the G-efficiency of such a design, one has 1o compute the maximum of
the variance function d (x ,6). We have

d{x,)= y{x§ +x#)+ (a+&) (x +x) + Q£+8) x 3
= yr2+ (atf)re.
So

max d{x €)=y +a+ £= 4388
x€X

It is easy to show that a D-optimal design is not G-optimal by copstructing a
design €, for which

max d (x ,€;) < 4.88 .
x

Let €; be the normalized design consisting of the pairs of SP{({w,—rw)) with
w = (cos¢ ,sind) , ¢ = 225 andry= 1.

’ 3
Then

pd

MP({(w,~—rw)) = syl +tyd

——— — — o —

with

pr= 3+ry?
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$1 = .}(1"?‘2)2 s

ty= zy= %(l—rf)z.

This yields
- 2 2 3 4
d(x ,€)) = ——Tm 1% e %
o= Gy YT
So,
2 3
max d{(x &) = + = 4,64 ,
P v (1+r)?  (-rf»
which shows that a D-optimal design is not G-optimal in this case. 1]

4.3. Some discrete D-optimal designs

In general a design of the type given in theorem 4.2.11 consists of 2 2" n!
pairs. If we choose suitable x, y and w, a discrete D-optimal design can be con-
structed for which the number of pairs is considerably smaller than 2"*1n}, In
this section cos@y ro vy and v, are fixed and have the value given in table
4.2.10.

Choose

w = (1,0,...,0) , (4.3.1)
x = (cosdy,sing,0,...,0) , (4.3.2)
y = (cosd,,5ing,0,...,0) ,

Now SP((x,y)) contains 4n{(n—1) pairs and SP({(w,—rew)) contains 2n
pairs. The points x,y and w must satisfy the conditions (4.2.11), (4.2.25),
(4.2,27). Using these conditions we find

cos$ 1cosé; + singysing, = cosdy

cos{py — y) = cosfy ,

b1~ ¢2= 0 , (4.3.3)
and

2v,(n +2Xcosdsing; — cosdssing,)? = 2nv,ysin2fg + voln —1X1—r¢ )2,

2v1(n +2)sin?(¢y — ¢3) cos?($y +62) = 2nv5in20g + vaoln —1)(1—rd)?.
Using (4.3.3) we obtain '

n_,¥2_n—1 (-rdy
n+2 vy 2(n+2) sin%y

cos?{ = (4.3.4)

where

{=é1+9¢>.
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According to (4.2.23) p;, s;, t; and z; (i=1,2) have the following values, where
Pi,si t; and z; are such as in (4.2.22),

1= "y pAd (n-*l)! (1—(!0590) ’ (4.3.5)
sy 4ty = 203 27 (n— 1) sin®@gsin?] ,
ty= —2wy 2" (n—2) sin®Besin?{

z3= 2v; 2" (n~2) sin®0¢sin®{ ,

P2= p22" (=10 (1+rg)?, (4.3.6)
s2= 32" (n—11(1—-rg)?,

ta= 0,

z,= 0.

When n is odd, the number of pairs of SP((x,y)) can be even more reduced,
SP({x,y)) is the union of n{(n —1) sets of 4 pairs. In every set one interaction is

measured. So, (—'2‘) sets of 4 pairs are needed to measure all interactions with the
same accuracy. In every set two main effects (and two quadratic effects) are
measured, but not with the same accuracy. So, in general 2(2) sets are needed.

When n is odd (g) sets can be chosen such that the main effects (and quadratic

effects) are measured with the same accuracy.
Example in the casen = 3.

Choose S ((coséy,singd,, 0 ) (cosdssind, , 0 )},
S((sing,, O ,cosd;)(sinda, O ,cosy)),
and S(( O ,cosdy,singy),( O ,cosd; .sind,)).

When n is even, this reduction is not possible,
Now the number, say N, of pairs of the design is given by

2n(2n—1) ,if n even,
N =
2n? Jf n odd .

The following theorem is a special case of theorem 4.2.11.
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Theorem 4.3.1

Let x,y and w be such as defined in (4.3.1) and (4.3.2), satisfying the conditions

(4.3.3) and (4.3.4). The following design is D-optimal.

Choose

- the pairs of SP({w, —rgw )) with weights 1;2 , where 1}2 =2 VY (n—~1)w,.

- the pairs of SP((x,y)) as described above; so all 4n (n—1) pairs if n is even,
and 2n (n~—1) pairs if n is odd; the pairs have weight l;g , where

2" 2 (n~1M vy if neven,
11"1 -
2"V (n—2Mpy Jifnodd .

Some results are given in table 4.3.2.

Table 4.3.2

Values of constants determining the design given in theorem 4.3.1

n 2 3 4 5 6 7

N 12 18 56 50 132 98

m 15 45 105 210 378 630

& 74.85° 69.74° 66.71° 64.59° | 62.98° 61.71°
¢2 | —33.46° | —33.28° | —33.64° | —34.07° | —34.48° | —34.86°

In this table m = .}n (n +1)X(n +2)(n +3) (see (4.1.4)).

We give a few more D-optimal designs for the case n=2,

Choose
x = (cos¢y,singdy) , 4.3.7
y = (cos¢y,sing,) ,
= (cosw ,sinw) . (4.3.8)
The conditions (4.2.25) and (4.2.27) yield
$1— d2= 8y, (4.3.9)

and
8v4 (cosdsing; — cosgysingds)? + 8v; (1—-r¢ Yeos?w sin®ew
= 4, sin?0g + v, (1-r¢)?,

This last equation can be rewritten as
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8v, sin®0gsin®l + 2v; (1—r¢ Vsin®20 = 4v, sin®0y + v, (1-r¢)?,

or

a2y 1 4 Y1 SIOUg
sin“2w 2}}2 =rd )

From this we find
—0.1254 < cos 2{ € 0.1254.

Some choices of @ and { are listed in table 4,3.3,

Table 4.33

cos2f .

Choices of @ and ¢, in the D-optimal design

defined by (4.3.7) and (4.3.8)

@ cos2{ by
0°,90° 0.128 74.86°
5°,85° 0.117 74.96°
10°,80° 0.096 75.28°
15°,75° 0.063 75.76°

20°,70° 0.022 76.34°
22.5°,67.5° 0 76.66°
25°,65° —0.022 76.97°
30°,60° —0.063 71.55°
35°,558° -0.096 78.03°
40°,50° ~-0.117 78.35°
45° -0.125 78.46°

(4.3.10)

(4.3.11)

As an illustration two choices are given in the pictures below. The arrows in the
pictures indicate the pairs.
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Picture 4.3.4
The pairs of some exact designs in the casen =2

aJn = 22.5°
¢y = 76.66°
w = 671.5°
w= 22.5°
¢, = —31.65°
be =0

w =:90° (¢, = 74.9°)

Nﬁ'é" (¢1= 76.7")
, ® = 45° (¢, = 78.57)

3
® = 22.5° (41 = 76.7°)
B q . . ® = 0" (¢;= 74.9°)
; ’ >
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4.4. Exact designs

It is possible to construct exact designs with efficiency 1 — 7 for any small

positive value of 7 (see theorem 3.1.1 of Fedorov (1972)). For such a design,
since the product of the weights and the number of pairs must be an integer, in
general a large number of observations has to be chosen. Such designs are not
very useful for practical applications. In this section exact designs are con-
structed for which the efficiency is high and the number of pairs is relatively
small.
In section 4.4.1 designs are given that consist of pairs of SP{{w,~rw)) for
some r and w. In section 4.4.2 designs are given that consist of pairs of
SP{(x,y)) and of pairs of SP((w,—rw)) for some x,y,w and r, satisfying
(4.2.11). Note that the covariance matrix of a design consisting only of pairs of
SP((x,y)) is singular. ‘

4.4.1. Exact designs consisting of pairs of SP((w, -rw))

We choose an exact normalized design consisting of the pairs of
SP((w, —rw)) with weights ¥ = 27" /n!, where

w=(wg oo, wn) ,
n
z Wtzz 1
i=1
From the second half of (4.2.23) it follows that
YA |
P | i
| |
MP{w,—rw)) = : sl +tJ : , (4.4.1)
[ [
i \ zI
where
p= —i— (1+r), (4.4.2)
z = ¢ = —--1———-(1-‘?'2)2(1“" i w*) ,
n(n—l) dm1
s = —t A—r (n Zn: wit—1) .
n(nwl) i=1

Now r and w have to be chosen. The D-criterion can be used in choosing r and
w . This gives conditions for  and w which are given in the following lemma.
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Lemma 4.4.1
The determinant of MP((w , —rw )) has a unique maximum at
- 1

ro= parel (4.4.3)

and
n p 3

igl w; " = n +2 . (4.4.4)

Proof

For det (MP({w , —rw ))) we have

3

P s" M (s+m) 2(2)

1y (n—
= C (147 ) (Q—r)? (nwy—1)""1 (1= 2Pr=-D (lﬁwo)-fn( v ,

where C is a constant and
n
— 4
wg = z w;o .
i=1

So, det (MP((w, —rw ))) equals

tntn-1)

C (A+r )0+ (1—p @D (o~ 1)1 (1—wy)?
This function has a unique maximum at

{r, wo) =(1/(n+2),3/(n+2) ).

Corollary 4.4.2

Let € be a design consisting of the pairs of SP({w,—rw)) with wezg}zts
1

v= ] ,and let r and w satisfy the conditions (4.4.3) and (4.4.4). Then
n!
» . f(n+3)
nin +2)2°

tmz = (n + 1)%n + 30

nin + 2)8 ’
5 - 2z
s+ =+ 1P0 +3)

nin + 2)* ’

(4.4.5)

Y 'P”l H
5§ =z,

20 = §
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¢ - -~n{n 4+ 2)*
2(n + D)¥n + 32

From (4.4.5) the D-efficiency of a design SP((w, —rw }) can be computed. We
wish to compute the @eﬂiciency as well. The function d (x,y ,€) attains its max-
imum at the pair (v ,v) satisfying

Lul=Tvi=1,
i=] i=]
and (4.4.6)
n
Z wmv; = —'-g" .
i=1
The maximal value of d (x,y,€) is given by
2
max d(x,y,€)= 2y +8 + 18— ) (4.4.7)
X,y

Now the é-eﬂiciency can be computed:

_ (n+3)° (n+2) (n +1)?
G‘—-eﬁ”(e) = a(n +2)3 (n +1)2 + 2(n +2)6 + 2(n +1)“ .

(4.4.8)

Some results are given in table 4.4.4, The D-efficiency is 68% when n=2, and
even less when n > 2. Therefore the results are not satisfactory, although the
number of pairs is rather small.

Another criterion to choose » and w is the Crcriterion. In order to use this cri-
terion, the function d (v ,v ,€) has to be evaluated.

According to (4.1.8) we have
n
duv, )=y (ri+ri) =2y L wuv, +§ (rf—ri)? (4.4.9)

=1
ta(ri+ri =20 (L uvi¥ + 6-20) LT (wiu; — viv;)?,
i=1 i<j

or

duyv.e)=y Gi+ri)— 2y f: uv; +E(rg—ri)? (4.4.10)
i=1

+18 G 4rd) = 8 (F wv = 1 6=20) T w2 = v,
i=1 i=1

The expressions (4.4.9) and (4.4.10) can be used in proving the following
lemma.
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Lemma 4.4.3

Let € be the design consisting of the pairs of SP({w,—rw)) with weights
v= 1/(2"nY) .

If r and w are such that max d (u v ,€) Is minimized, then r and w satisfy

u,v
- 3
Low'=——, (4.4.8)
i=1 .
r=.;.n+2—.;,\/n2+8n+12. (4.4.11)

Proof

We shall prove that 2a = 8, which is equivalent to (4.4.4), by showing that
2a0 € § implies 2a = § and that 2a 2 § also implies 2a = §. The values of
p,z,t and s are given by (4.4.2).

n
Suppose 2o £ 8,50 ), w* 2 ﬁ . From (4.4,10) it can be seen that
i=1

du,v.e) €dyuyv,e,

where

diuv,e=vy (rf+rf) =2y L uv + £ (rE—r})?
i=1

+ .;.5 (ri+rd)—8 (i wv P
i=1

d {u ,v ,€) attains its maximal value if u and v satisfy (4.4.6), and the maximal
value of d (u ,v,€) is given in (4.4.7). So,

2
duyv,e) 2y +8+ %—

According to (4.4.2) we have 8 > y .
Therefore, it is possible to choose

. 1 ]
Ug (( 26 ) ,( 2\6 ) 901 L :0) *

and

1 1
= Oty 28—z .
ve = ( (28 )% 75 ¥20,...,0)

and it is easily seen that

d{ug,vee)= 2y +8§ + %—2- .

So, we have to minimize the expression
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2n n{n—1) 1 n (1=r2)?
(1+7Y  1=r?? 1=wp (r—1D(1+r)*

(nw o 1)

n
with respect to r and wo , where wog = 3, w,*.
i=1
This is an increasing function of wy for all values of r . Therefore w¢ has to be

chosen as small as possible, so wg = - ‘3_ 3 and 20 = § .
‘ n
Now suppose 2a 2 8,50 ), w! € 3_.
=1 n+2

From (4.4.9) it follows that
d (U 9"’ 76) < dz(u ,V 9€) £

where

n
duyv,e)=y (ri+rd)=2y Y wyv; +E(rE—ri)?

i=1

n
+ a(ri+r)— 20 (L v, )2,
i=1

In a similar way it can be seen that d(u,v ,€) is maximal at the pair {uy,vy)
where

= ([1+1(4°‘2—122 )%' ]% [1_1(4“3"’12 )';‘ }% 0 oy
n = Ustal T NE e 0,00,
1_1(4a—y? 37 14 1¢d0%—y? 31z .
ur= (.-[_2_—?( 4(12 ) ] ’—.['j‘*‘j 402 ) ] ’O)"' y O) »
and that
2
duyvi,€) = 2y + 20 + 11—,
2

This last function is decreasing in wy, and therefore we find

wo = 3 ,and 20 = & .
n

+2
Hence
— n
Y= Q+ry ’
8= 2a= r(ll(f;? ’
and
2y +8+ ¥> _ _2n n(n+2) n?(1—-r2)?

§ T +r»®  (A-r2®  a(r+2)Q+r)

This last function has a unique maximum at
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r=in + 2—%‘fn2+8n +12

2

This completes the proof. 0

The D- and G-efficiencies of the exact designs given in lemma 4.4.3 are listed in
table 4.4.4. Again, the results are not satisfactory, since the (§~efﬁciency has a
value between 40% and 50%. As could be expected, the ('i-vefftciency is higher
than the value found when using the D-criterion to determine r and w . The
value of the D-efficiency, of course, is lower,

In general the number of pairs of the designs given in corollary 4.4.2 and lemma
4.4.3 equals 2"n . This number can be reduced by choosing w in a suitable
way.

Choose

W*-—(WI,WQ,O,...,O)’.

Now w must satis{'y the conditions w{ + w# = 1 and (4.4.4), the latter condi~
tion being equivalent to

3

4 4 _
+twd = ——,
w1 w2 n+2

The only relevant solution of these equations is
4—n %— -;-
= {1 41871
Wi [3‘ + —f( n+2 ) ] 3
1

1
g

=11
wa=l3 7(n+2

2

This choice is possible if n € 4. The results are given in table 4.4.4, where ¢ is
such that

w = (cosé ,siné ,0,...,0) .

Now we consider the casen 2 5.

We choose

w =(W1,W3,---, Wn)',
where

w:: Wg= *‘"* = wy .

Now w; and w, must satisfy the conditions
wf +in—-Dwi=1,

Wl‘ + (n—l)w; = ';i—z.
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The only relevant solution of these equations is

1
2 _ 1 n-—1 n 5

= = 4 272 (22,
Wi n n (n+2)

and

1
p_1_1n y3
w2 n n(n+2)'

In general the number of pairs of these designs equals n 2" again, We give
some further results in the case n =35 . The number of pairs of the design given
above is 160. With a method to be discussed in section 5.4.2 the number of pairs
can be reduced to 80. In the following we construct a design that does not satis-
fy conditon (4.4.4). Therefore the D-efficiency and é-eﬁciency is less than the
efficiencies of the designs given above. However, the number of pairs equals 40.
Choose

— 1 1 f
w_(.i«/'z",_ffi,o,...,o).

This choice of z gives

- 5
YE Qerr
8= 490 __
(1—-r2?
oo 40
3(1—r22
5
+58= —2
* ¢ (1—r2)?

The maximal value of the variance function equals

2 80(1—r)? + 320 + 5(1—r)*
+ A .
2y +8+ 8 8(1—r2)2

Minimizing this function with respect to r yields the condition

rf— 12734 30r2 = 92r + 9= 0 ,
or
r=5—2/6= 0.1010.

Maximizing the determinant of the information matrix leads to the same value
of r as given in the condition (4.4.3),s0r = 1.

The results of section 4.4.1 are given in table 4.4.4, In this table is

w the choice made above to reduce the number of pairs of the design,
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¢ is such that w = (cos¢dy,5indy,0, .

Table 4.44

.,0)' ,and
N is the number of pairs of the design.

Values of constants determining the exact designs SP ({(w, —rw )} given in
section 4.4.1 , and found by using the D- and

riteria.

n 2 3 4
Criterion D G D é D é
r 0.25 0.1716 ] 0.20 0.1459] 0.1667| 0.1270
‘n
w;t Q.75 0.75 0.60 0.60 0.50 0.50
i=1
o 45511 4.2463| 8.1380| 7.8298 | 12.6955| 12.3968
8 91022 | 8.4926 | 16.2760| 15.6596 | 25.3910| 24.7935
b4 1.2800 1.4571 2.0833 2.2847 2.9388 3.1492
¢ ~—1,1378 |—1.0616 [—1.6276 |—1.5660 |—2.1159 |—2.0661
det (M~ Ye)) 154.44 162.56 |8.41 10°8.79 10¢ {1.73 10"]1.79 10"
D -eff 68.04% | 67.35% | 59.53% | 59.23% | 55.59% | 55.44%
Gt-eﬂ’ 42.22% | 42.89% | 43.46% | 43.77% | 44.29% | 44.46%
w (wywy) (wy,w2,0) (w1,w5,0,0)
wi 1+1iv2 1+ RRY/) 1
vt Y I T :
¢ 22.5° 31.72° 45°
N 8 24 24
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n 5
Criterion D é only with respect to r
D
r 0.1429 0.1125 0.1429 0.1010
n
7wt 0.4286 0.4286 0.50 0.50
i=1
« 18.2368 | 17.9517 | 13.8947 13.6097
8 36.4735 | 35.9033 | 41.6840 | 40,8291
v 3.8281 4.0398 3.8281 4.1246
£ —2.6053 | —2.5645 | —1.7368 | —1.7012
det (M~ YNe)) | 1.974 10 | 2.04 10* | 2.53 10 2 | 2.69 10*
D-eff 53.42% 53.34% 52.77% 52.61%
Geeff 44.91% 45.01% | 40.25% | 40.41%
w (w,wawawiws) (w1,w2,0,0,0)
4 1
wi 1+ T
) — 1
wi T “lr\/; 3
N 80 40

4.4.2, Exact designs consisting of pairs of SP((w, -rw)) and pairs of
SP{(x,y))

Let x,y and w be points for which condition (4.2.11) holds and let 8 be
such that

n
C{)ﬁe = 2 Xi¥yi - (4.4.12)

i=1
Consider the sets SP((x,y)) and SP((w,~rw)), where 0 € r < 1. In this
section we construct exact designs consisting of pairs of SP((x,y)) and of pairs
of SP((w,—rw})) . In general we choose m, pairs of SP((x,y)) and m, pairs of
SP{{w,~—rw)). The values of m; and m, must be chosen such that the infor-
mation matrix of the design has the structure of (4.1.5). Then, in view of
(4.2.20) and (4.2.23) the information matrix of the normalized design can be
expressed by (4.2.22), where
my

1 2(1—cosh) ,

1 B m—
P m1+m2 n
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sy+nty = 0,

2m, 2 -
I IR WY

ZM1
z = Cx;x; — 2,
! m1+m2 n(n—l) ;<§ t ylyj
(4.4.13)
. m2 1
= e = (147 ),
P2 mitm, n ()
So + nty = —-—"2— -}; (1—7'2)2,
mytmy n
Z2 = T2 (1""' 2)2 (1"‘2 4) s
mytma n(n 1) i=1
tag = Zg.
From this it follows that
s1= 2—t L _ sin% — nz,. (4.4.14)

mytmy, n—1

Now r and w have to be chosen according to some criterion. First we consider
the D-criterion. In lemma 4.4.5 conditions for r and w are given.

