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Preface 

The name of R.A. Bradley ( together with that of M.E. Terry ) is associ­

ated with a model that is widely employed in paired comparisons. Therefore, it 

seems appropriate to begin this thesis with a quotation from Bradley (1976). 

Consulting statisticians are familiar with the consultee who, after describ­

ing his proposed experiment in several sentences has only one question: 

"How many observations do I need?". 

In particular the consultee might be tempted to ask this question when paired 

comparisons are involved. In paired comparison experiments observations are 

made by presenting pairs of objects to one or more judges. This method is used 

extensively in experimental situations where objects can be judged only subjec­

tively, that is to say, when it is impossible or impracticable to make relevant 

measurements in order to decide which of two objects is preferable. When all 

pairs are presented to each of n judges (round robin), then the number of paired 

comparisons is n q), where t is the number of objects. This number is often too 

large for practical purposes. Bradley and Terry postulate the existence of param­

eters, '11"1 for T1 , where T1 is the i -th object or treatment. In many cases these 

parameters are functions of quantities determining the objects and a linear 

model can be formulated. The information from this model can be used to con­

struct designs, that are more efficient than the round robin design, i.e., less com­

parisons are needed to measure the parameters of the linear model with the same 

accuracy as the round robin design. The aim of this thesis is to construct such 

designs. 

The method of paired comparisons provides a simple experimental tech­

nique. However, many models have been formulated for paired comparison 

experiments. Some of these models and procedures are discussed in section 1. 

These procedures yield covariance matrices of the estimators for the unknown 

parameters. These covariance matrices are in particular important with regard to 

the construction of optimal designs, because many criteria depend on the covari­

ance matrix of the estimators. However, these matrices depend in general on the 

unknown parameters. Therefore, the assumption of no differences in treatment is 

made in order to construct optimal designs. In section 1 it is shown that in this 

case an ordinary linear model can be applied for constructing optimal designs. 

In section 2 a general approach for the constructio.n of D-optimal designs for 

paired comparisons is given. This approach assumes an underlying structure. It 

uses the equivalence of the D-criterion and the G-criterion, when adapted to the 

situation of paired comparisons. This approach is more general than the above 

approach, where the objects are fixed. Now they may be chosen in a given experi­

mental region. The concept of exact and discrete designs is introduced. The 

latter designs are useful in constructing optimal designs. A discrete design con­

sists of, say, N pairs with weights p1 , such that p 1 + · · · + PN = 1. Exact 

designs can be used in practical applications. They can de defined as discrete 

designs with rational p 1 • 
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Applications are given in sections 3, 4 and S. 

Section 3 deals with a factorial model with main effects and first-order interac­

tions. Exact D-optimal designs are given both for the case of a hypersphere as 

experimental region and for the case of a hypercube as experimental region. 

Some of these results are known in the literature. Sections 4 and 5 deal with a 

quadratic model, in section 4 with a hypersphere as experimental region, in sec­

tion 5 with a hypercube as experimental region. In both sections discrete D­

optimal designs are presented. Some of these designs have a large number of 

pairs, in particular in the case of a hypercube of high dimension. Therefore 

discrete D-optimal designs are given for which the number of pairs is reduced 

considerably. Using these discrete designs we construct exact designs with a high 

efficiency and with a relatively small number of pairs. The robustness of the 

discrete designs is investigated, i.e. we discuss the efficiency of the designs when 

the assumption of no differences in treatment does not hold. 



1 

1. Formulation of models for paired comparisons 

1.1. Introduction 

In paired comparison experiments observations are made by presenting 

objects in pairs to one or more judges. The word "object" may stand for item, 

treatment, stimulus, and the like. The judge has to declare which object of the 

pair presented he prefers. In the simplest situation the observations are 0 or 1, 

indicating the preference for one of the two objects. More generally the prefer­

ence may be recorded on some finer scale, for example a 7-points scale 

(-3,-2,-1, 0, 1, 2, 3 ), implicitly allowing ties to be declared. The method of 

paired comparisons may be used in cases where objects can be judged only sub­

jectively. So, applications have been to taste testing, consumer tests, psychophy­

sical analysis, and more generally to situations where quantification through 

measurement is difficult. 

Many models have been formulated with regard to paired comparison experi­

ments. Some of these will be discussed in the following sections. 

1.2. The Brad.ley-Terry model 

A model, which is widely employed, is the model provided by Bradley 

and Terry (1952). The paired comparison experiment has t objects, T 1 , ••• • Tt , 

with niJ judgements or comparisons of T1 and T,, n1, ? 0, n 11 = 0, n Jl = n1,, 

i ,j = 1, ... , t. Let ni.IJ be the number of times T; has been preferred to r, 
when T1 and T, were compared, n 1 •1, = n 1 • 11 , n 1 •1, + n, .11 = n1J (i ;e j ). So in 

the model it is not allowed to declare ties. 

Bradley and Terry postulate the existence of parameters, 1T1 for T1 , 1T; > 0, 

such that the probability 1T; •11 of selecting T1 when compared with T, is 

1T I . ij = 1T I + 1T J 
'(i ;e j ). (1.2.1) 

Since (1.2.1) is not dependent on parameter scale, convenient scale-determining 

constraints are formulated like 

or 

t 

r. 1Tt = 1 • 
1=1 

t 

L log 1T1 = 0 . 
1=1 

(1.2.2) 

(1.2.3) 

Likelihood methods can be used to estimate these parameters. On the assump­

tion of independent selections, the likelihood function is 

(1.2.4) 
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where 

and 

a1 = L n1.11 , 
J 

1T = (7T ••••• ,1Tt)'. 

Maximizing (1.2.4), subject to (1.2.2), gives the likelihood equations 

a· n 1 · -'- 1: J = o ,t=1 .... . t , 
p; ) .. 1 PI + PJ 

(1.2.5) 

t 

L PI::;:: 1 ' (1.2.6) 
1=1 

where p1 is the likelihood estimate of 1T1 • 

Ford (1957) describes an iterative solution of the likelihood equations. Brad­

ley(l955) gives large sample results and the asymptotic distribution of the 

maximum likelihood estimators. These results will be discussed later. 

1.3. Generalizations of the Bradley-Terry model 

There are many generalizations of the Bradley-Terry model. Rao and 

Kupper (1967) generalize the model by introducing a threshold parameter 

T)o ~ 0. This parameter is interpreted as the threshold of sensory perception for 

the judge. They model the probabilities of preference and no preference as 

1T; 

1T;.;j = ' 
7T; + 91T j 

7T;7T,(92-1) 

1TO.ij ::;:: (7T; + 91T J )(1T) + 97T;) ' 
(1.3.1) 

1Tj 

1Tj.lj::;:: 1Tj +91T;' 

where 

9::::: e 110
• (1.3.2) 

For 9 = 1 the Rao-Kupper model coincides with the Bradley-Terry model. Rao 

and Kupper show that the maximum likelihood estimates p1 (i= 1, ... ,t) and 

9 of 1r1 (i = 1, ..• , t ) and 9 are the solutions of the equations 

(1.3.3) 

.!!!._ _ L no.IJ + n; .IJ 

PI ) .. 1 PI +Bp) 

(no.IJ + nJ.IJ)9 
=O,l=l, ... ,t, 

Pi + 9pl 

where 



and 

b1 = L (no. 11 + n; . 11 ) , 
j 

3 

Beaver and Gokhale(1975) generalize the model in order to incorporate within­

pair order effects. They assume the existence of parameters 

6u. i ,j = 1, .•.. t , 61; = 61 1 , associated with the pair (i ,j ) such that the 

preference probabilities for the ordered pair (i ,j) are 

where 

'7T; + 6;J 
'7Tt.ij= 

'7T; +'7T; 

'7T; - 6;j 
'7T J .ij = 

'7T; +'7T; 

1611 I ~ min { '7T1 , '7T 1 } • 

(1.3.4) 

In this model the likelihood equations are rather complicated. We refer to 

Beaver and Gokhale (1975) who also describe an iterative technique to find solu­

tions. 

1.4. Weighted least squares approach 

Beaver ( 1977) presents a general approach to the models defined above. His 

results concerning the covariance matrix of the estimators are used later on. 

Therefore, some results are given here. Beaver uses a method described by Griz­

zle, Starmer and Koch (1969), who present a unified approach to the analysis of 

data resulting from an experiment involving s multinomial populations, each 

having r categories. 

Let m1 1
, m1 2

, , •••• m1r be the observed cell counts for the l -th rnultinornial 
r 

population resulting from m1 • = I: m1i observations, i = 1, ... , s. 
j=l 

Let 

PI = ( Pt
1 

• • • • • Ptr )' • 

be the sample estimate of the cell probabilities 

ff; = ( '7Tt •••• ''7T; )' ' 
1 r 

(1.4.1) 

(1.4.2) 

and let V (pj ) be the usual sample estimate of the covariance matrix of 

p; (i = 1, ... ,s). 
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Define 

= ( 1f 1' t ••• t ff, ~ )' , 

ji = ( Pl 1

•''' ,ji. I)' > 

y (ji) = block diagonal matrix of dimension rs x rs having 

V (pj ) as the i -th diagonal block, 

1 m (if) ... any function of the elements of if having continuous 

partial derivatives up to second order with respect to 

the elements of if, m = 1, ... , u, with u ~ (r -l)s , 

F(if) =(1 1(if), ... ,f.(if))', 

H = a matrix of dimension u x rs with 

lift (if) . 
H~c~ = , where z and j are such that 

fj'1Tij 

l = j (modr),O~ j < r ,i = (l-j)/r + 1, 

S = H V(ji) H 1 of dimension u x u • 

(1.4.3) 

When the u parametric and possibly nonlinear functions I m are functionally 
r 

independent of one another and of the sums 1: 1T11 (i = 1, ... ,s), then 
J•l 

both H and S are of rank u . 

Let 

F(if) =X {3 , (1.4.4) 

where X is a known matrix of dimension u x v and of rank v , and {3 is a vector 

of unknown parameters. As Beaver(1977) points out, weighted regression pro­

.duces the best asymptotic normal estimate of {3 given by 

~ = (X' s-t X )-t X' s-t F(ji) . (1.4.5) 

The elements of S are stochastic. If they are not stochastic, then the covariance 

matrix of ~ is equal to 

var ~ = (X 1 s-t X )- 1 • (1.4.6) 

Therefore, one can expect that equation (1.4.6) is asymptotically correct if the 

elements of S are stochastic. An important special case of F (if) involves a 

loglinear function of if. For a positive matrix A of dimension k x l we define 

log A by (log A )11 = log (At)), for all i = 1, ... , k , j = 1, ... ,l. When 

F(if) = K log(A if) with K of dimension t x u and of rank t < u, then 

H = K Da-tA , 

and 

S = K Da-tA V(ji) (K Da-tA ] 1 
, 
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where Da is a diagonal matrix with the elements of A p on the diagonal. The 

use of log 7T1 instead of 7T1 will be discussed later. 

The model of Beaver specializes to the Bradley-Terry model as follows. 

Let 

where 

r = 2, 

1f = (7TL12• 1T2.12• 7Tt.u,7T3.13· · · · ,'1Tt-t.t-tt.'1Tt.t-1t)' , 

P = (pt.l2•P2.l2•PLtl•Pl.l3· · · · ·Pt-t.t-lt•Pt.t-tt)' , 

Pt .IJ = nt.tJ / ntJ , an estimate of 7T1 •11 ; 

ltJ(1f) = log(7Tt.t;/7T;.;J), 

F(1f) = (I 12. I 13· •••• I tt, I 23· ••• .ft-tt )' 

Now, Y(p) is a block diagonal matrix of dimension 2(i) x 2(~) having as blocks 

the matrices 

1 I PI • I) p j .I) - Pt .lj p j. jj I 
niJ -pl.tJPJ.tJ PLtJPJ.tJ ' 

and S is a diagonal matrix with diagonal elements (n11 p1 • 11 pi .11 )-
1 

Let, according to the Bradley-Terry model, 

and so 

with 

log (7T1 .IJ /'1T 1 •11 ) = log 7T1 - log '1T J , 

F(1f) = K log '1T , 

K= 

1 -1 0 0 

0 0 1 -1 

0 0 0 0 

0 0 

0 0 

1 -1 

If we write a 1 = log 7T1 - log '1Tt (i = 1, ... , t -1) , 

then 
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F(iff)= 

1 -1 0 

1 0 -1 

1 

1 

0 

0 0 

0 0 

1 -1 

0 0 0 

0 0 

0 0 

O:t 

0:2 

0 -1 

0 0 

0 0 

O:t-1 

0 1 

Now, the o:1 can be estimated by use of (1.4.5), and the estimates of the 1r1 are 

easily obtained from the estimates of the a 1 with the constraint (1.2.6). 

1.5. Response surface fitting 

Springall (1973) assumes that the 1r1 (i = 1 •..•• t) are functions of con­

tinuous independent variables x 1, ••• ,x •• As in the classical regression situa­

tion, the most useful functions are those that are linear in the unknown parame­

ters, i.e. 

• 
log 1r1 = I: :X1Jt f3~t • 

lt=1 

(1.5.1) 

Using a method similar to that of Rao and Kupper (1967), Springall obtains 

results concerning the covariance matrix (v,. )-1 of his estimators iJ of 9 and f 1 

off;, where 

(S 
f; = e 1 (i=1 •... ,s), 

and 

6 as defined in (1.3.1) . 

His results are listed as 

where 

6
2 + 1 ""'T" .d.* Ll-1 

voo = 2ne (L1 2 ) 2 - L.L. n,1 ..,,1 "' , 
"' - 1 t<J 

v.,. = ~ 1 
n LL n11 .Pt1 (x,~r- :x,.) r= 1, ••• , s , 

t>r"' t<J 

v,.f = ~ 1 ~ LL ntJ .Ptj (x,. - x Jr Hxtt - Xn) r ,q= 1, ...• s ,(1.5.2) 
t.rt.t t<J 
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These results contain some mistakes, even w.hen the random variable n 0 is 

replaced by its expectation. They should read 

I 92 + 3 41T21T;l I 
Voo = ~<~ nlj 92(92- 1) f/l;j +('IT+ 91TJ)2'(1T; + 917";)2 ' 

(1.5.3) 

Vrq as above. 

In deriving the covariance matrix (Arq )- 1 of the estimators of {3 Springall uses 

A0r = v0r/€Or , 

Arq = Vrq/({rfq)• 

This is not correct, it should be 

Arq = fr fq Vrq • 

When the Bradley-Terry model is used without the threshold parameter T)o the 

results concerning the covariance matrix (Arq )- 1 of the estimators ~ 1 of /3 are 

where 

Arq = LL n11 t/lt) (Xtr - Xjr) (xlq - Xjq) , 
i<j 

1.6. The covariance matrices of the estimators 

(1.5.4) 

(1.5.5) 

For convenience we formulate (1.5.4) in a different fashion. Let X be a 

matrix of dimension t x s, the elements of which are the xik from (1.5.1). This 

matrix plays the role of design matrix in the standard experimental situation 

with log 17"1 as observations. 

Define 

1 -1 0 

1 0 -1 

G = 1 0 0 

0 1 -1 

0 0 0 

0 0 

0 0 

0 -1 

0 0 

1 -1 

(1.6.1) 
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a matrix of dimension <i> x t having one +1, one -1, and t-2 zeroes in each 

row, such that 

-1 ,if i ;:e j ' 

(G 'G )ti = 
t-1 ,if i = j • 

The matrix G corresponds to a design where every two items are compared just 

once(n11 = l;i,j=l, ... ,t, i';llf:;j). 

Define 

D=GX, (1.6.2) 

4l(17') = diag(n12-Pu,n13cfon. • • · ,nucfott ,n2scfo23. • • • ,nt-it-Pt-lt ),(1.6.3) 

a matrix of dimension <i> x <i>· lt is easily verified that (1.5.4) may be rewrit­

ten as follows: 

A.., = - LL XtrntJcfotJXJt- LL XtrntJ-PtJXJt 
t<) t<J 

+ L L Xtr niJ cfo lJ X if + L L Xtr ntJ -P 11 Xif 
I<} t<J 

= 1: 1: x~r (G '4l( 'IT )G )IJ x J9 + LXtr (G '4l( 1T )G )u X if • 
i.,. J I 

Hence 

(1.6.4) 

The methods of Beaver and Bradley-Terry can also be used to estimate the 

parameters of the model (1.5.1). Actually, El-Helbawy and Bradley(1978) 

analyse factorial models and give large-sample results. Asymptotically, the 

covariance matrix of the estimators of the parameters coincides with the matrix 

given in (1.6.4). This is to be expected since the methods are based on maximum 

likelihood estimation of the parameters. It may also be verified as follows. 
n 

Let n be the number of factors, the i -th factor has b, levels, so that t = n b,. 
1=1 

The general problem in the model of El-Helbawy and Bradley is to estimate the 

parameters p. 1 ,l = 1, .•. , t under the conditions 

(1.6.5) 

where 

p. .. (IJ.l• ••• 'P.t )' • 
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p, 1 = log w1 , 

1r == (1, •.• , 1 )' , 

1, 'p, is the constraint (1.2.3), 

Bm p, ... 0 means that m specified orthonormal contrasts are 

zero. 

This problem is solved by estimating the other t-m-1 orthonormal contrasts; 

these can be written as linear combinations of the p, 1 

61 = B! p, , 

where B! is a (t -m -1) x t matrix, and 

lt '/.Jt [ 1t/.Jt Bm' B!' ] = 1 
Bm 
B! 

It follows that 

p, = B!' 61. 

The result is 

(1.6.6) 

Asym.ptoticaUy (91- 61) luLs the asymptotic (t -m-1) variate (1.6.7) 

normal distribution with zero expectations and covariance matrix 

(B! A(w) B! •)-1, where 

-nt;<f>IJ ,if i ;o!: j , 

1: n11r. </>111. ,if i = j . .,,..1 

We can reformulate these results as follows. 

If 

X= .Jt B!' , 

then X can be regarded as the design matrix in the standard experimental situa­

tion with an appropriate model of type (1.5.1). Hence (1.6.6) is equivalent to 

p,=X~' 

and the estimator of~ is~= '9 1/.Jt . 

Now 

var (B 1/.Jt)= (tB! A(w)B!')-1 = (X'G'4l(w)G X)-1 . 

So, ( 1.6. 7) may be rewritten as 

var ~ = (D' 4l(7T) D )-1 , 

which coincides with (1.6.4). 

(1.6.8) 

The estimation procedure of Beaver is asymptotically equivalent to maximum 
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likelihood, so we may expect both procedures to lead to the same asymptotic 

covariance matrix when applied to the parameters of model (1.5.1). It can be 

shown that the results given in (1.4.3) and (1.4.6) can be rewritten as follows. 

F(iff) = G log 1T' = G X ~ = D ~ • (1.6.9) 

In section 1.4 we have seen that 

s-1 = t~t(-6-) , 

where tll(-6-) is the matrix tll(1T') in which the 17'1 •11 have been replaced by the 

estimates p1 •11 • Substituting this in (1.4.6) we find 

var~ = (D' tll(-6-) D)-1
• (1.6.10) 

.1. 7. Generalized linear models 

Generalized linear models provide a unified approach and computational 

framework for analysing data. McCullagh and Nelder(1983) give an extensive 

account of the applications generalized linear models have. Computer packages 

have been designed for analysing data by means of generalized linear models. 

One of them, GLIM, is widely used now. 

McCullagh and Nelder formulate the generalized linear model in the following 

tripartite form. 

i) The random component: a vector of observations y of lenght N is 

assumed to be a realization of a random vector Y with stochasti­

cally independent components. The components of Y have a dis­

tribution of an exponential family. These distributions are of the 

same form (e.g. all normal, or all binomial, etc.). The vector of 

expectations is m = (m t. .•• , mN )' • 

ii) The systematic component: the independent variables (or covari-

ates) x., x 2 , ••• • xs produce a linear predictor 11 given by (1.7.1) 

7)=X~, 

where X is the design matrix with elements x11 • 

,fii) The link function between the random component and the sys­

tematic component 

7)1 = g(mt). 

This link function g may be any monotonic differentiable func­

tion. 

The Bradley-Terry model may be formulated as a generalized linear model. Let 

N be the number of pairs for which n11 > 0. Let N be the i -th row of the 

matrix X be denoted by x1 •' and the k -th column of X by x. 1 • An object can 

be characterized by its row in ·the design matrix. Let y1 be the observation 

related to the pair characterized by x11t and x12 •• Now, the observation y1 is a 

realization of a random variable Y1 , having a binomial distribution with param­

eters n1
1

1
2 

and 1T' 11 . 1112• We choose the logit function g (x ) = log (x / ( 1-x ) ) as 



11 

the link function. This function maps the unit interval (0,1) onto the real line 

(-oo, oo). So, we have 

"'· = g(1T· · 1 ) = log ., 'r'1 2 

or 

1}1 = log 1r11 - log 1Tt
2

• 

The independent variables produce the 1}1 given by 

where 

s 

'rli = I: zu {J, • 
1=1 

Substituting this in (1.7.2), we obtain 

s 

log 1T;
1

- log 1Tt
2 
= I: (x1

1
1- x1

2
1) {J, , 

1=1 

in which we can recognize the model (1.5.1). 

(1.7.2) 

(1.7.3) 

Now, the advantage of using log 1T1 instead of 1T1 is becoming cleu. The use of 

log 1r1 will be discussed also when dealing with Thurstone's model in section 

1.9. 

Fienberg and Larntz(l976) give a log lineu representation for paired comparis­

ons (and for multiple comparisons). They reformulate the model and show that 

it coincides with a log linear model of quasisymmetry for at 1t t amtingency 

tabel. The likelihood equations for this model can be solved using a version of 

the general iterative scaling technique described by Darrock and Ratcliff ( 1972 ). 

1.8. Ordinary linear model 

It is possible to formulate an ordinary linear model by choosing an 

appropriate distribution and link function in (1.7.1). 

If the assumption is made that 

i) The Y1 in (1.7.1) are independent and normally distributed with 

constant variance a 2 .and expectation m1 , 

~i) The link function is the identity function, 

then the generalized linear model coincides with an ordinary model. 

We have 

y = v• {J + e ' 

~here 

(1.8.1) 

(1.8.2) 
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Y • (Ytt Y2 •••• • YN/, 

y
1 

= a random variable indicating difference or preference, 

Nt = LLnu, 
i<J 

D* = the design matrix of dimension N 1 x s, 

f3 = <!3 ••.... !3. )', 
e = the disturbance vector with Ee = 0 , var e = a 2 I . 

In general the assumption var e = a 2 I does not hold when paired comparisons 

are made. The matrix D* may be written as follows 

(1.8.3) 

where X is the usual design matrix in a classical experiment, G * is a matrix 

analogous to G. It has in each row one +1, one -1 and t-2 zeroes; a row is 

repeated n11 times, when the objects T1 and T1 are compared n 11 times. 

The least squares estimator for f3 is 

~= (D*'D*)- 1 D*'Y, 

and 

var ~ = (D • ' D • )- 1 a 2 
• 

This may be rewritten as: 

(1.8.4) 

D''D* = X'G*'G* X= 4(X'G'4>(1t)G X)= 4D'4»(1t)D. 

Hence 

var ~ = .!.a 2 (D' 4»(1t) D )-1 
4 . 

The matrix (1.8.5) is proportional to the matrix in (1.6.4), if 

11" = (1, ... ,1)'. 

(1.8.5) 

(1.8.6) 

Quenouille and John (1971) use the ordinary linear model when constructing 

designs for 211 -factorials. However, if one uses the generalized linear model when 

constructing optimal designs, then the covariance matrix depends on the unk­

nown parameters. In general there are no estimates of the parameters, since the 

parameters should be estimated from the experiment which is being designed. 

Therefore, assumption (1.8.6) is made very often. But in that case the general­

ized linear model coincides with the ordinary linear model. Actually the designs 

given by Springall(1973) and El-Helbawy and Bradley(1978) for 2"-factorials 

may be found by using the method developed by Quenouille and John. Hence, 

the ordinary linear model is very useful in constructing optimal designs for 

paired comparison experiments. 
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1.9. Thurstone•s model 

The method of paired comparisons has applications in the ftelds of psycho­

physics and its use has been stimulated especially by the work of L.L.Thurstone. 

The method of paired comparisons is very useful in these ftelds, since the objects 

or the effect of stimuli can be judged only subjectively. A problem which has 

attracted much attention in phychophysics is: how is the subjective sensation in 

the consciousness of the subject related to the intensity of a continuously vary­

ing stimulus. Thurstone(1927) called the processes by which the subject 

discriminates or reacts to stimuli "discriminal processes", and he formulated the 

following model. 

Each stimulus gives rise to a subjective value in a so-called sensory continuum. 

This subjective value is interpreted as the realization of a random variable which 

is real-valued and normally distributed. Following Bock and Jones (1968) in 

formulating this, one may represent the discriminal process associated with a 

stimulus T1 as a random variable v1 : 

(1.9.1) 

where p. 1 is the ftxed component and e1 is the random component. For TJ we 

have v J = p. J + e J , so 

(1.9.2) 

The joint distribution of e1 and e J is assumed to be bivariate normal with expec­

tations 0, variances u? and uJ, and correlation coemcient PtJ • 

The probability that T1 will be preferred to T1 is given by 

P(T; > T,) = ~ ""rexpl-
2

1 
( y-p.

11 
)

2 1 dy , (1.9.3) 
21TCT;J ; • CTtj 

where 

and 

So 

l'o = 1'1 - I'J • 

P(T1 > T
1

) = cJt0( fLtJ ) , 

CTtJ 
(1.9.4) 

where cJt0 is the standardnormal distribution function. Usually, the following 

assumption is made 

u 11 = 1 , i ,j = 1, ... , t (Thurstone's case 5). (1.9.5) 

Then the model coincides with the generalized linear model of (1.7.1) with the 

observations coming from a binomial distribution and the probit function as the 

link function. Note that there is only one difference with the Bradley-Terry 
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model: the link function. The relation between the Bradley-Terry model and 

Thurstone's model can also be formulated as follows. If we substitute the "logis­

tic" density function for the normal density function, then we have 

(1.9.6) 

This yields 

(1.9.7) 

If we define llt = log 1T;, then /'tJ = 1rd1r J and (1.9. 7) gives 

P(Tt>TJ)= 1Tt/1TJ = 
1 + 1Tt/1Tj 1Tt + 1Tj 

(1.9.8) 

which we recogninize as the Bradley-Terry model. So values log 1r1 correspond 

to values ~t 1 on a subjective continuum. This yields another argument in favour 

of model (1.5.1). 

Dock and Jones(1968) discuss procedures for estimating the parameters in the 

Thurstonian model. The results concerning the covariance matrix of the estima­

tors are analogous to the results of section 1.6. When, analogous to (1.8.6), the 

assumption is made that the ~t 1 have the same value, then the covariance matrix 

coincides with the matrix given in (1.8.5). Hence the designs constructed under 

this assumption are also useful in the Thurstonian concept. 

Remark 
The models discussed in this chapter assume a unidimensional continuum. 

Davidson and Bradley (1969) derive a model for multivariate paired comparis­

ons. In this model t objects are to be compared on p attributes. However, it is 

not always possible to examine a priori whether a certain attribute is unidimen­

sional or not. Gokhale, Beaver and Sirotnjk (1983) provide a model-robust 

approach to the analysis of paired comparison experiments. Their approach 

makes it possible to examine the assumption of unidimensionality. 
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2. A method to construct optimal designs and an adapted criterium 

2.1. Introduction 

In chapter 1 we have seen that the design of a paired comparison experi­

ment may be indicated by its t objects and the n11 , where nu is the number of 

.comparisons of the i -th and j -th object. When niJ is constant for all l and j , 

the experiment is called a balanced paired comparison experiment. It is also 

called a round robin design. This name refers to a round robin tournament as 

used in many sports where each of the t teams plays every other team a fixed 

number of times. The experiment may also be seen as an experiment designed for 

the standard experimental situation, since the problem of design is the same 

whether we have for two objects an expression of preference or two separate 

values. In the standard experimental situation the experiment is known as a bal­

anced incomplete block design (BIB), the block size being two. A balanced 

incomplete block design is a design with the properties: 

i) all objects occur equally frequently, 

ii) all pairs of objects occur in each block equally frequently. 

The number of observations of a round robin design depends on the number of 

objects. When the number of the objects is 50 and all objects are compared once, 

the number of observations amounts to ( 5 ~), or 1225. This gives a practical 

difficulty in paired comparison experiments. Therefore many incomplete paired 

comparison designs have been constructed. These are designs in which not all 

possible pairs occur. There is a relation between these designs and designs in the 

standard experimental situation. The partially balanced incomplete block 

designs (PBIB) of the standard experimental situation can be used to design 

experiments in the situation of paired comparisons. David (1963) gives a survey 

of the results obtained in this area and gives references. 

2.2. The use of underlying information on the objects when constructing 

optimal designs; some results in the literature 

In the design of experiments discussed above one does not use any informa­

tion on the underlying structure of the objects. Sometimes there is no informa­

tion available. However, if a model of type (1.5.1) can be formulated, then it 

gives information on the objects. This information can be used in the design of 

experiments. Using this information it is possible to design experiments which 

are more efficient, according to some criterion, in estimating the parameters of 

the model than the round robin design. In this area only a few results are avail­

able. The results obtained are by Quenouille and John(1971), Springa11(1973) 

and El-Helbawy and Bradley(1978). These results will be discussed in the next 

sections. 
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2.2.1. The results of Quenouille and John for 2n-factorials 

Quenouille and John(1971) present 2n-factorial paired comparison designs, 

which can be constructed in order to reduce the number of pairs required by 

ignoring information on higher-order interactions. Following Quenouille and 

John we illustrate the method by considering designs for 22-experiments. In a 

22-experiment there are four objects (1), a , band ab in the usual notation. In a 

round robin design we have 6 comparisons or blocks in terms of the standard 

experimental situation. These 6 blocks can be broken up into three sets of blocks 

(a) : (( 1),ab) , ( a, b); 

(b) : ((1), a) , ( b,ab); 

(c) : (( 1), b) , ( a,ab). 

If one is not interested in the interaction AB, then it is better to use the set (a) 

only. Set (a) measures the main effects A and B, but gives no information on the 

interaction AB. Sets (b) and (c) both measure the interaction AB and a main 

effect. So, in a round robin a main effect is measured in 4 out of 6 blocks. In the 

design consisting of set (a) a main effect is measured in 2 out of 2 blocks. There­

fore, the set (a) gives SO percent more information on A and B than the round 

robin design. Now, in a 2n-experiment the }2n(2n-1) paired comparisons can 

be broken up into 2n-1 sets of 2n-t blocks. Each set may be generated from an 

initial block consisting of object (1) and another object. Now, depending on the 

effects on which information may be ignored, a design can be composed of one or 

more of these sets. When considering the efficiency, Quenouille and John compare 

the new design with a round robin design for each effect to be estimated. For a 

specified effect the efficiency is defined to be the ratio of the accuracy with which 

the same effect is measured in a round robin design. Some of the designs con­

structed by Quenouille and John will be given in chapter 3 where these designs 

will be discussed in a more general context. In computing the accuracy with 

which an effect is measured Quenouille and John assume that the observations in 

the paired comparison experiment have the same variance. Their analysis of 

paired comparison experiments can be described by the ordinary linear model 

(1.8.2). A drawback of the criterion Quenouille and John use is that the design 

constructed is compared with the round robin design. Therefore, it is only pos­

sible to give relative efficiencies. When a more efficient design is found, it only 

may be claimed that the new design is better than the round robin design. 

However, there might be a design which is better than the new design. Another 

disadvantage of the criterion is that the efficiency of the design must be given for 

each effect separe,tely. In the 22-factorial mentioned above the efficiency of a 

main effect for the design consisting of the pairs ((l),ab) and (a, b) is l.S, 

whereas the efficiency of the interaction is zero. 
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2.2.2. Analogue designs 

Springall (1973) obtained some results in the design of paired comparison 

experiments. As we have seen in section 1.5 Springall uses model (1.5.1). When 

constructing designs Springall considers properties based on the elements of the 

covariance matrix. He introduces the concept of analogue designs. Analogue 

designs are designs for which the covariance matrix of the estimators is propor­

tional to the covariance matrix in the standard experimental situation with the 

same designpoints. Without mentioning it explicitly, Springall uses in this con­

text a slightly adapted model for the standard experimental situation: 

• 
log 7T; = f:3o + L XJJt {:31< • (2.2.1) 

k=l 

Compared to the model (1.5.1) the parameter {:3 0 has been added. Hone does not 

assume the model (2.2.1) for the standard experiment, then the results of 

Springall are not correct. However, there seems to be no clear argument for com­

paring the paired comparison experiment in the case of model (1.5.1) with the 

standard experiment in the case of model (2.2.1). 

The main result is 

Theorem 2.2.1 

An -approximate- analogue design may be found by choosing 

n11 = [N (.,1j LL (.,;z)- 1
) + 0.5] , (2.2.2) 

~<I 

where [x] denotes the integral part of x and N = LL nu (N should be clwsen 
I<J 

in advance), and .,t1 as defined in ( 1.5.2). 

