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0. ABSTRACT A large literature exists on efficient sequential

We assume a parallel RAM model which allows RAM algorithms with time bound linear in the input

both concurrent writes and concurrent reads of global size. Many of these algorithms require sorts to be done

memory. Our algorithms are randomized: each proces- on integers of at most polynomial magnitude. For

sor is allowed an independent random number genera- example, the depth first search algorithms of [Tarjan,

tor. However our stated resource bounds hold for worst 72] and [Hopcroft and Tarjan, 731 require the edges " -

case input with overwhelming likelihood as the input (which may be considered integers) to be sorted into

size grows. adjacency lists. A f)(n log n) comparison sort such -

as QUICK-SORT or HEAP-SORT would not be
We give a new parallel algorithm for integer sort- sufficiently efficient for these applications. Instead, the

ing where the integer keys are restricted to at most BUCKET-SORT (see [Aho, Hopcroft, and Ullman, 741)
polynomial magnitude. Our algorithm cots only loga- 'is used to sort in linear time. The BUCKET-SORT

rithmic time and is the first known where the product - algorithm is sufficiently simple and elegant so that it is
of the time and processor bounds are bounded by a widely used in practice.

linear function of the input size. These simultaneous ,i

resource bounds are asymptotically optimal. All previ- The goal of this paper is to develop an efficient

ous known parallel sorting algorithms required at least and possibly practical integer sorting algorithm for a

a linear number of processors to achieve logarithmic parallel RAM mode], but we will utilize quite different

time bounds, and hence were nonoptimal by at least a techniques-such as randomization.

logarithmic factor.
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0. ABSTRACT

-we give ,new parallel algorithms for integer sorting and undirected graph

connectivity problems such as connected components and spanning forest. r -

algorithms cost only logarithmic time and are the first known that are optimal:

the product of their time and processor bounds are bounded by a linear function

of the input size. All previous known parallel algorithms for these problems required

at least a linear number of processors to achieve logarithmic time bounds, and hence

were nonoptimal by at least a logarithmic factor.

We assume a parallel RAM model which allows both concurrent writes and concurrent

reads of global memory. Our: algorithms are randomized; each processor is allowed an

independent random number generator; however our stated resource bounds hold for

worst case input with overwhelming likelihood as the input size grows.

This work was supported by Office of Naval Research Contract N00014-80-C-0647.
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1. INTRODUCTION

1.1 Optimal Sequential RAM Algorithms

A large literature exists on efficient sequential algorithms with time bound

linear in the input size. This literature generally assumes the sequential Random

Access Machine Model (RAM); for an introduction to this literature see [Aho, Hopcroft,

and Ullman, 74]. Perhaps the most influential works done in this area were the graph

algorithms of [Tarjan, 721 and [Hopcroft and Tarjan, 73]. These efficient sequential

algorithms relied on linear time algorithms for (1) bucket sort, and (2) depth

first search.

This linear time bucket sort was essential to depth first search since the edges

must be sorted into adjacency lists. By ingenious use of both (1) and (2), Hopcroft

and Tarjan derived linear time algorithms for graph problems such as connected compo-

nents, spanning forest, and biconnected components.

The goal of this paper is to achieve similar results (i.e., optimal algorithms)

for a parallel RAM model, but we will utilize quite different techniques (i.e.,

randomization):

1.2 Known Parallel RAM Algorithms

The performance of a parallel algorithm can be specified by bounds on its prin-

cipal resources: processors and time. We generally let P denote the processor

bound and T denote the time bound. For most nontrivial problems such as sorting

and the above graph problems, the product P-T is lower bounded by at least a constant

times the input size. Thus for these problems, we consider a parallel algorithm to be

optimal if P-T = O(input size). For example, given a graph of n vertices and m

edges, a parallel graph connectivity algorithm is optimal if P.T= O(n+m). Of course,

if we have an optimal algorithm with any processor bound P, then we also have (by the

obvious processor simulation) an optimal algorithm for any processor bound P', where

P)P'>l. Hence an optimal algorithm may also be useful in practical situations

where we have a limited number of processors.
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We assume a parallel RAM model of [Shiloach and Viskin, 81]. The processors

are synchronous, and each is a unit cost sequential RAM which in a single step may

either read or write into a memory cell or register, or perform an arithmetic opera-

tion on an integer. Each memory cell and register may contain at most a logarithmic

number of bits in the input size. This parallel RAM model allows multiple reads at a

single memory cell and also allows multiple writes at a single memory cell, where

multiple writes are allowed to be resolved arbitrarily. This model is known as the

CRCW parallel RAM and is quite robust, see IKucera, 82) for its relation to other

parallel machine models. In addition we allow each processor an independent raftdom

number generator.