Lemma 4.4.5
Let € be the design defined above and let 8 and r be fixed; det (M (€)) is maxim-
ized if 2a = §, or equivalently

" -
. my n sin@ 3
= e + 44.1
1§1 vt Zmz n+2 (1—=r®)2  n+2 ( 5)
m
+2m: (1-. a=r2p2 EE Geax; = 33,0
If the condition (4.4.15) is satisfied, then
(4.4.16)
1 2my 2 ma 72
= + -2 (1~ ,
2= Garim ¥ oy WOt
s= 2z,
s+m=—2_ 1,2y,
mytmy n
p= 1 [2m(1—cos8) + ma(1+r )],

n(m1+m;



69

Proof «

As can be seen by investigating the expressions given in (4.4.13) the quantities
P1» P2 S1+ ntyand sy + nt, only depend on 8 and . So det (M (€)) is maxi-
mal when the expression

1
n{n—-1)
(sy + 82)”-1 (z, + z;)}-

n
is maximal. This expression only depends on }, w;* and r . This leads to
i=1

d(sy+sy) 9(z1+zz) _
2) g) el

+ + 1 + 0,
(zy+ z Y 1j.n(sl s 3o
where
n
wo= L w
i=1
Solving for wg we obtain
mi  (1—r?)?
—s1+ 221+ 3
s1+ 227 ms+m, n(n—1)
wa =
o (n+2)—"2 (1—r2)?
m 1+m; n (n - 1)
Using (4.4.14) we find condition (4.4.15) and the expressions (4.4.16). N

Lemma 4.4.5 shows that under condition (4.4.15) the determinant of the infor-
mation matrix depends only on @ and r . We maximize the determinant of the
information matrix with respect to 8 and r. Now it is not clear that 6 and r
should satisfy the conditions

cosh = —L— | (4.4.17)
2a
and
1
— 1 112y 17
r=1-101 1%. (4.4.18)

a+é

For discrete D-optimal designs this has been proved by use of the fact that a D-
optimal design is ('}optimal as well. A computerprogram has been written that
determines the values of cos8 and r for which the determinant of the informa-
tion matrix is maximal . This program uses the procedure MINIFUN, described
in THE-RC38859a (1980). MINIFUN has been designed for non-linear optimali-
zation with non-linear constraints.

Results are given in table 4.4.6. Note that € and r do satisfy the equations
(4.4.17) and (4.4.18).
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Let us now consider the G-criterion . We have to choose 7 and w such that the
maximal value of the variance function is minimized. Again the condition
2a = § plays an important role as can be seen intuitively as follows. We have

max d (u,v,€) = max | didz},

u v
where
n n
dy = max d(uy,vy,€) with z uﬁg = Z V;z,g =1,
Uuy,vy i=1 =1
and
n
d,= max d(ujzvye) with J ud, =1,
HaVy i=1
andvy= —ryu; , 0S8 ra< 1.
Ifdy, 2 da,
then

2
2y+5+3§- if 20 €8,

max d(u,v.e) =
u,v

2
2'y+2cx+-g; Jf 2a > §.

Now the same argument as given in the proof of lemma 4.4.3 suggests 20=35.
An argument analogous to this can be given in the case d, > d; .

Assuming 2a = 8, and using lemma 4.2.5 we find,

max d (u,v,€) = max| 2y + 2« + g—:—- sy (L+r)? + (@ + £)A-r2)?}

u,v

where

o2y pF

rs = 1 5 [1 'a“g—g‘] .
A computerprogram has been written that determines the values of » and cosf
for which the maximal value of the variance function is minimized, given m;
and m,.
Results are given in table 4.4.6. Note that 6 and r do not satisfy the equations
(4.4.17) and (4.4.18). The two equations above are given for fixed m, and m,.
To construct exact designs we have to specify x,y,w, my and m, . The values
of m; and m, have to be chosen such that the matrix can be expressed by

 (4.2.22). For practical reasons it is useful to choose m, and m, as small as
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possible, Moreover, m; and m, have to be chosen so that the efficiency of the
designs is high. The design constructed is D-optimal if it satisfies the conditions
(4.4.15), (4.4.17), (4.4.18) and m/m, = vy/v,. This can be seen as follows. If
one wants to compute the efficiency of such a design, one has to consider the nor-
malized design. Expressions for its information matrix are given in (4.4.13).
Using my/m; = v3/v, , one finds i S v 2" ntand
mi +m 2

——2— = 1, 2" n! Substitution of this in (4.4.13) and verification of the con-

1tm;
ditions (4.4.15), (4.4.17), (4.4.18) shows that such a design is D-optimal. As
can be seen from table 4.2.10 the values of the ratio of v{ and v; are: .

n 2 3 4 5

/vy, | 2.316 4.408 7.163 10.413

If we choose x,y and w as below, m, is small relative to m, .

Choose w = (1,0,...,0) ,
so my = g3 2n withg, € N
x = {cosdy,sing,,0,...,0),
y = (cosdysingy,0,...,0),
$O mi = g3 N with g; € Nand

An(n—1) ,if n even,

2n(n—1) ,ifn odd.

Condition (4.4.15) gives

2y2
2t = _n_ n—1 my (1-r? . 4.4.19
cos*(¢y+¢ ) n+2  2(n+2) mi sin’ ( :

It is useful to consider another choice of w . If w is chosen as
w = % (1,1,...,1), then the ratio of m; and m, differs from the ratio of
my and m, of the design mentioned above. Therefore the designs with
w = 71: (1,1,...,1) might have a higher efficiency than the designs men-
tioned above. However, the number of pairs is larger. Choose

x,y as above,

and

1
= —= (1,1,....,1) ,
w= 7= )
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SO

my= qun with q;é N.
Condition (4.4.15) now gives _
P - n (n—1) ma (1—r?)?
= - =2 4.4,
cos® ($1+2) n+2 n(n+2) m; sin®® (4.4.20)

Results are given in table 4.4.6.
In this table rg, dy and d , are defined by

1
=1_11—_2¥ 7
re ¥ -!-[1 a+£] y

# .
dy=maxd(u,yv,€) with } u?= J v?=1,

i,V i=1 i=1

n
dy= maxd(w,—rw,) with 0<r <1,and } w?2=1.
r,w i=1

The results are satisfactory. The efficiency of the designs is good and the number

of pairs is relatively small, although the number of pairs is larger than the
number of pairs of the designs given in table 4.4.4.



Table 4.4.6

Values of constants, determining the designs given in
section 4.4.2, and found by using the D- and G-criteria

n 2 4

Criterion D ('} D (§
w 1,00 w» | 1,0 w?  1(1,0,0,0) |(1,0,0,0)

my 8 8 8 8 48 48

ma 4 4 4 4 8 8
ro 0.1381 0.2026 0.0918 | 0.2918
cos(¢y—2) —0.3125 —0,3046 —0,1790 | —0,1700
cos*(¢py+¢,) | 0.5666 0.4334| 05666 0.4334| 0.7090 | 0.7090
¢y 74.69° 178.52°| 74.45° 78.28°| 66.48° | 66.22°
é, —33.52° —29.69°|—33.28° —29.45°| —33.83° | —33.57°
a 1.4668 1.4675 5.0999 | 5.1300
5 2.9336 2.9350 10.1999 | 10.2600
y 0.9167 0.9003 1.8253 | 1.7824
¢ 2.3844 2.5285 5.8446 | 17.0812
v/ 2 - 0.3125 0.3067 0.1790 | 0.1737
ro 0.1381 0.1294 0.0918 | 0.0793
dy 5.0535 5.0116 14.1772 | 14.1344
dy 4.8931 5.0116 12.9367 | 14.1344
det (M~%e)) 22.548 22.776 4,72 10" (5,32 10°
D-eff 99.98% 99.78% 99.91% | 99.06%
Geff 98.94% 99.77% 98.75% | 99.05%

Dw = (1VZ,14).

73



74

n 3
Criterion D D D é é é
w (1,0,0) | (1,0,0) wh (1,0,0) | (1,0,0) wh
m, 12 24 36 12 24 36
m 6 6 8 6 6 8
mytm, 18 30 44 18 30 44
r 0.1596| 0.1068 | 0.0984| 0.4098| 0.2269( 0.0580
cos(¢,—¢,) [—0.2151|—0.2245 |—0.2255|—0.1613 |—0.2289 |—0.2626
cos?’(py+¢,) | 0.6996| 0.6515 | 0.5694| 0.6999| 0.6517| 0.5688
b1 67.83° | 69.58° | 72.02° | 66.25° | 69.70° | 73.14°
&, —34.59° | —33.40° | —31.01° | —33.03° | —33.54° | —32.09°
a 3.3722| 3.0309 | 2.9903| 3.4424| 3.0560| 3.0416
8 6.7444| 6.0619 | 5.9807| 6.8848| 6.1121| 6.0832
y 1.4505| 1.3610 | 1.3485| 1.3569| 1.3231| 1.3218
¢ 2.0348| 4.1056 | 4.6112| 3.1861| 4.5387| 4.5234
v/2a 0.2151( 0.2245 | 0.2255| 0.1971( 0.2165| 0.2173
re 0.1596( 0.1068 | 0.0984| 0.1158( 0.0964( 0.0967
d, 9.9573| 9.0895 | 8.9818| 9.8660| 9.0448| 9.0139
dsy 7.0855| 8.6420 | 9.0820| B8.1412| 9.0448| 9.0139
det (M~1(e€))|1.0110%| 7.9210* | 7.89 10*(1.26 10° |8.24 10* | 7.99 10*
D-eff 97.31% | 99.96% [99.998% | 94.97% | 99.53% | 99.86%
Geeff 90.39% | 99.02% | 99.10% | 91.22% | 99.50% | 99.85%

Dw = ;J§(1,1,1) .




n 5
Criterion D
w (1,0,0,0,0) 15(1,0,0,0,0)
m, 40 80 120 160
ms 10 10 10 16
mytmy 50 90 130 176
r 0.1165| 0.0821| 0.0632 0.0714
cos(¢1—b,) |—0.1474|—0.1499 |—0.1506| —0.1504
cos®(¢,+¢,)| 0.7853| 0.7503| 0.7384 0.7027
&1 63.04° | 64.30° | 64.71° 65.84°
&, —~35.22° | —34.32° | —33.95°| —32.81°
a 8.1351| 7.6691| 7.5055 7.5714
5 16.2703| 15.3381| 15.0109| 15.1428
y 2.3979| 2.2995| 2.2612 2.2769
£ 3.5116| 7.5887| 11.6032 9.5987
y/2a 0.1474| 0.1499| 0.1506 0.1504
re 0.1165| 0.0821] 0.0632 0.0714
ds 21.4195| 20.2818] 19.8740|  20.0391
d, 14.3219| 17.7454| 21.5124 19.6092
det (M~ %e€))|1.16 10'°{7.31 10'%(7.14 10" |  7.09 10
D-eff 97.56% | 99.84% | 99.96% | 99.996%
Geeff 93.37% | 98.61% | 92.97% 99.81%
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n s
Criterion é
w (1,0,0,0,0) ;Js’(l,o,o,o,o)
my 40 80 120 160
ma 10 10 10 16
mytm, 50 90 130 176
r 0.2196| 0.2338| 0.0037| 0.1539
cos(¢y— ) |~0.1370|-0.1433 {~-0.1731] —0.1511
cos® (¢, +¢,) | 0.7853| 0.7503| 0.7386 0.7027
61 62.74° | 64.11° | 65.35° 65.87°
&3 —35.14°| —34.13° | —34.61°| —32.82°
a 8.1638| 7.6893| 7.5579 7.5840
§ 16.3275| 15.3786 | 15.1159 15.1681
v 2.3621| 2.2710] 2.2289 2.2584
¢ 3.8868| 8.5330 11.4888 10.0235
v/2a 0.1447} 0.1477] 0.1475 0.1489
ro 0.1101| 0.0757| 0.0624 0.0689
dy 21.3935| 20.2560] 19.9023 20.0211
d, 14.6710| 18.6647| 21.4144 20.0211
det (M~ %(e))|1.2110%(7.8710%{7.2710'8| 7.2310'®
D-eff 97.34% | 99.47% | 99.87% 99.90%
Geeff 93.49% | 98.74% | 93.40% 99.89%
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4.5. Robustness of the designs

In this section we discuss the robustness of the designs given in section 4.3
against violation of the condition 8 = 0. In general condition (1.8.6) is not
satisfied and the designs, that are D-optimal in the case 8 = 0 are not D-optimal
when B8 = 0. However, B is the vector of parameters which should be
estimated from the experiment which is being designed. Results given in this
section concerning the robustness of these designs are satisfactory. Therefore,
the D-optimal designs in the case 8 = O are useful in practical applications. We
shall discuss the D-efficiency of some of these designs for several values of 8 .
Let €, be a design and 8 = Bo. The information matrix is denoted by
Mgy B = By) . The D-efficiency of this design equals

det M(eo 1 B= Bo)) |7
max det (M [ B = Ba)
€

(4.5.1)

In order to compute the value

max det (M (e | 8= Bo))
€

D-optimal designs have to be constructed in the case 8 = B, . This is a rather
cumbersome task and it seems that it can only be done by maximizing
det (M (e | B8 = B¢)) numerically. But then one cannot be sure that the absolute
maximum has been found; the procedure may lead to a local maximum. It is
easy, however, to compute a lower bound for the D-efficiency by using the fol-
lowing lemma,

Lemma 4.5.1
A lower-bound for the D-efficiency of the design €y in the case B = B¢ is given by

det M(€o | B = Bo)) %

4.5.2
max det (M(e | B = 0)) ( )
€
Proof
‘We prove that
max det (M(e | 8= B¢) € maxdet (M(e | 8= 0)).
€ € ,

Let €, , consisting of the pairs (u;,v;) with weight p (4 ,v;) ,i = 1,... ,N, bea

design where det (M (e | 8 = B¢)) is maximal. Let A(u,v) be as defined in
{2.3.19) and (2.3.20). Now it is easy to see that

AMup) €L,

and
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Auyv)= %forallu,v ifandonlyif 8= 0,

Define
};(u,‘ sVi ) = 4p (U,‘ Wi ) }\(u, »Vi ) ,

and
% N 2
Flusvi) = pluy v )X plusvi)) .
t=1

Now we have

det (M(Gl | 8 = 30))

N
= det (X, pu;,vi) AMuy vy X W) — F o) (F @) = £ (v;)))
i=1
= det (5 Aw) 20F @) = £ @) (F @) = £ )Y
=1
N

< det(): i(ui,V:)-i-(f )= £ W) (F Gy )= Fv))))
i=1
=det(M(e31 B=10)) € maxdet  M{e | 8= 0)) ,
€

where €, is a design consisting of the pairs (u;,v;) with weight 7 (u;,v;),
i=1,...,N. ‘ i

In table 4.5.2 lower bounds for the D-efficiency of some designs are given for
several values of 8 . The designs considered are designs which are D-optimal
when 8 = 0. For n = 2 three designs are given for each value of 8 . The lower
bounds for the D-efficiency of these designs are approximately the same, There-
fore only one design has been chosen in the cases n = 3,4, 5. It is the design
for which

. 1 ,
W—-?;r(l,...,l).

In this table the smallest value of 7, ;; is listed. This is the smallest value of

Tu
T, +

vhere
logm, = (£ (x)) Be

and (u,v ) is a pair of the design.
It is also possible to compute lower bounds for the D-efficiency by using

theorem 2.3.9. Doing so, one has to compute max A{u,v) d (u,v,€). This is not
u,v

easy, though it is not as difficult as computing max det (M(€)). For n = 2
€
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lower bounds are computed by means of theorem 2,3.9 and the procedure MINI-
FUN to determine the maximal value of A(u,v) d(u,v,€).

Results are given in table 4.5.2. The lower bounds found by this method are
approximately the same as the lower bounds found with lemma 4.5.1. In view
of this, lemma 4.5.1 is used to find lower bounds in thecasesn = 3,4, 5.