Of course, the n1J depend on the .,,j , which are unknown. The n11 give an exact 

analogue design, if all n 11 are integers before the integerization stage. The covari­

ance matrix of the estimators is, when the n11 from (2.2.2) are chosen, propor­

tional to the matrix in (1.8.5). It can easily be seen that this matrix is propor­

tional to the covariance matrix in the standard experimental situation in the case 

of model (2.2.1). It follows that, when (1.8.6) holds, the round robin design is 

an analogue design. The analogue design obtained by use of (2.2.2) is -as 

Springall points out- one out of many and does not necessarily yield the covari­

ance matrix with the smallest elements. Therefore, linear programming methods 

are used to obtain analogue designs with the smallest elements. However, the 

objective functions in this linear programming problem depend on the .,,•1 and 

when giving an example Springall makes the assumption (1.8.6). 

The concept of analogue designs has the advantage that it enables certain desir­

able properties -for example rotatibility- to be readily reproduced. However, 

other properties are not reproduced, for example D-optimality, a criterion which 

will be defined in the next section. Actually, these designs are in general not 

efficient with regard to D-optimality. Starting from a more general concept in 
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the design of paired comparison experiments D-optimal designs can be con­

structed. This concept will be given in section 2.3. 

2.2.3. Results of El-Helbawy and Bradley 

El-Helbawy and Bradley (1978) consider some optimality criteria for 

· designs and some applications to factorials. First, they consider the situation 

where some specifl.ed null hypothesis is tested. They construct designs for which 

the asymptotic power of the test is maximized. The asymptotic power depends 

on 11', and assumption (1.8.6) is made. This assumption is -as they point out­

consistent with the null hypothesis that some specifl.ed effects are zero and the 

concept that any other effects present are of the same order of magnitude rela­

tive to N as the factorial effects or interactions under test. They give three 

examples of a null hypothesis for a 23-factorial and construct the appropriate 

designs. The designs found can also be constructed by the method of Quenouille 

and John. 

They further discuss a method to construct D- , A- and E-optimal designs for 

factorials. D-optimal designs minimize the generalized variance or the deter­

minant of the covariance matrix, A-optimal designs minimize the average vari­

ance, E-optimal designs minimize the largest eigenvalue of the covariance matrix. 

They give results for one example: a 23-factorial, where one is interested only in 

the three interactions involving a specified factor. The criteria mentioned above 

depend on the covariance matrix, which is a function of the unknown parame­

ters. Again, assumption (1.8.6) is made, and El-Helbawy and Bradley find a 

design which is A-, D- and E-optimal. The design coincides with the design they 

obtained before when maximizing the asymptotic power in testing the null 

hypothesis that the three interactions are zero. This idea can be used in a more 

general context, as will be seen in section 2.3. 

2.3. A general concept for the design of paired comparison experiments 

For convenience we reformulate model (1.5.1): 

where 

X EX, 

X c Rn, 

f J : X - R , continuous on the experimental region X • 

(2.3.1) 

In Fedorov's (1972) notation for designs in the standard experimental situation, 

the design of a paired comparison experiment may be written as a collection of 

variables 

(Ut.Vt) ,(u2,v2), ••. , (u,.,v,.), 

nt n 2 , ••• , n,. ,N, 
(2.3.2) 

where 



m 

1: n1 = N , and u1 ,v1 E X . 
1=1 
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The design should be interpreted as follows. In a pair (u1 ,v1 ) n1 comparisons 

are made. Now a design may be constructed by choosing both the (u1 ,v1 ) and the 

n1 • This is a more general viewpoint. Mostly the objects have been specified and 

so the pairs (u1 ,v1 ) are fixed. In that case only the n1 can be chosen. This was the 

situation in the previous section, where results in the literature were discussed. 

In the construction of a design as defined in (2.3.2) both the pairs -and therefore 

the objects- and the n1 have to be chosen. In the notation of Fedorov(1972) the 

design (2.3.2) is denoted by E (N) or just E. In the standard experimental 

situation several criteria have been formulated for constructing optimal designs 

and many results have been obtained. A main result is a theorem about the 

equivalence of some criteria. Since the same criteria are applicable in paired com­

parison experiments, we like to formulate analogous theorems in this case. 

Therefore we give some well-known results for the standard experimental situa­

tion. Three criteria are mentioned in section 2.2.3 : A-, D- and E-optimality. 

Another important criterion is G-optimality. A G-optimal design minimizes the 

maximum variance (over X) of the estimated response function. All four cri­

teria depend on the covariance matrix, or on its inverse, called the information 

matrix. In the standard experimental situation the collection of variables 

where 

u1, u2, ••• 'u,.. 
n1,n2,•••,nm .,N, 

m 

1:n1 =N, 
1=1 

(2.3.3) 

is called the design of an experiment E (N ). If we assume model (2.3.1) and an 

ordinary least squares method, then the information matrix M(E) may be 

written as 

m 

M(E) = 1: n; I (u; )(f (u; ))' , (2.3.4) 
t= 1 

where 

I (ut) = (f 1<ut ), I 2<u1 ), ••• , I" (u, ))' . (2.3.5) 

Fedorov ( 1972) discusses the concept of a loss function A(x ), x E X . This 

function can, for example, take into account the losses in time, money or 

material that come about and it will be used later on. Assuming this loss func­

tion A(x ), we may generalize the information matrix as follows 

m 

M(E)= 1: n1 A(u1)/(u1)(f(u1 ))'. (2.3.6) 
1=1 
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The information matrix in (2.3.6) coincides with that in (2.3.4) when A(x) = 1 

for all x e X. A normalized design E(N) is a collection of variables 

where 

and 

Ut,U2, •• , ,Um, 

PhP2• ····Pm • 

PI= n;/N, 

m 

.t PI= 1. 
l=l 

(2.3.7) 

(2.3.8) 

The design (2.3. 7) is called an exact normalized design as distinct from a discrete 

normalized design, in which the p1 can take on any nonnegative value, satisfying 

(2.3.8). In a more general case a continuous normalized design will be character­

ized by a probability measure € on the region X. Continuous designs have no 

practical interest, but they are very useful in proving theorems concerning the 

optimality of designs. The information matrix of a continuous normalized 

design can be expressed by 

M (E) = I A(x) I (x HI (x ))' d f(x) , (2.3.9) 

or in the case of an absolutely continuous measure 

M(E)= [A<x)p(x)l(x)(l(x))'dx, 

where 

[p(x) dx = 1. 

Remark 

(2.3.10) 

(2.3.11) 

In Fedorov(1972) exact designs are called discrete and both discrete and con­

tinuous designs are called continuous. In Kiefer(1961) both exact and discrete 

designs are called discrete (or exact). 0 

Now, it is possible to formulate some theorems about D- and G-optimality. A 

design ~ is called D-optimal when 

det (M(E)) = max det (M(E)). (2.3.12) 
E 

A design t is called G-optimal when 

max d (x ,h = min max d (x ,E) , (2.3.13) 
XEX E XEX 

where 

d (x ,E) = (I (x ))' M-1(E) I (x) , (2.3.14) 



the variance of the estimated response at a point x E X • 

The main theorem is 

Theorem 2.3.1 

a) The following assertions are equivalent: 

( 1) the design E maximizes det (M (e)), 

( 2) the design E minimizes max A(x ) d (x ,E), 
X€X 

(3) max A<x) d(x .~) = k, 
XEX 

where k is the rw.mher of parameters. 

b) The information matrices of all designs satisfying ( 1 )-( 3) coincide. 

c) A linear combination of designs that satisfy ( 1 H 3) satisfies ( 1 H 3). 
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(2.3.15) 

This theorem plays an important role in constructing D-optimal designs. In par­

ticular it follows that if A(x ) = 1 for all x, the continuous G-optimal designs 

are equivalent to continuous D--optimal designs. In the situation of paired com­

parisons theorem 2.3.1 does not apply. In general aD-optimal design is not G­

optimal. Example 4.2.12 in chapter 4 will show this. But also statement 

(2.3.15) of theorem 2.3.1 does not apply. This can easily be seen as follows. 

Consider the situation where the model is defined by 

y=f3tXt ,-1~Xt~1. 

The design E that is concentrated at the pair ( (1),(-1)) is D--optimal. Now 

M(e)= 4if).(x)= lfor-1~ x ~ 1. 

But 

max >.(x) d (x ,E) = max !x2 = 1 < 1 
X X 4 4 

Moreover, one can question the usefulness of the G-criterion, because in paired 

comparison experiments one is interested in differences between objects. There­

fore we define 

d(x ,y,E) = (f (x)- I (y ))' M-1(E) (f (x)- I (y )) , (2.3.16) 

the variance of an estimated response difference between the points x and y. 

Now, a design E is called G.-optimal if 

max d (x ,y ,E)= min max d (x ,y ,E) . (2.3.17) 
X ,YEX E % ,Y€1£ 

If the concept of a loss function is also introduced in the case of paired com­

parisons, then the information matrix can be generalized as follows 

m 

M(E) = .E A(u1 ,v1 ) n1 (f (u1)- f (v1 ))(f (u1)- f (v1 ))' , (2.3.18) 
1=1 
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where A(u1 ,v1 ) is the loss function. Note that if we take 

7Tu 7Tv 
A(u ,v) = ( )2 , 

7Tu + 7Tv 

(2.3.19) 

where 

log 7Tu = I 1(u )/31 + · · · + h. (u )/31 , (2.3.20) 

then the information matrix of (2.3.18) coincides with the inverse of the covari­

ance matrix in (1.6.4). This can easily be seen by using the expression of (1.5.4). 

A discrete normalized paired comparison design can be introduced by defining 

the p1 analogous to (2.3.8). A continuous normalized design will be character­

ized by a measure, or in the case of an absolutely continuous measure by a den­

sity function. In the latter case the information matrix takes the form 

where 

(2.3.21) 

M (e) = f f p (x ,y) A (x ,y) (f (x ) - I (y )) (f (x)- f (y ))' dxdy , 

f f p (x ,y) dxdy = 1 . 

Now many theorems, analogous to theorems in the standard experimental situa­

tion, apply. We mention a few of them. 

Theorem 2.3.2 

For any design E the matrix M(E) can be represented in the form 

m 

M(E) = L Pt A(u; ,v;) (f (u;)- I (v; )) (/ (u;)- I (v; ))' , (2.3.22) 
1=1 

where 

m ' }t (k + 1) + 1 , 

m 

0 ' Pt ' 1 ' L Pt = 1 . 
1=1 
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Theorem 2.3.3 

The weighted sum of the variance of the estimated response differences, taken over 

aU pairs of the design E is equal to the number of unknown parameters k 

m 

L p; A(u1 ,v1 ) d (u1 ,v1 ,E)= k , 
1"'1 

(2.3.23) 

or in the case of a continuous normalized design with an absokaely continuous 

measure 

I I p (x ,y) A(x ,y) d (x ,y ,E) dxdy = k 

Theorem 2.3.4 

The minimal value of max A (x ,y ) d (x ,y ,E) is at least k . 
% ,y 

max A<x ,y) d (x ,y ,E) ~ k 
:J:,y 

Theorem 2.3.5 

a) The following assertions are equivalent: 

• (I) the design E maximizes det (M(E)), 

• (2) the design E minimizes max A(x ,y) d (x ,y ,E), 
X ,yE X 

(2.3.24) 

(3) max A(x,y)d(x,;yJ)= k, (2.3.25) 
X ,yEX 

where k is the number of parameters. 

b) The information matrices of all designs satisfying (I)-( 3) coincide. 

c) A linear combination of designs that satisfy (I)-( 3) satisfies (I)-( 3). 

Theorem 2.3.6 

If X is compact and the functions A<x ,y) and f (x) are continuous, then a 

discrete D-optimal design exists with a number of pairs m ~ -}le (k + 1) • 

Theorem 2.3. 7 

At the pairs of a discrete D-optimal design E the function A (x ,y ) d (x ,;y ,E) at­

tains its maximal value k . 

The proofs of these theorems are analogous to the proofs of Fedorov(1972). We 

only give the proof of theorem 2.3.4 for a continuous normalized design with an 

absolutely continuous measure. 
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Proof of theorem 2.3A 

max A(u ,v) d(u ,v ,E)= max A.(u ,v) d (u ,v ,E) IIP (x ,y) dxdy 
u,v u,v 

~ I I A(x ,y) p (x ,y) d (x ,y ,E) dxdy 

= I IA(x ,y) p(x ,y) (f (x)- I (y ))'M- 1(E) (/ (x)- f (y )) dxdy 

= tr I M-1(E) I IA.(x ,y )p (x ,y )(/ (x)- I (y )) (/ (x)- f (y ))' qxdy ] 

= tr [ M-1(E) M(E) J = tr I = k . D 

The theorems 2.3.2 - 2.3. 7 can be used to find procedures to construct D-optimal 

designs. It is possible to show that the following iterative procedure converges 

and that its limit design is D-optimal. The steps of the procedure are as fol­

lows. 

Iterative procedure 2.3.8 

( 1) Let Eo be nondegenerate and not D-optimal. We compute its information 

matrix 

m 

M(Eo) = L PI A.(ut ,v;) (f (ut)- I (vi)) (f (ut)- I (vt ))' · 
1=1 

(2) A pair (u 0 ,v 0 ) is found at which A.(x ,y) d (x ,y ,E0 ) is maximal. The design 

consisting of the pair (u 0 ,v0 ) is called E((u 0 ,v 0)). 

(3) The design Et = (1 - o:o) Eo + O:o E((uo,vo)) is constructed for some value 

O:o , 0 < o:o < 1 . The value of O:o can be chosen such that 

det (M(E 1)) > det (M(E0)). 

The increase in the determinant of the information matrix is maximal if 

o:o = l>o/ll>o + (m - 1)] m , where 

oo= A(uo,vo)d(uo,vo,Eo)- m. 

(4) The information matrix M (E 1) of the design Et is constructed. 

Now operations (2J...(4) are repeated with Eo replaced by Et, and Et replaced by E2 , 

etc. 
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Theorem 2.3. 7 is very useful in checking the D-optimality of a design. An 

advantage of the criteria and the method discussed above is that it is possible to 

define the D-efficiency and G.-efficiency of any design E : 

I . 11/k 
D-efficiency = det (M(e))/det (M(e)) , 

where ~ is a D-optimal design; 

G-efficiency = le/( max A(x ,y) d (x ,y ,E) ) • 
z,y 

(2.3.26) 

(2.3.27) 

These efficiencies do not have the disadvantages of a relative efficiency, as is the 

case with the efficiency defined in section 2.2.1. These efficiencies are absolute. If 

the efficiency equals one, then the design is D-optimal. The method discussed 

above will be used in the next chapters to construct D-optimal designs. Some­

times the computation of max det (M(e)) is cumbersome. Then it is not easy to 
E 

compute the D-efficiency. However, the G-emciency can be used to obtain a 

lower bound for the 0-efficiency. 

Theorem 2.3. 9 

For any design E 

D-eff(E) ~ exp (1- a=!ff(E) )· (2.3.28) 

This theorem can be proved in the same way as the analogous theorem in the 

standard experimental situation. 
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3. D-optimal designs in the case of a factorial model with main effects and 

ti.rst-order interactions 

3.1. The model 

In this chapter D-optimal designs will be constructed for factorial models 

with n factors. Some of the designs constructed in this chapter have been found 

by Quenouille and John(1971) and by El-Helbawy and Bradley(1978) (see 

also section 2.2 ). We will compare their results with the results of this chapter 

at the end of section 3.2. The model considered is model (2.3.1) where 

j(x): (x., ... ,Xn,X1X2,•••,XJXn,X2XS,••••Xn-1Xn)', (3.1.1) 

where 

X E X ' the experimental region • X c an • 
so 

(3.1.2) 

When constructing optimal designs, we make the assumption (1.8.6), or 

-equivalently- when dealing with a loss function 

A(x ,y) = 1 for all x ,y E X . (3.1.3) 

In section 3.2 the experimental region X is chosen to be a hypercube, in section 

3.3 X is a hypersphere. 

The number of parameters k equals n + (~) , so k = jn (n + 1) and according 

to theorem 2.3.6 the following holds. 

A discrete, D-optimal design exists with m pairs, where 

(3.1.4) 

: For reasons of symmetry and in analogy to the standard experimental situation 

·one may expect that the information matrix of aD-optimal design~ has the fol­

loWing structure 

pi 

M(~)= (3.1.5) 

zl 

where pi is related to the main effects and has dimension n x n , 

and z1 is related to the first-order interactions and has dimension <2> x <2>· 
The covariance matrix M- 1 (~) is denoted by 

yi 

(3.1.6) 

oi 
The function d (x ,y ,E) given in (2.3.16) plays an important role in the 
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construction of D-optima1 designs and will be used many times. The function 

d (x ,y ,E) is an expression for the variance of an estimated response difference 

between the points x and y • It will be called variance function. The variance 

function depends on the covariance matrix. The definition of the variance func­

tion implies the following statement. 

If a design E has a covariance matrix of type (3.1.6),then 

n 

d(x,y,E) = 'Y L (xi- Yt)
2 + ~ LL (XtXJ- YtYJ)2 , (3.1.7) 

1•1 I<J 

and consequently, 

d((x 1, ••• ,x1 , ••• ,x,),(y 1, ••• ,y1 , ••• ,y,),e) (3.1.8) 

= d((xl•····-xl•••••xn),(yt.••••..:...Yt.••••Yn),E), 

and (3.1.9) 

= d((xt, ••• ,XJ, ••• ,Xj, ••• ,Xn ),(yl, ..• ·YJ• .•.• Yt., •. ,yn),E), 

where 1 ~ i ~ n , 1 ~ ) ~ n . 

In order to construct D-optimal designs we must find pairs (:i,y) E X 2, such 

that d (:i,y,E) is maximal. 

3.2. A hypercube as experimental region 

The experimental region is defined by 

x E X if and only if -1 ~ x1 ~ 1 for alll ~ i ' n , 

where 

x = (x 1· ••• , Xn )' • 

(3.2.1) 

The following lemma is useful in finding pairs where the variance function 

attains its maximum . 

Lemma 3.2.1 

Let E be a design with covariance matrix of type (3.1.6}, and let X be as in 

(3.2.1). For a pair (u ,v) E X 2, where the variance function d ( • , • ,E) attains its 

maximum , one has 

I u1 I = I v1 I = 1 for all 1 ' i ' n • (3.2.2) 
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Proof 

Suppose that for some l we have I u1 I < 1 or I v1 I < 1. 

Without loss of generality we may assume I u 1 1 < 1 (see (3.1.9) ). 

Definedt= d(( 1,u2,• .. ,un),(vl,•···vn),E), 

d2= d((-1,u2···· ,un),(vt.····vn),e). 

Since d (x ;y ,E) is maximal at the pair (u ,v ), we have 

d 1 - d (u ,v ,E) ~ 0 , 

d2- d (u ,v ,E) ~ 0. 

So, 

d 1- d (u. ,v ,E)= 

n 

= 'Y [(1-v1)2 - (u1- Vt)2] + 8 .t ((U.J- VtVJ)2 - (U1Uj- V1VJ)2] 
J=2 

n 

= y (1- ul - 2v1(1-ul)) + 8 1: [ u.l(1-ul)- 2v1VJUJ(1-u.1)] 
)=2 

= (1-u 1)1 y (1+u.-2v1) + 8 E [(l+u.t)u/- 2vtUJvJ]l ~ 0. (i) 
J='l 

and similarly 

d 2- d (u. ,v ,E) = 

= (1+u1) I 'Y (1-u.t+2v1) + 8 1 ~ 2 [(1-ut)u/ + 2v 1u1v 1 ]' ~ 0. (ii) 

From (i) and (ii) it follows that 

n 

'Y (1+u.t-2Vt) + 8 L {(l+ut)ul- 2v1UjVJ) ~ 0 , 
J=2 

n 

y (l-ut+2vt) + 8 L [(l-u1)u/ + 2vtu.1vJ] ~ 0 
)=2 

Hence 

n 

2y + 8 .t u.l ~ 0. (iii) 

Note that y ~ 0 and 8 ~ 0 since M-1(E) is a covariance matrix of a nondegen­

erate design. So (iii) yields a contradiction and the proof is completed. I] 

From lemma 3.2.1 it follows that the elements of all pairs of aD-optimal design 

are vertices of the hypercube X. So the objects of the pairs of a D-optimal 

design are objects in a zn -factorial. 

It is useful to define the following sets 
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Defmition 3.2.2 

S (k t.k 2) is the set of aU pairs with k tfactors at the same level, k 1 + k 2 = n • 

It can easily be seen that each object is compared with <J:
1
) other objects. A set 

S(k1,k 2 ) can be broken up into (k
1

) blocks of zn-1 pairs, in which al12 11 objects 

occur. So the set S(k 1,k 2) contains (/:
1
)2n-l pairs. 

The setS (0,3), for example, contains the pairs 

(( 1, 1, 1),(-1 ,-1,-1)), 

((-1, 1, 1),( 1,-1,-1)), 

(( 1,-1, 1),(-1, 1,-1)), 

(( 1, 1,-1),(-1,-1, 1)). 

The set S (k t.k 2) can be seen as a design with, in the notation of (2.3.2), n1 = 1, 

1 ~ i ~ m , and m = N = C/:
1
)211

-
1

• 

The information matrix of this design is denoted by M (k t.k 2). 

Lemma 3.2.3 

where 

pi 

p = (n ;;._t> 2n+1 , 

z = (n-2) 2n+2 
kt-1 

Outline of the proof 

zJ 

(3.2.3) 

(3.2.4) 

This lemma can be proved by using the expression (4.2.20). Some of the argu-

ments are given here. The set S (k 1,k 2 ) can be broken up into ( /:
1

) blocks of 2 11 
-t 

pairs. One set of 2"-1 pairs measures k 2 main effects and k 1k 2 first-order 

interactions. The information matrix of one set of zn-1 pairs is a diagonal 

matrix with diagonal elements 4 zn-1 or zero. A diagonal element is 4 zn-t if the 

particular main effect or first-order interaction, to which it relates , is measured 

by that particular block of 2n-t pairs. There are (k
1

) of these blocks. For rea-

sons of symmetry we have 

p = l.(kn) 4k2 2n-1 = (nk-1) 2n+1 
n 1 1 

z= 0 
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The normalized design SN (k ~ok 2) is a design with the same pairs but with 

weights 1/N, where N = <t
1
) 2n-t. The information matrix of this normalized 

design is denoted by MN(k.,k 2). In view of (3.2.3) the information matrix of 

this normalized design can be expressed by 

where 

z= 
8ktk2 

n(n-1) 

pi 

(3.2.5) 

zl 

(3.2.6) 

The value of the variance function is the same for all pairs of the set S (k 1,/c 2). 

This can be seen by using (3.1.8) and (3.1.9). Therefore, we may describe this 

value as follows: 

d (k 1,/c 2,E) is the value of d (x ,y ,E) where E is a design with (3.2. 7) 

information matrix of type (3.1.6) and (x ,y) is a pair of the 

setS (k .,k 2), 

From (3.1. 7) it follows that 

d (k tok 2,E) = 4k 2 y + 4k 1k 2 0 . (3.2.8) 

A D-optimal design is composed of pairs where the function d (x ,y ,E) is maxi­

mal. According to lemma 3.2.1 and the fact that the variance function has the 

same value for all pairs of a set S (k t.k 2) a D-optimal design exists which is the 

union of some S (k .,k 2). To give such D-optimal designs we have to distinguish 

between two cases: n is even and n is odd. The D-optimal designs are given in 

the following theorem. 

Theorem 3.2.4 

a) The following design E is D-optimal 

i) Let n be odd. 

Choose 

-the pairs of sq.<n-l),j(n +1)), 

- the same weights for all pairs: 1/ N , 

where N is the rwmber of pairs; 

N = (l(nn-1)) 2n-1 • 
2 

So, 



MN(}(n -l).}(n + 1)) = 

n +1 
wlwrep = z = 2--, 

n 

pi 

zl 

and in the notation of(3.1.6) y = 8 = 1 _n_ 
J" n+l · 

U) Let n be even. 

Choose 

- the pairs of S <}n -l,jn + 1) and the pairs of S <}n .}n ) , 

- the same weight for aU pairs: 1/ N , 

where N is the rw.mber of pairs; 

N = (n
1
+1) 2n-1. 

yn 

So, 

M(E) = v MN(}n ,j.n) + (1-v) MN(jn-1.-}n +1), 

wlwre v = n +2 
2(n+l) · 

So, 

pi 

M(E)= 

zi 

. h 2n+2 
Wit p = Z = --

1 
, 

n+ 

and in the notation of (3.1.6) y = 8 = 1 n+l 

1"n+2' 

b) The set of pairs of any D-optimal design is contained 

in tlw set of pairs of the design E • 

Proof 
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(3.2.9) 

(3.2.10) 

a) The expression for M(E) can be found by using (3.2.3) and (3.2.5). Accord­

ing to theorem 2.3.5 the proof of the D-optimality of E is complete if it is 

shown that d (x ,y ,E) ~ }n (n + 1) for all .x ,yE X. So we have to ftnd the 

maximal value of d (x ,y ,E). From lemma 3.2.1 and (3.2. 7) it follows that 

the maximal value is obtained by maximizing d(k 1,k 2,E) over ktt 

0 ~ k 1 ~ n-1; k 2 = n-k 1• So, according to (3.2.8), we have to maximize 

[4(n-k 1)+ 4kt(n-k 1)]-y. If kt can take all values in I 0,1, ... ,n-lJ, 

then this function is maximal fork = j.(n -1) . 

i) n is odd. 

Now }(n -1) ls an integer, so the maximal value of d (x ,y ,E) equals 

d <j(n -l),}(n +l),E) = j.n(n +1). 
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ii) n is even. 

Now .;.<n -1) is not an integer, so the maximal value of d (:x ,y ,E) is one 

of the values d(.}n.jn,E) and d(.}n-l,jn+l,E). Using (3.2.8)and the 

expressionfor M(E) we find 

d (.!n ,.!.n ,E)=· d (.!.n -1,.!-n + l,E) = .!.n (n + 1) . 
2 2 2 "' 2 

and the proof of the D-optimality of the design E is complete. 

b) The information matrix of any D-optimal design coincides with the matrix 

of the design mentioned in a). Therefore, the set of pairs where the variance 

function is maximal coincides with the set of pairs of the design E • 0 

The D-etliciency and G-etliciency ,as defined in (2.3.26) and (2.3.27), of the 

round robin design are given in the following theorem. 

Theorem 3.2.5 

The D-efficiency and the d-ef/iclency of the round robin design have the same 

value: 

n +l 2" 
-- --- ,if n even , 
n +2 2"-1 

D-eff= d-eff= (3.2.11) 

n 2" 
-- --- ,if n odd. 
n +l 2"-1 

The information matrix M of a round robin design can be expressed by 

pi 

M= 

z1 

2"+1 
where p = z = 

2"-1 

Proof 

The number of pairs N of the round robin design is N = i-2"(2"-1). 

So, according to lemma 3.2.3 we find 

n-1 1 2"+1 
p = r. cn-1) 2n+1- ~--

12"(2"-1) kt - 2"- 1 
"'1= 8 T 

and 

(3.2.12) 

Now the expression for the D-etliciency can be computed (see definition 

(2.3.26)). In order to compute the G-etliciency, we need the maximal value of the 
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variance function. From the expression (3.2.12) it follows that the variance 

function of the round robin design Et has the value d(j(n-l),j.(n +1),E 1) if n 

is odd and the valued (}n .}n ,Et) if n is even. Using (3.2.8) we find 

2n-1 
d q.(n -l),j(n + l),Et) = (n + 1 )2 

zn+l , 

and 

2n-1 
dq.n ,jn ,Et)= n (n +2) zn+l • 

Substitution into (2.3.27) completes the proof. 0 

In table 3.2.6 some results of theorems 3.2.4 and 3.2.5 are given for 2 ~ n ~ 7. 

In this table a value m is listed defined by m = jn (n + l)(n 2+ n + 2 ). This 

value is important because according to (3.1.4) a discrete l)...optimal design can 

be found with a number of pairs N 1 , where N 1 ~ m . In section 5.4 a method 

will be given to reduce the number of pairs of designs. Some of the results will 

be used in this section. These results are given between brackets in table 3.2.6. 
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Table 3.2.6 

Values of quantities related to D-optimal designs 

n 2 3 4 5 6 7 

Number of pairs of 

-S<{n -1.-}n +1) 2 32 480 

(240) 

-S(.!.n ,.!.n) 
2 2 

4 48 640 

(24) (320) 

-S<{(n -1).-}(n +1)) 12 160 2240 

(80) (560) 

-the D-optimal design 6 12 80 160 1120 2240 

given in theorem 3.2.4. (56) (80) (560) (560) 

m= jn (n +1)(n 2+n +2) 6 21 55 120 231 406 

y.~ 3/8 3/8 5/12 5/12 7/16 7/16 

Round robin: 

-number of pairs 6 28 120 496 2016 8128 

- D- efficiency 1 0.86 0.89 0.86 0.89 0.88 

It is also possible to construct designs having a considerably smaller number of 

pairs than the D-optimal designs given in theorem 3.2.4 and with a relative high 

D-efficiency. Such designs may be attractive for practical applications. In table 

3.2.8 the D-efficiency and 6-efficiency are given of some designs SN (k hk 2) • The 

values given in the table can be computed by use of the following lemma . 

Lemma 3.2.7 

Let E be the design constructed by choosing 

-the pairs of S (k 1ok 2) 

-equal weights for all pairs. 

Then the following holds: 

D-ejf = 4~~ ~ ~=~: y , 
n n-1 

where 

(3.2.13) 



y= 

1 n +1 
.,..-- ,if n even . 
"n+2 

The d-e!ficiency of E can be found by minimizing 

}n(n + 1) _ ktk2(n +1) 

d(Zt.l2,E) - kt 
ZtZ2(2- + (n-1)) 

Zt 

over l'l ,1 ~ l'l ~ n • z2 is integer-valued. 
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(3.2.14) 

If the restriction that l2 is an integer is dropped, 

k 
d(lt,l 2,E)ismaximalforl2= -}n+ n-\. 

then the variance function 

Proof 

From the definition of the D-efticiency and (3.2.5) we have 

I 
1 1 12/n(n+l) 

D -eff = ( 4:2 )n ( n ~: ~~) )2n(n-1) / (pn z l"n(n-1)) ' 

where p and z have the value given in theorem 3.2.4. 

So, 

D-eff = .!. 4k2 ( 2kt ] ::; • 
p n n-1 

The statement concerning the G.-efficiency is proven by lemma 3.2.1 and the fact 

that 

( ) 
n n(n-1) 

d z.,z2,E = 4l2 -- + 4ZtZ2 • 
4k2 8ktk2 

0 

In table 3.2.8 the numbers between brackets can be found by using results of 

chapter 5 concerning the reduction of the numbers of pairs of a design. 
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Table 3.2.8 

Exact designs and values of quantities related to these designs 

n Design I Num;J_ 
of pai y a D-eff 0-eff 

2 SN (1,1) 4 1/2 1/4 0.94 0.75 

4 SN(2,2) 48 112 3/8 0.99 0.95 

(24) 

SN(1,3) 32 1/3 1/2 0.98 0.94 

5 SN(l,4) 80 5/16 518 0.84 -0.80 

(40) 

6 ·SN(3,3) 640 112 5/12 0.997 0.98 

(320) 

SN(2,4) 480 3/8 15/32 0.995 0.98 
(240) 

SN(1,5) 192 3/10 3/4 0.76 0.69 
(96) 

7 SN(2,5) 1344 7/20 21/40 0.92 0.91 

(336) 

SN(1,6) 448 7/24 7/8 0.66 0.60 

(124) 

Some of the designs mentioned in tables 3.2.6 and 3.2.8 are known in the litera­

ture. As we have seen in section 2.2.1 Quenouille and John(1971) present 2n­

factorial paired comparison designs. They give a table of designs and their 

etliciencies for 2 :E;; n :E;; 8. Among these designs are the D-optimal designs of 

theorem 3.2.3 for 2 :E;; n :E;; 5 • The designs of table 3.2. 7 can be found in the 

table of Quenoui11e and John but the efficiency they give is the efficiency of the 

design compared with the round robin design for each effect to be estimated. 

3.3. A hypersphere as experimental region 

The experimental region X is defined by 

n 

X = I X E Rn I L x? :E;; 1 I . 
1=1 

(3.3.1) 

The following lemma is useful for finding pairs at which the variance function 

attains its maximum . 
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Lemma 3.3.1 

Let E be a design with covariance matrix of type (3.1.6). For a pair (u ,v) E X 2 

where the variance function d ( . , • ,E) is maximal the following holds: 

n n 

I. u? = L vl = 1 . (3.3.2) 
i=l i=l 

Proof 

The proof is analogous to the proof of lemma 3.2.1. Suppose that statement 
n 

(3.3.2) is not true and assume without loss of generality that I. u? < 1 . 
1=1 

Consider d 1 = d (J,v ,E), where J = (u\ ,u 2, ••• , Un) , with 

• " ( 2 2) • Ut = 1- u2 + • • • +un , so Ut > ur. 

and d 2 = d (ii ,v ,E), where ii = (.,...u\ ,u2, .•• , Un ). 