There are a number of known algorithms for sorting in logarithmic time using a

linear number of processors; for example [Reischuk, 82] gives a randomizod parallel

RAM. algorithm (which unfortunately requires memory cells of nI/ 2 bits each). [Reif

and Valiant, 83) give a randomized parallel algorithm (which has only moderate constant

bounds and requires memory cells of O(log n) bits each), and [,Ajtai, Koml~s, and

Szemer'di 83; and Leighton, 84] give a deterministic parallel algorithm. This last

result of [Leighton, 84] appeared to finally settle the problem of parallel sorting

since PT =..(n logn) is a known lower bound in the case of comparison sorting. How-

ever, these lower bounds on PT need not hold for integer sorting: sorting n integers

on the range In]* (note that the restriction to the range In] is natural, since RAM

memory cells can only contain numbers with at most a logarithmic number of bits.)

Integer sorting is all that is required for most practical applications of interest,

for example for putting a list of edges into adjacency list representative by sorting

the edges by the vertices from which they depart. On the other hand, an optimal

integer sort is essential in the derivation of any optimal parallel graph algorithm

which requires the edges to be put in adjacency list representation.

Note throughout this paper, we let [n] denote {l,... n}.

[< . - - . " ' . . " . . . • . . . , . . - . o . .
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Previously T= O(log n) time bounds and simultaneous P= n+m processor bounds

have been given for connected components [Shiloach and Vishkin,83] and spanning trees

[Awerbuch and Shiloach, 83) of graphs with n vertices and m edges. All these

previous algorithms had a PT= Q((n+m)log n) bound, which was a logarithmic factor

more resources than optimal for logarithmic time bounds. [Tarjan and Vishkin, 83]

pose as an open problem to find optimal parallel graph algorithms.

In fact no optimal graph searching method has been proposed for parallel RAM,

for any sublinear time bounds, except in the special case where the graph is extremely

dense (i.e., m= 2(n 2)). [Chin, Lam and Chen, 82] and [Vishkin, 81),

both give O(log n)
2  time connectivity algorithms requiring (n 2+m)/(log n)

2

processors, which is optimal only if m= (n 2).

Vishkin conjectured that randomized techniques would be needed to get optimal

parallel graph connectivity algorithms. Indeed the literature contains some interestinc

attempts to use randomization to derive optimal parallel algorithms for graph problems.

For example [Vishkin, 84] recently gave a randomized algorithm for finding the number

of successors on a linear list which used an optimal number of processors with an almos

logarithmic time bound. (However, Vishkin's algorithm assumed an oracle which provided

a random permutation, but he provided no efficient method for parallel construction of

random permutations.) Also [Reif, 84] gave a randomized parallel graph algorithm which

had optimal processor bounds only for graphs with m-n(log n)2 edges.

1.3 Our optimal Parallel RAM Algorithms

Our main results are optimal randomized parallel RAM algorithms:

(1) O(log n) time, n/log n processor algorithms for integer sorting

(2) 6 (log n) time, (m+nl/log n processor algorithms for connected components

and spanning forests for any graph of n vertices and m edges.
S&

Here 0 denotes that the upper bound holds within a constant factor with over-

whelming likelihood, for the worst case input. In particular, we let T(n)= O(f(n))

denote 3c V ct> 1, V sufficiently large n, T(n) <cAf(n) holds with probability at

least I- i/na.

..........................
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Our integer sorting algorithm is quite easy to implement and may be of some

practical use, since it has very moderate constant factors.

1.4 Organization of This Paper

In Section 2, we give a known optimal algorithm for parallel prefix computation

which will be of some use in devising our optimal parallel algorithms.

In Section 3, we give our optimal parallel algorithm for integer sorting, which

achieves its efficiency by some interesting new randomization techniques. As an

immediate consequence, (see Appendix A3) we get an optimal parallel algorithm for

computing a random permutation.