Table 4.5.2
Lower bounds for the D-efficiency of some designs

i ] n=72 !smallest lower bounds

Be value using(4.5.2) (2.3.28)
Bi B2 Bu B Bun|ofm lw=0" 225 45° | 0=0°

0.05 0.05 0.05 0.05 0.05| 0.4650 (0.998 |0.99810.998| 0.997
—0.05 0.05 0.05 0.05 0.05| 0.4650 (0.998 |0.998]0.998| 0.997
0.05 0.05 —0.05 0.05 0.05| 0.4495 [0.998 {0.998{0.998| 0.997
0.1 01 0.1 0.1 0.1 ]0.4304 {0.993]0.993/0.993] 0.993
—0.1 0.1 0.1 0.1 0.1 [0.4304 {0.99310.993{0.993| 0.993
01 01 —0.1 0.1 0.1 ]0.3999 [0.9900.990(0.990| 0.991
0.3 0.3 0.3 03 0.3 ]0.3014 [0.940,0.940|0.941| 0.935
—0.3 0.3 0.3 03 0.3 [0.3014 |0.940]0.940(0.940| 0.938
03 03 —03 03 0.3 |0.2284 |0.9210.921]0.921( 0.927
05 05 05 05 0.5 |0.1977 |0.851]0.853{0.854| 0.824
—05 0.5 05 05 0.5 |0.1977 [0.8510.851{0.850| 0.844
05 05 -05 05 05 [0.1162 |0.813]0.814|0.815| 0.813

11 1 1 1 00572 |0.597(0.608|0.616| 0.410
e | 1 1 1 1 0.0572 ]0.60210.5960.587| 0.595
1 1 -] 1 1 0.0170 10.546 10.55410.558] 0.453
01 0 0 0 o0 |04622 |0.997/0.997]0.997| 0.997
03 0 0 0 0 |0.3882 |0.976/0.976|0.976| 0.980
05 0 0 0 0 |0.3190 |0.936(0.936(0.935| 0.945
1 o0 0 0 o0 |[0.1800 |0.786 [0.784]0.782| 0.801
o o 01 0 0 [0.4755 |0.999(0.999(0.999| 0.992
0o 0 03 0 0 |0.4268 |0.991/0.991[0.991]| 0.990
0 o 05 0 0 |0.3796 |0.974|0.974]0.974| 0.972
o o0 1 0 0 |0.2724 |0.903/0.903/0.902| 0.892
o o0 0 0 0.1 |04822 |0.999[0.999]0.999| 0.999
o o0 0 0 0.3 |04468 |0.992(0.992]0.992| 0.991
o o 0 0 05 |0.4119 {0.979|0.979(0.979| 0.975
0o o 0 0 1 |0.3291 |0.920(0.919(0.918| 0.903
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n=3 Ismallest

Bo value | lower

Bi B2 Bs Bu Bxn Bz Pz Bz By |of m ; |bound
Q.05 0.4817 [0.9995
0.1 0.4634 |0.9982
0.2 0.4272 {0.9927
0.3 0.3918 (0.9837
0.5 0.3245 |0.9560
1 0.1875 10.8467
0.05 0.4920 10,9999

0.1 0.4840 [0.9994

0.2 0.4681 [0.9976

0.3 0.4522 |0.9946
0.5 0.4207 10,9850

1 - 10.3453 (0.9424
0.05 0.4908 (0.9999

0.1 0.4816 10,9996

0.2 0.4633 10.9983

0.3 0.4451 |0.9963

0.5 0.4092 |0.9897

1 0.3241 |0.9604

0.05 0.05 0.05 0.4748 |0.9986
a1 01 0.1 0.4498 (0.9948
0.2 02 0.2 0.4006 {0.9782
0.3 03 0.3 0.3533 |0.9522
05 05 0S5 0.2675 ]0.8765
1 1 1 0.1176 |0.6296
0.05 0.05 0.05| 0.05 0.05 0.05/ 0.05 0.05 0.05| 0.4516 |0.9982
0.1 01 01 0.1 01 0.1 0.1 0.1 0.1 |0.4041 |0.9928
0.2 02 02 0.2 0.2 0.2 0.2 0.2 0.2 | 0.3150 |0.9720
0.3 03 03 03 03 0.3 0.3 0.3 0.3 |0.2377 |0.9394
05 05 05 05 0S8 0.5 05 05 0.5 |0.1254 |0.8505
1 1 1 1 1 1 1 1 1 0.0201 10.5980
—0.3 03 03 0.3 03 0.3 0.3 0.3 0.3 |0.3047 [0.9388
—0.3 03 0.3 03 03 03 0.3 0.3 0.3 | 0.3047 |0.9272
-—0.3 03 03 |-03 03 0.3 |—0.3 0.3 0.3 | 0.3169 (0.9241

The entries that are not given in this table are zero.



n=4 -l
Bo value of the | smallest
non zero non zero value lower
parameters parameters of m; 4 bound
8, 0.05 0.4818 0.9996
0.1 0.4636 0.9986
0.2 04275 | 0.9945
0.3 0.3923 | 0.9878
0.5 0.3253 | 0.9673
1 0.1886 0.8878
Bu 0.05 0.4927 | 0.9999
0.1 0.4854 | 0.9996
0.2 0.4709 | 0.9984
0.3 0.4564 | 0.9965
0.5 0.4276 | 0.9903
1 0.3583 | 0.9624
Bz 0.05 0.4901 0.9999
0.1 0.4802 | 0.9998
0.2 0.4605 | 0.9990
0.3 0.4408 | 0.9978
0.5 0.4022 | 0.9939
1 0.3166 | 0.9766
B:.1<€i<4 0.1 0.4461 | 0.9945
0.3 0.3432 | 0,9524
0.5 0.2532 | 0.8776
1 0.1031 0.6364
By, 1€i<4 0.1 0.4752 | 0.9997
0.3 0.4260 | 0.9973
0.5 0.3783 | 0.9926
1 0.2703 | 0.9726
B; 1€i<js4 0.1 0.4628 | 0.9985
0.3 0.3901 0.9867
0.5 0.3219 | 0.9638
1 0.1839 | 0.8664
B: By, 1Si<j<4 0.05 0.4422 | 0.9982
0.1 0.3859 | 0.9927
0.2 0.2831 0.9718
0.3 0.1988 | 0.9393
0.5 0.0892 | 0.8515
1 0.0095 | 0.6117
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n=5 I
Bo value of the | smallest
non zero non zero value lower
parameters | parameters | of 7; ;; | bound
B 0.05 0.4818 | 0.9989
0.1 0.4637 | 0.9973
0.2 0.4278 | 0.9956
0.3 0.3926 | 0.9903
0.5 0.3258 | 0.9736
1 0.1893 | 0.9060
1.5 0.1014 | 0.8202
2 0.0517 | 0.7345
B 0.05 0.4933 | 0.9999
0.1 0.4865 | 0.9997
0.2 0.4731 0.9990
0.3 0.4597 | 0.9976
0.5 0.4331 | 0.9932
1 0.3685 | 0.9735
15 0.3083 | 0.9425
2 0.2540 | 09028
Bia 0.05 0.4896 | 0.99996
0.1 0.4793 | 0.9998
0.2 0.4586 | 0.9993
0.3 0.4381 | 0.9985
0.5 0.3978 | 0.9959
1 0.3039 | 0.9844
1.5 0.2238 | 0.9672
2 0.1600 | 0.9469




Bi1s€i K5

ng,lﬁiés

B, 1<i<j<s

B: By 1€i€j<K5

0.05
0.1
0.2
0.3
0.5

1.5

0.05
0.1
0.2
0.3
0.5

1.5

0.05
0.1
0.2
0.3
0.5

1.5

0.05
0.1
0.2
0.3
0.5

1.5

0.4701
0.4408
0.3827
0.3280
0.2322
0.0838
0.0269
0,0083

0.4876
0.4751
0.4504
0.4259

0.3781

0.2699
0.1835
0.1202

04751
0.4504
0.4018
0.3550
0.2699
0.1202
0.0481
0.0183

0.4332
0.3687
0.2544
0.1662
0.0637
0.0046
0.0003
0.0000

0.9986
0.9945
0.9784
0.9525
0.8767
0.6243
0.3988
0.2446

0.99995
0.9998
0.9991
0.9981
0.9947
0.9803
0.9600
0.9370

0.9996
0.9984
0.9934
0.9853
0.9599
0.8531
0.7093
0.5590

0.9982
0.9927
0.9715
0.9385
0.8482
0.5946
0.4052
0.2830

83



84

5. Designs in the case of a quadratic model with a hypercube as experi-
mental region

5.1. Introduction
In this chapter the parameters of the model are the same as in chapter 4,
but the experimental region is now a hypercube. So, we have
Fx)=(xy, ..o, xpxf, o, x2%0X0, 000, Xno1X ), (5.1.1)
x €EX,XCR x=1(xq...,%2),
where
X={x €X1-1S<x €1foralli}. (5.1.2)

For the construction of optimal designs the assumption 7, = (1,...,1) is
made. In section 5.2 D-optimal designs are given. The D-optimality is proved in
section 5.3. Discrete D-optimal designs with a relatively small number of pairs
are given in section 5.4. Exact designs are considered in section 5.5 and in sec-
tion 5.6 we will discuss the robustness of the discrete designs constructed in sec-
tion 5.2 against violation of the assumption 7, = (1,...,1)".

Again (4.1.4) holds and the assumptions (4.1.5) and (4.1.6) concerning the
structure of the covariance matrix are made. The variance function can be
expressed by (4.1.8). .

5.2. Discrete D-optimal designs

Again it is important to investigate the variance function. If the variance
function d (x,y.,€) of a design € can be expressed by (4.1.8), then d(x,y,.€)
satisfies (3.1.8) and (3.1.9). In chapter 4 D-optimal designs were proved to be
strongly rotatable. In the case of a hypercube as experimental region D-optimal
designs have the following property.

(T e S X C T N . ) (5.2.1)
=dWxg, e eV X0 Vi e v e s Xih v oo s Yn HE)
forallx,yand1 <i £ n.

In the next lemma a condition equivalent to property (5.2.1) is given.

Lemma 5.2.1

Let € be a design with covariance matrix of type (4.1.6). The design € has proper-
ty (5.2.1) if and only if

5= —ag (5.2.2)
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Proof
Let dyand d, be defined by d; = d(x,y,€) and
dy=d(xy,....9, o)y o X, 00 0 )€)
Then, using (4.1.8) we find

di—d,=

=8 L PxP+ 37— 3 — Py +aE (P - 3D L =3P

J=i J=t
=@ +48) 2= 3D X - 3yP.
j=i

The last expression vanishes forall x,y € X if and only if § = 4§ . 1}

The lemmas 5.2.2 and 5.2.3 are useful in finding pairs where the variance func-
tion is maximal. The proofs of these lemmas are given in section 5.3, because
they can be regarded as part of the proof of the D-optimality of the designs con-
sidered in this section,

Lemma 5.2.2
Let € be a design with covariance matrix of type (4.1.6). If d(x ,y ,€) is maximal
at(x,y)={(uy), thenforall1 £i € n

gy l=1 or Ivii=1.

According to lemma 3.2.1 we have ly; ! = lv;1 = 1 forall 1 £ ¢ € n . This
does not hold in the case of a quadratic model as can be seen as follows. Suppose
that it holds, then a D-optimal design consists of pairs of this type. However,
such a design does not measure the quadratic effects, since w?= v;2= 1 for all
1€i<n.

Having obtained one pair where the variance function is maximal, one can find
more pairs having this property. This might be useful in the construction of
optimal designs. Let (u,v) be a pair where the variance function is maximal and
let k&, be the number of pairs of coordinates (y; ,v; ) for which u; = v; , and &,
the number of pairs (u;,v;) for which u; = —v, . Now, using (3.1.8), (3.1.9)
and -if it holds- (5.2.1), other pairs can be found where the variance function is
maximal ; for example the pair (,7) with

ag=(1,...,1),
Vi=1for1 €1 Kk,
v, =—1 forky; <i £ k,,
and
-1< ¥ <1 forky+k,<i €k,.

This will be used in the next lemma and definition.
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Lemma 5.2.3

Let € be a design with covariance matrix of type (4.1.6) and § = —4f . Let (u,v)
be a puair where the variance function is maximal and assume (without loss of gen-
erality) that ‘

u=(1,...,1),

v=(0,...,1-1,... =Lk ke R N
where

ky is the number of 1's in v ,

k5 is the number of —1's in v ,
and

—1< v, <lforky+k,<i€n.
Then

v; = vy forall 1,j with ky+ky <i,j €n.

In the light of these lemmas it is useful to define the following sets of pairs.
Definition §.2.4

Let the pair (u,y) be as defined in lemma 523 , with v, =w for
kit ky<i€n if kytky<n,and lee v=1A(1,...,1,~1,...,—1) if
ki+ky=n.letks=n —ky— ky. Now define

Slkypkpks; w)= S((uwv)),
SP(k 1.k gk 53 w )= SP((u v)),

and

SP,(0,0,n; w} is the set containing the pairs of SP(0,0,n; w) and all pairs that
can be obtained by replacing | pairs of coordinates (u;,v;) by (v; ) as is done in
(5.2.1).

The information matrices of these sets are denoted by replacing the letter S by the
letter M, so MP(k 1,k 3,k 33 w ) is the information matrix of SP(k 1,k kxw) .

The number of pairs of the above sets is as follows
2" pairs ,ifksy= O,
S (k 3,k 3,k 3; w ) contains
| 277 pairs ,ifk3= 0.

nt n o .
mz pairs A ks= O,
SP{k 1,k 5,k 43; w) contains

n!

PN

27 pairs  ifks= 0.
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(?)2" pairs ifL = 1n,
§P;(0,0,n; w) contains

n n-1 B H _ 1
( 1 )27 ! pairs Jif 1= In.

The set SP (k 1,k 5,0; w ) coincides with the set S (k 4,k ;) given in definition 3.2.2.
Expressions for the information matrices of the sets given in definition 5.2.4 are
presented in lemma 5.2.5.

Lemma 5.2.5
Let (5.2.3)
. (n—1) n
P Tt k2t g ka2",
- f(n—1N n
Sl+t1 kx!kg!kg!kzghz N
- 2(”“'2)! k3 "
. 28 Y
“ k 11k ol 5! (Qkikz + koksh +kiksg + () gh 27,
with

g=0U-w) A= (1+w).

Then
I |
P |
| 1
MP (k1 jeaksiw) = | s g if ks> 0,
| I
: : 211
and (5.2.4)
I |
pil i ]
| |
MP(kykaksw) = é- : syl +eyJ : JAf ks= 0.
| |
: : le
Let (5.2.5)

P2 -(Dg2,
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Sat ity = (?)gh 2" R
-2 n
t2 l"‘[(?)'—'4(,1_1)]8‘17'2 s

Z = [(?)“ 2(?:12)]gh 2",

Then
| |
LEAN |
{ |
MP,(0,0,n; w)= | sal+ta] | Af U In,
| |
l | 22
and (5.2.6)
1 |
pal | |
| |
MP, (00,n;w)= 1 : sl +tod :
7" 2
| |
: : 221
Proof

It is easy to prove these results by applying the general expression for
MP{({u ,v)) given in (4.2.20). Note that the results of (4.2.20) are related to the
case where MP((u,v)) contains n 12" pairs. i

Let € be a design for which the variance function can be expressed by (4.1.8).
For all pairs (x,y ) belonging to SP (k;,k 2,k 3; w ) the variance function d (x ,y ,€)
has the same value. The value that is attained by the variance function at the
pairs of SP(k .,k 2,k3; w) is denoted by d (ky,k4,k3; w ) and can be expressed by

dlkykopks;w)= dkyy +ksgy + dkik, 8 (5.2.7)
k
+hkiksg 8+ koksh 8+ ([)gh 8+ ksgh a+kfghf ,
where
g=(0-w) ,and A = (1+w)?,

Moreover, if € is a design of type (4.1.6), and if § = —4f holds, then -by
iemma 5.2.1- the value of the variance function is the same for all pairs belong-
ing 10 SP,(0,0,n; w ). This value can be expressed by

d(0,0,n;w)zng‘y+(§)gh§+ngha+n’gh§. (5.2.8)
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If ka= 0O, then d (ky,k 3,k 5; w ) is denoted by d (ky,k3), and we have
dlky k)= Akyy + 4k1k, 8. (5.2.9)

Note that contrary to (3.2.7) in (5.2,7)-(5.2.9) reference to the design € has been
suppressed. Whenever the above notations are used, it will be clear to what
design € they are related, It wiil appear that a D-optimal discrete design can be
found by choosing a combination of sets as defined in definition 5.2.4 and suit-
able weights. Such a combination can be obtained by using a procedure similar to
procedure 2.3.8, Start with some combination of sets and compute weights by
maximizing the determinant of the information matrix. Leave out those sets for
which the weights are not positive. Compute the maximal value of the variance
function using lemma 5.2.3 and add the sets that contain pairs where d (x,y ,€)
is maximal. Now a new combination has been found, and this step is repeated
with the new combination. This process converges and a D-optimal discrete
design can be found. Again it is not a priori obvious that this procedue con-
verges, because the condition § = —4£ is used. In section 5.3 it will be proved
that 8§ = —4f . Then, it is clear that the procedure converges in the same way as
procedure 2.3.8. In the following sections D-optimal designs will be presented. A
method to prove the D-optimality of these designs will be given in section 5.3,
In this section some remarks are made about computing the information
matrices of these D-optimal designs. We distinguish between three cases:

i) n 26 ,n even,
ii) n 23 ,n odd,
iii) n = 20rn = 4.

The information matrix and covariance matrix of the designs given in section
5.2.1,5.2.2 and 5.2.3 are given by (4.1.5) and (4.1.6).

5.2.1. Discrete D-optimal designs in thecase n 2 6 ,n even.

We shall present a D-optimal design € that consists of 4 sets of the type
given in definition 5.2.4. The information matrices of these sets are denoted by
M, ,i=1,2,3, 4, where '

pii

ZgI

K
_ I

|
|
| : ,
sT+ul | , (5.2.10)
|
i
|

Consider the design, consisting of
i) the pairs of S(.;.n-—l,ln +1) with weights v,;

the number of these pairsis (> ;)2"7*,
z
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ii)

jii)

iv)

s1=;= 0,

d(.;_n-—l,é_n +1)=2n+d)y + (n-2)n+2)5,

the pairs of S(.;.n ,L1n ) with weights v,;

the number of these pairs is (1’;)2"“1 ,
Kl

-1
p2= 2" 2n
.z.n

Sg= = 0’
-

Zg = 4(1n o2,
N 1

a(in,an)=2ny +n%8,

the pairs of SP(0,0,n; wy) with weights u ;
the number of these pairs is 2" ,

P3 = gl 2“ ’

Sa == 0 s

t3= 81}“ 2" s

zZ3= g1hy 27,

with g1= (1-—-w1)2 ,h1 = (1+W1)2 .

d00n;wi)=n g1y + (;)glhxs +nghia+nigh €,

the pairs of SP;J‘ (0,0,n; w,) with weights A ;

the number of these pairs is (;* n)2"“ ,
' T

Pa= (lnn)gl 2"_1 ’
7
se= 20172 gihy 28
4= 1n—1 By 3
¥
setty= (Inn)glhl 2t

24= {(1 )—-2(,n 1)]glh; 277t

the value of the variance function in the pairs of this set equals

(5.2.11)

(5.2.12)

(5.2.13)
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d(0,0,n;wy)ifand only if § = —4f .

The total number of pairs of the design € equals

N=l1+ 3 ol (5.2.14)

7

If one assumes that the design € is D-optimal then the information matrix M (e)
can be derived without computing the weights of the pairs of the design. The
variance function is maximal at the pairs of the design and the maximal value
equals .;,n (n +3). Using (5.2.11), (5.2.12), (5.2.13) and lemma 5.2.1 , we find

@2n+d)y + (n—-2)(n+2)8= [ n(n+3), (5.2.15)

4y +2n 8= n+3, (5.2.16)
g1y + %(n*-l) grhid+gihya+ngh E= .;.(n +3), (5.2.17)

5= —4¢ , (5.2.18)

The function d(0,0,n; v ) considered as a function of v is maximal at v = wy;
this yields :
1

[1- 2y 2. (5.2.19)

-+
at+tné+i(n—1)

=141
e I
Solving the equations (5.2.15)-(5.2.19) we obtain
V n+3

yo=§ = mid (5.2.20)
(A=wiP + 2(n+2)wy = 0 (5.2.21)
the value of o can be computed by means of (5.2.17).
Now, the weights vy, 3, ¢ and A can be computed from the equation
| M{e)=p i My+ v, Mo+ pu Ma+ A M. : (5.2.22)
This yields |
? 2(n-1) 2(n—-1) g, (r—1)g, vy
s 0 0 0 n gihy Va
. | =® 0 0 g1 —giha il (5.2.23)
z 2(n—2) 2n  gihy _;.(n —2)gqhy A

where
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n—2

= on+1 1
b - 2” n (%n_l)y
and
* n
=% 8
Solving for vy, ¥, A and p we find
1 n+2 (s+t)n 1
== | BT pdg 4l TR D 2.24
NE T 2a-DE+n T T T aa-1D A, (5.2.24)
1 n+2 1 N (s+t W n—2) 1
= | R~ 1 1y p MTIARTE) D
Y2y | 2Dty BT 3 a(n—1)
—_ s
nbgih
g = s +nt

n g;h; 2" ’

Results for n = 6 are given in table 5.2.7, :

In section 5.3 it will be shown that the set of pairs of any discrete D-optimal
design is contained in the union of the sets S(Jn—1,2n+1), S(in ,In) and all
SP;(0,0,n; wy) with 0 €1 < n . The design € is not D-optimal in the case
n =2 or n = 4. Solving the equations (5.2.24) in the case n = 2 vyields a
negative value for ¥, . The results in the case n = 4 are

a = 25580
§ = 0.5833
vy = 0.5833
£ = -0.1458

It can be shown that the variance function is maximal at the pairs 'of the set
SP(1,2,1; 0} and that the maximal value is equal to 14.079. Therefore, the
design is not D-optimal.