Since d (x ,y ,E) is maximal at (u ,v) we have 

d 1 - d (u ,v ,E) ~ 0 , 

d2- d(u,v,E) ~ 0. 

These expressions yield a contradiction similar to the one found in the proof of 

lemma 3.2.1, and this completes the proof. D 

Lemma 3.3.2 

Let E be a design with covariance matrix of type (3.1.6). For a pair (x ,y) with 
1'1 1'1 

I. x? = I. y/ = 1 the variance function takes the form 
1=1 l=t 

11 11 

d(x,y,E) = 2y (1- L x1 y1 ) +a (1- (I, x1y1 )
2

) (3.3.3) 
i= t l=t 

An upperbound for d (x ,y ,E) is given by d (u ,v ,E) where (u ,v) is a pair, such 

that 

11 n 11 

T' u12 -- T' v1
2 -- 1 and T' u v - .1.. Lt Lt • Ltll--~· 

l=t l=t 1=1 u 
(3.3.4) 

Proof 

The expression (3.3.3) can be found by using (3.1.7): 

11 

d (x ,y ,E) = 'Y L (x; - Yt )
2 + a L L (x, X J - Yt y i )

2 

l=t I<J 

n 

= 2y- 2y L X;Yt +aLL (x, 2x/ + Y;
2yl- 2X;XJYIYi) 

1=1 I<} 

n 11 n 

= 2y (1 - I. Xt Yt) + }a [ ( L x,2
)
2 + (I. yl)2 

] 

1=1 1=1 i=t 
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n n n n 

- jo <1: Xt
4 + L Yl

4
)- 0 <1: XtYt)

2 + 0 L x?y? 
iQ1 1=1 i=l 1=1 

n n n 

= 2y 0- 1: x1Y1) + o [1-<1: XtYt )
2
] -jo 1: Cxt

2
- y?)2

• 
1=1 1=1 1=1 

The statement concerning the maximal value of the variance function can be 

proved by using the fact that 

n n 

d(x,y,E) < 2y (1- L XtYt) + 0 (1-(,E XtYt)2
) , 

1=1 1=1 

and the fact that the right-hand side of this inequality attains is maximum for 

Many D-optimal designs can be found by use of (3.3.4). We just give one of the 

D-optimal designs for which the number of pairs is small. 

Consider the pairs 

(uhv 1) = (( sincf,l, coscf,I,O, ... ,0),( sincf,l,-coscf,I,O, ... ,0)), 

(u 2,v2 ) = ((-sincf,l, coscf.I,O, ... ,0),(-sincf,l,-coscf,I,O, ... ,0)), 

(u 3,v3 ) = (( coscf.l, sincf,I,O, ... , 0),(-coscf,l, sint/>,0, ..• , 0)) , 

(u 4,v4) = (( coscf,l,-sincf,I,O, ... , 0),(-coscf.l,-sincfo,O, ... , 0)). 

n-1.!. n+l.!. 
where sincfo = j.J2l:-n-P , cost/>= j.J2l:-n-J2 and (ut.v1) E X 2 . 

Let S be the set defined by 

S = I (p(u1 ),p(v1 )) I 1 ' i ' 4, pis a permutation of order n I . (3.3.5) 

The set S contains 4(~) pairs. 

Theorem 3.3.3 

The design E constructed by choosing 

-the pairs of the set S which is defitwd in ( 3.3.5) 

-equal weights for all pairs: l/ N, where N is the number of pairs 

is D-optimal. 

pi 

M(E)= (3.3.6) 

zJ 

n +1 n +1 
where p = 2-

2
- , z = 2-

3
- • 

n n 
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Proof 

The expression (3.3.6) can be found as follows. 

The set S can be broken up into <2> blocks of 4 pairs. Consider the block E 1 

consisting of the pairs (u1 ,v1 ) , 1 ~ i ~ n . Then 

M (E 1) = diag (2cos2<fo,2cos2<fo,O, ... , 0,4sin2<focos2<fo,O, ... , 0). 

The information matrices of the other blocks are diagonal matrices, where the 

diagonal elements have been permuted. For reasons of symmetry we ftnd 

and 

p = 2(n -1) cos
2! = 2 n + 1 

(n) n
2 

2 

z= 2
n+1 

3 • 
n 

The D-optimality can be proved by computing the maximal value of d (x ,y ,E). 

The pairs (u ,v) of the design E satisfy the conditions mentioned in (3.3.4) in 

theorem 3.3.2. So, an upperbound for the variance function is the value 

d(u~ov.,E) and this is the maximal value of d(x ,y,E). 

The fact that d (u ~ov ~oE) = -}n (n + 1) completes the proof. D 

In table 3.3.4 some results are shown. 

Table 3.3A 

Values of quantities related to D-optimal designs 

n 2 3 4 5 6 7 

Number of pairs of 4 12 24 40 60 84 

the D-optimal design (6) (20) (42) 

of .theorem 3.3.3 

jn (n + l)(n 2+n +2) 6 21 55 120 231 406 

y 2/3 9/8 815 25/12 18/7 49/16 

s 4/3 27/8 32/5 125/12 128/7 343/16 

Between brackets a reduction of the number of pairs is given. This is a result of 

section 4.3. 
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4. D-optimal designs in the case of a quadratic model with a hypersphere 

as experimental region 

4.1. The model 

In this chapter the design for quadratic models will be discussed. The 

model (2.3.1) will be considered, where 

(4.1.1) 

where X is defined by 

n 

X = I X E Rn L x? ~ 1 I . (4.1.2) 
1=1 

So 

log 1T = {jtXt + • · · + {jnXn + {juxl + · · · + {jnnXn
2 (4.1.3) 

+ {j12X1X2 + • '' + {jn-tnXn-tXn • 

When constructing optimal designs we make the assumption 1T = (1, ... , 1)' 

(1.8.6). In section 4.2 we will give the necessary conditions for a design to be 

D-optimal and we compute the information matrix of such a design. In section 

4.3 discrete D-optimal designs are given having a relatively small number of 

pairs. In section 4.4 exact designs are constructed. In section 4.5 the efficiency of 

the designs is discussed when the assumption (1.8.6) does not hold. The number 

of parameters equals 2n + (~), i.e. k = }n (n +3) and according to theorem 

2.3.6 the following holds: 

A discrete D-optimal design exists with m pairs, where 

m~ jn(n+l)(n+2)(n+3). ( ... lA) 

For reasons of symmetry and in analogy to the standard experit'lle'lltal situation 

one may expect that the information matrix of a D-optimal design E has the fol­

lowing structure: 

pi 

M(E)= sl+tJ 

zl 

where pi is related to the main effects, 

si + tJ is related to the quadratic effects, 

zi is related to the interactions; 

J is a matrix with J1J = 1 for all t ,j 

The covariance matrix M-1(E) is denoted by 

(4.1.5) 



yl 

Ot! +f,J 

0/ 

The parameters in (4.1.5) and (4.1.6) are related by 

_1 1 +nt- 1 _1 
P--:y,s=-;;•s -a+nt'z-'6 
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(4.1.6) 

(4.1.7) 

Again the variance function plays an important role in the construction of D­

optimal designs. It can be expressed as follows. 

If E is a design with covariance matrix of type (4.1.6), then 

n n 

d (x ,y ,E) = y L (x; - Y1 ) 2 + a L (x?- y?)2 (4.1.8) 
1=1 1=1 

n 

+ f (L (x,2-y?))2 + 0 LL (xiXj- YtYi)
2 

1=1 t<i 

4.2. Conditions to be satisfi.ed by D-optimal designs 

We shall investigate the variance function. If the variance function can be 

expressed by (4.1.8), then (3.1.8) and (3.1.9) hold. Due to the fact that the 

experimental region is a hypersphere and in analogy to the standard experimen­

tal situation one might expect that a D-optimal design is rotatable in the sense 

that the variance function d (x ,y ,E) only depends on 
n n 

r i = r Xi ' r 1 = r Y? and on the angle between the position vectors of X 
1=1 1=1 

andy. 

We formulate this property as follows. 

Definition 4.2.1 

A design E is called strongly rotatable if the variance functfon d (x ,y ,E) only 

depends on r 1 , r 2 and 6, where 

n n 

r f = L Xt
2 

, rf = L Y? 
1=1 1=1 

and (4.2.1) 

n 

6 is such that r 1raeos6 = L X1 Yt • 
1=1 

This property is called strong rotatibility as distinct from rotatability which is 

defined as follows. 
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A design E is called rotatable if the function d (x ,E) only depends on 

r 1 , with d(x ,E) as defined in ( 2.3.14) . 

(4.2.2) 

Strong rotatability implies rotatability. In the following lemma a relation is 

given between strong rotatibility and the structure of the information m11trix. 

Lemma4.2.2 

Let E be a design with cm•ariance matrix of type ( 4.1.6). Then the following holds. 

The design E is strongly rotatable if and only if 

2o: = & (4.2.3) 

Proof 

According to (4.1.8) we have 

n n n 

d (x ,y ,E) = Y r l + Y rf - 2y L X1 Yi + 0: L Xi 
4 

+ 0: L Yi 
4 

1=1 1=1 1=1 

n 

-2o: r xh? + E (rl-r/) 2 + (f,- 2o:) rr (XjXj- YiYi)2 

1=1 i<J 

+2o: LL x?x/ + 2o: LL Yi
2y/- 2aLL XiXJYiYJ 

I<) i<J i j 

n n n 

= Y (r l +rf)- 2y L X1 Yi + 0: ( L y?)2 + 0: ( L x?)2 

1=1 1=1 1=1 

n 

- 2o: ( r Xj Yi )2 + E (r l- r /)2 + (f, - 2o:) r r (xi X j - Yi y j )
2 

• 

1=1 i<) 

Now it is obvious that if 2o: = & then the function d (x ,y ,E) only depends on 
n 

r., r2 and r XIYi • 

1=1 

Let the design E be strongly rotatable. Then d ( w 1 ,w 2,E) = d ( w 3,w 4,E ), where 

W1 = (1,0,0,,,, ,0), 

w2 = <j.J3.j,O .... , 0), 

w3 = (j.J3.j,O .... , 0), 

w 4 = q.j.J3.o ..... o). 

A simple computation yields 2o: = &. D 

It will be proved in theorem 4.2.11 that a D-optimal design is strongly rotat­

able. Therefore, assumption (4.2.3) will be made very often in this chapter. If E 

is a design with covariance matrix of type (4.1.6) for which the assumption 

(4.2.3) holds, then the variance function can be expressed by 

d(x ,y,E) = y rl + y rJ- 2y r1r2 cos6 +a r1
4 +art 

+2o: rl r/ cos26 + E (r{ - rl )2
, 

(4.2.4) 



where 

n 11 

r( = L x; 2
, rl =I: y/ 

I= 1 

and 9 is such that 

n 

r1r2 cos6 = L :x;y; 
I= 1 

i=l 
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This is easily seen by using the expression given in the proof of lemma 4.2.2. 

The following lemma is useful in finding the maximal value of the variance 

function. 

Lemma 4.2.3 

Let E be a design for which the variance function can be expressed by (4.2.4). lf 

the variance function is maximal at (u ,\' ), then 

11 n 

rt = L u? = 1 , or r2 = L v? = 1. 
I 1 1=1 

Proof 

Suppose that r 1 < 1 and r 2 < 1. 

" 1 
Consider d 1 = d (ii ,v ,E) , where ii = - u 

rt 
"(" -2 1 

,SOL,U1:; 

t • 1 
d2= d(u,v,E),whereu= --u, 

rt 

d 3 = d (u ,v ,E) , where v = __!_ \' , 
r2 

• • 1 
andd 4 = d(u,v,E),wherev= --v. 

r2 

I= 1 

Since the variance function is maximal at (u ,v) we have d1 

So 

d 1-d (u ,v ,E)= 

= y(l-r/)- 2y r 2 cos9(1-rt) +a (1-rt4 ) 

- d (u ,v ,E) :E; 0. 

-2a rl cos29 (1-rl) + € (1-rt)- 2€ (1-rf)d 

= (1-rt) [y (l+rt)- 2y r2 cos6 + (a+t}(l+rt+rl +rl) 

-2a (l+rt) rf cos29- 2€ rf (l+r1)] :E; 0, 

and similarly 

d 2-d (u ,v ,E)= 

= (l+rt) [y (1-rt) + 2y r2 cos9 + (a+€)0-rt+rl-r/) 

-2a r/ cos28 (1-r 1)- 2€ (1-r 1) r/ ] :E; 0 . 

(i) 

(ii) 
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From (i) and (ii) it follows that 

2y + 2(a: +f)( 1 +r l)- 4a: r1 cos29 - 4f r 1 ~ 0 . (iii) 

Usingd 3 - d(u,v,E) ~ Oandd 4 - d(u,t•,E) ~ Oitcanbeseenthat 

2y + 2(a:+g)(1+d)- 4a: rl cos28- 4£ rl ~ 0. (iv) 

So with (iii) and (iv) we have 

4y + 2(a:+f)(2+rl +r/)- 4a: (rr +rl) cos29- 4€ (rl +rl) ~ 0. 

However, 

4y + 2(a:+€}(2+rl +rl>- 4a: (rr +rl> cos28- 4f (rl +r,l) 

;;?; 4y + 2(a:+f)(2+r/+rl)- 4a:(r{+d)-4f (r/+rf) 

= 4y + 2(a:+€)(2-r(-rl) > 0. 

This is a contradiction and completes the proof. 

Corollary 4.2.4 

If the variance function of a design E can be expressed by (4.2.4), tlum the maxi­

mal value of the variance function is equal to the maximum of 

d = 'Y + 'Y r 2
- 2y r cose +a:+ a: r 4

- 2a: r 2 cos29 + € (1-r 2
)

2
' (4.2.6) 

where 

0 ~ 6 ~ 2'1T , 0 ~ r ~ 1 . 

Lemma 4.2.5 

Let E be a design for which the variance function can be expressed by ( 4.2.4). Let 

(u ,v) be a pair where the variance function is maximal and such that 

11 " 

L u;
2 = rl , L v? = rl , 

1=1 1=1 

and 

" e is such that rlr2cos6 = L U;V; 

I= 1 

Then the following holds 

2 1 

6 = 'IT and r1o r2 ha~·e the values 1 and 1 - 1 [1-~f 2 (4.2.7) 
2 2 a:+f ' 

or 

9 = arccos (-L) and r1 = r2 = 1. 
2a: 

(4.2.8) 
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Proof 

Assume without loss of generality r 1 = 1. According to corollary 4.2.4 we have 

to maximize 

I (r ,9) = y + y r 2
- 2y rcos9 +a:+ a: r 4

- 2a: r 2 cos29 + { (1-r 2
)

2
, 

where 0 ~ 9 ~ 217', 0 ~ r ~ 1 . We have 

at (r •9 ) = 2y r sin9 + 4a: r 2 cos9 sin9 
89 

4a: r 2 sin9 (cos 9 + __y_ ) . 
2ar 

(i) 

Consider the region defined by 0 ~ r < ..L and 0 ~ 9 ~ 217' . Using (i) we 
2a 

find that the function I (r ,9) is maximal when e = 17'. Substituting this in 
2 1 

I (r ,9) we find r = .!.. -.!. [1-~l 2 • 
2 2 a+s 

Consider the region defined by ..L ~ r ~ 1 ' and 0 ~ e ~ 271' . 
2a 

For fixed r the function f (r ,9) is maximal when 

9 = arccos - __y_ . 
2ar 

Substituting this we find 

2 

I (r ,9) = y +a: + L + y r 2 +a r 4 + f (1-r 2
)

2
• 

2a 

This function is maximal when r = 1 . This completes the proof. 

Corollary 4.2.6 

The maximal ~·alue of a variance function of type ( 4.2.4) equals one of the values 

2 

2y + 2a + L, 
2a 

2 2 1 

.!y +!(a+ f)- Y +[!(a+ V- y][l-~F. 
2 2 4(a+€) 2 a+f 

(4.2.9) 

(4.2.10) 

If one assumes that a 0-optimal design has a covariance matrix that satisfies 

(4.1.6), and (4.2.3), which means that it is strongly rotatable, then a 0-optimal 

design consists of pairs of the type mentioned in lemma 4.2.5. Therefore, it is 

useful to consider pairs (x ,y) and (w, -rw) for which 

n n n 

l: x/ = l: y/ = l: w/ = 1 . (4.2.11) 
l"'l 1=1 1•1 

We define the following sets of pairs. 
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Definition 4.2. 7 

S ((u. ,v)) is the set containing all 2n pairs that can be found b;y multiplying pairs 

of coordinates (u.; ,v; ) of (u ,v ) by -1 or + 1 . 

SP((u,v)) is the union over all permutations p of the sets S( {p(u.),p(v)) ), 

where p is a permutation of order n . In general the set SP((u. ,v )) contains 

2n n! pairs. The information matrix of SP((u. ,v )) is denoted by MP((u. ,v )). 

The design matrix in the case of a 2n -factorial can be used to compute the infor­

mation matrices M((u. ,v )) and MP((u. ,v )). This design matrix contains only 

+1 'sand -1 's. 

Define 

where 

X t(n ) = ( X u(n ) I K I X 13(n ) ) , 

X u(n -1) -u. 

X u(n) = 
Xu(n-1) u 

u. = (1 •... ,1)' , 

K is a matrix with K 11 = 1 for all i and ) , 

X13(n-1) -Xu(n-1) 

X ts(n) = , X ts(1) = f2J • 

X 11(n) is the notation ·for the main effects of a 2n -factorial, 

K is related to the quadratic effects, 

X 13(n ) is related to the first-order interactions. 

It is easy to prove that 

I 

(X t(n ))'X l(n) = 2n J 

I 

Now the design matrix D of S ((u. ,v )) can be expressed by 

D = X 1(n) (U- V), 

where 

U = dlag (u. I• •••• Un 

V = diag (vl, ... , Vn 

u/, ... ,u.n" 

v(, ... ,v,l 

U.ttl2, • • • ,IJ.n-tU.n) • 

VIV2,. '• 'Vn-tVn) • 

(4.2.12) 

(4.2.13) 

(4.2.14) 

(4.2.15) 

(4.2.16) 

(4.2.17) 



So, the information matrix M ((u ,v )) is 

I 

M((u,v))= 2n (U-V) 

If M ((u ,v )) is denoted by 

Mu 

M((u,v)) = 

J 

Mu • 2n diag ((u.-v 1)
2

, ••• ,(u,-v,.)2
), 

(M22)1J = 2" (u?-v1
2

) (uJ-vJ), 
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(U- V) .(4.2.18) 

I 

(4.2.19) 

Mu • 2" diag ((utUr-VtV2)2, ... ,(Un-tUn-Vn-tV11 )2). 

The information matrices MP((u ,v )) can be written as 

where 

pol 

MP((u ,v)) = sol +toJ 

n 

Po ... 2• (n-1)! L (u1 - v1 )
2 

, 

1=1 

n 

so+ to= 2" (n-1)! L (u1
2

- v?)2
, 

1=1 

zol 

to • 2"+1 (n-2)! LL (u,2
- v?)(ul- v/), 

I<J 

Zo • 2"+1 (n-2)1 LL (u1u1 - v1v1 ) 2 • 

I<J 

(4.2.20) 

As will be seen in theorem 4.2.11 a D-optimal design E can be constructed by 

choosing the pairs of SP((x ,y )) and SP((w ,-rw)) ,0 ~ r < 1 , with suitable 

weights 11 1 and 11 2 and suitable x, y and w that satisfy (4.2.11). 

The weights must satisfy 

(4.2.21) 
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The information matrix M(e) of such a design E can be computed by using 

(4.2.20). 

with 

where 

M(E) = Mt + M2, 

Ptl 

Mt= Stl +ttJ 

n 

p 1 = V 1 2n (n - 1 )! 2(1- L Xt Yt ) , 
1=1 

n 

St + t1 = Vt 2n (n-1)! I: (x/1 - y,2)2
, 

i=1 

( i = 1, 2 ), 

t1 = Vt 2n+l (n -2)! LL (x; 2 - Yt2)(xl- y/), 
t<J 

Zt =lit 2R+l (n-2)! LL (XtX~- YtYJ)2
, 

t<J 

n 

s2 + t2 = JJ2 2n (n-1)! (1-r 2
)

2 I, w1
4

, 

1=1 

t2 = 112 2n+t (n-2)1 (1-r 2
)

2 LL wllwJ., 
t<J 

z2 • V2 2n+t (n-2)1 (1-r 2)2 LL w?wJ. 
I<J 

With the notation of (4.1.6) we find 

y= 
1 

Pt + P2 

a:= 
1 

St + S2 ' 

a:+nf= ( 1 • 
St+nft) + (s2+nt2) 

8= _.:;.1_ 

(4.2.22) 

(4.2.23) 

(4.2.24) 

From lemma 4.2.5 and theorem 2.3. 7 it follows that, if la: = 8 then x, y and r 

must satisfy the conditions 
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n 

L XtYi = _..:t._
2 

=: COS9o, 
1=1 a 

(4.2.25) 

2 1 

r = .!.- .!.[1-~J2=:ro. 
" 2 a+s 

(4.2.26) 

A condition equivalent to la= 8 is given in the following lemma. 

Lemma 4.2.8 

Let x ,y and w satisfy (4.2.11). 

Let E be a rwrmalized design consisting of the pairs of SP ((x ,y)) with weights v 1 

and of the pairs of SP((w ,-rw )) with weights V2. The condition 2a = 6 is 

equivalent to 

where 

2Vt (n +2) LL (XtXJ - YtYJ )2 + 2v2 (n +2)(1-r 2
)

2 LL w/wl 
t<i I<) 

n 

cos9 = L XtYI • 

1=1 

(4.2.27) 

If ( 4.2.27) holds, then 

where 

Proof 

z = - 1
- 2n+1 n lit (n-2)! sin29 + -

1
- 2n ll2 (n-1)1 (1-r2)2 , 

n+2 n+2 

p = 2Vt 2n (n-1)! (1-cos9) + v 2 (n-1)! (l+r )2 , 

s +nt = 2n v2(n-1)!(1-r 2
)
2 , 

, Z = Zt + Z2, P = P1 + P2, S = St + S2 and t = t1 + t2 • 

(4.2.28) 

The condition la = 8 is equivalent to s 1 - 2z 1 = - (s 2 - 2z 2) • 

From (4.2.23) we have 

n 

= 211 Vt(n-2)1 [(n-O.I: (xt4 + Y;4
- 2x;2y,2)- 4LL (x,xJ- YtYJ)2 

1=1 I<J 

-2LL (x?x/ + y/y/- x?y/- x/y1
2
)] 

t<J 

= 211 Vt(n-2)1 [l(n-1)- 2(n-1)LL x/x/- 2(n-1)LLYlYl 
t<i I<) 

n 

-2(n-l)L x/yt2 -4LL (xtXJ- YIYJ)2 

1=1 I<J 



so 

n 

= 2n vdn-2)! (2n- 2(n+2) LL (XiXj- YtYJ)2
- 2n(L XtYt)

2
]. 

I<) 1•1 . 

n 

= 2n V2 (n-2)1 (1-r 2) 2 ((n-l)I: Wt4
- 6l:l: Wtlwl) 

1=1 t<J 

= 2n V2 (n-2)1 (1-r 2) 2 ((n-1)- 2(n-1) I:I: Wtlwl- 6l:I: Wtlwl] 
t<J t<J 

= zn v2 (n-2)1 (l-r 2) 2 [(n-1)- 2(n +2) I:I: w,2wl 1. 
I<J 

Substituting these expressions in s 1 - 2z 1 = -(s 2 - 2z 2) completes the first 

part of the proof. The correctness of expressions (4.2.28) can be verified by sub-­

stituting (4.2.27) in (4.2.23). 0 

The weights 11 1 and 112 may be found by use of the following lemma. 

Lemma 4.2.9 

Let E be a design of the type defi.Md in lemma 4.2.8 and let ( 4.2.27) be satisfied. 

The determinant of the information matrix det (M(E)) satisfies 

wlwre 

C is a constant not depending on 111 and V2 , 

a • (1 +r )2 - 2(1-cosfJ) , 

b - 2(1-cos9) 
2n n! ' 

c - (n -1) (1-r 2)2 - 2n sin29 , 

2n sin29 
d - .=.;,._-:'=;...;;... 

2n nl ' 

(4.2.29) 

The value of v2 at which det (M (E)) is maximal is a solution of the equation: 

v/ jn (n +3) ac + v2 (n +1)(ad + .}n be)+ bd = 0 (4.2.30) 

Proof 

From (4.2.28) we have 

det (M(E)) = C112111~1+r )2 + 2(1-cos6)(+-v2)]n 
2 n I 

I 
1 ) <;>+<n -1) 

. 2nsin29 (-n-- l12) + (n-1)v2(1-r2
)

2 
• 

2 nl 
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This gives the expression (4.2.29). Differentiation of this expression with respect 

to v 2 gives the second part of the theorem. I] 

It is possible to construct a D-optimal design E of the type defined in lemma 

4.2.8. Then x, y, w and r must satisfy the conditions (4.2.25), (4.2.26) and 

(4.2.27). Since the covariance matrices of D-optimal designs coincide, cos6 0 and 

r 0 are fixed. By a procedure similar to procedure 2.3.8 the values of cos6 0 and r 0 

can be computed as follows. Choose 60,0 and r 0,0 , for example 60,0 = }'IT and 

ro,o = 0. Let Eo be a design of the type defined in lemma 4.2.8 with 6 = 60,0 , 

r = r 0,0 , satisfying (4.2.27) and let v 2 be as given in lemma 4.2.9. The infor­

mation matrix M (E 0 ) can be computed and the variance function can be 

expressed by (4.2.4). Use of lemma 4.2.5 yields pairs where the variance func­

tion attains its maximum. This gives new values 60,1 and r 0,1 • Now this pro­

cedure is repeated with E 1 , cos6 0,1 and r 0,1 , etc. 

This process converges and the values of cos6 0 and r 0 can be computed. A priori 

it is not obvious that this procedure converges. The condition 2o: = l) is used, 

which will be proved to hold for D-optimal designs in theorem 4.2.11. This 

knowledge enables us to prove the convergence. Note that it is not necessary to 

give the designs E; explicitly. When computing the information matrix M(E 1 ), 

one only needs the values of cos6 0,; and r 0,; • Some results are given in table 

4.2.10; the condition 2o: = l) is satisfied there. As can be seen from this table, r 0 

and 60 are decreasing functions of n, and o:, l), y, f and det (M-1(E)) are all 

increasing with n. The design consists for 68% of pairs of SP((x ,y )) when 

n = 2, and for 95% when n = 7 . 
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Table 4.2.10 

Values of constants determining the information matrix 

of a D-optimal design 

n 2 3 4 5 

ac 1.4475 2.9972 5.0307 7.5558 

3 2.8950 5.9944 10.0613 15.1115 

'Y 0.9096 1.3507 1.8071 2.2733 

E 2.5241 4.5181 7.0152 10.0133 

ro 0.1319 0.0998 0.08168 0.06953 

9o 108.3'' 103.0° 100.3° 98.7° 

2" n I v 1 0.6811 0.8151 0.8775 0.9124 

det (M- 1(E)) 22.5 7.89104 4.661010 7.081018 

Now the following theorem can be formulated. 

Theorem 4.2.11 

a) Let x , y, w and r be such that they satisfy the conditions 

n n n 

6 7 

10.576 14.092 

21.151 28.183 

2.7462 3.224 

13.5119 17.5108 

0.06069 0.05392 

97.5° 96.6" 

0.9340 0.9485 

3.95 1o29 0.9141044 

L x? = L y? = L w? = 1 , (4.2.11) 
1•1 1•1 i-1 

n 

I: Xt Yt = cos9o , (4.2.25) 
1-1 

r - 1 - 1 [1- ..h._]} - r (4 2 26) 
- T 2 ac+£ - e' •• 

2vt(n +2)LL (x,xJ- YtYJ)2 + Zv2(n +2)(1-r 2
)

2.I:.I: w1
2wi 

I<} t<J 

= 2n v 1sin29 + v2(n -1)(1-r2) 2 , (4.2.27) 

where ro and 9olw.ve the value given in table 4.2.10. The design E 

consisting of the pairs of SP((x ,y )) with weights v 1, and of the 

pairs of SP((w, -rw)) with weights v 2, that satisfy (4.2.21) and 

( 4.2.30) is D-optimal. The design is strongly rotatable. 

b) Let (u ,v) be a pair of a ~optimal design, and let t u1
2 = 1 . 

i-1 

Now v satisfies 

v = -r0 u , 

or 
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n n 

l: v? = 1 and L u1v1 = cos9 0 • 

1=1 l=t 

Proof 

From lemma 4.2.5 it follows that the variance function attains is maximum at 

the pairs of the design. According to corollary 4.2.6 this maximum is one of the 

values given in (4.2.9) and (4.2.10). Computation of these values completes the 

f:.rst part of the proof. Part b) of the theorem is proved by applying lemma 4.2.5 

and theorem 2.3. 7. D 

When discussing theorem 2.3.1 in chapter 2, we mentioned that in the case of 

paired comparisons D-optimality and G-optimality are not equivalent. Now we 

can give an example that shows this. 

Example 4..2.12 

Let n = 2 and consider the information matrix of a D-optimal design E. To 

consider the G-efficiency of such a design, one has to compute the maximum of 

the variance function d (x ,E). We have 

d(x ,E)= y (xl + xJ) + (a.+€Hx: + xt) + (2€+8> xlxl 

= y r 2 + (a.+€) r,.. 
So 

max d (x ,E) = y + a. + € = 4.88 
xEX 

It is easy to show that a D-optimal design is not G-optimal by C01118tructing a 

design E1 for which 

max d (x ,Et) < 4.88 . 
% 

Let Et be the normalized design consisting of the pairs of SP((w, -rw )) with 

w = (cos., , sin.,) , ., = 22.5" and r 1 = -} . 
Then 

MP((w, -rw )) = 

with 



54 

St = }(1-r2)2' 

t1 = z 1 = j (1-r/)2
• 

This yields 

d ( ) 2 r2 + 3 r" X ,Et : 2 2 • 
(l+rt) (1-r 2

) 

So, 

max d (x ,E1) = 2 
)2 + ( 3 

2 )2 = 4.64 , 
:x (l+rt 1-rt 

which shows that a D-optimal design is not G-optimal in this case. D 

4.3. Some discrete D-optimal designs 

In general a design of the type given in theorem 4.2.11 consists of 2 2" n! 

pairs. If we choose suitable x , y and w , a discrete D-optimal design can be con­

structed for which the number of pairs is considerably smaller than 2"+1 n I . In 

this section cos9 8, r 8, Vt and v2 are fixed and have the value given in table 

4.2.10. 

Choose 

w = (1,0, ••• ,0)' • 

x = (cosf».,sinf»~oO, ... , 0)' , 

y = (cosf»2,sincp2,0, .•. , 0)' , 

(4.3.1) 

(4.3.2) 

Now SP((x ,y )) contains 4n (n -1) pairs and SP((w, -r0w )) contains 2n 

pairs. The points x, y and w must satisfy the conditions (4.2.11), (4.2.25), 

(4.2.27). Using these conditions we ftnd 

and 

cosf»tcosf»2 + sinf»tsinf»2 = cose, ' 

cos(f»t- 1»2) = cos9o , 

f»t - 1»2 = 9o , (4.3.3) 

2v1(n +2)(cosf» 1sinf»1 - cosf»2sinf»2 )
2 = 2nv1sin29o + v2(n-1)(1-rl )2 , 

2vt(n +2)sinl(f»t- 1»2> cos2(f»t +4»2) = 2n Vtsin'lto + v2(n -1)(1-rj )2
• 

Using (4.3.3) we obtain 

2,. __ n_ + _v2 n-1 
cos"= n +2 v 1 2(n +2) 

(4.3.4) 

where 
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According to (4.2.23) Pi, s1, t 1 and z1 (i = 1,2) have the following values, where 

Pi, s1, t 1 and z1 are such as in (4.2.22). · 

Pt = lit 2n (n-1)! (1-cos9o), 

St + t1 = 2Vt zn (n-1)! Sin29osin2t, 

t1 = -2vt 2n (n-2)! sin29osin2t , 

Zt = 2Vt 2n (n- 2)! sin29osin2t , 

P2 = l/2 2n (n-1)1 (l+ro)2
, 

s2 = l/2 2n (n-1)! (1-rJ )2
, 

z2= 0. 

(4.3.5) 

(4.3.6) 

When n is odd, the number of pairs of SP((x ,y )) can be even more reduced. 

SP((x ,y )) is the union of n (n -1) sets of 4 pairs. In every set one interaction is 

measured. So, <2> sets of 4 pairs are needed to measure all interactions with the 

same accuracy. In every set two main effects (and two quadratic effects) are 

measured, but not with the same accuracy. So, in general 2(2) sets are needed. 

When n is odd <2> sets can be chosen such that the main effects (and quadratic 

effects) are measured with the same accuracy. 

Example in the case n = 3 . 

Choose 

and 

S ((cosf.t.sin•1 , 0 ),(cos.2,sin•2 

S ((sin • ., 0 ,cos.1 ),(sin.2, 0 

S(( 0 ,cos••· sin.t),( 0 ,cos.2 

When n is even, this reduction is not possible. 

' 0 )) • 

,cos•2)), 

,sin.2)) . 