In Section 4 (and Appendix A4) we give oui algorithm for graph connectivity. It

is derived in stages where we consider graphs of decreasing density. We first give

a simple logarithmic time algorithm called RANDOM-MATE, which is nonoptimal, but

utilizes randomization in an essential and new way. We next modify this algorithm

2
so that it is optimal for graphs of n vertices with at least mn(log n) edges.

Then we give efficient parallel rcductions from various cases of sparse graphs

2
to the case m>n(log n)

In the Appendix Al we give some useful upper bounds for the tails of various

probability distributions which arise in the analysis of our algorithms.

In a separate paper we give applications of our optimal parallel graph connec-

tivity algorithm to finding Euler cycles, biconnected components, and minimum

spanning trees.

2. PARALLEL PREFIX COMPUTATION

2.1 Prefix Circuits

Let D be a domain and let o be an associative operation which takes 0(l)

sequential time over this domain. The prefix computation probZem is defined as follows:

input X(l),...,X(n) E D

output X(1),X(1) o X(2),...,X(1) o ... o X(n).

j - - - q J ": ::: i" -. -. i'--!."':' :-: :.i ":..i -.: .:'; ? " -/ '-' ' -. --. - - - ..- " -" -'.--- -'. '
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iLadner and Fischer, 80) show prefix computation can be done by a circuit of

size n and depth O(log n).

Known techniques attributed to Brent, give the following processor improvement:

LEMMA 2.1. Prefix corTutation can be done in time O(log n) using n/log n F-FA/

proot ssors.

The prefix sum cormputation problem is defined as follows: Given input integers

X(l),...,X(n)E [n], output the vector PREFIX-SUM(X)= (Y(O),Y(l),...,Y(n)) where

Y(0)= 0 and Y(i) = Yj< X(j) for iE [n]. By Lemma 2.1, we can do this computation

in time O(log n) using n/log n processors.

3. AN OPTIMAL PARALLEL SORTING ALGORITHM

3.1 Known Sorting Algorithms

The inte:er sortino problem, of size n is defined:

in'ut keys k I ... ,k E [n)

1 n

outTut permutation = (O(i),....o(n)) such that k G < < k0(1) On

The input keys k , . .. ,k are not necessarily distinct. By use of the well knownn

and quite practical BUCKET-SORT algorithm [Aho, Hopcroft, and Ullman, 74],

LEMMA 3.1. Integer sortina can be done in time 0(n) by a deterministic sequential RAM.

Any comparison based sort requires PT= C(nlogn), and the best known parallel

sorts actually achieve these bounds. In particular, [Reif and Valiant, 83] show

LEMMA 3.2. n ke is can be sorted in time O(log n) using n processors in a constant

,c,:rcc network.

This algorithm uses memory cells of O(log n) bits. It can also be implemented

by the randomized P-RAM model. In addition, [Ajtai, Koml6s, and Szemeredi,83],

[Leighton, 84] give a deterministic sorting network which takes

C(log n) time with O(n) processors. In the following, we prove:

THEOREM 3.1. intecer sort can be done in time 6 (log n) using n/log n F-RAMI

rrcc .. 2's.
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We will achieve PT= 6(n) for integer sorting, making essential use of the

fact that the input keys k1 ,... ,kn  are integers in In] as in the case of all our

graph applications. We would be quite surprised if any purely deterministic methods

yield PT= O(n) for parallel integer sort in the case of time bounds T= O(log n).

Although we will use deterministic methods to solve some restricted integer sorting

problems, (see Lemmas 3.4 and 3.5 below) our optimal parallel algorithm for the

general integer sorting problem requires some interesting, new use of randomization

techniques (see Lemmas 3.6 and 3.7).

3.2 Easy Integer Sorting Problems

Given a sequence of keys kl,. ..,k E [n] let the key index sets be I(k) =n

{ilk i =k} for each key value kE In]. We will assume log n divides n.

LEMMA 3.3. Given w(1).... ,I01, We can sort kl,...,k in O(log n) time using

P= n/log n processore.

Proof. See Appendix A3.

A sorting algorithm is stabZe if given kl,...,k n, the algorithm outputs a

permuation a of (l,...,n) where Vi, jE In] if k =k and i <j then

a(i) < G(j).