5.2.2. Discrete D-optimal designs in the case n 2 3,n odd.

We will give a D-optimal design consisting of 3 sets of the type given in
definition 5.2.4. The information matrices of these sets are again given by
(5.2.10). Consider the design consisting of

i) the pairs of S(%(n —-1),1(n +1)) with weights vy;

the number of these pairs is (,; nn_ 2y
7 7 :
r1= 2 {:{:_11)2” ,
T
s1=ty= 0,
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Zy = 4( )2"
2

wlu

d(_‘z.(n-l),l(n +1) = Q2n+2)y + (n—1Xn+1) 5, (5.2.25)

ii) the pairs of SP(0,0,n; w,) with weights p;
the information matrix of this design has been given in section 5.2.1.

iii) the pairs of SP, La- 1)((),O,n ; wy) with weights A ;
the number of these pairs is (1 1 2",
—5
P3= (1,:1. 17g12°

3= 4(1n_3)g1h1 2t
2 2
Ss+ts—(1 :)glhnzn ,
'f
z3= [(1 1)‘2(1n,3)]gxh12” .
T 7

The total number of pairs of the design equals

N=[1+3¢G."l2".
I gny

Recalling the fact that a D-optimal design is G-optimal, we find

n+2)y + (n~D(n+1)8 = in (n+3), (5.2.26)

4y 4+ 2n 8= n+3, (5.2.27)

§=-a¢  (5.2.28)
1

wy= -1+ 1[1- 2y 2. (5.229)

atn §+%(n-—1)8

These are four eguations with five unknown variables, As a fifth equation we
use ’

M(e)=wvis My + pu My+ A My, - (5.2.30)
ie.,
b4 P1 P2 P
s 0O 0 S3 ;:
t|= 10 ¢ | |#] (5.2.31)
z Zy Z3 2y A
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This yields

—zstatzats _ z2 1
Zylys3 zZit; z)
v S
t
el = -3 1 o ffe]. (5.2.32)
A 1253 t2
z
1 o o
S3

Substituting this inp = p; v1 + p . + p3 A , we obtain

= 1 _ 1 _
p—z+(hl 1t +(hl s, (5.2.33)

or

1 1 1 1 1

=1 (- +(E=-nHi, 2.
y 5 (h1 ) (hl 3 - (5.2.34)
The five equations (5.2.26)-(5.2.29), and (5.2.34) can be solved numerically.
The weights can be computed by means of (5.2.30). The set of pairs of any

discrete D-optimal design is contained in the union of the sets S(jn—1,2n+1)
and all SP;(0,0,n; wy) with 0 £ I < n . Some results are given in table 5.2.7.

ala + n§)

§.2.3. Discrete D-optimal designs in the case n = 2, 4

We give a D-optimal design consisting of 4 sets of the type given in section
5.2.4. The information matrix of these sets are denoted by (5.2.10). Consider
the design consisting of ‘

i) the pairsof § (.;_n ,.;.n ) with weights v, ,

ii) the pairs of SP(0,0,n; w,) with weights p ,

iit) the pairs of SP_;_n (0,0,n; w;) with weights A ;

results concerning the information matrices of these sets are given in section
5.2.1and §.2.2,

iv) the pairs of SP(,}n — 1,.;.71 ,1; wy) with weights p ;

the number of these pairs, say N, equals
8 )ifn =2,

N4=
192 ,if n

4,
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(16+4g2)1

M= ,ifn =2,

~
%

-

Vs

8h,l

(384+48g )]

M= 48gahal

(256+32g ;+64h )1

&
=
i
S

where
g2= (1=w3)? [hy= (14+wy)?,
d(.;.n—l,_;n Lwad=2n y+gay +n(n—2)8 +(_}n—1)335

+,}n had +agrh,+ € goh,. (5.2.35)

Using similar arguments as in section 5.2.1 and 5.2.2 we find the equations

2y+n8=1(n+3), (5.2.36)
g1y + MDD gk S+ g a+n gk E = Ln+3), (5.2.37)
5= —4¢, . (5.2.38)

2ny+gay tn(n—2)8 +(Jn—1)g, 8

+3in had togahat £ gha= n(n+3), (5.2.39)

1

1 [1— 2y 7
+z0 a+n§+;.(n—1)8] ’ o (5.2.40)

wy = "';

2+ EHwi +(n-1D8+y—-Aa+ Ew,+8—y=0. (52.41)

The equations (5.2.36)-(5.2.41) can be solved numerically. Results are given in
table 5.2.7, and for n = 2 in figure 5.2.6; the arrows indicate the pairs. In table
5.2.7 NP denotes the number of pairs of the corresponding subset of €. In the
row marked with % the total weights of the subsets are given as percentages.
ND denotes the number of pairs of the design €, and ND equals
3 (n+1)(n +2)(n +3)(r +4), the number given in (4.1.4).
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Figure 5.2.6

A D-optimal design in the case n = 2

s(@,1)

vy = 0.02480

SP(0,0,Z; wl)
wy= —0.15029

p = 0.04621

SP}(0,0,Z; w 1)
A = 0.02975

SP(0,1,1; wy)
wy = —0.12002

p = 0.07462

Pairs

((1,1,(1,—1»

|

(1,1),(~1,1)
((1,1),(-1,1)

((1,1),(1,—1)»

((191)'(W W l))
((_ 1’1),(-W 1,W I))
(1= Dws—wy)

((1 :1)9('—'“" 157 W 1))

((I)W 1)’(W 1’1))

((_ lywl)y(-wlpl))

((1,-wq)(wy,~1))

((=1,~w1),(—wy,—~1))

((131)3(— lxw 2))
((—1,~-1),(1,~w))
(('- 1:1);(1’“’ 2))

((1 e 1))(— IQ-WZ))

((1»1)9(“’ 2™ 1))
((—1,-1),(—wy1))

(1, D(w2,1))

KA K X

(- 1,1)(~wy~1))



Table 5.2.7
Values of constants determining discrete D-optimal designs
and the information matrices of these designs
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n 2 3 4 5 6 7
a 1.933 2.279 2.589 3.015 3.331 3.760
8§ 0.756 0.618 0.599 0.578 0.563 0.559
Y 0.494 0.507 0.553 0.510 0.563 0.510
¢ | —0.189 | ~0.155 | —0.150 | —0.145 ~0.141 —0.140
wy| —0.150 | —0.118 | —0.107 —0.080 —~0.078 —0.061
wal 0,120 0.018 :
-det? 0.5541 0.2901 0.1484 0.27371071(0,5771 107%/0.3522107%
v, 0.425 107t -10.4021072 10,146 107% | 0.321 1073
NP 12 160 480 2240
% 51.0% 64.3% 7.0% 71.9%
v, p.248 1071 0.711 1072 0.9521073
NP 4 48 640
% | 9.9% 34.1% 60.9%
© D.46210710.18910710.678 1072} 0.241 1072 | 0.106 102 | 0.516 10™¢
NP 4 8 16 32 64 128
% | 18.5% 15.1% 10.8% 7.1% 6.8% 0.007%
A D.298107110.1411071(0,492 1072} 0,875 1073 | 0,396 1073 | 0,105 1073
NP 4 24 48 320 640 4480
% | 11.9% 33.8% 23.6% 28.0% 25.3% 28.1%
p D746 107! 0.164 1072
NP 8 192
% | 5$9.7% 31.4%
ND 20 44 304 512 1824 6848
ND| 15 45 105 210 378 630

1) det = det (M Y(¢))
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$.3. A method to prove the D-optimality of the designs given in section §.2

There are two reasons for calling this section *A method to prove the -
and not "Proof of the - -+ "

1.The D-optimality of a design is proved by computing the maximum of the
variance function. In this section it is proved that this maximum can be found
by determining the maximum element of a set of 1(n +2)(n +1) numbers. It

seems not possible to give a general expression for these values. Therefore for

given n it is necessary to compute all these values. This has been done for all
<20

n % 20.

2.The values of a, 8,y and § determining the covariance matrix are computed
numerically. Therefore statements concerning the proof of the D-optimality
for given n are numerical results,

Throughout this section € is a design with covariance matrix of type 4.1.6 and
(u,v ) denotes a pair where the variance function d (x,y ,€) is maximal. A neces-
sary and sufficient condition for D-optimality is

dluyv,e)= ;_n (n+3). (5.3.1)

‘When giving the method to prove the D-optimality of the designs of section 5.2,
we do not use the condition 8 = —~4£ until the very end of this section. In that
way results are achieved that can also be used for the construction of exact
designs. Using 8 = —4f from the beginning would have made the proof of the
D-optimality slightly shorter.

We recall lemma 5.2.2, which we did not prove,

Lemma 5.2.2
Let € and (u v ) be as defined above. Then

lyl=10or Ivyl=1 (@A <i<n).

Proof

Assume that ly; | < 1 and lv;1 < 1 for some i . Using (3.1.8) and (3.1.9) we
suppose without loss of generality thati = 1,

Consider

dy=d{(Lug ... u,)v,€),
dy = d{((—1us, ... ,u,)v,€),
dy=d((u,(1,vy ..., vn)€),
d4 = d((u ,("‘1,%‘2, . s ,V,!),G) .

Since d (x ,y ,€) is maximal at {(u,v) we have

»di —d(u;v)e)g o-
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dy—d =
=y [(1=vi? = wy—v)?2l + & jéz[(u;—vlv; Y = (uauy—viv, )]
+a [(1=v2 Y= (2 —vE Y]
R O O

=y [l-uf;2v1(1~u|)] + 8 122 [up(1—u) - 2v v uy (1=uy)]

+o [(1=uf ~2vE (1=ui)]

+ £ [A—uf 202 A—uf M 20—uf) )}:':2 wp-vPl € 0.
'fhis yields |

v (14ug—2vy) + 8 }2: [Q+udup—2viu;v;1 +

a [1+a,+u§+uf-—2v{‘(1+u,)1

+¢ [1+u1+uf+u§’—2v12(1+u1)+2(1+u1)Vjiz wr—-vAlso ()
Similarly we find usingd;— d(u,v.€) €0

'y (=urt2v) + 8 jz'_"‘,z [t f+2vuv;] +

al—ujtu—ug=2v# (1—u,)]

+& 1—uytufd—ui—2vf (Q—ud)+2(1—uy) ;iz wr-vHl<o. (i)
From (i) and (i) it follows that

2y + 28 }i) u? + 2(a + E)A+uf-2vi) + 4f ;iz wp~vH <0,
or

2o + EX1+up—2v@) + 4f )zf;z @p-vP) € 0. (i)

Sincedy—d (x,y,€) € Oand dyd(x,y,6) € O we have

Ao + EX1+vi~2uf) — 4 T (wi—vP) € 0. (iv)
}=2
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From (iif ) and (iv ) it follows that

2o + E2~uf—-vE) <O,
Since o + £ > O this contradicts our assumptions, il
We have to find a pair (u,v) where the variance function is maximal. Using
(3.1.8), (3.1.9) and lemma 5.2.2 we can assume without loss of generality that

u and v are such that
(5.3.2)

y = 1 for 1S i Kk, +k+1,,

—1 <y <1for ky+k+0;<i€n,

vi = 1 for 1<i <k,

v; = =1 for ky;<iSky+k,,

—] <y, <1for ky+ky<iSky+ky+l,,

vi = 1 for ky+ka+1l3<i Sky+tka+la+1,,

forsomeky, ki liandly , withky+ .k + L1 +1l,=n .
We define

kya= U1+ s,

Li={itk +k+l,<i €n},
Li=]ilki+k,<iSki+k+la},
Ks=1L,U L,.

Throughout the rest of this section (u,v) denotes a pair as defined in (5.3.2). If
we write v; = w, foralli € L,,
andw; = w; foralli € L, , thenu and v can be expressed by

H = (1, .. ,‘1, Wkl+g2+[2+1, s 00 3 Wy )' s (5-3.3)
v = (ly"':1)-1y°*‘;“19wkr§'k2+ls“'9wkl+k2+12?l"0‘11)"
We give some further results

Lemma 8.3.1 Let (1 ,v ) be as in (5.3.3). Then
duv,e)=4k,y+vy X (1-w; P+ 4k k8 + 4,8 } (1—w)?

1EK, 16Ky
+k:8 L Q4w P +8XY Q=wiw;+a Y (1~w?)?
:exa i.)éxa lEKS
1<

+¢l X Q=wHP-G+48) T T Q-wHA—-wp). (5.3.4)

16K, t€Ly JEL,
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Proof
Using (4.1.8) we obtain

dluyv,e)=4dk,y+y X (I=wP+y L wi—1)?+ 4k k, 8
i€L2 £€L1

+ k18 L (1=w;)?+ k28 Y (4w, P+ 4,8 Y (w—1)?

i€L, i€L, €Ly

+k,8 ) (w,-+1)2+§ 2 T (wy—wy)?

P€Ly EELy JEL,
+8LY wiw; =12+ 8YY U=wiw,; 2+ a Y (w2—1)?
iJELy ij€L, HEL,
i<j i< j

ta Y (A=wD?+ £+ L w1+ T wHP. (i)

i€L, (€L (€L,
We have
8 2 L (w—w))=

i€Ly JEL,

) T [Q-wiw;)? = Q=wH(1-wI], Gi)
iGLljéL2

and

Eli+ X w4+ X wHP=

€L, €L,

EL Y U-wP-3¢ T Y (1—wH(1—-w?). (iii)

(€K, (€L, JEL,
Substitution of (ii) and (iii) in (i) completes the proof, 1}
Remark 5.3.2
From lemma 5.3.1 we conclude that

if8+4f>0,thenly=@orl,=8,
if 8 + 4f = 0, then L; = @ without loss of generality .

Lemma 5.3.3
Let (x,y) have the same structure as (u,v) in (5.5.3)and let k € Ly,1 € L,.
Consider d (x ,y ,€) as function of wy and w; . Then

9d (x,y !§) = —2y + 2k —k )8 + [2y+28 (ky+k)- 4o + 4k3f)lwy

dwa
-+ -4({2 + g)Wgs hand 28 E W_; + 2(8 + 2§) Wi Z sz (5-3.5)
j€K3 j€X3
j*k i=k

+2@ + 48w, L (1=wp),
JEL,
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6(1 (x ,y,ﬁ) — ad (x 2y 96) — 2(Wk - w, ) g(wk ’Wl) , (5.3.6)
Iwe I
wﬁere
glwe,w) =y + (ky+k+1) 8 — 2(a + k3f) + 1,(8 + 4€)
+ (WltwewitwDQ2a —8) + (8 +2£) T wr— (B +4£) L wi.
JEK 4 JEL,
Proof

The first part follows immediately from (5.3.4). Using (5.3.5) we obtain

9d (x y.€) _ 9dCx,y,€) _ (. Y2y +20(k (4% 20— (o +k 5E)]
dwx owr ‘

+ 4(%’&3"“’13) (a + f) - 2‘5 (W;"Wk) + 2(8 + 2§)(wk—-wl) z W}z
JEK g

— 2(8 + 2E)wil—w®) + 2058 + 4E N wr—w;)
— 28 + 48 wy—wy) L wi.

JEL,
This yields (5.3.6). ]

Lemma 5.3.3
Let (u,v) be as defined in (53.3) and 1,2 1. Then for all i with
ki +ky, <t Sky+ky+iy, ' :

v+ eyt )8+ 28 — 2k £ + 1, (8 + 4¢) : (5.3.7)
@+ OBw 2w 1-1D)+ B +28) Y w3 +48) Y w2<O.
JEX, JEL,
et ,
If 8+ 2t Z0and &€ € 0, then lwél<%. ; (5.3.8)

Proof
Without loss of generality we choose i = k; + k;+ 1 and w; gt is denoted

by w. Consider d, = d(u,7,6), where ¥ is defined by 1 =1 and
vy = v; for j # kyi+k,+1. Using (5.3.4) we get
dy= 4k +1)y+vy X Q-w;?+ ak(k+1)8 + 5,8 L (1-w;)?

JEK, JEK,
=i et

2

+ (ko 41)8 'Y (4w;)*+8 TF U-wwP+a ) (Q-wp)?
€K,y JEKRE€EK, JEKg
Fi 1 et ki, j<k . J#=i

+E[Y Q-wHP-G+46) L L Q—-wH-wd),
JEK, JEL REL,
i ) jvei ki
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and therefore
do—duyv,e)=4y — y0—w) + 4,8 — k8 (1—=w )2 — k, 86(1+w )?
+8 )Y (Q+w;)? =8 Y (Q—wiw;)?— (a + £)(1—w?)?

JE€K, JEK,4
i j#i
+ @G +46)(1-w?d) T Q-wPH—2£(1-w?D) T Q—-wpD).
JEL, J€K,

J*i
Usingd, — d(u,v,6) € Oand 14w > O we obtain
YyGBw)+ k8 (3—w)— k38 Q4+w)— a (1-w )1—w?)
- El(-w)(1—w?) + 2k~ 1D)(1—w)]+ 8 T [A—wlw? + 2w,;]

JEK,
) Jj=i
+26(0-w) ¥ wp+ @ +48)0-w) ¥ —=wP 0.
JEK, j€L, ‘

J#i
Using the fact that (u,v) is a pair where d (x ,y,€) is maximal, we may add
9d (x,y ,€) :
w (x,y) = (u,v)
to the left side of the last inequality. It follows that
y+yw + (ky+k) & + (ky+k))dw + (a0 + E)X(—1—3w +w2+3w3)

—20k-1) EQ4w) + B Q—w) + 26 A—w) + 20 + 26w] T wp?
)EKS
j#=i

+[6 +45)Q-w)+ 206 + 46)w] ¥ (-wP < 0.

JEL,
This yields, again using 1+w > O,
v+ (k1 +ka) 8 + (& + E)Bw2—2w—1)—2(k3—1) § + 1,(8 + 4¢)

+ @ +28) L wp—-(B+48) ¥ wir<o. Q)
JEK4 JEL,
J=i

Consider d; = d (7 ,v,€) , where i is defined by
g;=1for1 € j Sk +1,

;= —1fork,+1< j Sky+k+1,

and

"u,-fork1+k2+1<j$n.

£
.
!
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Analogously we find
v+ Gey+k2) 8 + (a + E)Bw242w—1) — 2(k3—1) £ + 15 + 4¢)

+ (8428 L wi—-(B+48) L w2<o. Gi)
€K, JEL,
FE 2

Use of expressions (i) and (ii) and of the conditions 8 + 2£ 2 O and £ £ 0
completes the proof of (5.3.7). Now it follows that

(o + £)Bw?+2Iw 1-1) € — y = (k1+k2) 8 + 2(k 5~ 1) — 12 (B + 4§)

L JEK, J€L,
i

= =y~ (ky k) S 420k~ 1, E- LG+ 28— B +28) ¥ w}
’ Jj€Xq
Ji

+26 Y wi<o,
}GL2

because »
8§4+2620,y>0,£€0andd >0.
Since ax + § > O we have
3w+ 2wl —1<0,
Biwi-D(Iw1+1) < 0,
Vlwl<%. i

Now we can prove a theorem that is important in proving the D-optimality of
the designs of section 5.2.