Now the number, say N, of pairs of the design is given by 

2n (2n -1) ,if n even , 

N= 
2n 2 ,if n odd. 

The following theorem is a special case of theorem 4.2.11. 
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Theorem 4.3.1 

Let x, y and w be such as defined in (4.3.1) and (4.3.2), satisfying the conditions 

( 4.3.3) and ( 4.3.4). The following design is D-optimal. 

Choose 

- the pairs of SP((w, -row)) with weights J2, where J2 = 2n-l (n -1)! V2. 

- the pairs of SP ( (x ,y ) ) as described above; so all 4n (n -1) pairs if n is even, 
• and 2n (n -1) pairs if n is odd; the pairs have weight Vt , where 

2n-2 (n -1)1 Vt ,if n even , 

2n-i (n- 2)1llt ,if n odd 

Some results are given in table 4.3.2. 

Table 4.3.2 

Values of constants determining the design given in theorem 4.3.1 

n 2 3 4 5 6 

N 12 18 56 50 132 

m. 15 45 105 210 378 

.Pt 74.85" 69.74" 66.7r 64.59" 62.98" 

.,2 -33.46" -33.28" -33.64" -34.07" -34.48" 

In this table m. = jn (n +1)(n +2)(n +3) (see (4.1.4)). 

We give a few more !>-optimal designs for the case n = 2. 

Choose 

x = (cos.Pt.sin.Pt) , 

y = (cos.P2,sin.P2) , 

w = (COS(&) ,sin(&)) . 

The conditions (4.2.25) and (4.2.27) yield 

.Pt - .P2 = 9o , 

and 

7 

98 

630 

6t.7r 

-34.86" 

8v1 (cos.Ptsin.Pt- cos.P2sin.P2)2 + 8v2 (1-rl )2cos2
(1) sin2

(1) 

= 4llt sin29o + v 2 (1-rl )2
, 

This last equation can be rewritten as 

(4.3. 7) 

(4.3.8) 

(4.3.9) 



or 

From this we find 

-0.1254 :E; cos 2' :E; 0.1254 . 

Some choices of w and ' are listed in table 4.3.3. 

Table 4.3.3 

Choices of w and t{J 1 in the D-optimal design 

defined by (4.3. 7) and (4.3.8) 

(I) cos2t tflt 

0",90" 0.125 74.86" 

5",85" 0.117 74.96" 

10",80" 0.096 75.28" 

15",75" 0.063 75.76" 

20",70" 0.022 76.34" 

22S,61S 0 76.66" 

25",65" -o.022 76.97" 

30",60" -0.063 77.55" 

35",55" -0.096 78.03" 

40",50" -0.117 78.35" 

45" -o.125 78.46" 

57 

(4.3.10) 

(4.3.11) 

As an illustration two choices are given in the pictures below. The arrows in the 

pictures indicate the pairs. 
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Picture 4.3.4 

The pairs of some exact designs in the case n = 2 

a)w = 22.5• 

.,1 = 76.66. 

w = 67.5" 

b)w = o· 

w = 22.5" 

w = o· <.,1 = 74.9·> 
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4.4. Exact designs 

It is possible to construct exact designs with efficiency 1- 'J} for any small 

positive value of 'J} (see theorem 3.1.1 of Fedorov (1972)). For such a design, 

since the product of the weights and the number of pairs must be an integer, in 

general a large number of observations has to be chosen. Such designs are not 

very useful for practical applications. In this section exact designs are con­

structed for which the efficiency is high and the number of pairs is relatively 

small. 

In section 4.4.1 designs are given that consist of pairs of SP((w, -rw )) for 

some r and w . In section 4.4.2 designs are given that consist of pairs of 

SP((x ,y)) and of pairs of SP((w, -rw)) for some x, y, w and r, satisfying 

(4.2.11). Note that the covariance matrix of a design consisting only of pairs of 

SP((x ,y )) is singular. 

4.4.1. Exact designs consisting of pairs of SP<(w, -rw)) 

We choose an exact normalized design consisting of the pairs of 

SP((w, -rw )) with weights v = z-n /n I, where 

From the second half of (4.2.23) it follows that 

pi 

where 

MP((w, -rw)) = 

p = .l (l+r)2 , 
n 

sl+tl 

1 n 
z = t = (1-r2)2 (1- L w1

4
) , 

n(n-1) t=l 

1 n 
s = (1-r 2

)
2 (n L w1

4
- 1) . 

n (n-1) i=l 

(4.4.1) 

zl 

(4.4.2) 

Now r and w have to be chosen. The D-criterion can be used in choosing r and 

w. This gives conditions for r and w which are given in the following lemma. 
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Lemma 4.4.1 

The determinant of MP((w, -rw)) has a unique maximum at 

and 

Proof 

1 r=-­
n+2 ' 

t w, .. = 3 
i=l n+2. 

For det (MP((w, -rw ))) we have 

(n) 
Pn sn-1 (s +nt) z 2 

where C is a constant and 

So, det (MP((w, -rw ))) equals 

!.n(n-1) 
C (l+r )n(n+3) (1-r )n(n+l) (nwo-l)n-1 (1-wo)2 

This function has a unique maximum at 

(r, wo) = (1/(n +2), 3/(n +2) ). 

Corollary 4.4.2 

(4.4.3) 

(4.4.4) 

Let E be a design consisting of the pairs of SP((w, -rw )) with weights 

11 = - 1
- , and let r and w satisfy the conditions (4.4.3) and (4.4.4). Then 

2nn! 

p 
(n + 3)2 

n (n + 2)2 
' 

(n + 1)2(n + 3)2 

n(n + 2)5 

s • 2z 

( ,.n:.;,_+:......::.1):.... 2 ~(n~+.,...;3~)- 2 

s+nt•-
n(n + 2)<~ 

"Y - p -1 , 

B • z- 1 

la • B , 

(4.4.5) 
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-n(n + 2)4 

2(n + 1)2(n + 3)2 

From (4.4.5) the D-efficiency of a design SP((w,-rw)) can be computed. We 

wish to compute the G.-efficiency as well. The function d (x ,y ,E) attains its max­

imum at the pair (u ,v) satisfying 

n n 

! u?= ! v?= 1 , 
i=l i=l 

and (4.4.6) 

n 

L U;V; = -.f, 
1=1 0 

The maximal value of d (x ,y ,E) is given by 

.r. max d (x ,y ,E)= 2y + 8 + 
8 

. 
:x:,y 

(4.4.7) 

Now the G.-efficiency can be computed: 

d-eff(E) = (n +3)
3 

(n +2) (n +1)
2 

4(n +2)3 (n +1)2 + 2(n +2)6 + 2(n +1)4 
(4.4.8) 

Some results are given in table 4.4.4. The D-efficiency is 68% when n = 2, and 

even less when n > 2. Therefore the results are not satisfactory, although the 

number of pairs is rather small. 

Another criterion to choose r and w is the 6.-criterion. In order to use this cri­

terion, the function d (u ,v ,E) has to be evaluated. 

According to (4.1.8) we have 

n 

d(u,v,E) = y (r/+rl>- 2y! u1 v1 + € (rl-rl)2 (4.4.9) 
i=l 

n 

+a: (r/+rt)-2a: (! U;V;)
2 + (8-2a:) !! (u;Uj- V;Vj)

2
, 

1=1 I<) 

or 

n 

d(u,v,E)= y (rl+rj)- 2y! u1v1 +€ (r{-r/)2 (4.4.10) 
1=1 

n n 

+}8(r/+r1)-8(1: u1v1 )
2

- j(8-2a:) I', (u?- v?)2
• 

1=1 i=l 

The expressions (4.4.9) and (4.4.10) can be used in proving the following 

lemma. 
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Lemma 4.4.3 

Let E be the design consisting of the pairs of SP((w, -rw)) with weights 

v = 1/(2» n !) . 

If rand ware such that max d (u ,v ,E) is minimized, then rand w satisfy 
U,V 

~ 4- 3 
L. Wj - -- ' 

1=1 n +2 
(4.4.4) 

r = 1 n + 2- .! ../n 2 + 8n + 12. 
2 2 

(4.4.11) 

Proof 

We shall prove that 2a: = ~. which is equivalent to (4.4.4), by showing that 

2a: ~ ~ implies 2a: = ~ and that 2a: ~ ~ also implies 2a = ~. The values of 

p, z, t and s are given by (4.4.2). 
n 3 

Suppose 2a: ~~.so 1: w1
4 ~ --

2 
. From (4.4.10) it can be seen that 

l=t n+ 

d(u,v,E) ~ dt(u,v,E), 

where 

n 

dt(u ,v ,E)= y (rf +rj)- 2y 1: u1v1 + € (r/-r/)2 

1=1 

d 1(u ,v ,E) attains its maximal value if u and v satisfy (4.4.6), and the maximal 

value of d (u ,v ,E) is given in (4.4. 7). So, 

2 

d (u ,v ,E) ~ 2y + ~ + T . 
According to (4.4.2) we have~ > y • 

Therefore, it is possible to choose 

- ((hx_)j ( ~-y )j )' 
uo- ~ ' ~ ,0, ... ,0 

and 

- ( (.§±l:_)j ( ~-y )i )' Vo- - 2 ~ , 2 ~ ,0, ... , 0 

and it is easily seen that 

2 

d(uo,vo,E) = 2y + ~ + T. 
So, we have to minimize the expression 



n 

with respect tor and w 0 , where w 0 = r, w 1
4

• 

i 1 
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This is an increasing function of w 0 for all values of r . Therefore w 0 has to be 

chosen as small as possible, so w 0 = - 3
- and 2a = o . 

n+2 
n 

Now suppose 2a ~ 8 , so r, w1 
4 ~ 

1=1 n +2 . 

From (4.4.9) it follows that 

where 

d (u ,v ,E) ~ d 2(u ,v ,E) , 

n 

d2(u ,v ,E)= y (r{ +rl)- 2y r, u1v1 + E (r{-r1)2 

I 1 

n 

+ a(r 1
4 +rt)- 2a(r, u1v1 )

2
• 

I= 1 

In a similar way it can be seen that d (u ,v ,E) is maximal at the pair (u t.Vt) 

where 

and that 

2 

d(ut.Vt.E) = 2y + 2a + L. 
2a 

This last function is decreasing in w 0, and therefore we find 

w 0 = -
3
-,and2a= o. 

n+2 

Hence 

and 

y= 
n 

(l+r )2 , 

0 = 2a = n (n +2) 
(l-r2)2 ' 

0 r 2n + n (n +2) + n 2(1-r2)2 
2

Y + + 8 = (l+r )2 (1-r 2) 2 n(n +2)(1+r )4 

This last function has a unique maximum at 
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r = jn + 2 -jv'n 2+8n +12 

This completes the proof. 

The D- and G-efficiencies of the exact designs given in lemma 4.4.3 are listed in 

table 4.4.4. Again, the results are not satisfactory, since the G-efficiency has a 

value between 40% and 50%. As could be expected, the G.-efficiency is higher 

than the value found when using the D-criterion to determine r and w . The 

value of the D-efficiency, of course, is lower. 

In general the number of pairs of the designs given in corollary 4.4.2 and lemma 

4.4.3 equals 2n n !. This number can be reduced by choosing w in a suitable 

way. 

Choose 

w = (w1,w2,0, ... ,0)'. 

Now w must satisfy the conditions wl + wi = 1 and (4.4.4), the latter condi­

tion being equivalent to 

w4 + w4 = 
1 2 n +2 

The only relevant solution of these equations is 

1 1 

(1 + 1 ( 4- n ) "f l}" W1= 
2 2 n +2 ' 

1 1 

[! _ !( 4- n ) 2 p·. 
2 2 n+2 

This choice is possible if n ~ 4 . The results are given in table 4.4.4, where .P is 

such that 

w = (cos.fo , sin.fo , 0, .•. , 0)' . 

Now we consider the case n ~ 5 . 

We choose 

W : (w 1 , W2,.,, , Wn )' , 

where 

W 2 = W 3 = ' · • = Wn • 

Now w 1 and w 2 must satisfy the conditions 

w l + (n -1) w i = 1 , 

w t + (n -1) w 1 = 3 
n+2 
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The only relevant solution of these equations is 

.!.. + n-
n n 

and 

In general the number of pairs of these designs equals n 2n again. We give 

some further results in the case n = 5 . The number of pairs of the design given 

above is 160. With a method to be discussed in section 5.4.2 the number of pairs 

can be reduced to 80. In the following we construct a design that does not satis­

fy conditon (4.4.4). Therefore the D-effi.ciency and 0-effi.ciency is less than the 

effi.ciencies of the designs given above. However, the number of pairs equals 40. 

Choose 

w = <}.J2. }.J2 ,0, ... '0)' . 

This choice of z gives 

- 5 
y- (l+r)2 ' 

o= 40 
(1-r2)2 ' 

40 
a = ----:---'~= 

3(1-r2)2 ' 

a+ se= ( 5 2)2 
1-r 

The maximal value of the variance function equals 

Zy + 0 + L = 80(1-r )
2 + 320 + 5(1-r )

4 

o 8(1-r2)2 

Minimizing this function with respect to r yields the condition 

r 4
- 12r 3 + 30r 2

- 92r + 9:;; 0 , 

or 

r = 5 - 2,/6 = 0.1010 . 

Maximizing the determinant of the information matrix leads to the same value 

of r as given in the condition (4.4.3), so r = } . 

The results of section 4.4.1 are given in table 4.4.4. In this table is 

w the choice made above to reduce the number of pairs of the design, 
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cf» is such that w = (coscf»t.sincf»t.O .... , 0)' , and 

N is the number of pairs of the design. 

Table 4.4.4 

Values of constants determining the exact desi~ns SP((w, -rw )) given in 

section 4.4.1 , and found by using the D- and G-criteria . 

. j n 2 3 4 
I 

Criterion D d D d D d 

r 0.25 0.1716 0.20 0.1459 0.1667 0.1270 
n 

.E w, .. 0.75 0.75 0.60 0.60 0.50 0.50 
i=1 

0! 4.5511 4.2463 8.1380 7.8298 12.6955 12.3968 

8 9.1022 8.4926 16.2760 15.6596 25.3910 24.7935 

y 1.2800 1.4571 2.0833 2.2847 2.9388 3.1492 

f -1.1378 -1.0616 -1.6276 -1.5660 -2.1159 -2.0661 

det (M-1(E)) 154.44 162.56 8.41 106 8.79 106 1.73 1014 1.79 101 .. 

D-eff 68.04% 67.35% 59.53% 59.23% 55.59% 55.44% 

d-eff 42.22% 42.89% 43.46% 43.77% 44.29% 44.46% 

w (w.,w 2 ) (w.,w2,0) (w.,w 2,0,0) 

wf j+{./2 1+ 1./2 1 
1" 1lf '! 

w/ 1 - 1./2 j- .fov'2 1 
2 'i J" ., 22S 31.72° 45° 

N 8 24 24 
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n s 

Criterion D 6 only with respect tor 

D 6 

r 0.1429 0.1125 0.1429 0.1010 
n 

L Wj .. 0.4286 0.4286 0.50 0.50 
i=l 

Q! 18.2368 17.9517 13.8947 13.6097 

8 36.4735 35.9033 41.6840 40.8291 

y 3.8281 4.0398 3.8281 4.1246 

E -2.6053 -2.5645 -1.7368 -1.7012 

det (M- 1(E)) 1.974 102<4 2.04 1024 2.53 10 2<4 2.69 1024 

D-etf 53.42% 53.34% 52.77% 52.61% 

6-etf 44.91% 45.01% 40.25% 40.41% 

w (wt.W2,w:hw:hw2) (wr.w2,0,0,0) 

wi i + j.Jj I 
2 

wl t_ •.Jr. 1 
T T T 2 

N 80 40 

4.4.2. Exact designs consisting of pairs of SPC(w, -rw)) and pairs of 
SP{(x,y)) 

Let x, y and w be points for which condition (4.2.ll) holds and let 9 be 

such that 

n 

cos9 = I: X1Y1 • 

1=1 

(4.4.12) 

Consider the sets SP((x ,y )) and SP((w, -rw )), where 0 ~ r < 1. In this 

section we construct exact designs consisting of pairs of SP((x ,y )) and of pairs 

of SP((w, -rw )) • In general we choose m 1 pairs of SP((x ,y )) and m 2 pairs of 

SP((w, -rw )) . The values of m 1 and m 2 must be chosen such that the infor­

mation matrix of the design has the structure of (4.1.5). Then, in view of 

(4.2.20) and (4.2.23) the information matrix of the normalized design can be 

expressed by (4.2.22), where 

P1 --m-=1- ..!. 2( 1-cos9) 
m1+m2 n 



68 

-n...,.(n--=1=-_-1.,...) t<~ (x?- y?)(x/- y/)' 

--:-
1
-.,...1:1: (x; Xj - YtYJ )2

, 
n(n-1) I<J 

(4.4.13) 

P2 - m2 ..!. (l+r )2 , 
77tt+m2 n 

m 2 ..!. ( 1_r 2)2, 

m1+m2 n 

77t 1 ll 

---"2- (1-r2)2 (1-1: w;.f)' 
m1+m2 n(n-1) 1=1 

From this it follows that 

2 77tt 1 . 29 
S1: -- Stn - nz1 • 

m1+m2 n-1 
(4.4.14) 

Now r and w have to be chosen according to some criterion. First we consider 

the D-criterion. In lemma 4.4.5 conditions for r and w are given. 

Lemma 4.4.5 

Let E be the design defimd above and let 9 and r be fixed; det (M(E)) is maxim­

ized if 2a = ~, or equivalently 

f w,_. = _ 2 77tt _n_ sin~ + _3_ 
t=1 m2 n +2 (1-r 2)2 n +2 

+2~ 1 LL (x,:xi - YtYJ)
2 

• 
m2 (1-r 2)2 

t<J 

If the condition ( 4.4.15} is satisfied, then 

z= 

s = 2z, 

(4.4.15) 

(4.4.16) 



69 

Proof 

As can be seen by investigating the expressions given in (4.4.13) the quantities 

PI> p 2, s 1 + nt 1 and s2 + nt2 only depend on 9 and r. So det (M(E)) is maxi­

mal when the expression 

1 
1 211(11-1) 

(st + s2)11
- (zt + z2) 

n 

is maximal. This expression only depends on L w1
4 and r. This leads to 

where 

11 

wo= r w, .. 
1=1 

1=1 

Solving for w 0 we obtain 

m1 (1-r 2 ) 2 

-st + 2zt + 3---=- _.:.::;---'~-::­
m1+m2 n(n-1) 

wo = -------=----==------
(n +2) m2 (1-r2)2 

m1+m2 n (n -1) 

Using (4.4.14) we find condition (4.4.15) and the expressions (4.4.16). 0 

Lemma 4.4.5 shows that under condition (4.4.15) the determinant of the infor­

mation matrix depends only on 9 and r • We maximize the determinant of the 

information matrix with respect to 9 and r. Now it is not clear that 9 and r 

should satisfy the conditions 

and 

cos9 = - -f;; , 

2 1 
r = 1 - 1 [1-..£l_]l" 

2 1" a+£ · 

(4.4.17) 

(4.4.18) 

For discrete D-optimal designs this has been proved by use of the fact that aD­

optimal design is 6-optimal as well. A computerprogram has been written that 

determines the values of cos9 and r for which the determinant of the informa­

tion matrix is maximal . This program uses the procedure MINIFUN, described 

in THE-RC38859a (1980). MINIFUN has been designed for non-linear optimali­

zation with non-linear constraints. 

Results are given in table 4.4.6. Note that 6 and r do satisfy the equations 

(4.4.17) and (4.4.18). 



70 

Let us now consider the G.-criterion . We have to choose r and w such that the 

maximal value of the variance function is minimized. Again the condition 

2a :::: S plays an important role as can be seen intuitively as follows. We have 

where 

and 

max d (u ,v ,E) = max I d t.d 2J , 
u,v 

n n 

d 1 = max d(u.,v.,e) with L ul,; = L vl,;:::: 1, 
Ut,Vl 1=1 1=1 

n 

d 2 :::: max d (u 2,v 2,E) with L ul,~ = 1 , 
u 2,v 2 l=t 

max d (u ,v,e) = 
u,v 

2 

2-y + S + f- ,if 2a ' 8, 

2 

2-y + 2a + L ,if 2a > S . 
2a 

Now the same argument as given in the proof of lemma 4.4.3 suggests 2a :::: 8 . 
An argument analogous to this can be given in the case d 2 > d 1 • 

Assuming 2a = 8, and using lemma 4.2.5 we find, 

2 

max d (u ,v ,E) :::: max f 2-y + 2a + L , ')' (l+r2)
2 + (a + f)(l- r/)2 1 , 

where 

u,v 

1 

r2= 1- 1 [1-~rr. 
2 2 a+f 

2a 

A computerprogram has been written that determines the values of r and cos8 

for which the maximal value of the variance function is minimized, given m 1 

and m 2 • 

Results are given in table 4.4.6. Note that 8 and r do not satisfy the equations 

(4.4.17) and (4.4.18). The two equations above are given for fixed m 1 and m2. 

To construct exact designs we have to specify x , y, w , m 1 and m 2 • The values 

of m 1 and m 2 have to be chosen such that the matrix can be expressed by 

(4.2.22). For practical reasons it is useful to choose m1 and m 2 as small as 
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possible. Moreover, m 1 and m 2 have to be chosen so that the efficiency of the 

designs is high. The design constructed is D-optimal if it satisfies the conditions 

(4.4.15), (4.4.17), (4.4.18) and m 1/m 2 = v 1/v 2• This can be seen as follows. If 

one wants to compute the efficiency of such a design, one has to consider the nor­

malized design. Expressions for its information matrix are given in (4.4.13). 

Using m1/m2 = Vt/V2 , one finds m = V1 2n n I and 
m1+m2 

m
2 = v 2 2n n! Substitution of this in (4.4.13) and verification of the con­

mt+m2 

ditions (4.4.15), (4.4.17), (4.4.18) shows that such a design is D-optimal. As 

can be seen from table 4.2.10 the values of the ratio of v 1 and v 2 are: 

n 2 3 4 s 

Vt/V2 2.316 4.408 7.163 10.413 

If we choose x, y and w as below, m 2 is small relative to m 1 • 

Choose w • (1,0, ... , 0)' , 

so m 2 • q 2 2n with q2 E N; 

x = (cos~ttsimfiot.O •... , 0)' , 

y = (cos~2,sin~2.o .... , 0)' , 

so m 1 = q 1 N with q 1 E N and 

4n (n-1) ,if n even, 

N = 

2n (n -1) ,if n odd. 

Condition (4.4.15) gives 

cos 2 (~1+~2) = ~ + 
n-1 

n+ 2(n +2) 

m2 (1-r2)2 

m1 sin~ 

It is useful to consider another choice of w • If w is chosen as 

(4.4.19) 

w = Jn. (1,1, ... ,1)' , then the ratio of m 1 and m 2 dilfers from the ratio of 

m 1 and m 2 of the design mentioned above. Therefore the designs with 

w = }; (1,1, ..• , 1)' might have a higher efficiency than the designs men-

tioned above. However, the number of pairs is larger. Choose 

x , y as above , 

and 

w = Jn. (1,1, ... '1)' ' 
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so 

m2 = q2 2" with q2 E N. 

Condition (4.4.15) now gives 

2 n (n-1) m2 
cos (f/J1+tP2) = --- ~;.__,_;~ 

n+2 n(n+2) m1 

Results are given in table 4.4.6. 

In this table r 0, d 1 and d 2 are defined by 

1 

ro = 1 - l[l-__!l__f2 
J' "I cx+E ' 

" " 
d 1 = max d (u ,v ,E) with L u1

2 = L v1
2 = 1 , 

u,v i=l 1=1 

" d 2 = max d (w, -rw ,E) with 0 ~ r < 1 , and L w? = 1 . 
r,w 1=1 

(4.4.20) 

The results are satisfactory. The efficiency of tht: designs is good and the number 

of pairs is relatively small, although the number of pairs is larger than the 

number of pairs of the designs given in table 4.4.4. 



Table 4.4.6 

Values of constants, determining the designs given in 

section 4.4.2, and found by using the D- and G.-criteria 

n 2 4 

Criterion D o D 

w (1,0) wl) (1,0) wl) (1,0,0,0) 

mt 8 8 8 8 48 

m2 4 4 4 4 8 

m1+m2 12 12 12 12 56 

r 0.1381 0.2026 0.0918 

cos(~t- t/h) -0.3125 -0.3046 -0.1790 

cos 2 (~1+~2) 0.5666 0.4334 0.5666 0.4334 0.7090 

~1 74.69° 78.5ZO 74.45° 78.28° 66.48° 

+2 -33.52° -29.69° -33.28° -29.45° -33.83° 

a 1.4668 1.4675 5.0999 

a 2.9336 2.9350 10.1999 

y 0.9167 0.9003 1.8253 

' 
2.3844 2.5285 5.8446 

y/2a . 0.3125 0.3067 0.1790 

ro 0.1381 0.1294 0.0918 

d1 5.0535 5.0116 14.1772 

d2 4.8931 5.0116 12.9367 

det (M-1(E)) 22.548 22.776 4.72 1010 

D-etf 99.98% 99.78% 99.91% 

0-etr 98.94% 99.77% 98.75% 

1) w = q..J2.j.J2). 

73 

o 
(1,0,0,0) 

48 

8 

56 

0.2918 

-0.1700 

0.7090 

66.22° 

-33.57° 

5.1300 

10.2600 

1.7824 

7.0812 

0.1737 

0.0793 

14.1344 

14.1344 

5.32 1010 

99.06% 

99.05% 
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n 3 

Criterion D D D o o o 
w (1,0,0) (1,0,0) wl) (1,0,0) (1,0,0) wl) 

m1 12 24 36 12 24 36 

m2 6 6 8 6 6 8 

m1+m2 18 30 44 18 30 44 

r 0.1596 0.1068 0.0984 0.4098 0.2269 0.0580 

cos(~ 1 -~ 2 ) -0.2151 -0.2245 -0.2255 -0.1613 -0.2289 -0.2626 

cos 2 (~1+~2) 0.6996 0.6515 0.5694 0.6999 0.6517 0.5688 

~1 67.83° 69.58° 72.02° 66.25° 69.70° 73.14° 

~2 -34.59° -33.40° -31.01° -33.03° -33.54° -32.09° 
p 

a 3.3722 3.0309 2.9903 3.4424 3.0560 3.0416 

8 6.7444 6.0619 5.9807 6.8848 6.1121 6.0832 

y 1.4505 1.3610 1.3485 1.3569 1.3231 1.3218 

f 2.0348 4.1056 4.6112 3.1861 4.5387 4.5234 

y/2a 0.2151 0.2245 0.2255 0.1971 0.2165 0.2173 

ro 0.1596 0.1068 0.0984 0.1158 0.0964 0.0967 

dl 9.9573 9.0895 8.9818 9.8660 9.0448 9.0139 

d2 7.0855 8.6420 9.0820 8.1412 9.0448 9.0139 

det (M-1(E)) 1.01105 7.92 104 7.89 104 1.26 105 8.24 104 7.99 104 

D-eft' 97.31% 99.96% 99.998% 94.97% 99.53% 99.86% 

G-eff' 90.39% 99.02% 99.10% 91.22% 99.50% 99.8S% 

1) w = }../3(1,1,1) . 
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n 5 

Criterion D 

I 
w (1,0,0,0,0) } .JS(l ,0,0,0,0) 

I m1 40 80 120 160 

m2 10 10 10 16 

m1+m2 50 90 130 176 

r 0.1165 0.0821 0.0632 0.0714 

cos(t/JI-f/12) -0.1474 -0.1499 -0.1506 -0.1504 

cos 2 (~1+~2) 0.7853 0.7503 0.7384 0.7027 

t/JI 63.04° 64.30" 64.71" 65.84" 

~2 -35.2r -34.32° -33.95" -32.81" 

a 8.1351 7.6691 7.5055 7.5714 

8 16.2703 15.3381 15.0109 15.1428 

y 2.3979 2.2995 2.2612 2.2769 

€ 3.5116 7.5887 11.6032 9.5987 

y/2a 0.1474 0.1499 0.1506 0.1504 

ro 0.1165 0.0821 0.0632 0.0714 

dl 21.4195 20.2818 19.8740 20.0391 

d2 14.3219 17.7454 21.5124 19.6092 
det (M-1(E)) 1.1610111 7.311018 7.141018 7.09 1018 

D-el! 97.56% 99.84% 99.96% 99.996% 

6.-elf 93.37% 98.61% 92.97% 99.81% 
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n 5 

Criterion 

I 
w (1,0,0,0,0) } ../5(1,0,0,0,0) 

I 
m1 40 80 120 160 

m2 10 10 10 16 

m1+m2 50 90 130 176 

r 0.2196 0.2338 0.0037 0.1539 

cos(<flt-+2) -o.1370 -0.1433 -0.1731 -o.1511 

cos2(<flt+<fl2) 0.7853 0.7503 0.7386 0.7027 

<flt 62.74° 64.1r 65.35° 65.87° 

<fl2 -35.14° -34.13° -34.61° -32.8r 

a 8.1638 7.6893 7.5579 7.5840 

8 16.3275 15.3786 15.1159 15.1681 

y 2.3621 2.2710 2.2289 2.2584 

E 3.8868 8.5330 11.4888 10.0235 

y/la 0.1447 0.1477 0.1475 0.1489 

ro 0.1101 0.0757 0.0624 0.0689 

dt 21.3935 20.2560 19.9023 20.0211 

d2 14.6710 18.6647 21.4144 20.0211 

det (M-1(e)) 1.211019 7.871018 7.271018 7.231018 

D-eff 97.34% 99.47% 99.87% 99.90% 

d-eff 93.49% 98.74% 93.40% 99.89% 
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4.5. Robustness of the designs 

In this section we discuss the robustness of the designs given in section 4.3 

against violation of the condition {3 = 0. In general condition (1.8.6) is not 

satisfied and the designs, that are D-optimal in the case {3 = 0 are not D-optimal 

when {3 ;:e 0. However, {3 is the vector of parameters which should be 

estimated from the experiment which is being designed. Results given in this 

section concerning the robustness of these designs are satisfactory. Therefore, 

the D-optimal designs in the case {3 = 0 are useful in practical applications. We 

shall discuss the D-efficiency of some of these designs for several values of {3 • 

Let Eo be a design and {3 = {30 • The information matrix is denoted by 

M(E0 1{3 = {3 0). The D-efficiency of this design equals 

det (M (Eo I {3 = f3o)) I} 
m:X det (M(E I {3- (30)) • <

4
•
5

·1) 

In order to compute the value 

max det (M (E I {3 = f3o)) 
E 

D-optimal designs have to be constructed in the case {3 = {30 • This is a rather 

cumbersome task and it .seems that it can only be done by maximizing 

det (M (E I {3 = {3 0)) numerically. But then one cannot be sure that the absolute 

maximum has been found; the procedure may lead to a local maximum. It is 

easy, however, to compute a lower bound for the D-efficiency by using the fol­

lowing lemma. 

Lemma 4.'5.1 

A lower-bound for the D-efficien.cy of the design Eo in the case {3 = {3 0 is given by 

det M(Eo I {3 = f3o)) I} 
( ( {3 )) (4.5.2) 

m:xdetMEI =0 

Proof 

We prove that 

max det (M(E I {3 = {3 0))" max det (M(E I {3 = O)). 
E E 

Let E1 , consisting of the pairs (u1 ,v1 ) with weight p (u1 ,v1 ) , i = 1, ••• , N, be a 

design where det (M(E I {3 = {30)) is maximal. Let A(u ,v) be as defined in 

(2.3.19) and (2.3.20). Now it is easy to see that 

A(u ,v)" j , 

and 
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Mu ,v) = { for all u ,v if and only if /3 = 0. 

Define 

p(u1 ,v1 ) = 4p (u1 ,v1 ) A(u1 ,v1 ), 

and 

N 

p(u; ,V;)= p(u; ,V;)/( L P<ul ,V;)) • 
1=1 

Now we have 

det (M (Et I /3 = f3o)) 

N 

= det ( r p (u; ,v,) A(U; ,v; )(I (ut)- I (v; )) (I (u;)- I (v; ))') 
1=1 

n 

= det ( r P<ul ,Vj) {(f (u;)- I (v;)) (I (u;)- I (v; ))') 
1=1 

N 

~ det ( r p(u;.Vt) {(f (u;)- I (v; )) (I (u;)- I (v, ))') 
1=1 

= det (M(E2 I /3 = o)) ~ max det (M(E I /3 = 0)) , 
E 

where E2 is a design consisting of the pairs (u1 ,v1 ) with weight p(u1 ,v1 ) , 

i = 1, ... ,N . 1J 

In table 4.5.2 lower bounds for the D-efficiency of some designs are given for 

several values of /3 • The designs considered are designs which are D-optimal 

when /3 = 0 . For n = 2 three designs are given for each value of /3 • The lower 

bounds for the D-efficiency of these designs are approximately the same. There­

fore only one design has been chosen in the cases n = 3, 4, 5 . It is the design 

for which 

w = );; (1, ... '1)' . 