LEMMA 3.4. A stable sort of n keys kI ... ,kn [log n] can be cor'uted in O(log n)

time using P= n/log n processors.

Proof. See Appendix A3.

LEMMA 3.5. n keys kI . ,k n E [(log n)
2 ] can be sorted in O(log n) time using

P= n/log n processors.

Proof. see Appendix A3.

Note: We can similarly extend Lemma 3.5 to apply to key values in [(log n)O(1)].

3.3 Randomized Sampling and Sorting in Key Domain [n/(log n) 2

2
In the following subsection, we fix a key domain ED] where D= n/(log n)

(We assume (log n) divides n). Let the input keys be kl,...,k n E [D] and

their index sets be I(k)= {ilk i = kl for each key value kE [D].

................- . . . .
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LEMMA 3.6. Given as input k''' ''knE ID], we can compute N(l),...,N(D) in

O(log n) time using P=n/log n processors, such that I k[D] N(k)<O(n) and

furthermore with high likelihood (in fact with probability X- i/nx for any given

a>l) N(k)> II(k) I for each kE ID].

As proof, we execute the following randomized sampling algorithm

Step 1 for each processor ITE [P] in parallel do

do choose a random sI E [n] od

S* {s1,...,sp}

Comment. Here we randomly choose a set S c [n] of P key indices.

Step 2 Sort k sl'...'k and compute index set I S (k) = {iE SIk. = k)

for each key value kE [D].

Comment. Applying Lemma 3.2, this sorting can be done by known parallel

algorithms in O(log n) time using P processors.

Step 3 for each kE [D] do

N(k) +do(log n)(1i(k)I+ log n)

Comment.. d is a constant to be determined in the probabilistic analysis.

output N(l),...,N(D).

See Appendix A3 for a proof of the probabilistic bounds given in Lemma 3.6.

Lemma 3.7. n keys k 1...,kn E ID], (where D=n/(log n) 2 ) can be sorted in

O(log n) time using P=n/log n processors.

Proof. (We will actually use O(P) processors, but we observe that we can then slow

the computations down by a constant factor to reduce the processor bound to P.) Our

randomized algorithm is given below.

Step 1 Compute N(l),...,N(D) as defined in Lemma 3.6.

Comment. Here we use the random sampling algorithm of Lemma 3.6.

Step 2 (N(O),...,N(D)) PREFIX-SUM(N(l),...,N(D))

Comment. This prefix-sum computation is done by Lemma 2.1 in O(log n) time

and O(P) processors.

-° . . . • . . . • .0. . . . . .

.. . ...... .L. . . -- _, m, .j, :,j , .,.:.,.__ ,L .... . . .... . ., - .".... , - - -. . ' ." . . - .- . .
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Step 3 for each key value kE [D]

do Pk{- {lij7TE ED] or N(k-l) +D<-<N(k) +D). Using these Pk

processors, construct a table Ak=(Ak(l),Ak(2),...,Ak(N(k)),X(N(k)+l)))

and initialize each element of the table to be an empty list.

od

Step 4 for each ITE [P] in parallel do

for each t = 1 .... log n sequentially do

i I- (7-1)log n+t

choose a random number r7 IC [N(k)]

attempt to add i to front of list Aki I(r )

if successful (i.e., i is now in front of list Aki (r ))

then CONFLICT (iT )-0 else CONFLICT (iT )-i if

od od

Comment. Each processor IE [P] is responsible for keys k(7_l)log n+l,...,kl(71- ) l g n ~ 71 lo g n "

The inner loop for t= l,...,log n is executed sequentially so as to minimize

conflicts. In the t-th iteration of the inner loop, processor 7 attempts to add

the index i7 = (V-l)log n+t of the key ki, to the front of list Aki (ri) where

r is a randomly chosen integer in [N(k)]. This may not be successful if some other

processor I' simultaneously attempts to add some other index in, to the front of

list AkI (ri ). Only one addition to this list will succeed. But this conflict will

only happen in the case ki , = k.i and 7' makes the same unlucky choice of r7 ,-r .71

Claim 3.1. Le t n' =Zn CONFLICT(i). Then n' < 6(P). In particular, 3c VacI

Prob(n' <a cn/log n) > 1i- 1/n

Proof. See Appendix A3.
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Step 5 (u(O),...,u(n))+ PREFIX-SUM(CONFLICT(l),...,CONFLICT(n))

n' 4-u (n)

for each 7TE [P] in parallel

do for each t= l,...,log n sequentially

do i 7 (n-l) log n+t

if CONFLICT(i7 ) then juUi ) i fi

od od

Comment. (jl,...,jn,) is the list of indices j such that CONFLICT(j)= 1. Again,

the prefix computations can be done by applying Lemma 2.1.