Theorem 5.3.4
Let € be a design with covariance matrix of type (4.1.6) and let (u,v) be a pair
where the variance function is maximal, having the structure of (5.3.2),

If
8+2620,({€0anda—2820,
then
w = ujforallky+ky+1,<i,j<€<n,
v = v forallky+k, < k] Sky+ky+1,.
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Proof
Let §+2£ 20, § €0 and a— 28 2 0. We prove that u; = u; for all
ky+ky+13<1i,j €n,orin the notation of (5.3.3) that w; = w; for all

i,j € Ly Consider the function g (w; ,w;) defined in (5.3.6). Using (5.3.7) we
find

glwiw;) Sy + (k1) 8 — 2(a + k3 £) + 1(8 + 4f)

16X, 1€L,

e (kiﬂcg)a 4+ 2(ks~1)E~ 1, + 48)— (o + E)Bw +21w; 1-1)
—@+28) Y wr+ B +48) T w?
1€X, 1€L,
1wt
=0-—(a+8)~(a+EHw2— 2+ &) Iw; | + Q2o ~ 8) ww;
+ Qa—8)wl=:h(w; w;). v
Using (5.3.8) we obtain Iw,| < 1 and Iw;1 < 1. The function & (w;,w;) is
maximal forw; = Oand w; = ; - This yields
glwiw;) €8 —(a+ £+ 1 Q-8 =~]a+ 36— ¢
== o —28)+ 36 +26)+ 38]<0.
From (5.3.6) and the fact that
ad (x 9)7’5) — ad(x ,y,ﬁ) -
Iw; aw; (x,y)= (uyv)

it follows that

2

w; = w; foralli, j € L.
Use of (3.1.8) and (3.1.9) proves that
wi = w, forallk,l € L,. 0
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Lemma 5.3.5
Le (x,y) have the same structure as (u,v ) in (5.3.3) and let

x, = wyforal i with ky+ka+1,<t€n, . (5.3.9)
vi = waforall i with ky+ky<i Sky+ka+i,.
Then
dx,y,€)=dkay + 11y (I—w P + 1y (1=wy)? + 4k 1k, 8
+ kil & (1wl + &al28 (1= w2)? + koly § (14w P+ k915 8 (1+w,)?

+ 1328 (wy—wy)? + (Zg’) 5§ (1—wi )+ (z:f) 3U~w2P+1la(1-wi)?

+lLa(Q=-w2)P+ [l Q-w) -1, ~-wP)PE. (5.3.10)

If wy and wy are such that the function given in (5.3.10) is maximal at wy and
w o, then

w14 & + 41 o + 412 €] (5.3.11)

+ w; [223 Y + 2(&1"{“&2)& 8 + 21321 8 - 4(3)8 e 411 o - 4{125

+ 4232} g (I“W)I)]" 23{ Y - 2kll; 8 + ZkzZ; 3-' 22{{; 8 w; = Q >
for (i,j)= (1,2) and (i,j) = (2,1).

 Proof
It is easy to show that (5.3.9) holds by using (5.3.4). Equation (5.3.11) can be
proved by using the fact that (u,v) is a pair where d (x,y,€) is maximal. So

w1 x vy )=(u,v) w2 Kx,y)=@,,v)

In view of lemma 5.3.5 it is useful to give the following definition.

Definition 5.3.6
Let ky, ky, Uy and 1; be fixed. The maximal value of the functions given in
(5.3.10) is denoted by d (k 1,k 3,01,l3; €).

Now it is possible to prove that the designs € given in section 5.2 are D-optimal.
The procedure is as follows. It is sufficient to prove that d (x ,y,€) € %n (n+3).

If the conditions 8 + 26 2 0,£ £ 0, and a — 20 2 O are satisfied, then one
just has to consider the pairs (u,v) as defined in theorem 5.3.4. The values
d (k 3,k 2,11,12; €) can be computed by use of lemma 5.3.5. The maximal value of
d(x,y,€) can be found by computing these values for all combinations
(kikalils) with ky+ kp+ 1, +1,=n . This seems a rather cumbersome
task.
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However, many combinations can be omitted using trivial arguments. If
& — 4£, then the combinations (ky, k5, 0, k3) have to be investigated. In that
case w; satisfies the equation )

w3 [2(k35—1) 8 + 4(o + k3 £)] (5.3.12)
+ w2y + 201+ k)8 ~ 2(k—1) 8 —4(ax + k3 €)]
—2y + 2k %) 8= 0.

Ifky= k,= 0, then

Wap =

. 1
—1 4 1[]— 2y 7
.2.’+3[1 a+n§+;_(n-1)8] . , (5.3.13)

Theorem 5.3.7

The designs € given in section 5.2 in table 5.8.7 are D-optimal.

Proof

The procedure given above is used. The conditions 8 + 2¢ 2 0, £ £ 0 and
o~ 28 2 0 hold. Moreover § = —4¢ . This means that the maximal value of
d{x,y,€) is equal to one of the values d(kq,k,,0,k5; €). By computing these

values one finds that the variance function is maximal at the pairs of the design
€ and that the maximal value is equal to .;_n (n+3). i

5.4. Reduction of the number of pairs of discrete D-optimal designs

The number of pairs ND of the design given in table 5.2.7 is large com~
pared to the number ND given in that table. We recall these numbers here

Table 5.4.1

Number of pairs of the D-optimal designs given in section 5.2
n 2 3 4 5 6 7

ND 20 44 304 512 1824 6848

NO | 15 | 45 | 105 | 210 378 630

According to theorem 2.3.6 ND is such that a D-optimal design exists with m
pairs and such that m € ND . As can be seen in table 5.4.1 it is possible to
reduce considerably the number of pairs of the designs given in section 5.2 ,
especially when n is large. When n = 3 the number of pairs is smaller than
ND . Therefore we will exclude this case. In section 5.4.1 a D-optimal design for
n = 2 is given with 15 pairs. Section 5.4.2 contains some general remarks and
results, In section 5.4.3 and 5.4.4 we discuss thecases n = Sandn = 4,
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5.4.1. A discrete D-optimal design with 15 pairs when n=2

. As a result of the proof of the D-optimality of the design given in section
5.2, the set of pairs of any discrete D-optimal design is contained in the set of
20 pairs of the D-optimal design given in that section. These 20 pairs are given
in figure 5.2.6. The information matrix M of a discrete D-optimal design is
denoted by (4.1.5). We shall construct a D-optimal design with 15 pairs by
choosing new weights 7,, 1 € { € 20 in such a way that five of them are zero,
whereas 0 € 7; € 1foralli with1 € < 20,

Further
" .
rLn=1, : (5.4.1)
i=1

and
m .
L rME)=M, , (5.4.2)
i=1

where M (€, ) is the information matrix of the { -th pair of the design. The pairs
are numbered in the order in which they are given in figure 5.2.6. So the pair
((1,1),(1,~1)) is given number 1 and weight r,, and the pair
((—=1,1),(=wy,—1)) is given number 20 and weight 7, etc. We define .

M = (My3,M3,Ms5,M 33, M 44, M 34,M 13,M 13,M 14,M 23,M 34,

M y5,M25,M35,M ¢s5)' (5.4.3)
SO : ‘
M = (pp,zs+t,s+2,,0,00,0,00000) , (5.4.4)

and .
7= (T2 .., T) . - (5.4.5)

Now the equation (5.4.2) can be rewritten as the following system of 15 equa-
tions

- M=Br, (5.4.6)

where
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D 4 40 21 11 Y 4 11 1) «f(1 11 1)
‘400 4] af(1 11 Y af(1 11 1) 401 111D
4 4 4 4lafbi(1 1 ) b#(1 1 1°1) bf(1 11 1)
afpi(l 11 ) : 0 afbf(1 11 1)
i1 11 Xtp?( 1 1) 0
afpi(l 11 1) 0 0
af(0 00 1) 2a3(1 1-1-1) 2a,-1-1 1 1)
B= afb{(1-1 1- ) o afb(1-1 1-1)
afb(1-1 1- Wab,(1-1-1 1) 0
afb;(1-1-1 ) 4] 2a05(-1 1 1-~1)
afby(1-1-1 Nafby(1-1 1-1) 0
D 4-4 0O 2b,(1 -1 1-1) azby(-1 1 1-1)
4 0 0-4 azpy(1-1 1-1) 2b,(1-1 1-D)
(1 1-1-1 0 0 0 0) 0 abpf(-1-1 1 1)
afbf{l 1-1-1 0 0 0 Olap#(1 1-1-1) 0

with ¢; = (1—w;) and b; = (1+w;y, i=1,2. By investigating the structure of
the information matrix, one can show that the first 6 of these 15 equations are

equivalent with the following 6:

T+ T4= 20,

Ta+ Ts= 2v,

Ts+ 7+ T7+ 1= 4u ,
79“‘ 710"'711'*'7!2: 4&,
Tiat T+ Tis+ 7= 4p,

T+ Tt Tt 7= 4p,

(5.4.7)

where v, i, A and p are the weights corresponding to the discrete D-optimal
design given in section 5.2. From this it follows that for any D-optimal design
at least one of the pairs of each of the 6 subsets, defined by the 6 equations
above, has a positive weight. From (5.4.7) it is clear that condition (5.4.2) is
satisfied. Now we have a set of 15 equations -the 6 equations of (5.4.7) and the
last 9 equations of (5.4.6)- in 20 variables 7, .
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Wechoose 73 = 74= 7¢= T19 = 711 = 0. Then we obtain
Ty = 2v = 0.04960 ,
Ty = 2v = 0,04960 ,

3= 0,
4= 0,
(1-&-91)2
= 2u — 2x [4—2= — 11"' = 0.04673 ,
re= 2= A MG ?
6= 0,
(1+4v)? -
=7g= u+A[d—S—1]'= 0. ,
9= 13=u+ Al v, I = 0.06906
oz 8v(1—v,)? _
T =v)Q=v)2(G—vy)(1+vy) a
(1+V1)2
+ A2+ (4——— — 1]= 0.07850 ,
A2+ ¢ v, )]
Tw=Ty=0,
Tip = *81’(1"\)‘2)2 +
25 D= PGv X(1tvy)  ©
(1+V1)2
+ A [2— (42 — 1)1 = 0.04050 ,
Al2-( 1tv,) ¥ 5
2v (1=v ) (1—v,)?
Ti5 = P — — T
TsE T E LT Gy TR T a0,
(1_\?1)(1—V1)2 1 —
- A 2(1—vy) 2004v )= Q+vy) 0.02864 ,
2v (1-V1)(1"V:)2
= = p A e e ) ——
A A S ST v R T E
(—v)(1—vy)? 1 -
A 2(1~v,) 200+v )+ (1+vy) 0.08106 ,
- - 2V (A-vy)(A—v,)?
TE=Ts=p (1'5'\/'2)2 " ‘2(1-‘1/2)2
(1—v)(1—vy)? 1 -
+a 2(1~vy) 2(1+v)—(1+vy) 0.06569 ,
2v (1-v )A—vy)?
= = p+ +
T8 = Tu= PTG T (=,
— — 2
+A (1—v)(1—=vy) 1 = 0.12309 .

2(1""“"2) 2(1+V;)+(1+V2)
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All weights are between O and 1. So, we have found a discrete D-optimal design
with 15 pairs. However, this design is not very useful for the construction of
exact designs: the weights have 9 different values, whereas in an exact design
consisting of these 15 pairs all these pairs have the same weights, The informa-
tion matrix of such a design does not have the structure given in (4.1.5),

5.4.2. Half-replicates and quarter-replicates of $((u,v)).

In this section some general remarks are made concerning the reduction of
the number of pairs of the designs of the type given in section 5.2. We shall con-
sider the reduction of the number of pairs of the set §((u,v)}) in general and of
the set §(k,k3) in particular. As we have seen in (4,2,16), there is a relation
between the design matrix of the set S((u,v)) and the design matrix of a 2"-
factorial experiment, where all interactions between three or more factors are
assumed negligible. The method to construct fractional factorial experiments can
be used to reduce the numbers of pairs of S{(u,v)) as follows. Let a haif-
replicate of a 2" -factorial experiment exists, for which all main effects and all
two-factor interactions are clear of one another. Now, by ’using the expressions
(4.2.16) and (4.2.18) it is easy to see that a design can be constructed consisting
of 2"7! pairs of S{((u,v)) and having an information matrix equal to
.;_M ((«,v)) . The designmatrix D of this set of 27! pairs is

D=X,n)(WU-vVv). (5.4.8)

Here U and V are as defined in (4.2.17) and X,(n) consists of the rows of
X (n) which are related to the pairs chosen in the half-replicate of the 27 -
factorial. A method to construct fractional Factorial experiments is given in
chapter 10 of Davies (1963). As is pointed out there a relation exists between
fractional factorial experiments and confounding. When a design is confounded
in blocks, any block constitutes a fractional factorial design and any block can
be obtained by applying a set of defining contrasts. So, when a design is con-
founded in four blocks any block constitutes a quarter-replicate. However, some
effects and (higher-order) interactions are confounded. To construct a half-
replicate of S((u,v)) it is necessary to construct a half-replicate for which all
main effects and all two-factor interactions, which are measured in the set
S ((u,v ), are clear of one another. A half-replicate of a 2" -factorial experiment

for which all main effects and (’2") two-factor interactions are clear of one

another can be found for n 2 5. We give the defining contrast of the principal
block of the corresponding confounded design for n = 5,6, 7. See also chapter
10 of Davies (1963),
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Table 5.4.2
Defining contrast of a half-replicate of a 2" -factorial,for which all
main effects and all two-factor interactions are clear of one another

n | Defining Number Principal block

contrast of pairs
5 | I,- ABCDE 16 All treatment combinations for
6 | I, ABCDEF 32 which the number of letters con-
7 | L- ABCDEFG . 64 stituting that combination is even.

When n = 5, the principal block, for example, consists of (1), ab, ac, be, ad, bd,
cd, ae, be, ce, de, abed, abee, abde, acde, bede,

Remark

We did not discuss the matrix X in Xy(n), which might disturb the ortho-
gonality of the design matrix of the half-replicate of S((u,v)). However, a
column of K consists of +1’s, and therefore it is orthogonal to the other
columns of the design matrix of the half-replicate of the 2" -factorial, each
column having the same number of +1’s and -1’s. Actually, a column of the
matrix X plays the same role as the constant factor in the 2" -factorial experi-
ment. ' 0

One might be tempted to construct a quarter-replicate of a 27-factorial experi-
ment. Since the number of main effects and two order-interactions is equal to
28, which is less than 32, a quarter-replicate might be found for which the main
effects are clear of one another, However, this is not possible, Choose for exam-
ple as defining contrasts I, ABCDE, DEFG, ABCFG. Note that the product of
ABCDE and DEFG is equal to the last defining contrast where D> = E2= 7, as
usual, It is glear that we cannot do better than this, because if a letter is added
to the four-factor interaction the product with one of the other will be a four-
factor interaction. So in every set of defining contrasts a four-factor interaction
is contained. This means that 3 two-factor interactions are confounded with 3
other two-factor interactions. In this case DE = FG, DF = EG.and DG = EF .

Let us now consider the reduction of the number of pairs of §(k,,k3). In general
the number of pairs of a balf-replicate of S{(u,v)) is 27~'. However, if
fy; 1 = lv;l = 1foralli,1 £i{ € n, then the number of pairs of S((u,v))
is equal to 27! since all pairs occur twice, So at first sight it seems that nothing
has been gained. However, by investigating the design more carefully, some
results can be achieved. We shall discuss this forn = 5,6 and 7. S(k;,k,) con-

sists of (kn,) sets of the type S({u,v)), where Iy, 1 = lv;1 = 1 for all
i,1 € i € n.Weapply the method described above to construct half-replicates
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of the sets S(k.k,).

i), First we consider the case n = §, v
We use the defining contrasts given in table 5.4.2 to obtain half-replicates of
the sets S{(u,v)) of which 5(ky,k,) is composed. By investigating these
half-replicates of the sets S((u,7)) we see that in the case of §(1,4) and
$(3,2) all pairs occur twice in these half-replicates, since all treatment com-
binations with an even number of letters occur in the principal block. The
other treatment combinations occur in the second block. The objects of any
pair of ${1,4) or $(3,2) are elements of the same block. For example (1) and
ab occur in the principal block and the pair ((1),ab) is a pair of $(3,2). So,
by the method described above a half-replicate of §(1,4) and of S(3,2) is
obtained. In the case of 5$(0,5), $(2,3) and S$(4,1) the objects of the princi-
pal block are compared with objects of the second block. Therefore, in these
cases the number of pairs is not reduced by using this half-replicate, It is
possible to reduce the number of pairs of §(0,5) by using a quarter-replicate
of a 25-factorial experiment, defined by the contrasts I, -BCE, -ADE, ABCD.
In this quarter-replicate all main effects are clear of one another, but they are
confounded with two-factor interactions. This does not affect the structure
of the information matrix of the design, because two-factor interactions are
not measured in S(0,5). It is not possible to reduce the number of pairs of
5(2,3) by reducing the numbers of pairs of each subset ${((u,v)) of which it
is composed without confounding some main effects or two-factor interac-
tions, which are measured in this set, with one another. However, it is possi-
ble to reduce the number of pairs of the set §(2,3). This will be shown in
section 5.4.3.
iiyn = 6

We consider the sets S(ky,k3) and the sets S((u,v)) of which is composed.
Using the defining contrast given in table 5.4.2 one can obtain half-replicates
of the sets S((u,v)). By investigating these half-replicates it can be seen
that in the cases ${0,6), $(2,4) and $(4,2) pairs occur twice in these half-
replicates. The objects of any pair of these sets occur in the same block. This
does not hold in the cases §(1,5), $(3,3) and S$(5,1). In these cases other
defining contrasts have to be used. Consider the defining contrasts I, ~ABCDE.

" All main effects and two-factor interactions are clear of one another. The
principal block consists of the treatment combinations mentioned in table
5.4.2, together with all treatment combinations that can be found by multi-
plying these combinations by f. Using these defining contrasts to construct
half-replicates of the set S((u,v)) where u = (~1,-1,~1,~1,~1,—1)" and
v = (~=1,1,1,1,1,1), we obtain half-replicates in which all pairs occur twice.
The objects (1) and bedef, for example, are elements of the principal block,
and the pair ((1),bedef) is° an element of the set
S{(-1,~1,~1,—1~1,~1),(—1,1,1,1,1,1)). Similarly, using e.g. 1,-ABCDF as
defining contrasts, one can obtain half-replicates of other subsets S ((u,v)) of
§(1,5) in which all pairs occur twice. So, we have found a half-replicate of
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5(1,5). The same defining contrasts yield a half-replicate of §(3,3). There-
fore, summarizing the results in the case n = 6, we have found half-
replicates for all S(k,,k,) -cf. table 5.4.3,
iii)n = 7

' We consider the quarter-replicate of a 2’-factorial experiment given at the
beginning of this section, with defining contrasts I, ~ABCDE, DEFG,:-ABCFG.
It consists of the treatment combinations: :
(1), ab, ac, be, de, abde, acde, bede, adf, bdf, cdf, abedf, aef, bef, cef, abcef
and all treatment combinations obtained by multiplying these combinations
by fg, where f2= 1. In this quarter-replicate all main effects are clear of
two-factor interactions, but three two-factor interactions are confounded
with three other two-factor interactions: DE=FG, DF=EG and DG=EF, How-
ever, the sets S((u,v)) of which the set S$(k,k;) is composed, measure k5
main effects and k,k, two-factor interactions, Therefore this quarter-
replicate yvields a quarter-replicate of the set S({u,v)) with

cu=(-1-1-1~1~1,~1~1Yand v = (-1,~1,~1,1,1,1,1), in which all
main effects and two-factor interactions, that are measured, are clear of one
another. Moreover, all pairs occur twice in this set. Using similar defining
contrasts for the other subsets, a quarter-replicate can be obtained of S(3,4).
Similar methods yield quarter-replicates of the sets S(kyk3), the case
§(3,4) being the most difficult one, because 16 main effects and two-factor
interactions are measured in this set.

In table 5.4.3 some results of this section are given.
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Table 5.43
Summary of results concerning the reduction of the
number of pairs of S{{u,v)) and S{&,,k,)

. Number of pairs
Set Number of pairs after reduction
S((uwv)) n "t
withn 2 § 2 :
5(0,5) 16 8
5Q1,4) 80 40
5(0,6) 32 16
5(1,5) 192 96
5(2,4) 480 290
5(3,3) 640 320
5(0,7) 64 10
S(L6) 448 124
5(2,5) 1344 336
S(3.4) 2240 560

5.4.3. Reduction of the number of pairs of discrete D-optimal designs for
n=4and n=35.

We consider the discrete D-optimal designs given in section §.2. First we
discuss the reduction of the number of pairs whenn = §.
The design given in section 5.2 consists of

i $(2,3) with 1024 = 160 pairs ,

if) SP(0,0,5; wy) with 2% 32 pairs ,
iii) SPx0,0,5; wy) with 102% = 320 pairs .