In this table the smallest value of 7T1 .IJ is listed. This is the smallest value of 

'ITu +'IT., ' 

where 

log 'IT x = (I (x ))' /3o 

and (u. ,v) is a pair of the design. 

It is also possible to compute lower bounds for the D-efficiency by using 

theorem 2.3.9. Doing so, one has to compute max A(u ,v) d (u ,v ,E). This is not 
u,v 

easy, though it is not as difficult as computing max det (M(E)). For n = 2 
E 
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lower bounds are computed by means of theorem 2.3.9 and the procedure MINI­

FUN to determine the maximal value of A.(u ,v) d (u ,v ,e). 

Results are given in table 4.5.2. The lower bounds found by this method are 

approximately the same as the lower bounds found with lemma 4.5.1. In view 

of this, lemma 4.5.1 is used to find lower bounds in the cases n = 3, 4, 5 . 

Table 4.5.2 

Lower bounds for the D-efficiency of some designs 
! 

n=2 smallest ~bounds 11 

/3o value .. 2) (2.3.28) 

/31 132 /3u f3u /312 of 1Tt .iJ w= o· 22.5° 45° w= o· 

0.05 0.05 0.05 0.05 0.05 0.4650 0.998 0.998 0.998 0.997 

-0.05 0.05 0.05 0.05 0.05 0.4650 0.998 0.998 0.998 0.997 

o.o5 o.os -o.o5 o.o5 o.o5 0.4495 0.998 0.998 0.998 0.997 

0.1 0.1 0.1 0.1 0.1 0.4304 0.993 0.993 0.993 0.993 

-o.1 0.1 0.1 0.1 0.1 0.4304 0.993 0.993 0.993 0.993 

0.1 0.1 -o.1 0.1 0.1 0.3999 0.990 0.990 0.990 0.991 

0.3 0.3 0.3 0.3 0.3 0.3014 0.940 0.940 0.941 0.935 

-o.3 0.3 0.3 0.3 0.3 0.3014 0.940 0.940 0.940 0.938 

0.3 0.3 -o.3 0.3 0.3 0.2284 0.921 0.921 0.921 0.927 

0.5 0.5 0.5 0.5 0.5 0.1977 0.851 0.853 0.854 0.824 

-o.5 0.5 0.5 0.5 0.5 0.1977 0.851 0.851 0.850 0.844 

0.5 0.5 -o.5 0.5 0.5 0.1162 0.813 0.814 0.815 0.813 

1 1 1 1 1 0.0572 0.597 0.608 0.616 0.410 

-1 1 1 1 1 0.0572 0.602 0.596 0.587 0.595 

1 1 -1 1 1 0.0170 0.546 0.554 0.558 0.453 

0.1 0 0 0 0 0.4622 0.997 0.997 0.997 0.997 

0.3 0 0 0 0 0.3882 0.976 0.976 0.976 0.980 

0.5 0 0 0 0 0.3190 0.936 0.936 0.935 0.945 

1 0 0 0 0 0.1800 0.786 0.784 0.782 0.801 

0 0 0.1 0 0 0.4755 0.999 0.999 0.999 0.992 

0 0 0.3 0 0 0.4268 0.991 0.991 0.991 0.990 

0 0 0.5 0 0 0.3796 0.974 0.974 0.974 0.972 

0 0 1 0 0 0.2724 0.903 0.903 0.902 0.892 

0 0 0 0 0.1 0.4822 0.999 0.999 0.999 0.999 

0 0 0 0 0.3 0.4468 0.992 0.992 0.992 0.991 

0 0 0 0 0.5 0.4119 0.979 0.979 0.979 0.975 

0 0 0 0 1 0.3291 0.920 0.919 0.918 0.903 
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n=3 ~mallest! I 
/3o value I tower I 

/31 /32 /33 /3u /322 1333 f3t2 /3u 1323 of 1T; .ij bound 

0.05 0.4817 0.9995 

0.1 0.4634 0.9982 

0.2 0.4272 0.9927 

0.3 0.3918 0.9837 

0.5 0.3245 0.9560 

1 0.1875 0.8467 

0.05 0.4920 0.9999 

0.1 0.4840 0.9994 

0.2 0.4681 0.9976 

0.3 0.4522 0.9946 

0.5 0.4207 0.9850 

1 0.3453 0.9424 

0.05 0.4908 0.9999 

0.1 0.4816 0.9996 

0.2 0.4633 0.9983 

0.3 0.4451 0.9963 

0.5 0.4092 0.9897 

1 0.3241 0.9604 

0.05 0.05 0.05 0.4748 0.9986 

0.1 0.1 0.1 0.4498 0.9948 

0.2 0.2 0.2 0.4006 0.9782 

0.3 0.3 0.3 0.3533 0.9522 

0.5 0.5 0.5 0.2675 0.8765 

1 1 1 0.1176 0.6296 

0.05 0.05 0.05 0.05 0.05 o.os 0.05 0.05 0.05 0.4516 0.9982 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4041 0.9928 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3150 0.9720 

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2377 0.9394 

0.5 0.5 o.s 0.5 0.5 0.5 0.5 0.5 o.s 0.1254 0.8505 

1 1 1 1 1 1 1 1 1 0.0201 0.5980 

-o.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3047 0.9388 

-o.3 0.3 0.3 0.3 0.3 -o.3 0.3 0.3 0.3 0.3047 0.9272 

-o.3 0.3 0.3 -o.3 0.3 0.3 -o.3 0.3 0.3 0.3169 0.9241 

The entries that are not given in this table are zero. 
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11 n=4 I 
/3o value of the smallest 

non zero non zero value lower 

parameters parameters of '"•. 11 bound 

/31 0.05 0.4818 0.9996 

0.1 0.4636 0.9986 

0.2 0.4275 0.9945 

0.3 0.3923 0.9878 

0.5 0.3253 0.9673 

1 0.1886 0.8878 

/3u 0.05 0.4927 0.9999 

0.1 0.4854 0.9996 

0.2 0.4709 0.9984 

0.3 0.4564 0.9965 

0.5 0.4276 0.9903 

1 0.3583 0.9624 

/312 0.05 0.4901 0.9999 

0.1 0.4802 0.9998 

0.2 0.4605 0.9990 

0.3 0.4408 0.9978 

0.5 0.4022 0.9939 

1 0.3166 0.9766 

/31 ,1 ' i ' 4 0.1 0.4461 0.9945 

0.3 0.3432 0.9524 

0.5 0.2532 0.8776 

1 0.1031 0.6364 

f3tz ,1 :E; i :E; 4 0.1 0.4752 0.9997 

0.3 0.4260 0.9973 

0.5 0.3783 0.9926 

1 0.2703 0.9726 

/31} ,1 ' i < j ' 4 0.1 0.4628 0.9985 

0.3 0.3901 0.9867 

0.5 0.3219 0.9638 

1 0.1839 0.8664 

f3t .f3tj ,1 ' i ~ j ~ 4 0.05 0.4422 0.9982 

0.1 0.3859 0.9927 

0.2 0.2831 0.9718 

0.3 0.1988 0.9393 

0.5 0.0892 0.8515 

1 0.0095 0.6117 
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n=5 

f3o value of the smallest 

non zero non zero value lower 

parameters . parameters of Tr1 •11 bound 

/31 0.05 0.4818 0.9989 

0.1 0.4637 0.9973 

0.2 0.4278 0.9956 

0.3 0.3926 0.9903 

0.5 0.3258 0.9736 

1 0.1893 0.9060 

1.5 0.1014 0.8202 

2 0.0517 0.7345 

f3n 0.05 0.4933 0.9999 

0.1 0.4865 0.9997 

0.2 0.4731 0.9990 

0.3 0.4597 0.9976 

0.5 0.4331 0.9932 

1 0.3685 0.9735 

1.5 0.3083 0.9425 

2 0.2540 0.9028 

/312 0.05 0.4896 0.99996 

0.1 0.4793 0.9998 

0.2 0.4586 0.9993 

0.3 0.4381 0.9985 

0.5 0.3978 0.9959 

1 0.3039 0.9844 

1.5 0.2238 0.9672 

2 0.1600 0.9469 
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{3; ,1 ~ i ~ 5 0.05 0.4701 0.9986 

0.1 0.4405 0.9945 

0.2 0.3827 0.9784 

0.3 0.3280 0.9525 

0.5 0.2322 0.8767 

1 0.0838 0.6243 

1.5 0.0269 0.3988 

2 0.0083 0.2446 

{3;; ,1 ~ i ~ 5 0.05 0.4876 0.99995 

0.1 0.4751 0.9998 

0.2 0.4504 0.9991 

0.3 0.4259 0.9981 

0.5 0.3781 0.9947 

1 0.2699 0.9803 

1.5 0.1835 0.9600 

2 0.1202 0.9370 

13tJ ,1 ~ i < j ~ 5 0.05 0.4751 0.9996 

0.1 0.4504 0.9984 

0.2 0.4018 0.9934 

0.3 0.3550 0.9853 

0.5 0.2699 0.9599 

1 0.1202 0.8531 

1.5 0.0481 0.7093 

2 0.0183 0.5590 

{3; ,{31} ,1 ~ i ~ j ~ 5 0.05 0.4332 0.9982 

0.1 0.3687 0.9927 

0.2 0.2544 0.9715 

0.3 0.1662 0.9385 

0.5 0.0637 0.8482 

1 0.0046 0.5946 

1.5 0.0003 0.4052 

2 0.0000 0.2830 
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5. Designs in the case of a quadratic model with a hypercube as experi­

mental region 

5.1. Introduction 

In this chapter the parameters of the model are the same as in chapter 4, 

but the experimental region is now a hypercube. So, we have 

where 

f(x)= (xi·····Xn,xf, ... ,xn
2
,x1X2,····Xn-1Xn)', 

x E X , X C Rn ,x = (x I• ••• , Xn )' , 

X = I x E X I -1 ~ x 1 ~ 1 for all i I . 

(5.1.1) 

(5.1.2) 

For the construction of optimal designs the assumption 1Tt = (1, ... ,1)' is 

made. In section 5.2 D-optimal designs are given. The D-optimality is proved in 

section 5.3. Discrete D-optimal designs with a relatively small number of pairs 

are given in section 5.4. Exact designs are considered in section 5.5 and in sec­

tion 5.6 we will discuss the robustness of the discrete designs constructed in sec­

tion 5.2 against violation of the assumption 1Tt = (1, ... ,1)' . 

Again (4.1.4) holds and the assumptions (4.1.5) and (4.1.6) concerning the 

structure of the covariance matrix are made. The variance function can be 

expressed by (4.1.8). 

5.2. Discrete D-optimal designs 

Again it is important to investigate the variance function. If the variance 

function d (x ,y ,E) of a design E can be expressed by (4.1.8), then d (x ,y ,E) 

satisfies (3.1.8) and (3.1.9). In chapter 4 D-optimal designs were proved to be 

strongly rotatable. In the case of a hypercube as experimental region D-optimal 

designs have the following property. 

d ((x r. ... , X;, • • • , Xn ),(y I• • • • , Yt, • • • , Yn ),E) 

= d ((x I• • • • , Yt• • • • , Xn ),(y I• • • • , X;, • • • , Yn ),E) 

for all x, y and 1 ~ i ~ n . 

In the next lemma a condition equivalent to property (5.2.1) is given. 

Lemma 5.2.1 

(5.2.1) 

Let E be a design with covariance matrix of type ( 4.1.6). The design E has proper­

ty (5.2.1) if and only if 

s = -4f (5.2.2) 



Proof 

Let d 1 and d 2 be defined by d 1 = d (x ,y ,E) and 

d2 = d((x •· ... ,y;,. • .. xn),(yl, ... , X;, • •• , Yn ),E). 

Then, using (4.1.8) we find 

dt- d2 = 

85 

= 8 L (x?x/ + y?y/- y?x/- x?y/) +4 f (x/- y/) L (x/- y/) 
J""'l j ""'I 

= (o + 4£) (x/- y?) r (x/'- yl). 
i""'i 

The last expression vanishes for all x, y E X if and only if 8 = 4f. 

The lemmas 5.2.2 and 5.2.3 are useful in finding pairs where the variance func­

tion is maximal. The proofs of these lemmas are given in section 5.3, because 

they can be regarded as part of the proof of the D-optimality of the designs con­

sidered in this section. 

Lem.ma5.2.2 

Let E be a design with covariance matrix of type (4.1.6). If d (x ,y,E) is maximal 

at (x ,y) = (u ,v ), then for ail 1 ~ l ~ n 

I u1 I = 1 or I v1 I = 1 . 

According to lemma 3.2.1 we have I u1 I = I v1 I = 1 for all 1 ~ l ~ n . This 

does not hold in the case of a quadratic model as can be seen as follows. Suppose 

that it holds, then a D-optimal design consists of pairs of this type. However, 

such a design does not measure the quadratic effects, since u? = v1
2 = 1 for all 

1~i~n. 

Having obtained one pair where the variance function is maximal, one can find 

more pairs having this property. This might be useful in the construction of 

optimal designs. Let (u ,v ) be a pair where the variance function is maximal and 

let k 1 be the number of pairs of coordinates (u1 ,v1 ) for which u1 = v1 , and k 2 

the number of pairs (u1 ,v1 ) for which u1 = -v1 • Now, using (3.1.8), (3.1.9) 

and -if it holds- (5.2.1), other pairs can be found where the variance function is 

maximal ; for example the pair (ir ,i7) with 

u = (1 .•.. '1)' ' 

Vj = 1 for 1 ~ i ~ k1, 

Vj = -1 fork 1 < i ~ k 2 , 

and 

-1 <Vi < 1 for k1 + k2 < i ~ k2. 

This will be used in the next lemma and definition. 
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Lemma 5.2.3 

Let E be a design with covariance matrix of type (4.1.6) and 0 = -4f . Let (u ,v) 

be a pair where the variance function is maximal and assume (without loss of gen­

erality) that 

u = (1, ... '1)' , 

le 1 is the number of 1's in v , 

le 2 is the number of -1's in v , 

and 

-1 < v1 < 1 for le 1 + le 2 < i ~ n . 

Then 

v1 = VJ for all i ,j with le 1 + le 2 < i ,j ~ n . 

In the light of these lemmas it is useful to define the following sets of pairs. 

Definition 5.2.4 

Let the pair (u ,v ) be as defined in lemma 5.2.3 , with v1 = w for 

le 1 + le 2 < i ~ n if le 1 + le 2 < n , and let v = ( 1, ... , 1, -1, ... , -1) if 

le 1 + le 2 = n . Let k 3 = n - le 1 - k 2 • Now define 

S(le1,k2,k3;w):= S((u,v)), 

SP (le .,le 2.k ,; w ):= SP ((u ,v)) , 

and 

SP1 ( O,O,n ; w ) is the set containing the pairs of SP ( O,O,n ; w ) and all pairs that 

can be obtained by replacing l pairs of coordinates (u1 ,v,) by (v; .Ui) as is done in 

(5.2.1). 

The information matrices of these sets are denoted by replacing the letter S by the 

letter M, so MP(Ie 1,1e2,le3; w) is the information matrix of SP(Ie 1.k2,k3;w). 

The number of pairs of the above sets is as follows 

211
-

1 pairs ,if lea= 0. 

n 
1 

2 11 
' 'f '- - 0 .. !'- ,,_ t patrs •• 1{. 3 .,..... ' 

"-1 1{. 2·K- 3· 

SP (k 1,k 2,k 3 ; w ) contains 

n! 2n-1 . if._ 0 
letlk21 patrs , K-3 = . 



SP1 (O,O,n; w) contains 

,if l ;C jn , 

er )2n-l pairs ,if l = -21 n . 
'!n 
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The set SP (k .,k 2 ,0; w ) coincides with the set S (k 1,k 2) given in definition 3.2.2. 

Expressions for the information matrices of the sets given in definition 5.2.4 are 

presented in lemma 5.2.5. 

Lemma 5.2.5 

Let 

with 

g = ( 1-w )2 
' h = (1 + w )2 

• 

Then 

and 

Let 

P2 

(5.2.3) 

SJ] +ttl ,if k3 > 0, 

(5.2.4) 

Stl +t 1J ,if k;3 = 0. 

(5.2.5) 
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Then 

and 

Proof 

s 2 + t 2 • <7) gh 2n , 

t2 "" ( (7)- 4(7:::> 1 gh 2n , 

Z2 = ( <7)- 2(7::;) 1 gh 2n , 

MP1(0,0,n; w) = 

MPt (O,O,n; w) = 
2

1 

yn 

,ifl ~ {n , 

(5.2.6) 

It is easy to prove these results by applying the general expression for 

MP((u ,v )) given in (4.2.20). Note that the results of (4.2.20) are related to the 

case where MP((u. ,v )) contains n 12n pairs. [) 

Let E be a design for which the variance function can be expressed by (4.1.8). 

For all pairs (x ,y) belonging to SP (le 1,/c 2,k 3; w ) the variance function d (x ,y ,E) 

has the same value. The value that is attained by the variance function at the 

pairs of SP (le 1,k 2,k 3; w ) is denoted by d (k .,le 2,k 3; w ) and can be expressed by 

d (k ~ole 2,/c s; w ) = 4k 2 y + le s g y + 4k tk 2 ~ (5.2. 7) 

+ le sk s g ~ + k ~ s h ~ + (~ 3 )gh ~ + k 3 gh a + k j gh l , 

where 

g = (l-w)2 ,and h = (l+w)2
• 

Moreover, if E is a design of type (4.1.6), and if ~ = -4f holds, then -by 

lemma 5.2.1- the value of the variance function is the same for all pairs belong­

ing to SP1(0,0,n; w ). This value can be expressed by 

d (O,O,n; w) = n g y + <2>sh ~ + n gh a + n 2 gh E . (5.2.8) 



If k 3 = 0, then d (k t.k 2.k 3; w ) is denoted by d (k 1,k 2), and we have 

d(kt,k2) = 4k2 y + 4ktk2 8. 
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(5.2.9) 

Note that contrary to (3.2. 7) in (5.2. 7)-(5.2.9) reference to the design E has been 

suppressed. Whenever the above notations are used, it will be clear to what 

design E they are related. It will appear that a D-optimal discrete design can be 

found by choosing a combination of sets as defined in definition 5.2.4 and suit­

able weights. Such a combination can be obtained by using a procedure similar to 

procedure 2.3.8. Start with some combination of sets and compute weights by 

maximizing the determinant of the information matrix. Leave out those sets for 

which the weights are not positive. Compute the maximal value of the variance 

function using lemma 5.2.3 and add the sets that contain pairs where d (x ,y ,E) 

is maximal. Now a new combination has been found, and this step is repeated 

with the new combination. This process converges and a D-optimal discrete 

design can be found. Again it is not a priori obvious that this procedue con­

verges, because the condition 8 = -4£ is used. In section 5.3 it will be proved 

that 8 = -4£ . Then, it is clear that the procedure converges in the same way as 

procedure 2.3.8. In the following sections D-optimal designs will be presented. A 

method to prove the D-optimality of these designs will be given in section 5.3. 

In this section some remarks are made about computing the information 

matrices of these D-optimal designs. We distinguish between three cases: 

i) n ~ 6 , n even , 

ii) n ~ 3 , n odd , 

iii) n = 2orn = 4. 

The information matrix and covarianre matrix of the designs given in section 

5.2.1, 5.2.2 and 5.2.3 are given by (4.1.5) and (4.1.6). 

5.2.1. Discrete D-optimal designs in the case n ~ 6 , n even. 

We shall present a D-optimal design E that consists of 4 sets of the type 

given in definition 5.2.4. The information matrices of these sets are denoted by 

M, , i = 1, 2, 3, 4, where 

Consider the design, consisting of 

i) the pairs of S<jn -l,jn + 1) with weights Vt; 

the number of these pairs is ( 1nn_
1
)2n-l, 

2 

(5.2.10) 
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_ 2( n-1 )ln 
Pt- •n-1 ' 

"! 

St= tt= 0, 

_ 4( n-2 )
2

n 
Zt- •n-2 , 

'! 

dC}n-1,-}n+1)= (2n+4)y +(n-2)(n+2)6, 

ii) the pairs of S <-}n ,jn ) with weights 11 2; 

the number of these pairs is ( f )2n - 1 
, 

"!n 

_ 
2
(n-1)

2
n 

P2- -}n , 

s2= t2= 0, 

_ 4( n-2 )
2

n 
Z2- 1n-1 ' 

"! 

d C}n .-}n ) = 2n y + n 2 6 , 

iii) the pairs of SP(O,O,n; w 1) with weights p, ; 

the number of these pairs is 2n , 

P3 = gl 2n ' 

S3: 0, 

t3 = g1h1 2n • 

Z3 = g1h1 2n , 

with g1 = (1-w1)2
, ht = (1+wt)2. 

(5.2.11) 

(5.2.12) 

d(O,O,n; Wt) = n g1 y + (~)gthtS + n g1h1 a+ n 2 g1h1 f, (5.2.13) 

iv) the pairs of SP 1 (O,O,n; w 1) with weights A ; 
T' 

the number of these pairs is ( r )2n-l ' 
. "!n 

( n ) 2n-t 
p,. = .!.n g1 • 

2 

Slj = 2( rn~ 2 1) gtht 2n , 
"! 

s 4 + t 4 = ( 1n ) g th 1 2n -I , 
"!n 

z,. = [( fn)- 2 (.'~~21)] gth1 2n-1 
y y 

the value of the variance function in the pairs of .this set equals 



d (O,O,n; w 1) if and only if 8 = -4f . 

The total number of pairs of the design E equals 

N = [1 + 3n +4 ( 1 n 1)]2n . 
n jll-
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(5.2.14) 

If one assumes that. the design E is D-optimal then the information matrix M(e) 

can be derived without computing the weights of the pairs of the design. The 

variance function is maximal at the pairs of the design and the maximal value 

equals jn (n +3). Using (5.2.11), (5.2.12), (5.2.13) and lemma 5.2.1 , we find 

(2n +4) y + (n- 2)(n +2) S = } n (n +3), (5.2.15) 

4 y + 2n 0 = n +3, 

8t Y + j(n-1) 8tht O + 8tht a+ n 8tht f = j(n +3), 

o= -4f 

(5.2.16) 

(5.2.17) 

(5.2.18) 

The function d (O,O,n; v) considered as a function of v is maximal at v = w 1; 

this yields 

2 1 

w•= -}+ }£1- E le 1>0J"I. 
a+n +"In-

Solving the equations (5.2.15)-(5.2.19) we obtain 

_ 
0 

_ n+3 

'Y- - 2n +4 ' 

(1-w 1)
3 + 2(n +2)wt = 0; 

the value of a can be computed by means of (5.2.17). 

Now. the.weights Vto v 2, p. and A can be computed from the equation 

M(E) = Vt Mt + V2 M,+ p. M3 +A M.,. 

This yields 

p 2(n-1) 2(n-1) 81 (n-1)81 

s 0 0 0 n 8tht 

t 
=b 0 0 8tht -gtht 

z 2(n -2) 2n Stht j(n-2)gtht 

where 

(5.2.19) 

(5.2.20) 

(5.2.21) 

(5.2.22) 

(5.2.23) 
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and 

b = 2n+l_!_ ( n-2) 
1n-1 ' n 2 

Solving for vlt v 2, ~ and 1.1. we find 

V1 = 
1 n+2 + 1 

2:(n -1)(n + 3) 8s 
+ lt-

4 b 

v2 = 1 n+2 - 1 - lt + 
b 2(n -1 )(n + 3) jS 4 

i\.= 
s 

n b g1h1 

IJ.= 
s+nt 

n gtht 2n 

Results for n = 6 are given in table 5.2.7. 

(s +t )n 1 I 
4(n -1) ht ' 

(5.2.24) 

(s +t )(n-2) 1 
) . 4(n-1) ht 

In section 5.3 it will be shown that the set of pairs of any discrete D-optimal 

design is contained in the union of the sets S <jn -1 .jn + 1 ), S <jn .-}n ) and all 

SP1 (O,O,n; w 1) with 0 ~ l < n . The design E is not D-optimal in the ease 

n = 2 or n = 4 . Solving the equations (5.2.24) in the ease n = 2 yields a 

negative value for v 1 • The results in the case n = 4 are 

0: = 2.5580 

a .. o.s833 

y = 0.5833 

f ... -0.1458 

It c:an be shown that the variance function is maximal at the pairs of the set 

SP(l,2,1; 0) and that the maximal value is equal to 14.079. Therefore, the 

design is not D-optimal. 

5.2.2. Discrete D-optimal designs in the case n ~ 3 • n odd. 

We will give a D-optimal design consisting of 3 sets of the type given in 

definition 5.2.4. The information matrices of these sets are again given by 

(5.2.10). Consider the design consisting of 

i) the pairs of S<j(n-l),j(n +1)) with weights Vt; 

the number of these pairs is ( 1 n "":_ 1 )2"-1 , 

2 2 . 

( n-1 ) n 
Pt=2tn_t2, 

2 2 

St = tt: 0, 



d(}(n-l),j(n+l))= (2n+2)y + (n-l)(n+1)8, 

ii) the pairs of SP(O,O,n; w 1) with weights fJ.; 

the information matrix of this design has been given in section 5.2.1. 

iii) the pairs of SP 1 (n-t)(O,O,n; w 1) with weights A; 
2 

the number of these pairs is ( 1 '.:_ 1 )2n , 
"In 1" 

P 3 = ( 1 n '.:_ 1 ) g 1 2n , 
1" 2 

S 3 = 4( r -_2
,) g 1h 1 2n , 

2n 2 

S 3 + t 3 = ( 1 '.:_ 1 ) g th 1 2n , 
yn 2 

Z3 = ( ( 1n'.:. 1)- 2 ( rn-::3)) g1h1 2n 
y 2 1" 2 

The total number of pairs of the design equals 

N = [ 1 + ! ( 1 '.:_ t ) ] 2n • 
.. "In 2 

Recalling the fact that a D-optimal design is 0-optimal, we find 

2(n+2)y +(n-l)(n+1)8= jn(n+3), 

4 y + 2n 8 = n +3, 

8= -4f 
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(5.2.25) 

(5.2.26) 

(5.2.27) 

(5.2.28) 

(5.2.29) 

These are four equations with five unknown variables. As a fifth equation we 

use 

(5.2.30) 

i.e., 

p P1 P2 P3 

s 0 0 S3 
V 

• = 0 fJ. t t2 t3 
A 

(5.2.31) 

z Zt Z2 Z3 
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This yields 

-z3t2+z2t3 Z2 1 

Z1t 2S3 z 1t 2 z1 
V s 

t3 1 
0 t J.L = 

A 
t~3 t2 

z 
1 

0 0 
S3 

Substituting this in.p = P1 V1 + P2 J.L + P3 A , we obtain 

p = z + (-1-- 1)t + (__!_- .!.)s, 
h1 h1 2 

or 

_!_=1..-(_!_-1) € +(_!__1)_!_, 
y 8 h1 o:(o:+nf) h1 2 o: 

(5.2.32) 

(5.2.33) 

(5.2.34) 

The five equations (5.2.26)-(5.2.29), and (5.2.34) can be solved numerically. 

The weights can be computed by means of (5.2.30). The set of pairs of any 

discrete D-optimal design is contained in the union of the sets S C}n -1,-}n + 1) 

and all SP1 (O,O,n; w 1) with 0 ~ l < n • Some results are given in table 5.2. 7. 

5.2.3. Discrete D-optimal designs in the case n = 2, 4 

We give a D-optimal design consisting of 4 sets of the type given in section 

5.2.4. The information matrix of these sets are denoted by (5.2.10). Consider 

the design consisting of 

i) the pairs of S <}n ,jn ) with weights v2 , 

ii) the pairs of SP ( O,O,n ; w 1) with weig~ts J.L , 

iii) the pairs of SP 1 (O,O,n; w 1) with weights A ; 
i" 

results concerning the information matrices of these sets are given in section 

5.2.1 and 5.2.2 , 

iv) the pairs of SP(}n-1,-}n ,1; w 2) with weights p; 

the number of these pairs, say N 4 , equals 

8,ifn=2, 

192 ,if n = 4, 



where 

I 
I 4g2h2J ,ifn=2, 

-----~:---;-------
1 
I 

(384+ 48g 2)1 
I 
I 
I 

------~~-----~-------------
1 48g2h21 I 

______ 1 1,-----------

: : (256+32g2+64h2)J 

82 = (1-w2)2 , h2 = (1+w 2)2 , 
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,ifn=4, 

d<jn-1.jn,1;w2)= 2n y + 82"/ + n(n-2)l> +<jn-1)828 

+ jn h2 8 +a 8lh2 + f 8lh2 · (5.2.35) 

Using similar arguments as in section 5.2.1 and 5.2.2 we flnd the equations 

2 y + n l> = j (n +3) , (5.2.36) 

· 81 Y + j(n-1) 8tht 8 + 8tht a+ n g1h1 f = j(n +3), (5.2.37) 

l) = -4f ' (5.2.38) 

2n y + 82 y + n(n-2)8 +<jn-1)828 

+ jn h2l> +a 8lh2 + f 8lh2 = jn (n +3), (5.2.39) 

1 

- - 1 + 1 [1- 2Y ]l" (5 2 40) 
Wt- ., T a+nf+j(n -l)l) ' · · 

2(a +f) w/ + [(n-l)l> + y- 2(a + f)]w 2 + l>- y = 0. (5.2.41) 

The equations (5.2.36)-(5.2.41) can be solved numerically. Results are given in 

table 5.2. 7, and for n = 2 in figure 5.2.6; the arrows indicate the pairs. In table 

5.2.7 NP denotes the number of pairs of the corresponding subset of E. In the 

row marked with % the total weights of the subsets are given as percentages. 

ND denotes the num;ber of pairs of the design E, and ND equals 

jn (n +l)(n +2)(n +3)(n; +4), the number given in (4.1.4). 
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Figure 5.2.6 . . the case n = 2 
A D-optimal destgn m 

S(1,1) 

v2 = 0.02480 

SP(0,0,2; w1) 

Wt: -0.1,5029 

p. = 0.04621 

A= 0.02975 

W2: -0.12002 

p = 0.07462 

Pairs 

((1 ,1),(1,-1)) 

((1,1),(-1,1)) 

((1 ,1),(-1,1)) 

((1,1),(1,-1)) 

((1,1),(whwl)) 

((-1,1),(-wt.wl)) 

(( 1,-l),(w 1,-wl)) 

((1,1),(-wt.-wl)) 

((1,w 1),(w t.1)) 

((-1,wt).(-w.,1)) 

((1,-w t>.<w t.- 1)) 

((-1,-wt>.<-wt,-1)) 

((l.,1),(-1,w 2)) 

((-1,-1),(1,-w 2)) 

((-1,1),(1,w 2)) 

((1,-1),(-l,-w2)) 

((l,l),(w 2,-1)) 

((- 1,-1),(-w2,1)) 

((1,-1),(w 2,1)) 

((-1,1),(-w2,-1)) 



Table 5.2.7 

Values of constants determining discrete D-optimal designs 

and the information matrices of these designs 

n 2 3 4 5 6 

a 1.933 2.279 2.589 3.015 3.331 

a 0.756 0.618 0.599 0.578 0.563 

'Y 0.494 0.507 0.553 0.510 0.563 

' 
-o.189 -:-().155 -0.150 -0.145 -o.141 

Wt -o.150 -o.118 -0.107 -o.080 -o.078 

W2 0.120 0.018 

det1 0.5541 0.2901 0.1484 0.273710-1 0.577110-2 

lit 0.42510-1 0.40210-2 0.14610-3 

NP 12 160 480 

% 51.0% 64.3% 7.0% 

112 p.24810-1 0.71110-2 0.95210-3 

NP 4 48 640 

% 9.9% 34.1% 60.9% 

p, p.46210-1 0.18910-l 0.67810-2 0.24110-2 0.10610-2 

NP 4 8 16 32 64 

% 18.5% 15.1% 10.8% 7.7% 6.8% 

A [)..298 10-1 0.14110-l 0.49210-2 o.875 1o-3 0.39610-3 

NP 4 24 48 320 640 

% 11.9% 33.8% 23.6% 28.0% 25.3% 

p CJ.7.t6 to-• 0.16410-2 

NP 8 192 

% 59.7% 31.4% 

ND 20 44 304 512 1824 

NiJ 15 45 105 210 378 

1) det = det (M- 1(E)) 
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7 

3.760 

0.559 

0.510 

-o.140 

-o.061 

0.352210-3 

0.32110- 3 

2240 

71.9% 

0.51610_, 

128 

0;007% 

0.10510-3 

4480 

28.1% 

6848 

630 
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5.3. A method to prove the D-optimality of the designs given in section 5.2 

There are two reasons for calling this section "A method to prove the · · ·" 

and not "proof of the · · · ". 

1.. The D-optimality of a design is proved by computing the maximum of the 

variance function. In this section it is proved that this maximum can be found 

by determining the maximum element of a set of -}(n +2)(n +1) numbers. It 

seems not possible to give a general expression for these values. Therefore for 

given n it is necessary to compute all these values. This has been done for all 

n ~ 20. 

2. The values of ex, 8, y and f determining the covariance matrix are computed 

numerically. Therefore statements concerning the proof of the D-optimality 

for given n are numerical results. 