Step 6. Sort k ... ,kj and for each key value kE [D] assign

Ak (N(k)+l)) - {jIk=kj }.

Comment. In Ak(N(k)+l) we place the list {j2)k=k. } of conflicted indices with key

value k. Assuming n'<O(P), this step can be done by known parallel sorting algo-

righms in time O(log n) using P processors.

Step 7. for each key value kE [D]

do Construct table Ail consisting of a list of all the elements of

the lists Ak(l) , Ak(
2),...,Ak(N(k)),Ak(N(k)+l).

od

Comment. This is done in O(log n) time by careful use of the processor set P k In

particular, we first compute (ak(0),...,ak(N(k)+l))-PREFIX-SU,(IA(1) , jAk(2) 1,...,

JAk(k))I,jAk(N(k)+l)j). Note that lAk(i)j < d0 log n for each i. Hence for each

i= 1,...,N(k)+l in parallel we can place the elements of A k(i) into locations

'(ak(i-l)+l)),...,A'(a (i)) using a single processor irEP with time O(log n).

Step B. Compute a permutation a of (1,...,n) such that the elements of A , A

appear in order.

Comment. We apply here Lemma 3.3.

output. O= (O(l) ,... ,(n)).

The total time for steps 1-8 is O(log n) using P processors. 0

-"- _ -. " -"" .... ......... ... " " " " ,,-- ... ,dd' lim *.*.llamu&,,l ll/ ll hl
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3.4. Summary of Our Parallel Sorting Algorithm

Finally, we prove Theorem 3.1, by combining the above techniques. (We again

assume (log n) 2 divides n.)

Input keys kl,...,kn E [n]

Step 1 Assign k!= rk./(log n) 21+1 and k"=k.-(k-l) (log n) 
2+1 for each iE [n

2 2
Comment. k',...,knE [D] where D=n/(log n) and kl1...,k n [(log n)

2 ]

ep2 Sort k,...,knE [D) resulting in index sets I' (k) = {ilk! =k} for each

key value k E [D]

Comment. This is done by applying Lemma 3.7.

step 3 ort {k"liE I'(k)} c [(log n) 
2  yielding ordered list L(k) of indices

i

in I'(k) for each key value kE tD]

Comment. This is done by applying the stable sort of Lemma 3.5 to the ordered list

of keys I'(1)... I1(D).

Step 4 Compute the permutation a which orders the indices as L(l),...,L(D)

Comment. Here we apply Lemma 3.3, a satisfies k,(,) <..•<k0• l)o(n)

output a

The Lemmas 3.2-3.7 and the appropriate use of prefix-sum computation (Lemma 2.1) imply

that each step can be done in O(log n) using P= n/log n processors. 0

3.5 Optimal Parallel Generation of a Random Permutation

COROLLARY 3.1. A random permutation a of (1,...,n) can be constructed in

6 (log n) time using P= n/log n P-RAM processors.

Proof. See Appendix A3.

- - I & il i ml i i l, l ll... .. . . . . . . . .. .



-11-

4. OPTIMAL PARALLEL GRAPH ALGORITHMS

Given a graph G, let CC(G) be the connected components of G. We prove in

this section:

THEOREM 4.1. For any graph G with n vertices and m edges we can compute CC(G)

in O(log n) time using (m+n)/log n parallel RAM processors.

(Note: Simple modifications of our algorithms also give a spanning forest of G

within the same resource bounds.)

The proof of Theorem 4.1 will be separated into three cases of decreasing density

of edges. In each case, we efficiently reduce the connected components problem to one

for a denser graph. The density reductions use various randomized sampling techniques

(see details in Appendix A4).