By the method given in section 5.4.2 half-replicates can be found of
S$P(0,0,5; wy) and SPx0,0,5; wy). This yields a D-optimal design with 336
pairs. But a further reduction of the number of pairs is possible, First we con-
sider the set SP,(0,0,5; wy). This set consists of the following subsets:
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Sl =~S((W1,W1,W!, 1, 1),( l, 1, I,W]_,Wl)) 3
Sy = S((wpwy, Lwy, 1,0 1, Lwy, Lwy)),
33 = S((W;,W;, 1, I,Wl),( 1, 1,W1‘W1, 1)),
Sy =Swy, Lwywy 1D, 1wy 1, Lwy)),
Ss =S((W1, 1,W1, l,wl),( l,wl' I,Wl, 1)),
S6 = S((W}, 1, 1,%’1}@’;),( 1,W1,W1' 1, 1)),
S7 = S(( 1,W1,W1,W1_ 1),(W1_ 1, 1, l,Wl)) »
Sg = S(( l,wl,wl, l,Wl)y(WL 1, 1,W1, 1)) N
So = S 1,w,, ly‘le,Wl)’(Wl, 1wy, 1, 1,
Sw = S(( l, l,Wl,WLW1),(W1’W1. 1, 1, 1)),

Each set S; consists of 32 pairs. A quarter-replicate of each set can be found by
using the defining contrasts I, CDE, ABD, ABCE. The following quarter-
replicates of a 25-factorial experiment are obtained by using these defining con-
trasts:

(I: (1), ab, acd, bed, ce, abee, ade, bde .
Defining contrasts I, -CDE, -ABD, ABCE .

(1I): a, b, cd, abed, ace, bee, de, abde .
Defining contrasts 1, -CDE, ABD, -ABCE .

(IT1): ¢, abe, ad, bd, e, abe, acde, acde, bede |
Defining contrasts I, CDE, -ABD, -ABCE .
(IV):ac, be, d, abd, ae, be, cde, abede |
Defining contrasts I, CDE, ABD, ABCE .

In these blocks some main effects and two-factor interactions are confounded:
C=DE, D=CE=AB, E=CD, A=BD, B=AD, AC=BE, AE=BC .

All other main effects and two-factor interactions are clear of one another and
of the main effects and interactions given above. We compute the information
matrices My, Muy, May and Mgy, If all main effects and two-factor interac-
tions would have been clear of one another, then the result would have been

I

1 !
| |
| f
Meuy= 127 | I+J I ,
) T | |
i f
| [
where i = I ,II,III,IV. Now, due to the fact that some main effects and
two-factor interactions are confounded, we have
Mgy 1 =8 foréi=1,10,H,IV.
where A
(x 1)€] (3,20),(4,19),(4,11),(11,19),(5,16),(1,15),(2,14),(12,18) (13,17) | .
The signs of (M (;)),; are given in the following table.



Table 5.44
Signs of (M),

(k,1) I M HOI IV | confounded effects
(13,17) + - -+ BC, AE
(12,18) | + - - + AC,BE
(11,19) + - -+ AB,CE

(4,11) -+ - 4 D, AB

(2,14) -+ - + B, AD

(1,15) -+ -+ A ,BD

(5,16) - -+ - E,CD

(4,19) - -+ - D;CE

(3,20) - -+ - C,DE
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These signs can be found as follows. (M (;))317 is related to BC and AE, which
are confounded. The defining contrasts of (I) are I, -CDE, -ABD, ABCE. There-
fore, BC = AE and (M())y317 = +8 . Similarly we find (Mgpy)1317 = —8 . Now
we can compute the information matrices M; of quarter-replicates of S;. We

define

8,‘,]‘

+1 ,if the quarter-replicate (i ) or (j ) is chosen ,

—1 ,if not (i ) or () is chosen.

(5.4.9)

The expression (4.2.16) can be used to compute M;. We find for example for S;.

2

Sy — 2 2 2
U= wiwiwp,Ll I w@wiwg, 1,11 wiwé wiwiwiwiwiwy,l)

- 2 2 2
V= (1,1,1,W1,W1 | 1,1,1,W1 Wi | 1,1,W1,W1,W1,W1,W1,W1,W1 )"

So

U=V = (wi—1,wi—1,wy—1, 1—-wy,l=wy | we—=1, wg—1, wi—1,

and

1-wié, 1-wé I wg—1,wf—1,wif-—1,0,0,0,0,00,1—wi) "',

(Mi)347= 0,
(M1)ar = 8(1=w )Xwi—1)8um ,
(M1)s20 = 8w —1)(1=w{ Wy -

In table 5.4.5 the signs are given of the elements of M; which are of interest.
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Table 5.4.5
Signs of the important elements of M,

i ](13,17) (12,18) (11,19)|(4,11) (2,14) (1,15)|(5,16) (4,19) (3,20)
1 8u,|v Omav
2 =8v |=8mv —Buy —Smv Suv

3 S Siav

4 —Onv Suav Sy

5 . Suav Smav

6 =81 Siv ‘ Surv
7 —8iv : Smav| Suv

8 Sugv S

9 =8 Suav Smav
10 —8uv| Swmav =y — Oy —Suwv

Now we choose the following quarter-replicate of S;.

Table5.4.6
Choice of guarter-replicate of S,

i 1 2 3 4 § 6 7 8 9 10
quarter-replicate (i) | I I I I IV 1 Im o Hm 1II,

As can be seen by inspecting table 5.4.5 we have constructed a quarteiwreplicate
of SP,(0,0,5; w,) for which the information matrix is equal to %MPQ(0,0,S;W -

A similar method can be used to reduce the number of pairs of $(2,3) which
consists of 160 pairs. First we consider the sets

Ty =85({(—-1,~1—~1, 1, D 1, 1, 1, 1, 1)),
Ty =8S({(—1,—1, 1,~1, 1) 1, 1, 1, 1, 10,
Ty =SW(—1,—1, 1, 1,—1)( 1, 1, 1, 1, 1),
Te =8S{~1, 1,—1,—1, 1),( 1, 1, 1, 1, 10,
Ts =85{~-1, 1,~1, 1,—1)( 1, 1, 1, 1, 1)),
Tg =8S({(—1, 1, 1,—1-1)( 1, 1, 1, 1, 1)),
Ty =S 1,~1,~1,—1, 1), 1, 1, 1, 1, 1)),
Te =8 1,—1,—1, 1—1),( 1, 1, 1, 1, 1)),
Ty =85 1,~1, 1,~1,—1),( 1, 1, 1, 1, 1)),
Two=5 1, 1,—1,—1,—1),( 1, 1, 1, 1, 1)),

In each of these sets every pair occurs twice. A quarter-replicate
(D, (D), (A1) or (IV) of each set T; is chosen. In a similar way as in the method
described above we find for the signs of the important elements of the informa-

tion matrices M; of the quarter-replicates: ,
i



Table 5.4.7
The signs of the important elements of M;
i | (13,17) (12,18) (11,19)[(4,11) (2,14) (1,15)((5,16) (4,19) (3,20)
1 5|uv 511.1\7
2 Suv S
3 Suyw  Sngv
4 Suv Suv | Smav Sugv Smav  Suv
5 ' v v
6 Siv Suv | S Suav | Sy Omgw
7 v Suv | Sy Smv Smayv  Sunv
8 ‘ Suav Buiv
9 Siav Sv | Sugv  Suv Smav  Smgv
10 Suuv Suv
Now we choose the following quarter-replicate of T;.
Table 5.4.8
Choice of quarter-replicate of T
i 1 2 3 4 5 6 17 8 9 10
quarter-replicate (j | I I O Ml II 1 1 MW v 1
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This yields a half-replicate of $(2,3). We have found a discrete D—optimal

design consisting of

i) a half-replicate of §(2,3)
ii) a half-replicate of SP(0,0,5; w,)

80 pairs,
16 pairs,
iii} a quarter-replicate of SP»(0,0,5; wy) : 80 pairs,

In total : 176 pairs.

This number is smaller than 210, the number ND given in table 5.4.1.

Now we consider the casen = 4,
The design given in section 5.2 consists of

i S$2,2) with
it) SP(0,0,4; w,) with
iii) SP5(0,0,4; wy) with
iv) SP(1,2,1; wy) with

628
24

324 =

12 2*

In total

=

48 pairs ,
16 pairs,
48 pairs,
192 pairs,

: 304 pairs;

First we consider the set SP(1,2,1; w,). This set consists of the following sets:
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Sy = ((1,1,1,1),( 1,~—1,—1, wy)), S7 = ((1,1,1,1D,( 1, wy—~1,—1)),
Sy = ((1,1,1,1),(~1, 1,—1, wy)), S = ((L,L,1,1),(—1, w,, 1,—1),
Sy = ((1,1,1,1),(—1,—1, 1, wy)), Sy = ((1,1,1,1),(—1, wy,—1, 1)},
Sa = ((1,1,1,1),0 1,—1,wp—1)), S = ((1,1,1,1)(wy, 1,—1,—1)),
Ss = ((1,1,1,1),(—1, 1,w,y—1), S o= {(1,1,1,1)(wy—1, 1,—1)),
S¢ = ((1,1,1,1),(—~1,—1,w,z, 1)), S = ((1,1,1,1)(wz,—1 —1, 1))

All pairs of SP(1,2,1; w,) have weights p. It can be shown that the following
design has the same information matrix:

-all pairs of §y, S¢, Sy and Sy with weights 2p ,

-all pairs of §3, S, 59 and Sy; with weightsp ,

This design consists of 128 pairs, but it is not very useful for practical applica-
tions for the following reason. If one wants to construct an exact design consist-
ing of these pairs and having an information materix of type (4.1.5), then the
pairs of §,, $¢, S5 and §)p must be chosen twice, Therefore no reduction of the
number of pairs is achieved when constructing exact designs. We will construct
a half-replicate of SP(1,2,1; w,) using a method similar to the one used in the
case n = 5. A half-replicate of each set S, can be found by using the defining
contrast ABCD. We find half-replicates of a 2*-factorial experiment: '

(I): (1),ab,ac,bcad,bd,cd,abed.
Defining contrasts I, ABCD .
(I1): a,b,c,abc,d,abd,acd,bed.
Defining contrasts I, ~ABCD .
The confounded interactions are BC = AD, AC = BD, AB = CD . Therefore, in’

computing the information matrix Mq) and M), the following elements are
important:

Table 5.4.9
The signs of (M)

(k1) i I II | Confounded interactions
(11,12) | + - AD, BC
(10,13) |+ - AC,BD
(9,14) + - AB,CD

‘We define

+1 ,if the half-replicate I is chosen,
8] =
—~1 ,if the half-replicate II is chosen.
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Table 5.4.10 ‘
The signs of the important elements of M,
i (11,12) (10.13) (9,14)

1 S &
2 ) LY

3 8] 8]
4 8| 81
5 3 5
6 & 3
7 8| 8]
8 LY S
9 6| 8[
10 L7 L}
11 o Y
12 8 d

We can choose the following half-replicates of §;: I for i = 1,2,3,4,56 and II
for i = 7,8,9,10,11,12. This gives a half-replicate of SP(1,2,1; w,), for which
" the information matrix is equal to %MP(I,Z,I; wjy). We consider the set
SP0,0,4; w,) . It is not possible to construct a half-replicate of SP,(0,0,4; w)
having an information matrix of type (4.1.5). Therefore, we consider the fol-
lowing D-optimal design. '

i) the pairs of $(2,2) with weights v, = 0.00711 ,
ii) the pairs of SP(0,0,4; w;) with weights g = 0,00186 ,
iii) the pairs of SP;(0,0,4; w,) with weights A = 0.00492,
iv) the pairs of SP(1,2,1; w,) with weights p = 0.00162 .

The number of pairs of SP,(0,0,4; w,) is equal to 64, which is 16 more than the
number of pairs of SP,(0,0,4; w,). However, it is possible to construct a half-
replicate of SP4(0,0,4; w,), which consists of the sets

T1 = S(( 1, 1, l,Wl);(Wl,Wl,Wl, 1)),
Ty =S 1, Lwy, D(wyw,, Lwy),
T3 = S(( 1,W1, 1, 1),(W1, 1,W1,W1)),
Te=SUwy, 1, 1, 1,( Lwywywy).

Choosing the half-replicate (I) for each set 7; we obtain a half-replicate of
SP4(0,0,4; wy). .
Finally we consider the set $(2,2). This set consists of
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vV, =85((1,1,1,1)(—1,~1, 1, 1)),
V,=8(0(1,1,1,1),(-1, 1,—1, 1)),

Vs =5(1,1,1,1),(—1, 1, 1,—1)),
Ve=50(1,1,1,1),( 1,—1,—1, 1)),
Vs =S((1,1,1,1),( 1,—1, 1,—1)),

Ve =5((1,1,1,1),( 1, 1,—1,—1)),

I each set V; the pairs occur twice. Therefore, we need a quarter-replicate of v;
to obtain a half-replicate of $(2,2). Consider the defining contrasts I, D, ABC,
ABCD . They yield.the following quarter-replicates of a 2% factorial experi-
ment,

Defining contrasts

@ :(), ab, ac, be 1, -D, -ABC, ABCD,
arn : a b, ¢, abc I, -D, ABC, -ABCD,
() : d, abd, acd, bed I, D, -ABC, -ABCD,
(IV) : ad, bd, cd, abcd I, D, ABC, ABCD.

By methods similar to the ones above it can be seen that a half-replicate of
5(2,2) for which the information matrix is equal to ;.M (2,2), can be found by

choosihg the quarter-replicates given in table 5.4.11.

Table 5.4.11
Choice of quarter-replicate of V;

i 11 2 3 4 S 6
quarter-replicate (j) [ IV I o IV 1II 1I

A discrete D-optimal design has been constructed consisting of

i) a half-replicate of S$(2,2) : 24 pairs,
ii) 5P(0,0,4; wy) : 16 pairs,
iii) a half-replicate of SP,(0,0,4; w;) : 32 pairs,
iv) a half-replicate of SP(1,2,1; w,) : 96 pairs,

_ In total : 168 pairs .
This number is larger than 105, the number ND given in table 5.4.1. Therefore,

a further reduction can be achieved. However, this seems to entail many
different weights, which is not attractive for practical applications.
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5.5. Exact designs when n=2, 3, 4, 5.

5.5.1. General remarks

In this section exact designs are constructed forn = 2,3,4,5. Let € be a
discrete D-optimal design. As we have seen in sections 5.2 and 5.3 the following
holds.

If n is odd, then the set of pairs of the design € is contained in the union of the
fllowing sets:

S(;(n—l),;(n +1)),
SP (0,0,Tl ’ Wl) ’
all SP(00,n;wy)with1 <1 <n,

where wy has the value given in table 5.2.7.
If n = 2, 4, then the set of pairs of the design € is contained in the union of the
sets

1, 1
S(7n nn ),
SP(0,0,n; wy),
all SP(00n;wy)withl1 <1 <n,

SP(%n-—- 1,.;.71 1 wa),

where w; and w, have the values given in table 5.2.7.
It seems useful to consider exact designs, for which the set of pairs is also con-
tained in this union of sets. However, the pairs cannot have the same weights in
an exact design as in a discrete design. This can be partly compensated by choos-
ing other values for w; and w, than the ones given in table 5.2.7. For this rea-
son and in the light of the proof given in section 5.3 it is useful to define the
following sets. :
Definition §.5.1
S(0,0,ll,l 2; Wiq,W 2):= S ((I 2y )) s
SP ((0,0,l 1,l2; ww 2)Z= SP((x »y )) N
where

x=00,...,,wy,...,wy),

y=(wy...,wyl, ..., 1),

ly is ‘the number of wy's in x ,

ll+12=n.

In general SP(0,0,l1,l5 wyi,wy) contains (an )27 pairs. If w;= w,, then
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SP(0,0,l3,l9; wiwy) = SP{0,0,n;wy). The information matrices of the sets
given in definition 5.5.1 are denoted by

M(0,0,13,l5 wi,w3)
and MP;(0,0,!;,ZQ; W19W2) .

An expression for MP{0,0,0,l; wy,wa) is given in the following lemma.

Lemma 5.5.2
} 24

MP(0,0,l1,l5 wiwy) = 27 sT+tJ

zl
where (5.5.1)

P =GIDe +G g,
2 =@ e+ CID g + 20T wr-wa?,
t =G gt G g - 20D gugan,
s+t = @D giha + CTD goha,

with

g = Q=w, 2 = (14w, )? , gin = (1~w?D) .

Proof
The correctness of the equations (5.5.1) can be proved by use of {4.2.20), This
yields ‘

p =({‘l)[l,g,+zzg,]/n,
z =G [(zzl)g’hl + (122)82"2 + Lilglw—w2 PV (),
t = QI Dgah + (Pgaha— Llagugall G,
s+t = ({;)[llgghj +1 gk n,
equivalent to (5.5.1)_ I

We choose exact designs forn =2, 3,4, 5. If n = 2, we choose exact designs
with pairs contained in the union of the following sets
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-§(1,1),

-$P(0,0,2; wy) ,
-SP(0,0,1,1; waws),
-SP(0,1,1; wy) .

If n = 4, these sets are

-S (292) 14

-SP(0,0,4; wy),

-§P(0,0,2,2; wa,w3) , or SP(0,0,1,3; wa,ws) ,
-SP(I,2,1; W4) .

Ifn = 3,5, these sets are

-S(1(n—1),1(n+1)),

-SP(0,0n; wy),
-SSP (0,0,.;_(1’: -1 ),.;.(n +1); waws) .

The values of wy, wy, w3 and w, have 10 be chosen according to some criterion.
We choose the G-criterion and the D-criterion. Exact designs are given in section
5.5.2 for the cases n = 3, 5 and in section 5.5.3 for the cases n = 2,4 . In this
section a lemma is given that can be used when the Geriterion is applied. The
maximal value of the variance function has to be computed. According to the
discussion in section 5.3 the values d (k4,k,l4,l5) have to be computed. In many
cases the maximal value is one of the values d4, d,, d3 if n is odd and one of
the values d4, d 3, d 3, d 4 if n is even, where

d(3n ,.}n) if n even,
d 1~
d(3(n=1),2(n+1)) ,ifn odd,
d,= d(0,0,0,n), (5.5.2)
1, 1 P
d (0,0,.2_n it ) Jif n even,
dy=
d(0,0,3(n~1),2(n +1)) ,if n odd,

dq= d (%n—l,;.n ,0,1) ,if n even.

The maximal value has to be minimized. The following lemma is useful in
achieving this.



126

Lemma 5.58.3

Let 1y and 1, be fixed with 1y + 1, = n and let € be a design with covariance ma-
trix of type (4.1.6). Let vy be the value that maximizes d (0,0,0,n) , and (va,v3)
the pair that maximizes d (0,0,14,12).