Throughout this section E is a design with covariance matrix of type 4.1.6 and 

(u ,v) denotes a pair where the variance function d (x ,y ,e) is maximal. A neces­

sary and sufiicient condition for D-optimality is 

d (u ,v ,e) = jn (n + 3) . (5.3.1) 

When giving the method to prove the D-optimality of the designs of section 5.2, 

we do not use the condition 8 = -4f until the very end of this section. In that 

way results are achieved that can also be used for the construction of exact 

designs. Using 8 = -4f from the beginning would have made the proof of the 

D-optimality slightly shorter. 

We recall lemma 5.2.2, which we did not prove. 

Lemma 5.2.2 

Let E and (u ,v ) be as defined above. T1um 

I u1 I = 1 or I v1 I = 1 (1 ~ i ~ n) . 

Proof 

Assume that lu1 I < 1 and I v1 I < 1 for some i . Using (3.1.8) and (3.1.9) we 

suppose without loss of generality that i = 1. 

cOnsider 

d1 • d((l,u2·· .. ,u,),v,E), 

d 2 • d((-1,u 2, ••• ,u11 ),v,E), 

d 3 • d ((u ,(l,v2, ••• , V 11 ),E) , 

d 4 ""' d((u,(-l,v 2, ... ,v11 ),e). 

Since d (x ,y ,E) is maximal at (u ,v) we have 

d 1 - d (u ,v ,E) ~ 0 • 



So, 

dt-d = 
n 

= y [(1-v 1)
2

- (u 1-v 1) 2]+ 0 I',[(u1-v 1v1 ) 2 - (u 1u1-v 1v1 )2] 

}=2 

+a [(1-v/)2-(u/-v/)2] 
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+ l 1(1-v/)2-(u/-v/)2 +2 1 ~}(1-vl )(ul-vl)-(u/-vl )(ul-vl)] I 
n 

= y [1-u/-2vt0-ut)1 + 8 I', [u/(1-u/)- 2VtVJUJ(l-ut)J 
}=2 

+a [(1-ut )-lv/(1-ul)] 

n 

+ l [(1-ut )-lv/(1-u/)+2(1-ul) I', (uJ-vl)] ~ 0. 
)=2 

This yields 

n 

y (l+ut-2vt) + 8 I', [(l+ut)u/-2vtUJVJ] + 
)=2 

a h+ut+ul+u/-2v/(l+ut)l 

n 

+l [l+ut+ul +u/-2v/(l+ut)+2(l+ut) I', (ul- vl)] ~ 0. (i) 
)=2 

Similarly we find using d 2- d (u ,v ,E) ~ 0 

n 

y (1-u.+lvt) + 8 I', [(l-ut)u/+2vtuivJ] + 
}=2 

a [l-u.+ul-u[-2v/0-ut)1 

n 

+f [1-ut+u/-u/-2v{(l-utH2(1-ut) I', (uJ- vi')]~ 0. (ii) 
)=2 

From (i) and (ii) it follows that 

n n 

2y + 28 I', ul + 2(a + f)(l+ul-2v/) + 4f I', (ul-vl> ~ 0, 
J=2 }=2 

or 

n 

2(a + f)(l+u/-2vl) + 4f I', (ul-vl> ~ 0. (iii) 
}=2 

Sinced 3-d(x,y,E) ~ Oandd 4-d(x,y,E) ~Owe have 

n 

2(a + f)(1+v/-2ul)- 4£ I', (uJ-vl) ~ 0. (iv) 
}=2 
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From (ill) and (iv) it follows that 

2(a + f)(2-ul-vl> ~ 0, 

Since a + f > 0 this contradicts our assumptions. D 

We have to find a pair (u ,v) where the variance function is maximal. Using 

(3.1.8), (3.1.9) and lemma 5.2.2 we can assume without loss of generality that 

u and v are such that 

u1 = 1 for 

-1 < u1 < 1 for 

v1 = 1 for 

v1 = -1 for 

-1 < v1 < 1 for 

Vj • 1 

1 ~ i ~ kt + k2 + l2. 

kt + k2 + z2 < i ~ n ' 

1 ~ i ~ kt. 

kt < i ~ kt + k2. 

k1 + k2 < l ~ kt + k2 + z2. 

for some k lt k 2• lt and l2 , with k 1 + k 2 + Z 1 + lz = n . 

We define 

k:s:= Zt + l2, 

L 1 := I i I k 1 + k 2 + l2 < i ~ n J , 

L 1 := I i I k l + k 2 < i ~ k 1 + k 2 + h I ' 
K:s := Lt U L2. 

(5.3.2) 

Throughout the rest of this section (u ,v) denotes a pair as defined in (5.3.2). If 

we write v1 = w1 for all i E L 2 , 

and u1 = w1 for all i E L 1 , then u and v can be expressed by 

(5.3.3) 

We give some further results 

Lemma 5.3.1 Let (u ,v) be as in (5.3.3). T1um 

d(u,v,E)=4k2y+y 1: (l-w1 )
2 +41ctk28+kt8 1: (1-w1 )

2 

1€K:s HK:s 

+k28 1: (l+w1 )
2 +81:1: (l-w1 wJ)2 +a 1: (1-w1

2
)
2 

HK:s I,J€K 3 IEK3 
I<J 

+ e [ 1: (1-w,')]2
- (8 + 4f) 1: L (1-w,2)(1-wl). (5.3.4) 

1€K3 1EL 1 JEL 2 
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Proof 

Us!ng (4.1.8) we obtain 

d(u,v,E)=4k2y+y E (1-w;)2 +y E (w;-1)2 +4ktk2S 
1EL 2 iEL 1 

+ktS E (1-w;)2 +k2S E (l+w;)2 +klS E (w;-1)2 

iEL 1 IEL 2 IEL 1 

+k2S E (w1 +1)2 +S E E (w1-w1 ) 2 

IEL 1 iEL 1 JEL 2 

+SEE (~tWJ-1) 2 +SEE (1-w;w1 )
2 +a: E (w1

2-1)2 

i,JEL 1 i,JEL
2 

iEL 1 
t<J I<J 

+ a: E (1-w?)2 + f [Z2+ E w?- (Z1+ E w?)]2
• 

1EL
2 

iEL
1 

i€L 2 

We have 

and 

8 E E [(1-w; WJ ) 2
- (1-w/)(1-w/)], 

IEL 1 JEL 2 

f [ l2+ E w?-(lt+ E w/) ]2 = 
iEL 1 IEL

2 

f [ E (1-w1
2)Jl-4f E E (1-w/)(1-wl). 

iEK3 IEL 1 JEL 2 

Substitution of (ii) and (Hi) in (i) completes the proof. 

Remark 5.3.2 

From lemma 5.3.1 we conclude that 

if S + 4f > 0 , then L 1 = 0 or L 2 = 0 , 

if 8 + 4f = 0 , then L 1 = 0 without loss of generality . 

Lemma 5.3.3 

(i) 

(ii) 

(iii) 

Let (x ,y) lu:Lve the same structure as (u .~ ) in ( 5.5.3) and let k E L 1 , l E L 1 • 

Consider d (x ,y ,E) as function of Wt and w, . Then 

jd~x ,y,E) = -2y + 2(k 2-kt)S + [2y+28 (kt+k2)-4(a + 4k3f)]w~: 
Wt 

+4(a: + f)wl- 28 E WJ + 2(8 + 2f) Wt E w/ 
JEK3 JEK3 
)~k j~k 

+ .2(8 + 4f) Wt E (1-wl), 
J EL 2 

(5.3.5) 
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qd (x ,y ,E) _ 
2

( ) ( ) 
!i - W,t - Wt g W,t ,Wj , 
~;~Wt 

(5.3.6) 

where 

g(w,t,wl) = y + (kt+k2+1) 8- 2(o: + k3~) + l2(8 + 4f) 

+ (w.t2+w.t w,+w1
2)(2o:- 8) + (8 + 2€} L w/- (8 + 4f) L w/. 

JEK 3 JEL 2 

Proof 

The first part follows immediately from (5.3.4). Using (5.3.5) we obtain 

qd~x ,;y,E) - f)d~ ,y,e) = (w,t-w1)[2y+2(kt+k2)()-4(o:+k3€)] 
W,t WJ 

+ 4(wl-wt3
) (o: + E)- 28 (wz-W.t) + 2(8 + 2E)(w,t-Wt) L w/ 

iEK 3 

- 2(8 + 2€}(w.t3-w,3) + 2Z2(a + 4€)(w,t-wz) 

- 2(8 + 4€)(w,t-w1 ) ! w/. 
jEL2 

This yields (5.3.6). D 

Lemma 5.3.3 

Let (u ,v) be as defined in ( 5.3.3) and l 2 ~ 1 . Then for all i with 

kt + k2 < i ~ kt + k2 + l2. 

Y + <k 1+k2> a+ 2t- 2k3 t + z2 <a+ 4f> (5.3.7) 

+ (o: + f)(3w?+21w1 1-1) + (() + 2t}! w/- (a+ 4€)! w/ ~ 0. 
JEK 3 JEL 2 
)FI 

If a + 2f ~ 0 and t ~ 0 'then I W; I < ~ . (5.3.8) 

Proof 

Without loss of generality we choose i = k 1 + k 2 + 1 and W.t 
1
+.t 

2
+ 1 is denoted 

by w. Consider d 2 = d(u,v,e), where v is defined by V'.t
1

+.t
2

+ 1 = 1 and 

v1 = v1 for j ;C k 1+k2+l. Using (5.3.4) we get 

d2= 4(k2+1)y+y! (1-w1 )
2 +4k 1(k 2+1)a+k 1 a! (1-w1 )

2 

JEK3 JEK 3 
jFI )Fi 

+(k2+1)a! (l+wJ)2 +8 
JEK 3 

j Fi 

r.r 
JEK3 .tEK3 

j Fl ,k Fi ,j <k 

(1-WjW.t )2 + 0: L (l-wl)2 

JEK3 
}Fi 

+ f [ L (1-wl} J2
- (() + 4f) L L (1-w/)U-wl), 

JEK3 JEL
1 

.tEL 2 
jFi )FI k Fi 
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and therefore 

d2- d(u ,v,E) = 4y- y(1-w )2 + 4k1 & - k1& (1-w )2 - k2 &O+w )2 

+ & L (l+wJ)2 - & L (l-w;wJ)2 - (a+ 0(1-w 2)2 

}EK 3 JEK 3 
jo'; jo'; 

+ (l} + 4f)(l-w 2) L (1-w/)- 2{(1-w 2) L (1-w/). 
iEL 2 JEK 3 

jo'i 

Using d 2 - d (u ,v ,E)~ 0 and 1+w > 0 we obtain 

y (3-w) + k 1 & (3-w)- k2 & (1+w)- a (1-w )(1-w 2) 

- £ [(1-w )(l-w 2) + 2(k3-1)(1-w )] + & L [(1-w )w/ + 2wJ] 
JEK 3 
}>'I 

+ 2{ (1-w) L w/ + (l} + 4{)(1-w) L (1-w/) ~ 0. 
JEK 3 JEL 2 
jo'i 

Using the fact that (u ,v) is a pair where d (x ,y ,E) is maximal, we may add 

I 
8d (x ,y,E) I 

aw l(x ,y) = (u ,v) 

to the left side of the last inequality. It follows that 

'Y + 'Y w + (k1+k2)& + (k 1+k 2)& w +(a+ £)(-1-3w+w 2+3w 3). 

-2(k 3-l) £ (l+w) + [& (1-w) + 2{ (1-w) + 2(& + 2f}w] L w/ 
JEK3 

+ [(l} + 4£}(1-w) + 2(8 + 4{)w] L (1-w/) ~ 0. 
}EL2 

This yields, again using 1 + w > 0 , 

jo'l 

y + (kt+k2) & +(a+ {)(3w 2-2w-1)-2(k3-1) € + Z2(8 + 4{) 

+ (8 + 2€) L w/- (l} + 4{) L w/ ~ 0. 
JEK 3 JEL 2 
jo'i 

Consider d 1 = d (u ,v ,E) , where u is defined by 

ui = 1 for 1 ~ j ~ k 1 + 1, 

ui = -1 fork 1 + 1 < j ~ k 1 + k 2 + 1 , 

and 

(i) 
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Analogously we find 

y + (k 1+k 2) 8 + (a + f)(3w 2+2w -1)- 2(ka-1) E + l2(8 + 4g) 

+ (8 + 2f) r. w/- (o + 4g) r. w/ ~ 0. 
JEK 3 JEL 2 
j-i . 

(ii) 

Use of expressions (i) and (ii) and of the conditions 8 + 2f ~ 0 and f ~ 0 

completes the proof of (5.3.7). Now it follows that 

because 

(a+ f)(3w 2+21w 1-1) ~- y- (kt+k2)o + 2(ka-OE- l2(8 + 4f) 

- (8 + 2f) r. w l + (8 + 4l) r. w l 
JEK 3 JEL 2 
J-1 

=- y- (kt+k2) 8 +2(ka-Z2-1) f- Z2(o + 2f}- (o + 2£) L wl 
' JEK 3 

j-1 

8 + 2f ~ 0 , y > 0 , f ~ 0 and 8 > 0 . 

Since a + f > 0 we have 

3w 2 + 2 I w I - 1 < 0 , 

(31w 1-l)(lw 1+1) < 0, 

lw I<}· 

Now we can prove a theorem that is important in proving the D-optimality of 

the designs of section 5.2. 

Theorem 5.3.4 

Let E be a design with covariance matrix of type (4.1.6) and let (u ,v) be a pair 

where the variance function is maximal, having the structure of(5.3.2). 

If 

8+2f~O,f~Oanda-28~o. 

then 

Ut = u; for all k 1 + k 2 + l2 < l ,j ~ n , 

v., = v, for all k 1 + k 2 < k ,l ~ k 1 + k 2 + Z 2 • 
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Proof 

Let l> + 2f ~ 0 , f ~ 0 and a:- 20 ;;?; 0 . We prove that u1 = u 1 for all 

k 1 .+ k 2 + l 2 < i ,j ~ n , or in the notation of (5.3.3) that w1 = w 1 for all 

i ,j E L 1. Consider the function g ( w1 ,w 1 ) defined in (5.3.6). Using (5.3. 7) we 

find 

g(w;,w1 ) ~ y + (kt+k2+1) l>- 2(o: + k3f) + l2(o + 4f) 

+ (w?+w; Wj +w/)(20:- 0) + (0 + 2f) L Wz2 - (0 + 4f) L W1
2 

IEK3 IE£ 2 

- 'Y- (kt+k2) 0 + 2(k3-1)'- z2 (8 + 4f)- (a:+ f)(3w; 3+21w; 1-1) 

- (8 + 2f) L w,2 + (8 + 4f) L w? 
1EK3 IE£ 2 
1,..1 

= l>- (a:+ f)- (a:+ f) w/- 2(o: +f) lw1 I+ (2o:- 8) w1w 1 

+ (2o:- 8) w/ = :h(w1 ,w1 ). 

Using (5.3.8) we obtain I w1 I ~ } and I w 1 I ~ } . The function h (w1 ,w J) is 

maximal for w1 = 0 and w 1 = } . This yields 

g(w~ow 1 ) ~ o- (ex+ f)+ j (2o:- 8) =-~a:+ ;o-f 

= - j[7(o: - 28) + i (8 + 2f) + jl>l < 0. 

From (5.3.6) and the fact that 

( 
od (x ,y ,E) - od (x ,;y ,E) I -0 

ow; aw, (x ,y) = (u ,v)- ' 

it follows that 

w1 = w 1 for all i, j E L 1 • 

Use of (3.1.8) and (3.1.9) proves that 

wk = w 1 for all k , l E L 2 • 0 
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Lemma 5.3.5 

Let (x ,y) have the same structure as (u ,v) in (5.3.3) and let 

Then 

X; = w 1 for all i wlth k 1 + k 2 + l2 < i ~ n , (5.3.9) 

Y; = w 2 for all i with k 1 + k 2 < i ~ k 1 + k 2 + la • 

d(x ,y,E) = 4ka y + lt )' (1-wt)2 + l2 y (1-w2)2 + 4ktk2 6 

+ ktlt & (1-w1)2 + ktl2 & (1-w2)2 + k2l1 & (1+wt)2+ k2l2 & (1+w2)2 

+ l1l2 & (wt-w2)2 + (l~) & (1-w{)2+ (~) & (1-w/)2 + Zt a: (1-wf)2 

+ l2 a: (1-w/ )2+ [Zt (1-wl)- l2 (1-wj ))2 f. (5.3.10) 

lf Wt and w2 are such that the function given in (5.3.10) is maximal at Wt and 

w2, then 

w/' [4(~) & + 4l1 a: + 4l? f] (5.3.11) 

•· Proof 

+ W; [2l, y + 2(kt+k2)l, & + Zl;lj & - 4(~) & - 4Z, a:- 4lt2 E 

+ 4l,lJ f (1-w/)]- 2l; )'- 2ktlt & + 2kal1 6- 2ltlJ & wi = 0, 

for (i ,j) = (1,2) and (i ,j ) = (2,1) . 

It is easy to show that (5.3.9) holds by using (5.3.4). Equation (5.3.11) can be 

proved by using the fact that (u ,v) is a pair where d (x ,y ,E) is maximal. So 

I 
qd(x ,y,E) I = 

QWt l(x ,y )= (u ,v) 

I 
qd(x ,;y,E) I = O. 

QW2 l(x ,y )= (u ,v) 
0 

In view of lemma 5.3.5 it is useful to give the following definition. 

Definition 5.3.6 

Let k 1, k 2, lt and l 2 be fixed. The maximal value of the functions given in 

(5.3.10) is denoted by d (kt,k2,Z~tZ2; E). 

Now it is possible to prove that the designs E given in section 5.2 are D-optimal. 

The procedure is as follows. It is sufficient to prove that d (x ,y ,E) ~ jn (n +3). 

If the conditions & + 2f ~ 0 , f ~ 0 , and a: - 2& ~ 0 are satisfied, then one 

just has to consider the pairs (u ,v) as defined in theorem 5.3.4. The values 

d (k ~tk 2,ll>l 2 ; E) can be computed by use of lemma 5.3.5. The maximal value of 

d (x ,y ,E) can be found by computing these values for all combinations 

(khk2,Z 1,Z2) with k 1 + k 2 + Z1 + Z2 = n . This seems a rather cumbersome 

task.. 
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However, many combinations can be omitted using trivial arguments. If 

5 - 4f, then the combinations (k 1t k 2, 0, k 3) have to be investigated. In that 

case w 2 satisfies the equation 

w~ [2(ks-0 S + 4(a + k3 f)] 

+ w2 [2y + 2(kt + k2) 5- 2(k3-l) S -4(a + k 3 E)] 

-2y + 2(k2-kl)5= 0. 

If k 1 = k 2 = 0, then 

1 

w2=- 1 + 1 [1-
2

Y f2 • 
2 2 a+nf+-}(n-1)5 

Theorem 5.3. 7 

The designs E given in section 5.2 in table 5.1.7 are D-optimal. 

Proof 

(5.3.12) 

(5.3.13) 

The procedure given above is used. The conditions 5 + 2E ~ 0 , E ~ 0 and 

a- 25 ~ 0 hold. Moreover 5 = -4E . This means that the maximal value of 

d(x,y,E) is equal to one of the values d(k 1,k 2,0,k 3;E). By computing these 

values one finds that the variance function is maximal at the pairs of the design 

E and that the maximal value is equal to -}n(n +3). 0 

5.4. Reduction of the number of pairs of discrete D-optimal designs 

The number of pairs ND of the design given in table 5.2. 7 is large com­

pared to the number ND given in that table. We recall these numbers here 

Table 5.4.1 

Number of pairs of the D-optimal designs given in section 5.2 

2 3 4 5 6 7 

20 44 304 512 1824 6848 

15 45 105 210 378 630 

According to theorem 2.3.6 ND is such that a D-optimal design exists with m 

pairs and such that m ~ ND . As can be seen in table 5.4.1 it is possible to 

reduce considerably the number of pairs of the designs given in section 5.2 , 

especially when n is large. When n = 3 the number of pairs is smaller than 

ND. Therefore we will exclude this case. In section 5.4.1 aD-optimal design for 

n = 2 is given with 15 pairs. Section 5.4.2 contains some general remarks and 

results. In section 5.4.3 and 5.4.4 we discuss the cases n = 5 and n = 4. 
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5.4.1. A discrete D-optimal design with 15 pairs when n = 2 

. As a result of the proof of the D-optimality of the design given in section 

5.2, the set of pairs of any discrete D-optimal design is contained in the set of 

20 pairs of the D-optimal design given in that section. These 20 pairs are given 

in figure 5.2.6. The information matrix M of a discrete D-optimal design is 

denoted by (4.1.5). We shall construct a D-optimal design with 15 pairs by 

choosing new weights 'f 1 , 1 ~ i ~ 20 in such a way that five of them are zero, 

whereas 0 ~ i 1 ~ 1 for all i with 1 ~ i ~ 20. 

Further 

20 

E 'f; = 1 
' 

(5.4.1) 
i=l 

and 

20 

E 'rjM(Et) = M, (5.4.2) 
1=1 

where M (E1 ) is the information matrix of the i -th pair of the design. The pairs 

are numbered in the order in which they are given in figure 5.2.6. So the pair 

((1,1),(1,-1)) is given number 1 and weight "" and the pair 

((-1,1),(-w:"-1)) is given number 20 and weight T 20, etc. We define 

M= (Mu,M22,Mss.M·n.M+t.M3<1,M12,Mt3•Mt4.Mn,M24• 

(5.4.3) 

so 

M = (p ,p ,z; ,s +t ,s +t ,t ,o,o,o,o,o,o,o,o,o)' , (5.4.4) 

and 

(5.4.5) 

Now the equation (5.4.2) can be rewritten as the following system of 15 equa­

tions 

M= B r, (5.4.6) 

where 
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p 4 4 0 al (1 1 1 1 1 1 1 1 4(1 1 1 1) a/ ( 1 1 1 1) 

~ 0 0 4 al(l 1 1 1 1 1 1 1 a/ (1 1 1 1) 4( 1 1 1 1) 

~ 4 4 4 albl (1 1 1 1 0 0 0 0) bj(l 1 1 '1) bj ( 1 1 1 1) 

albl (1 1 1 1 1 1 1 1 0 a/b/ ( 1 1 1 1) 

a/b((l 1 1 1 1 1 1 1 a/bl (1 1 1 I) 0 

albl (1 1 1 1 -1 -1 -1 -1) 0 0 

a/(0 0 0 0-1 1 1 -1) 2a2(1 1 -1 -1) 2a2(-1 -1 1 1 

B= alb1(1 -1 1 -1 1 -1 1-1) 0 a?b2( 1 -1 1 -1 

alb1(1 -1 1 -1 -1 1 -1 1 i2aP2<1 -1 -1 1) 0 

alb1(1 -1 -1 1 -1 -1 1 1 0 2a2b2(-1 1 1 -1 

albt(l -1 -1 1 1 1 -1 -1) a/b2(1 -1 1 -1) 0 

D 4-4 0 2b2(1 -1 1 -1) ap2(-1 1 1-1) 

4 00-4 ap2(1 -1 1 -1) 2b2( 1 -1 1 -1) 

a/bl(l 1 -1 -1 0 0 0 0 0 a~/(-1 -1 1 1) 

a/b{(1 1 -1 -1 0 0 0 0 a 2b/(1 1 -1 -1) 0 

with a; = ( 1-w; ) and b; = ( 1 + w1) , i = 1,2 . By investigating the structure of 

the information matrix, one can show that the first 6 of these 15 equations are 

equivalent with the following 6: 

T 1 + T" = 2v , 

1" s + 1" 6 + 1" 7 + 1" 8 = 4p. ' 

1"9 + Tto + Tu + 1"12 = 4A , 

1"13 + 1"11 + T1s + 1"111 = 4p , 

1"17 + Tts + 1"19 + 1"20 = 4p, 

(5.4.7) 

where v, p., A and p are the weights corresponding to the discrete D-optimal 

design given in section 5.2. From this it follows that for any D-optimal design 

at least one of the pairs of each of the 6 subsets, defined by the 6 equations 

above, has a positive weight. From (5.4. 7) it is clear that condition (5.4.2) is 

satisfied. Now we have a set of 15 equations -the 6 equations of (5.4. 7) and the 

last 9 equations of (5.4.6)- in 20 variables 1' 1 • 
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We choose 1 3 = 1 4 = 1 6 = 1 10 = 1 11 = 0. Then we obtain 

1 1 = 2v = 0.04960 , 

1 2 = 2v = 0.04960 , 

1 3 = 0 , 

1 4 = 0, 

(1 +v1)2 _ 

1 5 = 2p. - 2A [4 ( )2 - 1] 1 = 0.04673 , 
l+v2 

[ 
(l+vJ)2 ]-1 

.,. 7 = 1 8 = p. + A 4 ( )2 - 1 = 0.06906 , 
1+v 2 

8v(l-v2)2 

19 = - P. 
(1- V t)(1-v 1)

2(3- V 2)( 1 +V 2) 

+A [2 + (4 ~ 1 +v 1 ~: - o-1
] = 0.07850 , 

1+v2 

-8v(1-v2)2 

'1' 12 = -:-(1---v-:- 1 )-:-(1---v-71)~ 2 (::-3--::.;,v_2-:-)(::-1-+-v-2-:-) + p. 

+ A [2- (4 (
1 
+v1)

2 

- 1)-1] = 0.04050 
(1+v2)2 

' 

2v (1-vt)(l-v1)2 

'l'ts = 1t9 = p- (l+v2)2 + p. 2(1-v2)2 

- A (1-vt)(l-v1)2 1 = 0.02864 
2(1-v2) 2(l+vl)-(1+v2) 

111 = 113 = p-

+A 

2v (1-v't)(l-vt)2 

f'ts = 1"14 = p + ....,....-=-...,-:o + p. ----,-..:;._--:~-
(1+v2)2 2(1-v2)2 

+A 
(l-v1)(1-vt)2 

2(1-v2) 

1 = 0.12309 
2(1+vl)+(l+v2) 
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All weights are between 0 and 1. So, we have found a discrete D-optimal design 

with 15 pairs. However, this design is not very useful for the construction of 

exact designs: the weights have 9 different values, whereas in an exact design 

consisting of these 15 pairs all these pairs have the same weights. The informa­

tion matrix of such a design does not have the structure given in (4.1.5). 

5.4.2. Half-replicates and quarter-replicates of S((u ,v)). 

In this section some general remarks are made concerning the reduction of 

the number of pairs of the designs of the type given in section 5.2. We shall con­

sider the reduction. of the number of pairs of the setS ((u ,v)) in general and of 

the set S (k 1,k 2) in particular. As we have seen in (4.2.16), there is a relation 

between the design matrix of the set S((u ,v )) and the design matrix of a 2n­

factorial experiment, where all interactions between three or more factors are 

assumed negligible. The method to construct fractional factorial experiments can 

be used to reduce the numbers of pairs of S((u ,v )) as follows. Let a half­

replicate of a 2n -factorial experiment exists, for which all main effects and all 

two-factor interactions are clear of one another. Now, by using the expressions 

(4.2.16) and (4.2.18) it is easy to see that a design can be constructed consisting 

of 2n-l pairs of S((u ,v)) and having an information matrix equal to 

{M ((u ,v )) • The designmatrix i5 of this set of 2n-l pairs is 

i5 = X1(n) (U- V) • (5.4.8) 

Here U and V are as defined in (4.2.17) and X1(n) consists of the rows of 

X 1(n) which are related to the pairs chosen in the half-replicate of the 2n­

factorial. A method to construct fractional factorial experiments is given in 

chapter 10 of Davies (1963). As is pointed out there a relation exists between 

fractional factorial experiments and confounding. When a design is confounded 

in blocks, any block constitutes a fractional factorial design and any block can 

be obtained by applying a set of defining contrasts. So, when a design is con­

founded in four blocks any block constitutes a quarter-replicate. However, some 

effects and (higher-order) interactions are confounded. To construct a half­

replicate of S((u ,v )) it is necessary to construct a half-replicate for which all 

main effects and all two-factor interactions, which are measured in the set 

S ((u ,v )), are clear of one another. A half-replicate of a 2n -factorial experiment 

for which all main effects and (l) two-factor interactions are clear of one 

another can be found for n ;?;. 5. We give the defining contrast of the principal 

block of the corresponding confounded design for n = 5, 6, 7. See also chapter 

10 of Davies (1963). 
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Table 5.4.2 

Defining contrast of a half-replicate of a 2 11 -factorial,for which all 

main effects and all two-factor interactions are clear of o.ne another 

n Defining Number Principal block 

contrast of pairs 

5 1,-ABCDE 16 All treatment combinations for 

6 I, ABCDEF 32 which the number of letters con-

7 1,-ABCDEFG 64 stituting that combination is even. 

When n = 5, the principal block, for example, consists of (1), ab, ac, be, ad, bd, 

cd, ae, be, ce, de, abed, abee, abde, acde, bede. 

Remark 

We did not discuss the matrix K in X 1(n ), which might disturb the ortho­

gonality of the design matrix of the half-replicate of S ((u ,v )). However, a 

column of K consists of + 1 's, and therefore it is orthogonal to the other 

columns of the design matrix of the half-replicate of the 211 ~factorial, each 

column having the same number of +1's and -1's. Actually, a column of the 

matrix K plays the same role as the constant factor in the 211 -factorial experi­

m~ D 

One might be tempted to construct a quarter-replicate of a 2 7-factori•l experi­

ment. Since the number of main effects and two order-interactions is equal to 

28, which is less than 32, a quarter-replicate might be found for which the main 

effects are clear of one another. However, this is not possible. Choose for exam­

ple as defining contrasts I, ABCDE, DEFG, ABCFG. Note that the product of 

ABCDE and DEFG is equal to the last defining contrast where 1)2 = E2 = 1, as 

usual. It is dear that we cannot do better than this, because if a letter is added 

to the four-factor interaction the product with one of the other will be a four­

factor interaction. So in every set of defining contrasts a four-factor interaction 

is contained. This means that 3 two-factor interactions are confounded with 3 

other two-factor interactions. In this case DE== FG, DF = EG and 00 = EF. 

Let us now consider the reduction of the number of pairs of S (k 1 ,7c 2). In general 

the number of pairs of a half-replicate of S((u ,v )) is 211
-

1
• However, if 

I u; I = I v1 I = 1 for all i, 1 " l " n , then the number of pairs of S((u ,v )) 

is equal to 2n-t since all pairs occur twice. So at first sight it seems that nothing 

has been gained. However, by investigating the design more carefully, some 

results can be achieved. We shall discuss this for n = 5, 6 and 7. S(k 1,k 2) con-

sists of <f:
1

) sets of the type S((u ,v )), where lu1 I = lv; I = 1 for all 

i, 1 " i " n. We apply the method described above to construct half-replicates 
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of the sets S (k 1 ,k 2) • 

i). First we consider the case n = 5. 

We use the defining contrasts given in table 5.4.2 to obtain half-replicates of 

the sets S ((u ,v)) of which S (k ~tk 2 ) is composed. By investigating these 

half-replicates of the sets S ((u ,v )) we see that in the case of S (1,4) and 

S (3,2) all pairs occur twice in these half-replicates, since all treatment com­

binations with an even number of letters occur in the principal block. The 

other treatment combinations occur in the second block. The objects of any 

pair of S(1,4) or S(3,2) are elements of the same block. For example (1) and 

ab occur in the· principal block and the pair ((t),ab) is a pair of S (3,2). So, 

by the method described above a half-replicate of S(l,4) and of S(3,2) is 

obtained. In the case of S(0,5), S(2,3) and S(4,1) the objects of the princi­

pal block are compared with objects of the second block. Therefore, in these 

cases the number of pairs is not reduced by using this half-replicate. It is 

possible to reduce the number of pairs of S (0,5) by using a quarter-replicate 

of a 25-factodal experiment, defined by the contrasts I, -BCE, -ADE, ABCD. 

In this quarter-replicate all main effects are clear of one another, but they are 

confounded with two-factor interactions. This does not affect the structure 

of the information matrix of the design, because two-factor interactions are 

not measured in S(0,5). It is not possible to reduce the number of pairs of 

S (2,3) by reducing the numbers of pairs of each subset S ((u ,v )) of which it 

is composed without confounding some main effects or two-factor interac­

tions, which are measured in this set, with one another. However, it is possi­

ble to reduce the number of pairs of the set S (2,3). This will be shown in 

section 5.4.3. 

ii) n = 6 

We consider the sets S (k t.k 2) and the sets S ( (u ,v ) ) of which is composed. 

Using the defining contrast given in table 5.4.2 one can obtain half-replicates 

of the sets S ((u ,v )). By investigating these half-replicates it can be seen 

that in the cases S(0,6), S(2,4) and S(4,2) pairs occur twice in these half­

replicates. The objects of any pair of these sets occur in the same block. This 

does not hold in the cases S(l,5), S(3,3) and S(5,1). In these cases other 

defining contrasts have to be used. Consider the defining contrasts I, -ABCDE. 

All main effects and two-factor interactions are clear of one another. The 

principal block consists of the treatment combinations mentioned in table 

5.4.2, together with all treatment combinations that can be found by multi­

plying these combinations by f. Using these defining contrasts to construct 

half-replicates of the set S((u ,v )) where u = (-1,-1,-1,-l,-1,-1)' and 

v = (-l,l,l,l,l,l)', we obtain half-replicates in which all pairs occur twice. 