-- . . .. ,,_... ..... i~ .- %I.i -. . ll. 
,

.- ,1, . . . ,. . - . ,-..- ,. -,. .-.
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4.1 A New, But Nonoptimal Randomized Algorithm

We begin by describing a new randomized algorithm RANDOM-MATE for computing CC(G)

of G= (V,E) with n vertices V= {l,... ,n} and m edges E. We will associate a

distinct processor with each vertex of V and each edge of E. This algorithm will

be nonoptimal since it runs in O(log n) time using n+m processors as did previous

parallel graph connectivity algorithms [Shiloach and Vishkin, 83]. However, RANDOM-MATE

has the advantage (not shared by the previous deterministic algorithms) that it can be

modified to an optimal algorithm, as we prove in the Appendix A4.

Our randomized connectivity algorithm will be motivated by the following

LEMMA 4.1. (The Random Mating Lemma) Let G= (V,E) be any graph. Suppose for each

vertex vE V, we randomly, independently assign SEX(v) E {male, female). Let vertex

v be active if there exists at least one departing edge {v,u}E E where uov, and

let vertex v be mited if SEX(v) = male and SEX(u) = female for at least one edge

{v,u} E E. Then with probability 1/2 the number of mated vertices is at least 1/8

of all active vertices.

Proof. See Appendix A4.

To represent collapsed subgraphs, we use an array R which we view as pointers

mapping V- V. Let the graph collapsed by R be defined R(G)= (R(V),R(E)) where

R(V) = {R(v) IvE V1 and R(E) = { (R(v) ,R(u))I {v,u} CE, R(v) 9 R(u) }. Each vertex rE R(V)

is named a R-root. Our algorithm below (and the ones to follow) will always satisfy

R(R(v)) = R(v) for each vC V. Hence the R pointers define a directed forest

(V,{(v,R(v))IvCV - R(V)}). Each tree in this forest will be called a R-tree; it

will have height <1 and will consist of a maximal set of vertices of V mapped

to the same R-root.

Initially we set R(v) v for all vC V. We will prove that at the end of the

algorithm the vertices of R-trees are the connected components CC(G).

We execute the main loop c 0 log n times, where c0  is a constant defined in the

proof below. On each execution of male, we merge together connected subgraphs by a

• - • • . J .- •° .° • . . * * * • o * - . , . ,- . . .• ••.. °°.• . . • •.• • ' . •*. •°• .
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randomly assigning R-roots male or female with equal probability, and then letting

each R-root assigned male to be merged into a R-root assigned female, if there is an

edge between those corresponding subgraphs. Note that we can view this a mating

process where each male may be mated and merged into at most one female but many males

may merge into the same female.

It will be useful to define D(E) = {(v,u)* {v,u}E E) U {(u,v) {v,u}E E} to be the

directed edges derived from E.

algorithm RANDOM-MATE

input graph G= (V,E) with n= JVJ and m= E.

initialize for each vEV in parallel do R(v)- v od

main loop: for t= l,...,c 0 log n

do

assign sex; for each vE V in parallel do

if R(v)= v then

comment v is currently a R-root

randomly assign SEX(v) E {male,female}

fi od

merge: for each (v,u) E D(E) in parallel do MATE(v,u)

collapse: For each vE V in parallel

do R(v) - R(R(v) )

comment collapse the R-trees to depth

od od

output R(l),... ,R(n)

Also we define

procedure MATE (v,u)

if SEX(R(v))= male and SEX(R(u)) = female

then R(R(v)) - R(u) fi

comment attempt to mate male R-root R(v) with female P-root R(u).

, - , - , .° o " j - - , o ° - ., - . o , - . '. . , ° . . , ,- , .. ,. ' - , , . . ° . . , , ° . - , , °
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Claim 4.1. The vertex set of each R-tree is always within a single connected

component of CC(G).

Proof. See Appendix A4.

Note RANDOM-MATE may have incorrect output if after c log n iterations, there

still exists an active R-root. But the main body can easily be altered to test if

3{v,u}E E such that R(v)30R(u) and if so, go back to the main loop.

RANDOM-MATE then yields the following (nonoptimal) result:

LEMMA 4.2. For any graph G with n vertices and m edges, we can compute CC(G)

in time 6 (log n) using m+n processes.

Proof. See Appendix A4.