Then

d(0,0,0,n) = d(0,0,13,15)
if and only if

§=—4fandv;= vy = vg.
Proof

i) Assume § = —4§ and vy = v, = v;3. By applying lemma §.2.1 it can be
shown that d (0,0,0,n) = d(0,0,1,,l,).

ii) Assume d(0,00,n) = d(0,0,13,l3). Let d{k kyly,lswy,wy) denote the

- function given in (5.3.10). So d(0,0,1,,1,) = d(0,0,l1,l5; v3,v3) . In the nota-

tion of (5.2.8) we have d(0,0,0,n) = d(0,0,n;v;). We shall show that

8 + 4£ = O by proving that the statements § + 46 < O and § + 4£ > O are
both false.

a) Suppose § + 4 < 0,
The maximal value of d (0,0, 14,14 va,va) is d (0,0,14,12). Therefore,

d(0,0,l1,l5 vavs) 2 (0,004,010 vi,vy) .
So, using (5.3.10), we find

d(0,0,l3,l; vavs) > d(0,0,11,09; vivy) + Ll 8 + 48X (1~vi)?
=1y Qv 4 Ly G-v? + (D8 a-vi P+ (DB a-vER

+lha(l=vEP + La(l—vEP + £ [1,(1—v) - LO—v)P

+ Ul 8 (A=vE)P + 4l E (1—vi)?

=ny(Q-v)?+ (g) SU=ve¥+n a(l~vE)

+ £ [1,(0—vE) + L,(1—=v )P = d(0,0,0n).

This contradicts d (0,0,0,n) = d(0,0,0,,l,) .

b) Suppose § + 4§ > 0.
Similarly we have

d(0,0,0,n) > d(0,0,0,n )10, 8 + 4£)(1~vE)X1—v$)
ZhLy Qv +1l,y (1—vy)? + (2'2') S§(—-v$i+ (122) S(1—-vi)?

+ 14318 (1=vwaP+ Lia(1—viV¥ + La (1~vi)?
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+ EL-vI) + LAV 111, B + 48) O—viXi—v$)
= d{(0,0,l1,l2; va,vs) . ‘
This contradicts d (0,0,0,n) = d(0,0,1,,l;) and completes the proof. ]

5.5.2. Exact designs when n=3, §.

Exact designs are constructed as follows,
If n = 3, we choose

i) n, times the pairs of §(1,2),

ii) n, times the pairs of $P(0,0,3; wy),

iii) ng times the pairs of S7(0,0,1,2; wa,ws) .

The information matrix of this design has the structure of (4.1.5) and is deter-

mined by
(5.5.3)

p =1[32n,+ 8n,g, + 8nslg,+ 2g)]/ N,
s=00 + 0 +8nign+gn)’l/N,

t =[ 0 +8nygihy+ 8ns(gshs— 2gngnll/ N,

z = [32n, + 8nagihy + Bns(gshs + 2(wa—w3))l/ N,

where g;, A; and g;; are defined as usual and N = 12n, + 8n, + 24ns.

If n = §, we choose

i) ny times the pairs of a half-replicate of $(2,3),
ii) n, times the pairs of a half-replicate of SP(0,0,5; wy),
iii) n3 times the pairs of a quarter-replicate of SP(0,0,2,3; wy,ws);

ni,n; and nj have to be chosen such that the covariance matrix of the design has

the structure of (4.1.6). By the results of section 5.4 this implies the following

inequalitiesny; 2 1,n, 2 1,n3 2 2if wy = wiandns 2 1if wy = ws.

If these conditions are satisfied, then the information matrix is determined by
(55.4)

p =1[192n,+ 16n,g1 + 16n4(2g,+ 3g3)l/ N,

s=[ 0 + 0 + 24ns(g + gn)?l1/ N,

t =[ 0 +16n,g1h1 + 8ns(gahy + 3gshs — 6823/ N,

z = [192n, + 16n, g 1hy + 8ny(garh, + 3gshs + 6(wy—w3)?]/ N,

where N = 80n, + 16n,; + 80n,;.
Let ny, nj; and ny be fixed. Now w,, w;y and wy have to be chosen according to

the Gecriterion or the D-criterion. First we consider the Gecriterion. In many
cases minimizing the maximal value of dy, dy and d3 means that wy, wy and wy
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have to be such that d; = d; = d3. Therefore lemma 5.5.3 can be used. We
have writien a computer program that determines wy, w, and ws such that
max | d1,dz} is minimized under the restriction § = —4£. In some cases it is
not true that d; = d; = d3. Then lemma 5.5.3 cannot be applied. So, a compu-
tefprogram has been written to determine w,, w, and w3 without the assump-
tion § = —4£. This program minimizes the maximal value of dy,d; and d 3. In
some cases the values of w,, w; and w3 are also computed under the restriction
Wi = wy 0fr wy = wjy = wy. This is done for practical applications. In the case
n = 5 the restriction w3 = wj is useful with respect to the number of pairs of
the exact design, because now we may choose njz= 1 without affecting the
structure of the information matrix. Moreover, the D-criterion is used to deter-
mine the values of wy, wy and w3 . The assumption § = —4£ cannot be made in
computing these values, since in general it does not hold as can be seen in table
5.5.4. Again in some cases we assume wj = w3 of w1 = w3 = wj when com-
puting these values. Results are given in table 5.5.4 for some choices of ny, ny
and nj. These determine the weights of the pairs of the design. An argument
that can be used when choosing ny, ny and ns is that these weights should be
approximately the same as those in the discrete D-optimal designs. These
weights are given in table 5.2.7. However, the number of pairs of the design
must be small for practical applications. Some choices are given in table 5.5.4. In
the rows where the restrictions are given a 1 means that w,, w, and w; are com-
puted under that restriction; a 0 means that no such restriction is made. The -
results are satisfactory. The efficiency of the designs is good. The number of
peairs is small in the case n = 3. However, when n = §, some designs have a
large number of pairs. The choice ny = ny= ny=lorn;= 2,na=n3=1
seems to be a good one, both with the restrictions wy = wsand w; = w, = w3,
The number of pairs of these designs are comparatively small and the informa-
tion matrices of these designs have the structure of (4.1.5). The C-efficiency of
these designs is more than 80%, the D-efficiency more than 89%. The efficiencies
of the designs constructed without the restriction § + 4£ = O are approximately
the same as the efficiencies of the designs constructed under this restriction.
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Constants determining exact designs as given in section 5.5.2
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n =3
Choice
of np=1; no= 1;?’!3: 1;(44)
ny,nalty 1 )
Restrictions
S+4f=0 1 0 0 1 0 0
WP Wy 0 0 0 1 1 1
W= wamws 0 O 0 0 0 0O
Criterion é é D é é D
wy —0.7352 —0.3762 —0.1590 | —0.4720 —0.0988 —0.1398
wa -0.7194 0.6087 ~0.5222
ws 0.2333 —0.4324 —0.0425 —0.,5944 —0.5904 —0.1987
o 26970 2.6432 1.8475 3.2875 3.2398 1.4904
s 0.7947 0.7270 0.8585 1.0951 1.0176 0.9348
y 04936 0.5418 0.5593 0.3988 0.4298 0.5723
3 —0,1987 ~0.3088 —0.2049 | —0.2738 —0.5353 —0.0152
d, 10.3066 10.1503 11.3417 119511 11.5794 12.0566
dy 10.3066 9.1608 8.2145 11,9510 9.3584 9.0933
ds 10.1503 11.5794
Geficiency 87.3 88.7 79.4 75.3 71.1 74.6
D-efficiency 87.9 90.2 94.9 79.8 83.7 94.3

1) Between brackets the number of pairs is given.
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Table 5.54
_Constants determining exact designs as given in section §.5.2
n =3

Choice ;

of ni=1; ny= 1, na=2; n,=1;

nyngns 1) ny= 1;(44) ny= 1;(56)

Restrictions

5+4£=0 ] 0 - 1 0 0

Wai=wg 1 1 - (4] 0 0

Wi=woes=ws 1 1 - 0 0 0

Criterion é D - é é D
wy 0 —0.4247 —0.3365 —0.1212
Wy —0,3640 0.1809 ] —0.5431 —0.5473 —0.2114
ws 0 ~(),0043 —0.0200 —0.1238
o 1.8270 1.4696 1.3750 2.4079 2.4221 1.8599
8 0.9991 09368 0.9167 0.6828 0.6769 0.7031
4% 0.4807 0.5742 0.6875 0.4852 0.4908 0.5283
£ 4] 1] 0 -0,1707 —0.2307 —0.0279
dy 11.8380 12.0880 12.8333 9.3434 9.3416 9.8512
d, 10.0551 9.1777 9.3087 9.3434 8.8619 9.2136
da 9.3416

Grefficiency 760 745 701 96.3 96.3 91.4

91.0 94.3 91.4 96.5 99.1

D-efficiency

97.3

1) Between brackets the number of pairs is given.
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Constants determining exact designs as given in section §.5.2

‘n=23 H
Choice
of ny= 2; ny= 1;".3:1;(56)
nyngny 1)
Restrictions
5+4£=0 1 0 0 0 ) -
W way 1 1 1 1 1 -
Wi=wW=wjy 0 0 0O 1 1 -
Criterion é G D é D -
wi —0.1192 —0.1192 —0.1195 0
v —0.3989 —0.3989 —0.1509 | —0:2386 —0.1419 8
3
a 2.4748 1.8325 1.9677 1.8226 1.75
5 0.7232 0.7052 0.7158 0.7056 0.70
0% 0.4629 0.5292 0.4952 0.5297 0.5833
& -—0,1808 —0.0079 0 0 0
d,y 9.4887 9.8751 96880 9.8825 10.2666
dj, 9.4887 9.3180 9.6880 9.3612 9.3390
ds
Geefficiency 94.8 91.1 92.9 91.1 87.7
D-efficiency 95.4 99.1 98.3 99.0 97.5

1) Between brackets the number of pairs is given,
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Table 5.54
Constants determining exact designs as given in section 5.5.2
n=>,5
Choice ny= ny,= n3z= 1;(176)
of ny= ny= ng = 2; (352) or
nytagng 1) n1= na= ng = 2;(352)
Restrictions
0+4f=0 1 0 0 1 0O 0
wrmwg () o 0 1 1 1
WIT W= ws 0 144 0 0 0 0
Criterion é é D é é D
wy —0.6165 —0.2309 ~—0.0951 | —0.0888 —0.1083 —0.0926
wa —0.6521 —0.6507 —0.2604 .
ws 0.3151 0.3154 —0.0540 ~-0.4602 —0.4068 —0,1299
o 3.3687 3.3612 1.9702 29511 2.6327 1.8968
S 0.6637 0.6441 0.7316 0.7732 0.7655 0.7375
¥ 0.5121 0.5400 0.5581 0.4613 0.4757 0.5619
£ —0.1659 —0.3524 —0,0381 | —0.1933 —0.1323 —0.0053
dy 22,0750 21,9378 24.2557 24.0919 24.0807 24.4417
d, 22.0750 17.4170 19.2704 20.1229 20.0642 19.7946
ds 21.9375 18.6622
efficiency 90.6 91.2 82.5 83.0 83.1 81.8
D-efficiency 90,7 93.1 95.9 89.7 91.6 95.8

1) Between brackets the number of pairs is given.
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Table 5.54
Constants determining exact designs as given in section 5.5.2

‘n=215 i

Choice ny=— nNa= nz— 1;(176)

of or ny=4; na= 2;

niy,nans 1) ng~ ny= nz— 2; (352) ny= 2;(412)

Restrictions

5+4§ =0 0 0 - 1 0 0

Waymwgy K 1 1 - 0 0 0

WImWaias=wa 1 1 - 0 0 0

Criterion é D - ' é é D
wy 0 -—0.0930 —0.0051 —0.0715
wa —0.3048 —0.1220 0 —0.3892 —0,3891 —0.1008
wy ] —0,0059 —0.0028 —0.0814
o 2.2281 1.8891 1.8333 3.1218 3.1218 2.7120
& 0.7603 0.7377 0.7333 0.5861 0.5859 0.5934
¥ 0.4952 0.5626 0.6111 0.5013 0.5018 0.5148
¢ 0 0 0 —0.1465 —0.1465 —0.0046
dy 24.1885 24.4555 24.9333 20.0817 20.0833 20.4204
dj 21.3947 19.8932 19.8692 20,5040 20.5042 22.1378
da 16.9017 20.5042

Geefficiency 82.7 81.8 802 97.5 975 903

D-efliciency 93.5 95.8 94.8 989 98.9 99.8

1) Between brackets the number of pairs is given.
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Table 5.54
Constants determining exact designs as given in section 5.5.2
| n=3§
Choice ni=2:ns=1;ns= 1,(206)
of or
nyngng 1) ni=4:n,= 2;n;3= 2;(206)
Restrictions
8+4£=0 1 4] 0 ] 0 -
W= wa 1 1 1 1 1 -
WIE Wt wy 0 0 ] 1 1 -
Criterion é é D é D -
wiy —0,0029 —0.0042 —0.0719 0
w2 —0.3626 —0.0999 —0,0887 | 00223 —0.0100 0O
w3 0
o 3.5350 2.7207 2.7092 26693 2.7208 2.6667
8 0.6036 0.5935 0.5935 05927 0.5939 0.5926
y 0.4666 0.5152 0.5149 0.5286 05118 0.5333
¢ —0.1509 —0.0090 —0.00250 4] -0 4]
d, 20,0853 20.4253 20.4228 20.5666 20.3958 20.6222
dy 22,4169 22.0731 22.1756 22,1111 22,2821 22.1249
ds 18.7722 18.6052
Crefficiency 89.2 90.6 90.2 90.5 89.8  90.4
D-efficiency 96.0 99.7 99.8 99.6 99.8 99.4

1) Between brackets the number of pairs is given.
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Table 5.54
Constants determining exact designs as given in section 5.5.2

n=35 ” ‘
Choice ny=n,= 2:n;3= 1;(272)

of
Ty,I12,713 1)

ny= np= 45 n3= 2;(544)

or
n=n,= 4;ny= 2;(544)

Restrictions
8+4¢=0 1 0 0 1 0 0
Waoam w3 0 0 0 1 1 1
W= Waym w3 0 ) 0 0 O 0
Criterion é (§ D é é D
wi —0.4980 —0.2121 —0.1049 | —0.4599 —0.2003 —0.1050
wa -0,3267 ~0.3122 —0.0798 '
wa 0.0043 —0.1040 —0.0920 | —0-2360 —0.2350 —0.0869
o 31619 3.1669 2.8758 3.1775 3.1743  2.8766
E) 0.6214 0.6109 0.6088 0.6290 0.6153 0.6088
y 0.4860 0.4994 0.5255 0.4735 0.4926 0.5255
£ —0.1554 —0.3987 —0.2591 | —0.1576 —0.2984 —0.2595
dy 20,7445 20.6541 20.9164 | 20,7783 20.6794 20.9163
ds 20.7445 19.9645 16.8917 | 20.7783 17.2558 16.8847
ds 20.6541 20.6794
Gefficiency 96.4 96.8 95.6 96.3 96.7 95.6
D-efficiency 96.5 98.5 99.5 96.5 98.3 99.5

1) Between brackets the number of pairs is given,
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Table 5.54
Constants determining exact designs as given in section 5.5.2
n=325 n
Choice ny=na= 2;ng=1;(272)
of or ny=2; np= 13
nyungns 1) ny = ny = 4; ns=2;(544) ns= 2;(336)
Restrictions
S+4£=0 0 0 - 1 4] 0
W= w3 1 1 - 4] ) 0 0
W= wo=wg 1 1 - 0 0 0
Criterion é D - é é D
w1 0 —0.4671 —0.1683 —0.0773
wa -—0.2351 —0.1000 0 ~0,6720 —0.6725 —0.4593
ws 0 0.2911  0.2911 0.0277
a 3.1746  2.8909 2.8333 3.2677 3.2707 2.1890
5 0.6166 0.6089 0.6071 0.6365 0.6301 0.6993
Yy 0.4902 05236 0.5483 0.5204 05307 0.5337
£ —(,2886 —0.2628 —0.2576 | —0.1591 —0.2411 0.0304
d, 20.6813 20.8957 21.1521 21.5224 21.4905 23.%1875
dy 17.4970 16.8629 16.8452 21.5224 19.5115 215711
da 20.6813 19.3326 21.4905
Grefficiency 96.7 95.7 94.6 92.9 93.1 86.3
D-efficiency 98.2 99.5 99.0 93.0 93.8 95.8

1) Between brackets the number of pairs is given.
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Table 5.54 ‘
Constants determining exact designs as given in section 5.5.2
[ n=5 ]
Choice
of ng=3; na= 2; ny=3; na=13
ni,nany 1) ns = 2;(432«) ny = 2;(416)
Restrictions
S+4£=0 1 0 0 1 0 0
Wi WwWoa—wgjy 0 0 0 O 0 0
Criterion ¢ ¢ D é é D
wy —(.4135 —0.1596 —0.0817 | ~0.0105 —0.0132 —0,0575
W —0.5341 —0.5673 —0.1318 | —0.5907 —0.5909 —0.2117
w3 0.1729 0.0311 —0.0905 0.0019 —0.0046 —0.0559
o 3.1704 3,1993 2.3087 3.1794 3.1800 2.2744
5 0.6177 0.6207 0.6444 0.6113 0.6120 0.6336
Y 0.5045 0.4986 0.5336 0.4895 0.4887 0.5233
£ -0.1544 ~0.2770 —0,0083 | —0.1528 —0.1530 0.2573
dy 20.8802 20,8796 21.8685 | 20.5451 20.5515 21.4874
dy 20.8802 17.9946 20.6661 20.8138 20.8148 26.9090
ds 20.8796 ~ 20.8148
Grefficiency 95.8 95.8 91.5 96.1 96.1 74.3
D-efficiency 95.8 971 98.9 97.0 97.0 98.2
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5.8.3. Exact designs when n=2, 4.

Exact designs will be constructed as follows.
If n = 2, we choose

). ny times the pairs of §{1,1),

ii) n, times the pairs of SP(0,0,2; wy),

iii) n3 times the pairs of a half-replicate of SP(0,0,1,1; wa,w3)
iv) n4 times the pairs of SP(0,1,1; wy) .

The information matrix of this design has the structure given in (4.1.5) if
ni2Z Lny2 L,ng2landny 2 1ifwy= wzorng 2 2ifwy = wa.
If these conditions are satisfied we have

(5.5.5)
P = [87!1 + 4n;g1 + 2713(32"‘83) +4n4(4+g4)]fN N
s =[ 0 + 0 + 2n3(gn +g)?+andgs+RII/ N,
t =[ 0 +4nygihy — 4n3 g ng32 +0]l/N,
z = [16711 + 4n2 glk; + 47&3(%’2"%’3)2 + 8R4h4] / N s

where N = dny + 4ny + 4nz + 8ng.

If n = 4, we choose

i) ny times the pairs of a half-replicate of 5(2,2),
ii) ny times the pairs of $P(0,0,4; wy),
iliA) ns times the pairs of a half-replicate of SP(0,0,1,3; wa,w3),
or
iiiB) ns times the pairs of a half-replicate of SP(0,0,2,2; wy,w3),
iv)  n4 times the pairs of a quarter-replicate of SP(1,2,1; w).
The information matrix of this design has the structure given in (4.1.5) if
niZlLn,2 Lne2z2andns 2 1ifwy= waorng 2 2ifwy & ws.
If these conditions are satisfied we have

(5.5.6)
p=l48n; + 16n,g, + 8nil(2q—1)g, + 3gsl + 12n,(8 + gJ) /N,
s=[ 0 + 0 + 8naygalga + gs)? + 12nga+RJI/N ,
t=[ 0 +16n;g1h1+ 8nsllg—1)grh2+(3—qagshs—2qgamgwll/N,
z=[64n; + 16n; g h1 + 8njl(g1)g 2k 2+ (3—q4)gshs+2q4(w —w3))]
+ 8n8 + g4+ 20rY1/N
where

1, if iiiA ) is chosen ,

7 | 2,if t0iB) is chosen ,

and
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N = 24?!1 + 16n2 + 16(1"‘94)713 + 48n 4.