The objects (1) and bcdef, for example, are elements of the principal block, 

and the pair ( (1), bcdef) is · an element of the set 

S((-1,-l,-l,-l,-1,-1),(-1,1,1,1,1,1)). Similarly, using e.g. I,-ABCDF as 

defining contrasts, one can obtain half-replicates of other subsets S((u ,v )) of 

S (1,5) in which all pairs occur twice. So, we have found a half-replicate of 
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S (1,5) . The same defining contrasts yield a half-replicate of S (3,3). There­

fore, summarizing the results in the case n = 6, we have found half­

·replicates for all S (k 1,k 2) -cf. table 5.4.3. 

iii)n = 7 

We consider the quarter-replicate of a 27-factorial experiment given at the 

beginning of this section, with defining contrasts I, -ABCDE, DEFG,:-ABCFG. 

It consists of the treatment combinations: · 

(1), ab, ac, be, de, abde, acde, bcde, adf, bdf, cdf, abcdf, aef, bef, cef, abcef 

and all treatment combinations obtained by multiplying these combinations 

by fg, where f2·= 1. In this quarter-replicate all main effects are clear of 

two-factor interactions, but three two-factor interactions are confounded 

with three other two-factor interactions: DE=FG, DF=EG and DG=EF. How­

ever, the sets S((u ,v )) of which the set S(k t.k 2) is composed, measure k: 1 

main effects and k 1k 2 two-factor interactions. Therefore this quarter­

replicate yields a quarter-replicate of the set S ((u ,v)) with 

u = (-1,-1,-1,-1,-1,-1,-1)' and v = (-1,-1,-1,1,1,1,1)', in which all 

main effects and two-factor interactions, that are measured, are clear of one 

another. Moreover, all pairs occur twice in this set. Using similar defining 

contrasts for the other subsets, a quarter-replicate can be obtained of S (3,4). 

Similar methods yield quarter-replicates of the sets S (k: 1 ,k 2), the case 

S (3,4) being the most difficult one, because 16 main effects and two-factor 

interactions are measured in this set. 

In table 5.4.3 some results of this section are given. 



Table 5.4.3 

Summary of results concerning the reduction of the 

~umber of pairs of S((u ,v )) and S(kl>k 2 ) 

Set Number of pairs 
Number of pairs 

after reduction 

S((u ,v )) 
2n 2n-1 

with n ~ 5 

S(O,S) 16 8 

S(1,4) 80 40 

S(0,6) 32 16 

s (1,5) 192 96 

s (2,4) 480 240 

S(3,3) 640 320 

S(0,7) 64 16 

S(1,6) 448 124 

S(2,5) 1344 336 

S(3,4) 2240 560 
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5.4.3. Reduction of the number of pairs of discrete D-optimal designs for 

n=4andn=5. 

We consider the discrete D-optimal designs given in section 5.2. First we 

discuss the reduction of the number of pairs when n = 5. 

The design given in section 5.2 consists of 

i) S (2,3) with 10 24 = 160 pairs, 

ii) SP(0,0,5; w 1) with 25 = 32 pairs, 

iii) SP2(0,0,5; w 1) with 1025 = 320 pairs. 

By the method given in section 5.4.2 half-replicates can be found of 

SP(0,0,5; w 1) and SP2(0,0,5; w 1). This yields a D-optimal design with 336 

pairs. But a further reduction of the number of pairs is possible. First we con­

sider the set SP2(0,0,5; w 1). This set consists of the following subsets: 
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St = S((w~owbwl> 1, 1),( 1, 1, 1,wbwt)), 

S2 ·= S((wltwh 1,wt, 1),( 1, l,wt, 1,wt)), 

s3 = S((wbWt. 1, l,wt).( 1, l,Wt,Wt, 1)) I 

S,. = S((wt. 1,wt.Wt, 1),( 1,wl, 1, 1,wl)), 

Ss = S((wh 1,w1, 1,wt),( 1,wt, l,w1, 1)), 

S 6 = S ((w 1t 1, 1,w 1,w t),( 1,w 1,w 1, 1, 1)) , 

s1 = S(( 1,whWt,Wt, 1),(wl, 1, 1, 1,w.))' 

Sa = S(( 1,Wt.WJ, 1,wl),(wt, 1, 1,wt, 1)), 

s'J = S(( 1,Wt. 1,Wt,WJ),(w,, l,WJ, 1, 1)) I 

Sto = S(( 1, 1,w.,wt,Wt),(wt,Wt, 1, 1, 1)), 

Each set S1 consists of 32 pairs. A quarter-replicate of each set can be found by 

using the defining contrasts I, CDE, ABD, ABCE. The following quarter­

replicates of a 25-factorial experiment are obtained by using these defining con­

trasts: 

(I): (1), ab, acd, bed, ce, abee, ade, bde. 

Defining contrasts I, -CDE, -ABD, ABCE . 

(II): a, b, cd, abed, ace, bee, de, abde . 

Defining contrasts I, -CDE, ABD, -ABCE . 

(Ill): c, abe, ad, bd, e, a be, acde, acde, bcde . 

Defining contrasts I, CDE, -ABD, -ABCE. 

(IV): ac, be, d, abd, ae, be, cde, abcde . 

Defining contrasts I, CDE, ABD, ABCE. 

In these blocks come main effects and two-factor interactions are confounded: 

C=DE,D=CE-AB,E=CD,A=BD,B=AD,AC=BE,AE=BC. 

All other maiu effects and two-factor interactions are clear of one another and 

of the main dects and interactions given above. We compute the information 

matrices M<o• Moo. Mou> and Mov>· If all main effects and two-factor interac­

tions would have been clear of one another, then the result would have been 

I 

I+J 

I 

where i = I , II, Ill, IV. Now, due to the fact that some main effects and 

two-factor interactions are confounded, we have 

I (M (1)),. .z I = 8 ,for i = I , 11 , ID , IV . 

where 

(k ,l )El (3,20),(4,19),(4,11),(11,19),(5,16),(1,15),(2,14),(12,18),(13,17) I . 

The signs of (M (l))k ,1 are given in the following table. 



Table 5.4.4 

Signs of (M(i))k 1 

(k,l) i:I 11 

(13,17) + -

(12,18) + -
(11,19) + -

(4,11) - + 
(2,14) - +. 

(1,15) - + 
(5,16) - -
(4,19) - -
(3,20) - -
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Ill IV confounded effects 

- + BC,AE 

- + AC ,BE 

- + AB ,CE 

- + D,AB 

- + B,AD 

- + A,BD 

+ - E,CD 

+ - D;CE 

+ - c;DE 

These signs can be found as follows. (M (i ))13,17 is related to BC and AE, which 

are confounded. The defining contrasts of (I) are I, -CDE, -ABD, ABCE. There­

fore, BC= AE and (M(I))13,17 = +8. Similarly we find (Moo)13,17 = -8. Now 

we can compute the information matrices M 1 of quarter-replicates of S1 • We 

define 

+ 1 ,if the quarter-replicate (i ) or (j ) is chosen , 

(5.4.9) 

-1 ,if not (i ) or (j ) is chosen. 

The expression (4.2.16) can be used to compute M 1 • We find for example for S 1. 

So 

and 

u-v = (wl-1, WJ-1, Wt-1, 1-w1,1-wl I w(-1, w(-1, w(-1, 

1-w(, 1-w( I w(-1, w(-1, w(-1, 0,0,0,0,0,0,1-w/)', 

(M 1)13,17 = 0 , 

(M 1)4,11 = 8(1- w 1)( w ( -1 >5u,m , 

(Mth,20 = 8(wt-1)(1-w( )Sm,Jv. 

In table 5.4.5 the signs are given of the elements of M 1 which are of interest. 
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Table 5.4.5 

Signs of the important elements of Mi 

i (13,17) (12,18) (11,19) (4,11) (2,14) (1,15) (5,16) (4,19) ~3,20) 

1 On,1v Om,1v 
2 -OI,IV -On,IV -8n,IV -OII,IV Bnuv 

3 On,tv Om,1v 
4 -Ot,IV On,1v Om,1v 

5 On,1v sn, .. v 

6 -OI,IV On,rv Om,1v 
7 -OI.JV On,Jv Om,1v 

8 On,1v Om,1v 

9 -OI,IV On,lv Om,tv 
10 -OI,IV On,1v -Om,IV -Om,IV -Om,IV 

Now we choose the following quarter-replicate of Si. 

Table'5.4.6 

Choice of quarter-replicate of Si 

1 2 3 4 5 6 7 8 9 10 

quarter-replicate (j) I I I I IV I Ill II Ill II • 

As can be seen by inspecting table 5.4.5 we have constructed a quarter-replicate 

of SP2(0,0,5; w 1) for which the information matrix is equal to {MP2(0,0,5;w 1). 

A similar method can be used to reduce the number of pairs of S (2,3) which 

consists of 160 pairs. First we consider the sets 

Tt "'S((-1,-1,-1, 1, 1),( 1, 1, 1, 1, I)) ' 

T2 = S((-1,-1, 1,-1, 1),( 1, 1, 1, 1, 1)) ' 

T3 = S((-1,-1, 1, 1,-1),( 1, 1, 1, 1, 1)) • 

T,. = S((-1, 1,-1,-1, 1),( 1, 1, 1, 1, 1)) ' 

Ts · = S((-1, 1,-1, 1,-1),( 1, 1, 1, 1, 1))' 

T6 = S((-1, 1, 1,-1,-1),( 1, 1, 1, 1, 1)) ' 

T1 = S(( 1,-1,-1,-1, 1),( 1, 1, 1, 1, 1)) ' 

Ts = S(( 1,-1,-1, 1,-1),( 1, 1, 1, 1, 1)) ' 

T'J = S(( 1,-1, 1,-1,-1),( 1, 1, 1, 1, 1)) ' 

Tto = S(( 1, 1,-1,-1,-1),( 1, 1, 1, 1, 1)) ' 

In each of these sets every pair occurs twice. A quarter-replicate 

(1), (Il), (Ill) or (IV) of each set T1 is chosen: In a similar way as in the method 

described above we find for the signs of the important elements of the informa­

tion matrices M 1 of the quarter-replicates: 
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Table 5.4.7 

The signs of the important elements of M 1 

i (13,17) (12,18) (11,19) (4,11) (2,14) (1,15) (5,16) (4,19) (3,20) 

1 Su,Jv On,1v 

2 OJ,tV OJ.JV 

3 Ou,tv On,tv 

4 s,~v lh.tv Ou,1v On,Jv Om,1v Om,Jv 

5 Om,Jv Sm,tv 

6 SI,IV OJ,IV On,1v On,1v Om,Jv Stn.rv 
7 OJ,IV Ot,IV Su,tv On,1v Ota.rv Om,Iv 

8 Om,1v Oua.JV 
9 01,1V 01,JV Su,av Ou,Jv Om,1v Onuv 
10 OJ,IV OJ,IV 

Now we choose the following quarter-replicate of T1 • 

Table 5.4.8 

Choice of quarter-replicate of T1 

1 2 3 4 5 6 7 8 9 10 

quarter-replicate (j) I I II Ill II II I Ill IV IT 

This yields a half-replicate of S(2,3). We have found a discrete D-optimal 

design consisting of 

i) a half-replicate of S (2,3) 80 pairs , 

ii) a half-replicate of SP (0,0,5; w 1) 16 pairs, 

iii) a quarter-replicate of SP 2(0,0,5; w 1) 80 pairs, 

In total : 176 pairs . 

This number is smaller than 210, the number NiJ given in table 5.4.1. 

Now we consider the case n = 4. 

The design given in section 5.2 consists of 

i) S (2,2) with 6 23 = 48 pairs , 

ii) SP(0,0,4; w 1) with 24 = 16 pairs, 

iii) SP 2( 0,0,4; w 1) with 3 24 = 48 pairs , 

iv) SP(l,2,1; w 2) with 12 24 = 192 pairs, 

In total : 304 pairs . 

First we consider the set SP(1,2,1; w 2). This set consists of the following sets: 
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St = ((1,1,1,1),( 1,-1,-1, w2)), 

s2 '!" ((1,1,1,1),(-1, 1,-1, w2)), 

s3 = ((1,1,1,1),(-1,-1, 1, w2)), 

S 4 = ((1,1,1,1),( 1,-1, w 2,-1 )), 

S 5 = ((1,1,1,1),(-1, 1, w 2,-1 )), 

s6 = ((1,1,1,1),(-1,....:.1, w2, 1 )), 

$1 = ((1,1,1,1),( 1, w2,-1,-1 )), 

Ss = ((1,1,1,1),(-1, w 2, 1,-1 )), 

s9 = ((1,1,1,1),(-1, w2,-1, 1 )), 

SIO = ((1,1,1,1),( W2, 1 ,-1,-1 )), 

S 11 = ((1,1,1,1),( w2,-1, 1,-1 )), 

s12 = ((1,1,1,1),( w2,-1 ,-1, 1 )), 

All pairs of SP(1,2,1; w 2) have weights p. It can be shown that the following 

design has the same information matrix: 

-all pairs of S h S 6, S. 8 and S 10 with weights 2p , 

-all pairs of S 2 , S 4 , S 9 and S 11 with weights p , 

This design consists of 128 pairs, but it is not very useful for practical applica-: 

tions for the following reason. If one wants to construct an exact design consist­

ing of these pairs and having an information materix of type (4.1.5), then the 

pairs of S 1o S 6, S 8 and S 10 must be chosen twice. Therefore no reduction of the 

number of pairs is achieved when constructing exact designs. We will construct 

a half-replicate of SP(1,2,1; w 2) using a method similar to the one used in the 

case n = 5. A half-replicate of each set S 1 can be found by using the defining 

contrast ABCD. We find half-replicates of a 24-factorial experiment: 

(I): ( l),ab,ac,bc,ad,bd,cd,abcd. 

Defining contrasts I, ABCD . 

(II): a,b,c,abc,d,abd,acd,bcd. 

Defining contrasts I, -ABCD . 

The confounded interactions are BC = AD, AC = BD, AB = CD , Therefore, in· 

computing the information matrix Mm and Moo. the following elements are 

important: 

Table 5.4.9 

The signs of (M (t))l .1 

(k,l) i: I 11 Confounded interactions 

(11,12) + - AD,BC 

(10,13) + - AC,BD 

( 9,14) + - AB,CD 

We define 

+ 1 ,if the half-replicate I is chosen, 

- 1 ,if the half -replicate II is chosen. 
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Table 5.4.10 

The signs of the important elements of M 1 

i (11,12) (10.13) (9,14) 

1 &. &. 
2 &. &, 
3 &. &, 
4 &, &, 
5 &. &, 
6 &, &, 
7 &, o, 
8 &, &. 
9 &, &. 
10 &, &, 
. 11 &, & • 
12 &, &, 

We can choose the following half-replicates of S1 : I for i = 1,2,3,4,5,6 and 11 

fori = 7,8,9,10,11,12. This gives a half-replicate of SP(1,2,1; w 2), for which 

the information matrix is equal to {MP(1,2,1; w 2). We consider the set 

SP 2(0,0,4; w 1). It is not possible to construct a half-replicate of SP 2(0,0,4; w 2) 

having an information matrix of type (4.1.5). Therefore, we consider the fol­

lowing D-optimal design. 

i) the pairs of S (2,2) with weights 

ii) the pairs of SP(0,0,4; w 1) with weights 

iii) the pairs of SP 1(0,0,4; w 1) with weights 

iv) the pairs of SP(1,2,1; w 2) with weights 

112 = 0.00711 ' 
• f.L = 0.00186' 

~ = 0.00492' 

p = 0.00162. 

The number of pairs of SP 1(0,0,4; w 1) is equal to 64, which is 16 more than the 

number of pairs of SP 2(0,0,4; w 1). However, it is possible to construct a half­

replicate of SP 1(0,0,4; w 1), which consists of the sets 

T1 = S(( 1, 1, 1,wl),(wt.Wt.Wt. 1)), 

T2 = S(( 1, l,wl> l),(w t.Wt. l,wl)), 

T3 = S(( 1,Wt. 1, l),(wt. l,wl>wl)), 

T~ = S((wl> 1, 1, 1),( 1,Wt.Wt.Wt)). 

Choosing the half-replicate (I) for each set T1 we obtain a half-replicate of 

SPt(0,0,4; Wt). 

Finally we consider the setS (2,2). This set consists of 
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V1 = s((1,1,1,1),(-1,-1, 1, 1)), 

V2 = s((1,1,1,1),(-1, 1,-1. 1)), 

V3 = S((1,1,1,1),(-1, 1, 1,-1)), 

V4 . = S((1,1,1,1),( 1,-1,-1, 1)), 

V 5 = S((1,1,1,1),( 1,-1, 1,-1)), 

v6 = s((1,1,l,l),( 1, 1,-1,-1)), 

Ill each set V 1 the pairs occur twice. Therefore, we need a quarter-replicate of v1 

to obtain a half-replicate of S (2,2). Consider the defining contrasts I, D, ABC, 

ABCD . They yield. the following quarter-replicates of a 24
- factorial experi­

ment. 

(I) 

(11) 

(Ill) 

(IV) 

: (1), ab, ac, be 

a, b, c, abe 

d, abd, acd, bed 

ad, bd, cd, abed 

Defining contrasts 

I, -D, -ABC, ABCD , 

I, -D, ABC, -ABCD , 

I, D, -ABC, -ABCD , 

I, D, ABC, ABCD . 

By methods similar to the ones above it can be seen that a half-replicate of 

S(2,2) for which the information matrix is equal to }M(2,2), can be found by 

choosing the quarter-replicates given in table 5.4.11. 

Table 5.4.11 

Choice of quarter-replicate of V1 

1 2 3 4 5 6 

quarter-replicate (j) IV I 11 IV 11 11 

A discrete D-optimal design has been constructed consisting of 

i) a half-replicate of S(2,2) 

ii) SP(0,0,4; WJ) 

iii) a half-replicate of SP 1(0,0,4; w 1) 

iv) a half-replicate of SP(1,2,1; w 2) 

In total 

24 pairs, 

16 pairs , 

32 pairs , 

96 pairs, 

: 168 pairs. 

This number is larger than 105, the number ND given in table 5.4.1. Therefore, 

a further reduction can be achieved. However, this seems to entail many 

different weights, which is not attractive for practical applications. 
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5.5. Exact designs when n = 2, 3, 4, 5. 

5.5~1. General remarks 

In this section exact designs are constructed for n = 2, 3, 4, 5 . Let E be a 

discrete D-optimal design. As we have seen in sections 5.2 and 5.3 the following 

holds. 

If n is odd, then the set of pairs of the design E is contained in the union of the 

f:>llowing sets: 

S (.!_(n -1 ),.!_(n + 1) ), 
2 2 . 

SP (O,O,n; w 1) , 

all SP1 (O,O,n; w 1 ) with 1 ~ l ~ n , 

where w 1 has the value given in table 5.2.7. 

If n = 2, 4, then the set of pairs of the design E is contained in the union of the 

sets 

sqn.}n ), 

SP(O,O,n; w1), 

all SP1 (O,O,n; w 1) with 1 ~ l ~ n , 

SP(}n-1,}n ,1; w 2), 

where w 1 and w 2 have the values given in table 5.2.7. 

It seems useful to consider exact designs, for which the set of pairs is also con­

tained in this union of sets. However, the pairs cannot have the same weights in 

an exact design as in a discrete design. This can be partly compensated by choos­

ing other values for w 1 and w 2 than the ones given in table 5.2.7. For this rea­

son and in the light of the proof given in section 5.3 it is useful to define the 

following sets. 

Definition 5.5.1 

S(O,O,ZI>Z 2; wl>w 2):= S ((x ,y )) , 

SP((O,O,ll>l2; w1,w2):= SP((x ,y)), 

where 

x = (1, ••. ,l,w 1, •.. ,w1)', 

y = (w 2, ••• , w 2 ,1, ... ,1)', 

l1 is the number of W 1 's in X , 
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SP(O,O,l 11l 2; whw 2) = SP1(0,0,n; w 1). The information matrices of the sets 

given in definition 5.5.1 are denoted by 

M(O,O,lt,l2; Wt.W2) 

and MP1(0,0,l.,l2; w.,w 2). 

An expression for MP(O,O,l .,l 2; w hw 2) is given in the following lemma. 

Lemma 5.5.2 

pi 

sl+tl 

zl 

where (5.5.1) 

p 

z 

t 

s + t 

with 

Proof 

The correctness of the equations (5.5.1) can be proved by use of (4.2.20). This 

yields 

p = <J:Hz. 8t + Z2g2 1/ n, 

z = (~) [(z;)gtht + <ZI)g~2 + ZtZ2(wt-w2)2]/ <2>, 

t .. (~) [(z;)gtht + <zi>g~2- Z1Z2 gug221/ <2>, 

s +t =(~)[Ztgtht+Z28~2]/n, 

equivalent to (5.5.1). D 

We choose exact designs for n = 2, 3, 4, 5. If n = 2, we choose exact designs 

with pairs contained in the union of the following sets 
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-S (1,1) , 

-SP(0,0,2; w1), 

-SP(0,0,1,1; w2,w3), 

-SP(O,l,l; w 4). 

If n = 4, these sets are 

-S (2,2) , 

-SP(0,0,4; Wt)' 

-SP(0,0,2,2; w2,w 3), or SP(0,0,1,3; w 2,w 3), 

-SP(1,2,1; w .-) • 

If n = 3, 5 , these sets are 

-S C}(n -l),j(n + 1)) , 

-SP(O,O,n; w 1) , 

-SP(O,O,j(n -l),j(n + 1); w2,w3). 

The values of w h w 2, w 3 and w,. have to be chosen according to some criterion. 

We choose the G.-criterion and the 0-criterion. Exact designs are given in section 

5.5.2 for the cases n = 3, 5 and in section S.5.3 for the cases n = 2, 4 . In this 

section a lemma is given that can be used when the G.-criterion is applied. The 

maximal value of the variance function has to be computed. According to the 

discussion in section 5.3 the values d (k .,Tc 2,Z.,l 2) have to be computed. In many 

cases the maximal value is one of the values d 1, d 2, d 3 if n is odd and one of 

the values d lt d 2, d s. d 4 if n is even, where 

d <jn .jn) ,if n even, 

d C}(n -l),j(n + 1)) ,if n odd, 

d 2 = d (O,O,O,n) , 

d (O,O,jn .jn) ,if n even, 

d3= 

d(O,O,j(n-l),j(n+l)) ,ifn odd, 

d 4 = d (jn -l,jn ,0,1) ,if n even. 

(5.5.2) 

The maximal value has to be minimized. The following lemma is useful in 

achieving this. 
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Lemma 5.5.3 

Let Zt and l2 be fixed with Zt + l2 = n and let E: be a design with covariance ma­

trix of type ( 4.1.6). Let v 1 be the value that maximizes d (O,O,O,n) , and (v 2,v 3) 

the pair that maximizes d (O,O,Zt.Z 2). 

Then 

d (O,O,O,n) = d (O,O,Zt.Z 2) 

if and only lf 

S= -4fandvt= v2= V3. 

Proof 

i) Assume S = -4f and v 1 = v 2 = v 3 . By applying lemma 5.2.1 it can be 

shown that d (O,O,O,n) = d (O,O,Zt.Z 2). 

ii)Assume d(O,O,O,n)=d(O,O,Zt.Z 2). Let d(k,k 2,ZltZ 2;wt.w 2) denote the 

function given in (5.3.10). Sod (O,O,Z 1,Z,) = d (O,O,l 1ol 2 ; v 2,v3). In the nota­

tion of (5.2.8) we have d (O,O,O,n) = d (O,O,n; v 1). We shall show that 

S + 4f = 0 by proving that the statements t> + 4€ < 0 and S + 4€ > 0 are 

both false. 

a) Suppose t> + 4€ < 0. 

The maximal value of d (0,0, Zt.Z 2; v 2,v3) is d (O,O,Z~oZ 2 ). Therefore, 

d (O,O,l~ol 2 ; v2,v 3) ~ d (O,O,Zttl 2; Vt.Vt). 

So, using (5.3.10), we find 

d (O,O.lt,Z2; v2,v3) > d(O,O,Ztol2; v~ovt) + l1l2 ([) + 4€)(1-vf)2 

' l l 
= Zt y (l-vt)2 + l2 y (1-vt)2 +<I> t> (1-vl )2 + <i> t> 0-v/)2 

+ Zt a (1-vl )2 + l2 a(l-vl )2 + € (ltO-vl)- Z2(1-vl )]2 ·· 

+ ZtZ2 S (1-vl)2 + 4Ztl2 € (1-vl)2 

= n y (1-vt)2 + <2> t> (1-vl)2 + n a (1-v/)2 

+ € [Zt(l-v/) + Z2(1-v/ )]2 = d (O,O,O,n). 

This contradicts d ( O,O,O,n ) = d ( O,O,Z t.Z 2) . 

b) Suppose S + 4€ > 0. 

Similarly we have 

d(O,O,O,n) > d(O,O,O,n)-l 1l 2 (8 + 4€)(1-vJ)(l-vl) 

> Zt y (1-v2)2 + l2 y (1-v3)2 + (z;) [) (1-vj )2 + (zi) t> (1-'v/ )2 

+ ZtZ2 8 (1-v2v3)2 + Zt a (1-v/ )2 + Z2 a (1-v/ )2 
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= d(O,O,Z~oZ2; v2,v3). 

This contradicts d (O,O,O,n) = d (O,O,lhl 2 ) and completes the proof. 0 

5.5.2. Exact designs when n = 3, S. 

Exact designs are constructed as follows. 

If n = 3, we choose 

i) n 1 times the pairs of S(1,2), 

ii) n 2 times the pairs of SP(0,0,3; w 1) , 

Hi) n3 times the pairs of SP(0,0,1,2; w 2,w 3). 

The information matrix of this design has the structure of (4.1.5) and is deter­

mined by 

(5.5.3) 

p = [32nt+ 8n2g1 +8ns(g2+2gs)]IN, 

s = [ 0 + 0 + 8ns(&22 + &s2)2]/ N , 

t = [ 0 + 8n2 &tht + 8ns(g~3- lg22&32)] IN , 
z • [32nt + 8n2&tht + 8ns(g~s + 2(w2-ws)2

] IN , 

where&~> h 1 and g12 are defined as usual and N = 12n 1 + 8n 2 + 24n 3• 

If n = 5, we choose 

i) n 1 times the pairs of a half-replicate of S (2,3), 

ii) n 2 times the pairs of a half-replicate of SP(0,0,5; w 1), 

iii) n 3 times the pairs of a quarter-replicate of SP(0,0,2,3; w 2,w 3); 

n 1.n 2 and n 3 have to be chosen such that the covariance matrix of the design has 

the structure of (4.1.6). By the results of section 5.4 this implies the following 

inequalities nt ;l!; 1, n 2 ;l!; 1, n 3 ;l!; 2 if w2 ;zt w3 and n 3 ;l!; 1 if w2 = ws. 

If these conditions are satisfied, then the information matrix is determined by 

(5.5.4) 

p = [192nt + 16n2 g1 + 16ns(2g2 + 3g,)] IN , 
s = [ 0 + 0 + 24n s(g 22 + g 32)

2
] I N , 

t = [ 0 + l6n2 &tht + 8ns(g2h2 + 3g~3- 6g22&s2)] IN , 
z = [192nt + l6n2g1h1 + 8ns(g2h2 + 3g~s + 6(w2-ws)2]1 N, 

where N = 80n 1 + l6n2 + 80ns. 

Let n h n 2 and n 3 be fixed. Now w h w 2 and w 3 have to be chosen according to 

the 0-criterion or the D-criterion. First we consider the G.criterion. In many 

cases minimizing the maximal value of d 1, d 2 and d 3 means that WJ. w 2 and w 3 
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have to be such that d 1 = d 2 = d 3 • Therefore lemma 5.5.3 can be used. We 

hav~ written a computer program that determines w 1, w 2 and w 3 such that 

max I d t.d 2 I is minimized under the restriction 8 = - 4f. In some cases it is 

not true that d 1 = d 2 = d 3• Then lemma 5.5.3 cannot be applied. So, a compu­

terprogram has been written to determine Wt. w 2 and w 3 without the assump­

tion 8 = -4f. This program minimizes the maximal value of d h d 2 and d 3• In 

some cases the values of wt. w 2 and w 3 are also computed under the restriction 

w 1 = w 2 or w 1 = w 2 = w 3 • This is done for practical applications. In the case 

n = 5 the restriction w 2 = w 3 is useful with respect to the number of pairs of 

the exact design, because now we may choose n 3 = 1 without affecting the 

structure of the information matrix. Moreover, the D-criterion is used to deter­

mine the values ofw 1, w 2 and w 3 • The assumption o = -4f cannot be made in 

computing these values, since in general it dOes not hold as can be seen in table 

5.5.4. Again in some cases we assume w 2 = w 3 or w 1 = w 2 = w 3 when com­

puting these values. Results are given in table 5.5.4 for some choices of nt. n 2 

and n 3• These determine the weights of the pairs of the design. An argument 

that can be used when choosing n t. n 2 and n 3 is that these weights should be 

approximately the same as those in the discrete D-optimal designs. These 

weights are given in table 5.2.7. However, the number of pairs of the design 

must be small for practical applications. Some choices are given in table 5.5.4. In 

the rows where the restrictions are given a 1 means that w 1, w 2 and ws are com­

puted under that restriction; a 0 means that no such restriction is made. The 

results are satisfactory. The efficiency of the designs is good. The number of 

pairs is small in the case n = 3. However, when n = 5, some designs have a. 

large number of pairs. The choice n 1 = n 2 = n 3 = 1 or n 1 = 2, n 2 = n3 = 1 

seems to be a good one, both with the restrictions w 2 = w 3 and w 1 = w2 = w 3 • 

The number of pairs of these designs are comparatively small and the informa­

tion matrices of these designs have the structure of (4.1.5). The G-efliciency of 

these designs is more than 80%, the D-efliciency more than 89%. The efliciencies 

of the designs constructed without the restriction cS + 4f = 0 are approximately 

the same as the efliciencies of the designs constructed under this restriction. 
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Table 5.5.4 

Constants determining exact designs as given in section 5.5.2 

I n = 3 I 
Choice 

of n1 = 1 ; n2 = 1 ; n, = 1 ; (44) 

n.,n2,n3 1) 

Restrictions 

S+4f=O 1 0 0 1 0 0 

w2=w3 ,0 0 0 1 1 1 

w1=w2=w3 0 0 0 0 0 0 

Criterion 6 o D o 6 D 

Wt -0.7352 -o.3762 -0.1590 -o.4720 -0.0988 -0.1398 

w2 -0.7194 0.6087 -o.5222 
-o.5944 -o.5904 -o.1987 

W3 0.2333 -o.4324 -o.0425 

a 2.6970 2.6432 1.8475 3.2875 3.2398 1.4904 

s 0.7947 0.7270 0.8585 1.0951 1.0176 0.9348 

y 0.4936 0.5418 0.5593 0.3988 0.4298 0.5723 

E -o.1987 -o.3088 -o.2049 -o.2738 -o.5353 -0.0152 

dt 10.3066 10.1503 11.3417 11.9511 11.5794 12.0566 

d2 10.3066 9.1608 8.2145 11.9510 9.3584 9.0933 

d3 10.1503 11.5794 

G-etliciency 87.3 88.7 79.4 75.3 77.7 74.6 

D-etliciency 87.9 90.2 94.9 79.8 83.7 94.3 

1) Between brackets the number of pairs is given. 
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Table 5.5.4 

Constants determining exact designs as given in section 5.5.2 

I n = 3 I 
Choice 

i 
of n1 = 1 ; n2 = 1 ; n2 = 2; n2 = 1; 

nt,n 2,n3 1) n3 = 1 ; (44) n3 = 1; (56) 

Restrictions 

8+4£=0 0 0 - 1 0 0 

WFW3 1 1 - 0 0 0 

w1=w2=w3 1 1 - 0 0 0 

Criterion o D - o o D 

Wt 0 -0.4247 -0.3365 -0.1212 

w2 -0.3640 0.1809 0 -0.5431 -0.5473 -0.2114 

W3 0 -0.0043 -0.0200 -0.1238 

a 1.8270 1.4696 1.3750 2.4079 2.4221 1.8599 

s 0.9991 0.9368 0.9167 0.6828 0.6769 0.7031 

'Y 0.4807 0.5742 0.6875 0.4852 0.4908 0.5283 

€ 0 0 0 -0.1707 -0.2307 -O.Q279 

dt 11.8380 12.0880 12.8333 9.3434 9.3416 9.8512 

d2 10.0551 9.1777 9.3087 9.3434 8.8619 9.2136 

d3 9.3416 

0-emciency 76.0 74.5 70.1 96.3 96.3 91.4 

D-efficiency 91.0 94.3 91.4 96.5 97.3 99.1 

1) Between brackets the number of pairs is given. 
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Table 5.5.4 

Constants determining exact designs as given in section 5.5.2 

n 3 

Choice 

of n1 = 2; n2 = 1 ; n3 = 1; (56) 

n.,n 2,n3 1) 