4.2-4.4 Optimal Parallel Algorithms for Various Edge Densities

We hope our careful description of RANDOM-MATE has interested the reader enough

to read the proof of Theorem 4.1 given in the Appendix. The proof is broken into

three cases:

(1) m > n(log n) 2

(2) m > n(log n)1/3

(3) m < n(log n)

Cases (1) and (2) apply random sampling techniques and various modified and

improved forms of RANDOM-MATE which use (m+n)/log n processors. Case (3) uses

a variant of RANDOM-MIATE with a randomized conflict resolution technique similar

to the conflict resolution techniques used in our integer sorting algorithm. The

details are found in Appendix A4.
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APPENDIX A]: Probabilistic Bounds

The randomized algorithms in the preceding sections are analyzed by applying the

following probabilistic bounds on the tails of binomial and hypergeometric distribu-

tions (see also [Feller, 80]).

Let random variable X upper bound random variable Y (and Y lower bound x)

if for all x such that 0< x <l, Prob(X <x) < Prob(Y <x).

A1.l Binomial Distributions

A binomial variable X with parameters n,p is the sum of n independent

Bernoulli trials, each chosen to be 1 with probability p and 0 with probability

1-p. The binomial distribution function is Prob(X-
< x) = x (n) pn( 1 -) n-k-k=O k IP nk

The bounds of [Chernoff, 52] and [Angluin and Valiant, 79] imply

LEMMA A].]. Ve,p,n where O<p<l and 0 <c <1,

Prob(X < L(l-E)pnJ)< exp(-E 2np/2)

Prob(X >t(l+E)npl)< exp(-E 2np/3)

LEMMA A1.2. [Hoeffding, 56]. Let Xl, .... n be independent binomial variables. Then
n

1i= X is upper bound by a binomial variable with parameters n,p with mean
n

np = 1 mean(X i).

AI.2 Hypergeometric Distributions

Fix p,s where O<p <l and 0<s<n. Let A be a subset of {l,... ,n} of

size np. A hypergeometric variable Y with parameters s,np,n is defined as

Y= ISn AI where S is a random sample of s elements of {1,...,n} chosen

without replacement.

Suppose we independently choose s <n random integers rl,...,r Ell,...,n}. Let

index i be the conflicted if 3 distinct a,b such that ra = rb = i. Let Z be

the total number of conflicted indices iE {1,...,n}.

LEMMA AI.3. Z is upper bounded by a hypergeometric variable with parameters s,s,n.

[Johnson and Katz, 69) attribute the following bound to Uhlmann.

..........................................
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LEMMA AI.4. If x is binomial with parameters s,p and Y ic hypergeometric with

parameters s,npn then

Prob(X <x) > Prob(Y <x) for O<p < nx

(s-1) (n+l)

and

Prob(X<x) >Prob(Y<x) for (l+nx/(s-l)) < p< 1
(n+l)

APPENDIX A3: Proof of Parallel Sorting Algorithms

Proof of Lemma 3.3. Compute (h0 .... ,hk) = PREFIX-SUM(II(l)j,...,II(n)j) in O(log n)

using P processors by Lemma 2.1. We then set O(hk-l+l),...,(n k ) to consecutive

elements in I(k) using a total of O(log n) time and P processors (the required

processor assi4rnent can easily be done by using the prefix sum computation.) Then

k T(<... < k is a sort. 3a(i) o(n)

Proof of Lemma 3.4. To each processor iTE [P], we assign key indices J(T) =

{j (TT-l)log n< j '<min(n, Tlogn)}. Let each processor Tr sequentially sort the keys

{k JjE J(n)} by BUCKET-SORT in time O(log n), and so compute each list J ,k =

(j J(f)Ikj=k) in increasing order of indices for each key value kE [log n]. Then

for each key value kE [log n] we compose the lists J lk'''JP,k to form the list

I(k) of indices with key value k. Finally, we apply Lemma 3.3 to compute the required

permutation a ordering the indices as they appear in I(1),...,I(P). The total time

is O(log n) using P processors. a

Proof of Lemma 3.5. Let k' = Tk /log n1+l and let k.' =k. - (k!-l) log n+l for each1 i 1 3. 3

iE [P]. We first apply Lemma 3.4 to get a sort of k ,...,k', yielding a permutation
1 n