Again for fixed ny , ny, ns and n4 the values of wy , wy , w3 and w4 have been
computed according to the Gcriterion or the D-criterion. When using the
criterion we make the assumption & + 4 = 0 , because we did not find better
results when this assumption was not made in the case n = 3,5 . Again in
some cases designs are constructed with w, = w3 or w; = w, = wj; Some
sesults are given in table 5.5.5. For both n = 2 and n = 4 designs are found for
which the number of pairs is comparatively small and which have a high
efficiency. The designs given in this table for n = 4 are designs with g4= 1.
Using g2 = 2 does not lead to better results.



140

Table 5.5.5
Constants determining exact designs as given in section §.5.3
n=2

Choice gs=1 gq4=1

of nynans ny=0,ny= 0 ny= 2iny= 2

ngand g4 1) ns= O;ne= 1;(8) lns= 2:ny= 2;(40)

Restrictions

S+4f=0 0 o - 1 0

w 2: w3 -~ - - 0 0

w l: w 2: w3 - - - O 0

Criterion é D - é D
wi - - - —0.0407 ~-0.1483
Wy - - - —0.0558 —0.1826
w3 - - - —0.5128 —0.1826
w4 0.0754 0.1279 0] 0.0061 0.0741
o 2.0229 20671 2 1.9975 1.7495
] 0.8647 0.6860 1 0.6916 0.6884
8% 0.4120 0.4201 04 0.5116 0.5222
& ] 4] 0 —0.1729 -0,0133
dy 5.1066 4.8246 5.6 4.8127 4,.8423
d, 5.8103 5.8393 58700 5.1706 5.3316
ds
dg 5.0230 5.0000 5.1454| 5.0877 5.0479

Grefficiency 86.1 856 852 | 96.7 93.8
D-efficiency 984 98.7 97.2 98.5 99.6

1) Between brackets the number of pairs is given.
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Table 5.5.5
Constants determining exact designs as given in section 5.5.3
n =2 ‘_I
Choice ge=1
ofnan,ng ny= na= ny= ng= 1 (20),01'
ngand gg 1) ny= n;= n3= ne= 2;(40).
Restrictions
d+4f=0 1 0 4] 0 -
W= w3 1 1 1 1 -
w l= w 2: w 3 0 0 1 1 -
Criterion é D ¢ D -
wy —0,0343 —0.1483 0
:2 —0.3765 —0.1826 —0.0751 —0.1639 g
3
we 0.0224 0.0741 , 0.0193 0.0744 O
o 2.0225 1.7495 1.6797 1.7344 1.6667
-8 0.7054 0.6884 0.7076 0.6891 0.7143
-y 0.5040 0.5222 0.5392 05227 0.5556
£ —-0.1764 —0.0133 0 4] 0
dy 4.8377 4.8423 49869 4.8472 5.0794
d; 5.1983 5.3316 5.3124 5.3554 5.3383
ds ‘
dy 5.0881 5.0479 5.0966 5.0492 5.1710
Geficiency 96.2 93.8 94.1 934 937
D-efficiency 98.3 99.6 99.1 99.6 98.0

1) Between brackets the number of pairs is given.
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Table 5.5.5
Constants determining exact designs as given in section 5.5.3
[ n=2 |
Choice gq=1
of nynans ny= 1;n;= 2;n3= l;ne= 3;(40), 0r
nsand gq 1) nm= 2in,= 4ny= 2;ne= 6;(80).
Restrictions
6+4£(=0 i 0 0 0 -
W= wg 1 1 1 1 -
WS wiymws ] 0 1 1 -
Criterion é D é D -
wi ~0.3182 —0.1567 0
v —0.0333 —0.1384 | ~01380 —01302 9
3
Wy 0.0688 0.1138 | —0.0369 0.1136 0
4" 2.0132 2.0631 2.0340 2.0687 2
8 0.8019 0.7493 0.8081 00,7490 0.8333
v 0.4729 0.4919 0.4838 0.4920 0.5
¢ —0.2005 —0.2885 | —0.2861 —0.2930 —0.2857
d, 5.0995 4.9649 5.1676 49641 5.3333
ds 5.0995 4.8575 4.8453 4.8506 4.8496
ds 5.2447 5.1676 5.2555 5.1446
da 5.0261 5.0126 5.0236 5.0135 §.1019
Gefficiency 980  95.3 968 951 972
D-efficiency 99.0 99.9 99.7 99.9 98.6

1) Between brackets the number of pairs is given.
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Table 5.55
_Constants determining exact designs as given in section 5.5.3
n=2 I n=4 |I
 Choice gqa=1 ge=1

of nynyns ny=2n3= 4 ny= Liny, = 0ng = 25n4 = 0;(88)

ngand g4 1) | n3= 2;nq= 6; (80)

Restrictions

5+4£=0 1 0 1 0 0 -

wows ) 0 0 0 1 -

Wis=woi=wgs 0 0 0 0 0 -

Criterion é D é D D -
Wy -—0.3181 —0.1568 - - - -
wy -0.0317 —0.1384 0.6118 —0.6193 —0.1802 0
ws —~0.,0315 —0.1384 |—0.5250 —0.0366 ) 0
wy 0.0689  0.1138 - - - -
@ 2.0132 2.0631 3.0171 2.1083] 14689 1.375
) 0.8018 0.7493 0.7205 0.8241] 0.9366 09167
Y 0.4730 0.4919 0.5431 0.6218]| 0.6416 0.7857
& -0,2008 -0.,2885 (—0.1801 —0.2842| O 0
d; 5.0995 4.9649 | 15.8724 18.1602| 20.1190 20.9524
dy 5.0995 48575 | 15.8724 11.7319| 14.3873 14.6758
ds 5.2447
dy 5.0264 5.0126 | 15.6607 16.5709| 17.4248 18.5088

Geefficiency 98.0 95.3 88.2 77.1 69.6  66.8

D-efficiency 99.0 99.9 98.9 92.7 91.3 88.6

1) Between brackets the number of pairs is given.
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Table 5.55
Constants determining exact designs as given.in section 5.5.3

[ n=4 |

Choice gq=1 gqa=1
of nynans ni=2n,=0; |n1=1ny=0;n3= 1;n,= 0;(56),0r
neand g4 1) | n3=2;n4= 0;(112)| n1= 2;n2= O;n3= 2;n = 0;(112)
Restrictions
d+4é=0 1 0 0 0 -
Wa=wg3 0 0 1 1 -
WIT W= ws 0 0 0 0 -
Criterion (‘} D é . D -
w1 - - - - -
w2 0.5073 —0.3276 0
ws —0.3808 —o0.1062 | 0-3623 0.1544 0
wq - - - - -
o 2.7424 1.9775 2.3186 1.8365 1.75
] 0.6341 0.6963 0.7361 0.7067 0.7
Y 0.5852 0.6122 0.5215 0.6178 0.7
¢ —0.1586 —0.0873 | © 0 0
dy 14.8267 16.0387 | 15.9496 16.2490 16.8
dy 14.8264 13.4595 | 15.9496 14.3546 14.4049
ds
das 14.8261 15.0663 | 15.1337 15.1786 15.75
Grefficiency 94.4 87.3 87.8 86.2 83.3
D-efficiency 94.4 97.8 94.2 97.7 95.9

1) Between brackets the number of pairs is given.
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Table 5.5.5
Constants determining exact designs as given in section 5.5.3
n=4 ll
Choice ge=1
of nynyns = Liny= O;ns= 2;ny= 2;(184),
nqand gq 1)
Restrictions
8+4£=0 1 0 0 1 -
W= ws 0 0 1 1 -
W= W= ws 0 0 0 0 -
Criterion é D e} D -
wy - - - - -
ws —0.4105 —0.2044 _ 0
wa —0.0612 —0,0930 | ~O:0936 —0.1157
Wy 04311 00757 | 0.106 0.0771 0
o 2.6528 2.1765 2.1519 2.1392 2.0909
] 06167 0.6702 0.6612 0.6718 0.6765
¥ 0.5515 0.5395 0.5525 0.5410 0.5610
3 —0.1542 —0.0268 0O 0 (]
dy 1 14.2783 15.0393 14,9983 15.0764 15.3113
d, 14.2784 14.6810 14,9983 14.9560 14.8904
dj
dy 14,2468 14.3883 14.4036 14.4077 14.5893
Grefficiency 98.1  93.1 933 929 914
D-efficiency 98.1 99.3 99.2 99.3 98.6

1) Between brackets the number of pairs is given,

5.6. Robustness of the designs

As in section 4.5 we will give some lower bounds for the D-efficiencies of
the discrete D-optimal designs which are given in section 5.2 when the condition
(1.8.6) is not satisfied. The arguments given in section 4.5 also hold in the case
of a hypercube as experimentel region. Lemma 4.5.1 is used to compute the
lower bounds for some values of 8. The results are similar to the ones given in
section 4.5 forn = 2, 3, 4. No lower bounds have been computed forn = § .,
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Table 5.6.1
Lower bounds for the D-efficiency of some designs
n=2 smallest
Bo value | lower

B B, Bu Biz Biz | of m, ;; | bound

0.05 0.05 0.05 0.05 0.05] 0.435 |0.996
-—0.05 0.05 0.05 0.05 0.05| 0.450 |0.996
0.05 0.05 —0.05 0.05 0.05| 0.438 |0.996
0.1 0.1 01 01 01 | 0372 |0.984
—0.1 0.1 0.1 01 01 | 0401 |0984
01 01 —01 01 01 | 0378 [0.984
0.2 0.2 02 02 02 | 0270 [0.939
—0.2 0.2 02 0.2 02 | 0310 |0.937
02 02 —02 02 02 | 0270 |0.941
0.3 03 03 03 03| 0172 |0.877
—0.3 0.3 03 03 03 | 0232 |0.868
03 03 —03 03 03 | 0183 |0.877
05 0.5 05 05 05 | 0.068 |0.737
—0.5 05 05 05 05 | 0.119 |0.699
05 05 —05 05 05 | 0076 |0.727

1 1 1 1 1 0.005 |0.485
-1 1 1 1 1 0.018 |0.359
1 1 ~1 1 1 0.007 | 0.418
01 0 0 0 0 0.450 | 0.995
03 0 0 0 0 0.354 | 0.956
05 O 0 0 o 0.269 | 0.887
1 0 0 0 0 0.119 | 0.657
0 0 01 0O 0 0.475 |0.999
0 0 03 0 ¢ 0.427 | 0.987
0 0 05 0O 0 0.379 | 0.965
0 0 1 0 o 0.272 1 0.874
0 0 0 0 0.1 0.450 | 0.997
0 0 0 0 0.3 0.354 | 0971
0 0 0 0 0.5 0.269 |[0.923
0 0 o 0 1 0.119 | 0.748




n=3 |sma11est

Bo value |lower

B B Bs Bu Bz Ba P2 Bis PBa|of m ,;; |bound
0.05 0.05 0.05| 0.05 0.05 0.05{ 0.05 0.05 0.05| 0.386 |0.992
0.1 01 0.1 0.1 01 0.1 0.1 0.1 0.1 | 0.283 [0.971
—0.1 01 0.1 0.1 0.1 0.1 ¢1 0.1 0.1 | 0310 {0970
-0.1 —0.1 0.1 0.1 01 01 0.1 01 01 | 0,310 |0.970
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 | 0135 {0901
-2 02 02102 02 02| 02 02 02| 0256 |0.895
—0.2 0.2 02 |—0.2 02 02 |—0.2 02 0.2 | 0.168 |0.895
0.3 03 03 0.3 03 0.3 0.3 03 0.3 | 0058 [0.820
—0.3 —0.3 03 |—03 —03 03 |—0.3 0.3 0.3 | 0.083 |0.821
0.5 05 05 0.5 05 0S5 05 05 05 | 0.009 0.682
0.5 05 0.5 0.119 {0.746

- 05 0.269 |0.890
0.5 0.5 0.259 |0.869
0.5 0.5 0.5 0.176 |0.805
1.0 0.119 |0.668

The entries that are not given in this table are zero.

147
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n=4 ”
Bo value of the | smallest
non zero non zero value lower
parameters parameters of 7; i bound
B 0.1 0.4502 | 0.9955
1 0.1192 0.7034
Bu 0.1 0.4750 | 0.9990
B2 0.1 0.4502 0.9959
Bi1<i<4 0.1 0.3780 | 0.9823
' 0.2 0.2697 0.9341
0.5 0.0765 0.7174
1 0.0068 0.4540
Bi1<i<4 0.1 0.4024 | 0.9951
. 0.2 0.3120 0.9811
B,;,1€i<j<4 0.1 0.3100 0.9764
0.2 0.1680 0.9197
B: B 1Si<j<4 0.1 0.1929 | 0.9573
0.2 0.0540 0.8690
0.3 0.0135 0.7787
0.5 0.0008 0.6292
1 0.0000 0.4169
B, B, Bz 0.2 0.3100 0.9631
B1, Bs, B2 0.2 0.2315 | 0.9510
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Samenvatting

In experimenten met paarsgewijze vergelijkingen worden waarnemingen gedaan
door telkens twee objecten met ¢lkaar te vergelijken. Paarsgewijze vergelijkingen
worden veel gebruikt in situaties waar de beoordeling van de te onderzoeken
variabele subjectief is, bijvoorbeeld bij het beoordelen van etenswaar. Aan een
aantal proefpersonen wordt dan gevraagd een voorkeur uit te spreken voor een
van een tweetal aangeboden producten. In dit proefschrift worden proefopzetten
ontwikkeld voor dergelijke situaties.

In hoofdstuk 1 wordt een aantal modellen gegeven die met betrekking tot
paarsgewijze vergelijkingen geformuleerd zijn. Met name het Bradley-Terry
model komt aan de orde. Dit model postuleert het bestaan van een parameter (of
evaluatiewaarde) horend bij het object. De preferentiekansen kunnen in deze
parameters worden uitgedrukt en met behulp van de waarnemingen kunnen de
parameters geschat worden. De covariantiematrix van de schatters van de
parameters wordt besproken. Deze is van belang omdat veel criteria voor het
ontwikkelen van proefopzetten afhangen van de covariantiematrix. In dit proef-
schrift wordt het D-criterium en een voor paarsgewijze vergelijkingen aangepast
G-criterium gebruikt om proefopzetten te ontwikkelen, Het D-criterium
minimaliseert de determinant van de covariantiematrix; het G-criterium
minimaliseert het maximum van de variantie van de responsfunctie,

In hoofdstuk 2 wordt een methode gegeven om proefopzetten te construeren.
Deze methode is geschikt voor het geval dat er een lineair model geformuleerd
kan worden voor de evaluatiewaarde. Dat wil zeggen dat de evaluatiewaarde een
functie is van een aantal verklarende variabelen. De covariantiematrix hangt
echter af van de onbekende parameters. Daarom is het bij het construeren van
proefopzetten nodig een veronderstelling te maken met betrekking tot de para-
meters. De gebruikelijke veronderstelling is dat alle parameters gelijk zijn. Bij
het construeren van proefopzetten is het nuttig om gebruik te maken van (ge-
standaardiseerde) discrete proefopzetten. Discreet staat in tegenstelling tot exact,
waarbij in ieder paar een (of meerdere) waarnemingen worden gedaan. Bij
discrete proefopzetten is sprake van een wegingscoéfficiént per paar. De
wegingscoéfficiént kan iedere positieve waarde aannemen. Gestandaardiseerd wil
zeggen dat de som van de wegingscoefficiénten gelijk is aan een. Bij gestandaar-
diseerde exacte proefopzetten zijn alle wegingscoefficiénten gelijk aan (een veel-
voud van) de reciproke waarde van het totaal aantal waarnemingen.

In hoofdstuk 3, 4 en 5§ worden toepassingen gegeven. Hoofdstuk 3 behandelt het
geval van een factorieel model met hoofdeffecten en interacties van twee fac-
toren. Exacte D-optimale proefopzetten worden gegeven, zowel voor de situatie
dat het experimentele gebied een hyperkubus is, als voor de situatie dat het een
hyperbol is. Sommige van deze proefopzetten zijn bekend in de literatuur.
Hoofdstuk 4 en 5 behandelen een volledig tweedegraads model, waaarbij het
experimentele gebied in hoofdstuk 4 een hyperbol is en in hoofdstuk S een
hyperkubus, In beide hoofdstukken worden discrete D-optimale proefopzetten
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geconstrueerd. Bij sommige van deze proefopzetten is het aantal paren groot.
Daarom worden proefopzetten ontwikkeld waarbij het aantal paren kleiner is.
Met behulp van deze discrete proefopzetten worden exacte proefopzetten gecon-
* strueerd die een goede efficiéntie hebben en waarvan het aantal paren niet al te
groot is. De robuustheid van de optimale discrete proefopzetten wordt onder-
zocht; dat wil zeggen: er wordt besproken wat de efficiéntie van de proefopzetten
is als niet voldaan is aan de aanname dat er geen verschillen zijn in de objecten.
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Stellingen
I

Een proefopzet heet roteerbaar als de variantiefunctie alleen afhangt van de
afstand tot het centrum van het experimentele gebied. Deze naamgeving is
verwarrend, want roteerbaarheid wil in het algemeen niet zeggen dat de punten
van de proefopzet over een gelijke hoek ten opzichte van het centrum geroteerd
kunnen worden zonder dat deze eigenschap verloren gaat.

I

Indien bij een proefopzet als experimenteel gebied niet een (hyper-)bol wordt
gekozen, is het minder zinvol te eisen dat de proefopzet roteerbaar is.

I

De principes van statistische proefopzetten kunnen soms met vrucht worden toe-
gepast om het globale optimum te vinden van een deterministische responsefunc-
tie, ’

P.J.J. Maas, Onderzoek naar de geometrie van een grote-terts klok. Afstu-
deerverslag Afdeling Werktuigbouwkunde THE, mei 1985.

v

Nu robuuste schattingsmethoden de laatste tijd veel navolging vinden, bestaat
het gevaar dat de klassicke methoden ondergewaardeerd worden. Zij blijven
echter voor veel experimenten geschikt, mits men ‘gezond verstand’ gebruikt,
bijvoorbeeld voor het vinden van uitschieters.

\%

Het bewijs van theorema 3 van hoofdstuk 11 van Athreya and Ney (1972) is
onvolledig. Er wordt afgeleid dat

146)=a' _ oy g1,

lim

n—*oco
met
fas)= X Pp(i.j)sy,
j=0
en

0G)= X v, s’ .
j=0



Nu wordt gesteld dat
“Comparing coefficients on both sides implies:

Pali) _ LTI

lim = V.

11 oo Y
Dit is niet cotrect.f‘Een juist argument kan gevonden worden in Karlin and
McGregor (1966). Daarin wordt gebruikt dat

fal(s)—q

0(s)= L2207 e 0(s)

analytisch zijn en dat Q, (s ) uniform convergeert naar Q (s ).

Athreya, K.B. and Ney, P.E. (1972). Branching Processes. Springer-Verlag,
Berlin,

Karlin, S. and McGregor, J. (1966). Spectral theory of branching processes.
1. The case of a discrete spectrum. ZW §, 6-33.

A\

Het personeelsbeleid aan universiteiten en hogescholen dient meer dan nu het
geval is gericht te zijn op het aanstellen van wetenschappelijk personeel met
interesse voor het geven van onderwijs en met didactische kwaliteiten.

v

Bij atletiek is een verrassend goede vuistregel ter bepaling van de gemiddelde
snelheid die men kan lopen op een afstand als functie van de snelheid op een
andere afstand de volgende

V=~ vg 2103 (ﬂ) ,
X1
waar x; afstanden en v, de bijbehorende snelheden in km/uur zijn (¢ = 1,2).

Dat wil zeggen: als de afstand verdubbelt verliest men 1 km/uur aan snelheid.
De omstandigheden moeten enigszins vergelijkbaar zijn.