Restrictions 

S+4f=O 1 0 0 0 0 -
w2=ws 1 1 1 1 1 -

w1=w2=w3 0 0 0 1 1 -

Criterion o o D o D -

Wt -o.ll92 -o.1192 -o.1195 0 

w2 
-0.3989 -o.3989 -o.1509 

-o.2386 -o.l419 0 

ws 0 

a 2.4748 1.8325 1.9677 1.8226 1.75 

s 0.7232 0.7052 0.7158 0.7056 0.70 

y 0.4629 0.5292 0.4952 0.5297 0.5833 

€ -0.1808 -0.0079 0 0 0 

dt 9.4887 9.8751 9.6880 9.8825 10.2666 

d2 9.4887 9.3180 9.6880 9.3612 9.3390 

ds 

6-efliciency 94.8 91.1 92.9 91.1 87.7 

D-efliciency 95.4 99.1 98.3 99.0 97.5 

1) Between brackets the number of pairs is given. 
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Table 5.5.4 

Constants determining exact designs as given in section 5.5.2 

n = 5 I 
Choice nt= n2= n:s= 1;(176) 

of nt= n2= n:s= 2;(352) or 

n 1,n2,n3 1) nt= n2= n3= 2;(352) 

Restrictions 

6+4t=O 1 0 0 1 0 0 

w2=w3 0 0 0 1 1 1 

w1=w2=w:s 0 0 0 0 0 0 

Criterion 6 6 D o o D 

Wt -0.6165 -0.2309 -0.0951 -0.0888 -0.1(>83 -0.0926 

w2 -0.6521 -0.6507 -0.2604 
-0.4602 -0.4068 -0.1299 

w, 0.3151 0.3154 -0.0540 

0: 3.3687 3.3612 1.9702 2.9511 2.6327 1.8968 

0 0.6637 0.6441 0.7316 0.7732 0.7655 0.7375 

"' 
0.5121 0.5400 0.5581 0.4613 0.4757 0.5619 

' 
-0.1659 -0.3524 -0.0381 -0.1933 -0.1323 -0.0053 

dt 22.0750 21.9375 24.2557 24.0919 24.0807 24.4417 

d2 22.0750 17.4170 19.2704 20.1229 20.0642 19.7946 

d:s 21.9375 18.6622 

d.efficiency 90.6 91.2 82.5 83.0 83.1 81.8 

D-efficiency 90.7 93.1 95.9 89.7 91.6 95.8 

1) Between brackets the number of pairs is given. 
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Table 5.5.4 

Constants determining exact designs as given in section 5.5.2 

rn =5 

Choice nt = n2 = n3 = 1;(176) 

of or nt= 4; n2= 2; 

nt,n2,n3 1) nt = n2 = n3 = 2; (352) n3=2;(412) 

Restrictions 

6+4f=O 0 0 - 1 0 0 

w2=w3 1 1 - 0 0 0 

w1=w2=w3 1 1 - 0 0 0 

Criterion a D - a a D 

Wt 0 -0.0930 -0.0051 -0.0715 

w2 -0.3048 -0.1220 0 -0.3892 -0.3891 -0.1008 

w3 0 -0.0059 -0.0028 -0.0814 

0: 2.2281 1.8891 1.8333 3.1218 3.1215 2.7120 

6 0.7603 0.7377 0.7333 0.5861 0.5859 0.5934 

y 0.4952 0.5626 0.6111 0.5013 0.5018 0.5148 

f 0 0 0 -0.1465 -0.1465 -0.0046 

dt 24.1885 24.4555 24.9333 20.0817 20.0833 20.4204 

d2 21.3947 19.8932 19.8692 20.5040 20.5042 22.1378 

d3 16.9017 20.5042 

6-emciency 82.7 81.8 80.2 97.5 97.5 90.3 

D-efficiency 93.5 95.8 94.8 98.9 98.9 99.8 

1) Between brackets the number of pairs is given. 
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Table 5.5A 

Constants determining exact designs as given in section 5.5.2 

I n = 5 

Choice n1= 2:n2= 1;n3= 1;(206) 

of or 

nt,n:~,na 1) n1= 4:n:~= 2;n3= 2;(206) 

Restrictions 

o+4€=o 1 0 0 0 0 -
w2=w3 1 1 1 1 1 -
w 1=w2=w3 0 0 0 1 1 -

Criterion u u D u D -

Wt -o.002 9 -0.0042 -o.0719 0 

W2 
-0.3626 -o.0999 -0.0887 

-0.0223 -o.0100 0 

W3 0 

(X 3.5350 2.7207 2.7092 2.6693 2.7208 2.6667 

8 0.6036 0.5935 0.5935 0.5927 0.5939 0.5926 

y 0.4666 0.5152 0.5149 0.5286 0.5118 0.5333 

' 
-o.1509 -o.0090 -o.00250 0 0 0 

dt 20.0853 20.4253 20.4228 20.5666 20.3958 20.6222 

d2 22.4169 22.0731 22.1756 22.1111 22.2821 22.1249 

d3 18.7722 18.6052 

G.-efficiency 89.2 90.6 90.2 90.5 89.8 90.4 

D-efficiency 96.0 99.7 99.8 99.6 99.8 99.4 

1) Between brackets the number of pairs is given. 
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Table 5.5.4 

Constants determining exact designs as given in section 5.5.2 

I n = 5 I 
Choice nt = n2 = 2; n3 1; (272) 

of nt= n2= 4;n3= 2;(544) or 

nhn2,n3 1) n 1 = n 2 = 4; n 3 = 2; (544) 

rictions 

8+4£=0 1 0 0 1 0 0 

w2=w3 .0 0 0 1 1 1 

w1=w2=w3 0 0 0 0 0 0 

Criterion o 6 D 6 o D 

Wt -0.4980 -0.2121 -0.1049 -0.4599 -0.2003 -0.1050 

W2 -0.3267 -0.3122 -0.0798 
-0.2360 -0.2350 -0.0869 

W3 0.0043 -0.1040 -0.0920 

a 3.1619 3.1669 2.8758 3.1775 3.1743 2.8766 

a 0.6214 0.6109 0.6088 0.6290 0.6153 0.6088 

1 0.4860 0.4994 0.5255 0.4735 0.4926 0.5255 

' 
-0.1554 -0.3987 -0.2591 -0.1576 -0.2984 -0.2595 

dt 20.7445 20.6541 20.9164 20.7783 20.6794 20.9163 

d2 20.7445 19.9645 16.8917 20.7783 17.2558 16.8847 

d3 20.6541 20.6794 

G.efticiency 96.4 96.8 95.6 96.3 96.7 95.6 

D-efticiency 96.5 98.5 99.5 96.5 98.3 99.5 

1) Between brackets the number of pairs is given. 
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Table 5.5.4 

Constants determining exact designs as given in section 5.5.2 

I n = 5 I 
Choice n1 = n2 = 2; n,= 1; (272) 

of or nt= 2; n2= 1; 

n1on2,n3 1) nt = n2 = 4; n,= 2; (544) n 3 = 2; (336) 

Restrictions 

6+4€=0 0 0 - 1 0 0 

w2=w 3 1 1 - 0 0 0 

Wt=WrWs 1 1 - 0 0 0 

Criterion o D - o o D 

Wt 0 -o.4671 -'-0.1683 -o.0773 

w2 -o.2351 -0.1000 0 -o.6720 -o.6725 -o.4593 

ws 0 0.2911 0.2911 0.0277 

()( 3.1746 2.8909 2.8333 3.2677 3.2707 2.1890 

a 0.6166 0.6089 0.6071 0.6365 0.6301 0.6993 

'Y 0.4902 0.5236 0.5483 0.5204 0.5307 0.5337 

' 
-0.2886 -0.2628 -o.2576 -o.1591 -Q;2411 0.0304 

dt 20.6813 20.8957 21.1521 21.5224 21.4905 23.'1875 

d2 17.4970 16.8629 16.8452 21.5224 19.5115 21.5711 

d3 20.6813 19.3326 21.4905 

G.efticiency 96.7 95.7 94.6 92.9 93.1 86.3 

D-efticiency 98.2 99.5 99.0 93.0 93.8 95.8 

1) Between brackets the number of pairs is given. 
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Table S.SA 

Constants determining exact designs as given in section 5.5.2 

11 n = 5 I 
Choice 

of nt=3;n2=2; nt=3;n2=1; 

nt.n2,n3 1) ns=2;(432) n 3 =2;(416) 

Restrictions 

o+4e=o 1 0 0 1 0 0 

w2=w3 .0 0 0 0 0 0 

w1=w2=w3 0 0 0 0 0 0 

Criterion 6 6 D 6 6 D 

Wt -0.4135 -0.1596 -0.0817 -0.0105 -0.0132 -0.0575 

w2 -0.5341 -0.5673 -0.1318 -0.5907 -0.5909 -0.2117 

W3 0.1729 0.0311 -0.0905 0.0019 -0.0046 -0.0559 

a 3.1704 3.1993 2.3087 3.1794 3.1800 2.2744 

0 0.6177 0.6207 0.6444 0.6113 0.6120 0.6336 

y 0.5045 0.4986 0.5336 0.4895 0.4887 0.5233 

' 
-0.1544 -0.2770 -0.0083 -0.1528 -0.1530 0.2573 

dt 20.8802 20.8796 21.8685 20.5451 20.5515 21.4874 

d2 20.8802 17.9946 20.6661 20.8138 .20.8148 26.9090 

ds 20.8796 .l0.8148 

G.em.ciency 95.8 95.8 91.5 96.1 96.1 74.3 

D-e:ffi.ciency 95.8 97.1 98.9 97.0 97.0 98.2 

I. 
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5.5.3. Exact designs when n = Z, 4. 

. Exact designs will be constructed as follows. 

If n = 2, we choose 

i) . n 1 times the pairs of S (1,1) , 

ii) n 2 times the pairs of SP(0,0,2; w1), 

iii) n 3 times the pairs of a half-replicate ofSP(0,0,1,1; w 2,w 3 ) 

iv) n 4 times the pairs of SP(0,1,1; w 4). 

The information matrix of this design has the structure given in (4.1.5) if 

n 1 ;i!:: 1, n 2 ;i!:: 1, n.. ~ 1 and n 3 ;i!:: 1 if w 2 = w 3 or n 3 ;i!:: 2 if w 2 ;C w 3 • 

If these conditions are satisfied we have 

p == [ 8n1 + 4n2 g1 + 2ns(g2 + gs) + 4n .. (4 +g.,.)] IN , 
s = [ 0 + 0 + 2ns(g22 + g32)2 + 4n,.{g,. + h,.)] IN , 
t = [ 0 + 4n2g1h1- 4nsg228s2 + O]l N, · 

z == [16nt + 4n2 g1h1 + 4ns(w2-w,)2 + 8n .. h.c] IN , 

where N = 4nt + 4n2 + 4ns + 8n4. 

If n = 4, we choose 

i) n 1 times the pairs of a half-replicate of S(2,2), 

ii) n 2 times the pairs of SP(0,0,4; w 1), 

iiiA) n 3 times the pairs of a half-replicate of SP(0,0,1,3; w2,w 3), 

or 

iiiB) n 3 times the pairs of a half-replicate of SP(0,0,2,2; w2,w 3), 

iv) n 4 times the pairs of a quarter-replicate of SP(1,2,1; w 4). 

(5.5.5) 

The information matrix of this design has the structure given in (4.1.5) if 

n1 ;i!:: 1, n2 ;i!:: 1, n 4 ;i!:: 2 and ns ;i!:: 1 if w2 = Ws or n3 ;i!:: 2 if w2 ;C w3. 

If these conditions are satisfied we have 

where 

and 

(5.5.6) 

p==[48nt + 16n2 81 + 8n,[(2q .. -l)g2 + 3gs] + 12n .. (8 + g4)] /N, 
s-[ 0 + 0 + 8nsq4(g22 + gs2)2 + 12n.c(g,. +h .. )]/N, 

t-[ 0 + l6n2 g1h1 + 8ns[(q,.-l)g2h2+(3-q .. )gshs-2q,.gngn11/N, 

z ==[64nt + 16n2 g1h1 + 8n3[(q,.-1)g2h2+(3-q .. )gshs+2q .. (w2-ws)2)] 

+ 8n4(8 +g .. + 2h,.)] IN , 

( 

1 , if iiiA ) is chosen , 
q,.= 

2 , if iliB ) is chosen , 
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Again for fixed n 1 , n 2 , n 3 and n 4 the values of w 1 , w 2 , w 3 and w 4 have been 

computed according to the G.-criterion or the D-criterion. When using the G.­

criterion we make the assumption 8 + 4€ = 0 , because we did not find better 

results when this assumption was not made in the case n = 3, 5. Again in 

some cases designs are constructed with w 2 = w 3 or w 1 = w 2 = w 3• Some 

1esults are given in table 5.5.5. For both n = 2 and n = 4 designs are found for 

which the number. of pairs is comparatively small and which have a high 

efficiency. The designs given in this table for n = 4 are designs with q 4 = 1 . 

Using q 2 = 2 does. not lead to better results. 
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Table 5.5.5 

Constants determining exact designs as given in section 5.5.3 

= 2 

Choice q4 = 1 q,. = 1 

of n1,n2,n3 n1 = 0; n2 = 0; n1 = 2; n2 = 2; 

n 4 and q 4 1) n3 = 0; n,. = 1;(8) ns = 2; n 4 = 2; (40) 

Restrictions 

&+4f=O 0 0 - 1 0 

w2=w3 ·- - - 0 0 

w1=w2=w3 - - - 0 0 

Criterion 6 D - 6 D 

WJ - - - -0.0407 -0.1483 

W2 - - - -0.0558 -0.1826 

W3 - - - -0.5128 -0.1826 

w .. 0.0754 0.1279 0 0.0061 0.0741 

a 2.0229 2.0671 2 1.9975 1.7495 

& 0.8647 0.6860 1 0.6916 0.6884 

y 0.4120 0.4201 0.4 0.5116 0.5222 

f 0 0 0 -0.1729 -0.0133 

dt 5.1066 4.8246 5.6 4.8127 4.8423 

d2 5.8103 5.8393 5.8700 5.1706 5.3316 

d3 

d4 5.0230 5.0000 5.1454 5.0877 5.0479 

G-etliciency 86.1 85.6 85.2 96.7 93.8 

D-etliciency 98.4 98.7 97.2 98.5 99.6 

1) Between brackets the number of pairs is given. 
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Table 5.5.5 

Constants determining exact designs as given in section 5.5.3 

n = 2 

Choice q,. = 1 

of n1.n2,n3 n1 = n2 = n, = n4 = 1; (20), or 

n4 and q,. 1) nt = n2 = ns = n4 = 2; (40). 

Restrictio 

~+4f=O 1 0 0 0 -
w2=w3 1 1 1 1 -
w1=w2=w3 0 0 1 1 -

Criterion a D a D -

Wt -0.0343 -0.1483 0 

W2 
-0.3765 -0.1826 

-0.0751 -0.1639 0 

W3 0 

W4 0.0224 0.0741 0.0193 0.0744 0 

a 2.0225 1.7495 1.6797 1.7344 1.6667 

~ 0.7054 0.6884 0.7076 0.6891 0. 7143 

y 0.5040 0.5222 0.5392 0.5227 0.5556 

E -0.1764 -0.0133 0 0 0 

dt 4.8377 4.8423 4.9869 4.8472 5.0794 

d:~ 5.1983 5.3316 5.3124 5.3554 5.3383 

d3 

d4 5.0881 5.0479 5.0966 5.0492 5.1710 

G-emciency 96.2 93.8 94.1 93.4 93.7 

D-efficiency 98.3 99.6 99.1 99.6 98.0 

1) Between brackets the number of pairs is given. 
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Table 5.5.5 

Constants determining exact designs as given in section 5.5.3 

I n = 2 I 
Choice q,. = 1 

of n. 1,n 2,n 3 n 1 = 1; n2 = 2; n. 3 = 1; n.c = 3; (40), or 

n 4 and q4 1) nt= 2;n2= 4;n3= 2;n .. = 6;(80). 

Restrictions 

o+4f=o 1 0 0 0 -
w2=w3 .1 1 1 1 -
w1=w2=w3 0 0 1 1 -

Criterion o D o D -

Wt -0.3182 -0.1567 0 

W2 
-0.0333 -0.1384 

-0.1380 -0.1502 0 

W3 0 

w,. 0.0688 0.1138 -0.0369 0.1136 0 

a 2.0132 2.0631 2.0340 2.0687 2 

0 0.8019 0.7493 0.8081 0.7490 0.8333 

y 0.4729 0.4919 0.4838 0.4920 0.5 

e -0.2005 -0.2885 -0.2861 -0.2930 -0.2857 

dt 5.0995 4.9649 5.1676 4.9641 5.3333 

d2 5.0995 4.8575 4.8453 4.8506 4.8496 

d3 5.2447 5.1676 5.2555 5.1446 

d4 5.0261 5.0126 5.0236 5.0135 5.1019 

G.-efficiency 98.0 95.3 96.8 95.1 97.2 

D-efficiency 99.0 99.9 99.7 99.9 98.6 

1) Between brackets the number of pairs is given. 
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Table 5.5.5 

Constants determining exact designs as given in section 5.5.3 

I n = 2 I n = 4 I 

Choice q,. = 1 q,.= 1 

of n1,n2,n3 nt= 2;n2= 4; nt= 1; n2 = 0; n3 = 2; n,. = 0; (88) 

n 4 and q 4 1) n3 = 2; n,. = 6; (80) 

Restrictions 

~+4€=0 1 0 1 0 0 -
w2=w3 0 0 0 0 1 -
w1=w2=w3 0 0 0 0 0 -

Criterion 6 D 6 D D -

Wt -o.3181 -o.1568 - - - -
w2 -0.0317 -o.1384 0.6118 -o.6193 

-o.1802 
0 

W3 -0.0315 -o.1384 -o.5250 -o.0366 0 

w,. 0.0689 0.1138 - - - -

a 2.0132 2.0631 3.0171 2.1083 l.-468~ 1.375 

~ 0.8018 0.7493 0.7205 0.8241 0.9366 0.9167 

'Y 0.4730 0.4919 0.5431 0.6218 0.6416 0.7857 

' 
-o.2005 -0.2885 -0.1801 -o.2842 0 0 

dl 5.0995 4.9649 15.8724 18.1602 20.1190 20.9524 

d2 5.0995 4.8575 15.8724 11.7319 14.3873 14.6758 

d3 5.2447 

d,. 5.0264 5.0126 15.6607 16.5709 17.4248 18.5088 

G.-efficiency 98.0 95.3 88.2 77.1 69.6 66.8 

D-efliciency 99.0 99.9 98.9 92.7 91.3 88.6 

1) Between brackets the number of pairs is given. 
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Table 5.5.5 

Constants determining exact designs as given in section 5.5.3 

11 n = 4 I 
Choice q~ = 1 q~ = 1 

oc'nt,n2,n3 nt = 2; n2 = 0; nt= 1;n2= O;n3= 1;n,.= 0;(56),or 

n 4 and q 4 1) n3 = 2; n,. = 0; (112) nt= 2;n2= O;n3= 2;n,.= 0;(112) 

Restrictions 

8+4f=O 1 0 0 0 -
w2=w3 0 0 1 1 -
w1=w2=w3 0 0 0 0 !-

Criterion a D a D -

Wt - - - - -
w2 0.5073 -0.3276 

-0.3623 -0.1544 
0 

W3 -0.3808 -0.1062 0 

w,. - - - - -

a 2.7424 1.9775 2.3186 1.8365 1.75 

8 0.6341 0.6963 0.7361 0.7067 0.7 

y 0.5852 0.6122 0.5215 0.6178 0.7 

f -0.1586 -0.0873 0 0 0 

dt 14.8267 16.0387 15.9496 16.2490 16.8 

d2 14.8264 13.4595 15.9496 14.3546 14.4049 

d3 

d,. 14.8261 15.0663 15.1337 15.1786 15.75 

G.-efficiency 94.4 87.3 87.8 86.2 83.3 

D-effi.ciency 94.4 97.8 94.2 97.7 95.9 

1) Between brackets the number of pairs is given. 
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Table 5.5.5 

Constants determining exact designs as given in section 5.5.3 

n = 4 I 
Choice q,.= 1 

of n1,n2,n3 nt= 1; n2 = 0; n 3 = 2; n,. = 2; (184), 

n 4 and q,. 1) 

Restrictions 

6+4f=O 1 0 0 1 -
w2=w3 ·0 0 1 1 -
w1=w2=ws 0 0 0 0 -

Criterion G D G D -

Wt - - - - -
w2 -o.4105 -0.2044 

-o.0936 -0.1157 
0 

w3 -o.0612 -o.0930 0 

Wi( 0.4311 0.0757 0.106 0.0771 0 

ot 2.6528 2.1765 2.1519 2.1392 2.0909 

5 0.6167 0.6702 0.6612 0.6718 0.6765 

y 0.5515 0.5395 0.5525 0.5410 0.5610 

' 
-0.1542 -o.0268 0 0 0 

dt 14.2783 15.0393 14.9983 15.0764 15.3113 

d2 14.2784 14.6810 14.9983 14.9560 14.8904 

ds 

d-e 14.2468 14.3883 14.4036 14.4077 14.5893 

G.-efficiency 98.1 93.1 93.3 92.9 91.4 

D-efficiency 98.1 99.3 99.2 99.3 98.6 

1) Between brackets the number of pairs is given. 

5.6. Robustness of the designs 

As in section 4.5 we will give some lower bounds for the D-efficiencies of 

the discrete D-optimal designs which are given in section 5.2 when the condition 

(1.8.6) is not satisfied. The arguments given in section 4.5 also hold in the case 

of a hypercube as experimentel region. Lemma 4.5.1 is used to compute the 

lower bounds for some values of 5. The results are similar to the ones given in 

section 4.5 for n = 2, 3, 4 . No lower bounds have been computed for n = 5 . 
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Table 5.6.1 

Lower bounds for the D-efticiency of some· designs 

~~ · n = 2 ~•mallest I I 
/3 0 value I lower j 

f3t /32 /3n f3t2 f3t2 of '11'1.11 bound 

0.05 0.05 0.05 0.05 0.05 0.435 0.996 

--0.05 0.05 0.05 0.05 0.05 0.450 0.996 

0.05 0.05 -o.o5 0.05 0.05 0.438 0.996 

0.1 0.1 0.1' 0.1 0.1 0.372 0.984 

-o.1 0.1 0.1 0.1 0.1 0.401 0.984 

0.1 0.1 -o.1 0.1 0.1 0.378 0.984 

0.2 0.2 0.2 0.2 0.2 0.270 0.939 

-0.2 0.2 0.2 0.2 0.2 0.310 0.937 

0.2 0.2 -o.2 0.2 0.2 0.270 0.941 

0.3 0.3 0.3 0.3 0.3 0.172 0.877 

-o.3 0.3 0.3 0.3 0.3 0.232 0.868 

0.3 0.3 -o.3 0.3 0.3 0.183 0.877 

0.5 0.5 0.5 0.5 0.5 0.068 0.737 

-0.5 0.5 0.5 Q.5 0.5 0.119 0.699 

0.5 0.5 -o.s 0.5 0.5 0.076 0.727 

1 1 1 1 1 0.005 0.485 

-1 1 1 1 1 0.018 0.359 

1 1 -1 1 1 0.007 0.418 

0.1 0 0 0 0 0.450 0.995 

0.3 0 0 0 0 0.354 0.956 

0.5 0 0 0 0 0.269 0.887 

1 0 0 0 0 0.119 0.657 

0 0 0.1 0 0 0.475 0.999 

0 0 0.3 0 0 0.427 0.987 

0 0 0.5 0 0 0.379 0.965 

0 0 1 0 0 0.272 0.874 

0 0 0 0 0.1 0.450 0;997 

0 0 0 0 0.3 0.354 0.971 

0 0 0 0 0.5 0.269 0.923 

0 0 0 0 1 0.119 0.748 
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I n=3 I ~mall est I I 
13o value I tower I 

13t 132 133 13u 1322 1333 1312 13ts 1323 of 7T; .ij bound 

0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.386 0.992 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.283 0.971 

-0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.310 0.970 

--o.1 -0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.310 0.970 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.135 0.901 

-0.2 0.2 0.2 -0.2 0.2 0.2 0.2 0.2 0.2 0.256 0.895 

-0.2 0.2 0.2 -0.2 0.2 0.2 -0.2 0.2 0.2 0.168 0.895 

0.3 0.3 0.3 0.3 0.3 0.3 0,3 0.3 0.3 0.058 0.820 

-0.3 -0.3 0.3 -0.3 -0.3 0.3 -0.3 0.3 0.3 0.083 0.821 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.009 0.682 

0.5 0.5 0.5 0.119 0.746 

. 0.5 0.269 0.890 

0.5 0.5 0.259 0.869 

0.5 0.5 0.5 0.176 0.805 

1.0 0.119 0.668 

The entries that are not given in this table are zero. 
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11 n=4 I 
f3o value of the smallest 

non zero non zero value lower 

parameters parameters of 1T; .ij bound 

f3t 0.1 0.4502 0.9955 

1 0.1192 0.7034 

f3u 0.1 0.4750 0.9990 

f3t2 0.1 0.4502 0.9959 

{3; ,1 ~ i ~4 0.1 0.3780 0.9823 

0.2 0.2697 0.9341 

0.5 0.0765 0.7174 

1 0.0068 0.4540 

{3;; ,1 ~ i ~ 4 0.1 0.4024 0.9951 

0.2 0.3120 0.9811 

{3;j ,1 ~ i < j ~ 4 0.1 0.3100 0.9764 

0.2 0.1680 0.9197 

/3; ,{3;j ,1 ~ i ~ j ~ 4 0.1 0.1929 0.9573 

0.2 0.0540 0.8690 

0.3 0.0135 0.7787 

0.5 0.0008 0.6292 

1 0.0000 0.4169 

f3t. f3u, /312 0.2 0.3100 0.9631 

f3t. {33. /312 0.2 0.2315 0.9510 
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Samenvatting 

In experimenten met paarsgewijze vergelijkingen worden waarnemingen gedaan 

door telkens twee objecten met elkaar te vergelijken. Paarsgewijze vergelijkingen 

worden veel gebruikt in situaties waar de beoordeling van de te onderzoeken 

variabele subjectief is, bijvoorbeeld bij het beoordelen van etenswaar. Aan een 

aantal proefpersonen wordt dan gevraagd een voorkeur uit te spreken voor een 

van een tweetal aangeboden producten. In dit proefschrift worden proefopzetten 

ontwikkeld voor dergelijke situaties. 

In hoofdstuk 1 wordt een aantal modellen gegeven die met betrekking tot 

paarsgewijze vergelijkingen geformuleerd zijn. Met name het Bradley-Terry 

model komt aan de orde. Dit model postuleert het bestaan van een parameter (of 

evaluatiewaarde) horend bij het object. De preferentiekansen kunnen in deze 

parameters worden uitgedrukt en met behulp van de waarnemingen kunnen de 

parameters geschat worden. De covariantiematrix van de schatters van de 

parameters wordt besproken. Deze is van belang omdat veel criteria voor het 

ontwikkelen van proefopzetten afhangen van de covariantiematrix. In dit proef­

schrift wordt het D-criterium en een voor paarsgewijze vergelijkingen aangepast 

G-criterium gebruikt om proefopzetten te ontwikkelen. Het D-criterium 

minimaliseert de determinant van de covariantiematrix; het G-criterium 

minimaliseert het maximum van de variantie van de responsfunctie. 

In hoofdstuk 2 wordt een methode gegeven om proefopzetten te construeren. 

Deze methode is geschikt voor het geval dat er een lineair model geformuleerd 

kan worden voor de evaluatiewaarde. Dat wil zeggen dat de evaluatiewaarde een 

functie is van een aantal verklarende variabelen. De covariantiematrix hangt 

echter af van de onbekende parameters. Daarom is het bij het construeren. van 

proefopzetten nodig een veronderstelling te maken met betrekking tot de para­

meters. De gebruikelijke veronderstelling is dat alle parameters gelijk zijn. Bij 

het construeren van proefopzetten is het nuttig om gebruik te maken van (ge­

standaardiseerde) discrete proefopzetten. Discreet staat in tegenstelling tot exact, 

waarbij in ieder paar een (of meerdere) waarnemingen worden gedaan. Bij 

discrete proefopzetten is sprake van een wegingscoefticient per paar. De 

wegingscoeOicient kan iedere positieve waarde aannemen. Gestandaardiseerd wil 

zeggen dat de som van de wegingscoefticienten gelijk is aan een. Bij gestandaar­

diseerde exacte proefopzetten zijn alle wegingscoefticienten gelijk aan (een veel­

voud van) de reciproke waarde van het totaal aantal waarnemingen. 

In hoofdstuk 3, 4 en 5 worden toepassingen gegeven. Hoofdstuk 3 behandelt het 

geval van een factorieel model met hoofdeffecten en interacties van twee fac­

toren. Exacte D-optimale proefopzetten worden gegeven, zowel voor de situatie 

dat het experimentele gebied een hyperkubus is, als voor de situatie dat het een 

hyperbol is. Sommige van dez.e proefopzetten zijn bekend in de literatuur. 

Hoofdstuk 4 en 5 behandelen een volledig tweedegraads model, waaarbij het 

experimentele gebied in hoofdstuk 4 een hyperbol is en in hoofdstuk 5 een 

hyperkubus. In beide hoofdstukken worden discrete D-optimale proefopzetten 
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geconstrueerd. Bij sommige van dez.e proefopz.etten is het aantal paren groot. 

Daarom worden proefopzetten ontwikkeld waarbij het aantal paren kleiner is. 

Met behulp van dez.e discrete proefopz.etten worden exacte proefopz.etten gecon­

strueerd die een goede effi.cientie hebben en waarvan het aantal paren niet al te 

groot is. De robuustheid van de optimale discrete proefopz.etten wordt onder­

zocht; dat wil z.eggen: er wordt besproken wat de effi.cientie van de proefopz.etten 

is als niet voldaan is aan de aanname dat er geen verschillen zijn in de objecten. 
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Stellingen 

I 

Een proefopzet beet roteerbaar als de variantiefunctie alleen afhangt van de 

afstand tot het centrum van het experimentele gebied. Deze naamgeving is 

verwarrend, want roteerbaarheid wil in het algemeen niet zeggen dat de punten 

van de proefopzet over een gelijke boek ten opzichte van het centrum geroteerd 

kunnen worden zonder dat deze eigenschap verloren gaat. 

11 

Indien bij een proefopzet als experimenteel gebied niet een (hyper-)bol wordt 

gekozen, is het minder zinvol te eisen dat de proefopzet roteerbaar is. 

Ill 

De principes van statistische proefopzetten kunnen soms met vrucht worden toe­

gepast om het globale optimum te vinden van een deterministische responsefunc­

tie. 

P.JJ. Maas, Onderzoek naar de geometrie van een grote-terts klok. Afstu­

deerverslag Afdeling Werktuigbouwkunde THE, mei 1985; 

IV 

Nu robuuste schattingsmethoden de laatste tijd veel navolging vinden, bestaat 

het gevaar dat de klassieke methoden ondergewaardeerd worden. Zij blijven 

echter voor veel experimenten geschikt, mits men 'gezond verstand' gebruikt, 

bijvoorbeeld voor het vinden van uitschieters. 

V 

Het bewijs van theorema 3 van boofdstuk 11 van Athreya and Ney (1972) is 

onvolledig. Er wordt afgeleid dat 

met 

en 

f~(s)-q 1 

lim = Q (s) i q 1
-

1 
, 

n-oo ')'n 

fJ(s)= L Pn(i,j)sJ, 
J=O 

Q(s) = I: v 1 si 
J=O 



2 

Nu wordt gesteld dat 

"Comparing coefficients on both .sides implies: 

ll·m (i ) . 1-1 • 
n =lq liJ• 

n-+oo 'Y 

Dit is niet correct. Een juist argument kan gevonden worden in 

McGregor (1966). Daarin wordt gebruikt dat 

(s)-
Qn (s ) = .:....::....:.....;._...:... en Q (s) 

'Yn 

analytisch zijn en dat Qn (s) uniform convergeert naar Q (s ). 

Karlin and 

Athreya, K.B. and Ney, P.E. (1972). Branching Processes. Springer-Verlag, 

Berlin. 

Karlin, S. and McGregor, J. (1966). Spectral theory of branching processes. 

I. The case of a discrete spectrum. ZW 5, 6-33. 

VI 

Het personeelsbeleid aan universiteiten en hogescholen dient meer dan nu het 

geval is gericht te zijn op het aanstellen van wetenschappelijk. personeel met 

interesse voor het geven van onderwijs en met didactische k.waliteiten. 

VII 

Bij atletiek. is een verrassend goede vuistregel ter bepaling van de gemiddelde 

snelheid die men kan lopen op een afstand als functie van de snelheid op een 

andere afstand de volgende 

2 X:! 
v 2 = v 1 - log(-), 

X1 

waar x1 afstanden en v1 de bijbehorende snelheden in km/uur zijn (i = 1,2). 

Dat wil zeggen: als de afstand verdubbelt verliest men 1 k.m/uur aan snelheid. 

De omstandigheden moeten enigszins vergelijkbaar zijn. 