O. Then we apply Lemma 3.4 again to get stable sort of k" k" yielding a
G(1)..' y(n)l'

permutation a'. Then k (i) < ' . ko',(n)' and hence a' is a sort of k , ...,kn. 0

Proof of Lemma 3.6. If d 0(log n) > 11(k)I then always N(k) >d0(log n)2 II(k)I-

Else suppose d (log n)2 <II(k)l. IIs(k) I is upper bounded by a binomial variable

with parameters n/log n, II(k) I/n. The Chernoff bounds given in Appendix A.1,

Lemma Al.l, imply 3c Va >,l if co =(ca) -  then

. the.. n.. . .
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Prob(IsI(k) Id 0 I(k) I/log n) >1-1/n . Since N(k) -d0jIs(k)Tlog n, the probability

bounds hold as claimed. 0

cc
Proof of Claim 3.1. By Lemma 3.6, with likelihood l-1/n , we can assume

N(k)> iI(k)I. Let nk = 1iEN(k) CONFLICT(i). The key observation is that on each

stage t, 1/log n of the key indices of I(k) are assigned to random positions of

the table Ak. Let nk, t be the number of indices i EN(k) where CONFLICT(i)

is set to 1 on stage t. Then by definition nk -log nk,t"

We now apply the probabilistic bounds given in Appendix A.1, and we consider upper

bounds on probability variables to be over the range of probability densities from

1/nx to i- 1/n . By Lemma A1.3, each n. is upper bounded by a hypergeometricj3,t

variable with parameters JI(k)l/log n, 1I(k)j/log n, II(k)I. Then Lemma Al.4 implies

each nk, t  is upper bounded by a binomial variable with parameters N(k)/log n, l/log n.

= zlog nisuerouddba

Hence by (Hoeffding's inequality) Lemma A1.2, n =l nkpt
k t=l k,tisuprbuddya

binomial variable with parameters N(k), I/log n. Furthermore YkE[D ] N(k)<O(n), so

E[ ] n is upper bounded (by Hoeffding's inequality) by a binomial variable with
kE[D) k

parameters O(n), l/log n. The Chernoff bounds given in Lemma Al.1 immediately imply

the claimed probabilistic bounds on n'. 0

Proof of Corollary 3.1. We execute the following algorithm.

Step 1 for each processor iTE [P] in parallel

do for each t= l,...,log n

do i 7- (T-i) log n+t

randomly chose k. E [P]I 1

od od

Step 2 Sort kl,... ,kn  and compute I(k) = {ilk. k} for each key value kE [P]

Comment. The sort can be done by Lemma 3.1 in time O(log n) using P processors.

CLAIM 3.2. With high likelihood, JI(k) I <O(log n) for each kE[P]. In particular

a3c V>I1 Prob(I(k) <cclog n))l-i/n

Proof. Each 1I(k) is upper bounded by a binomial variable with parameters n,

log n/n. Hence the claimed bounds follow from the Chernoff bounds of Lemma Al.l. D
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Step 3 for each 7rE [P] in parallel

do let L(k) be a random permutation of the elements of I(k) od

Comment. A random permutation I(k) can easily be sequentially computed

in O(II(k)I) time by a single processor.

Step 4 Compute G= (O(i),.... T(n)), the permutation of (l,...,n) which

gives the order of appearance of the indices in L(l),...,L(P).

Comment. This can be done in O(log n) time by Lemma 3.3.

output random permutation of 0.

The total time for the steps 1-4 is O(log n) using P processors. 0

*. .. .. .. .... . . . . . .. . . . .. lima""*'.*
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APPENDIX A4: Proof of Theorem 4.1

A4.1 Analysis of RANDOM-MATE

Proof of Lemma 4. 1

Let F be a spanning forest of G. By deleting at most 1/2 the edges of

F (but no active vertices), we get F' CF, a forest of trees of height 1, which

contains all the active vertices. On the average, at least 1/4 of the leaves of

each tree of F' are mated, since their root has probability 1/2 of being

assigned female, and half of the leaves on the average will be (independently)

assigned male. Hence with probability 1/2, at least 1/8 of all active vertices

are mated. (Note: we can improve this result to show > 1/4 of all active

vertices are mated on the average.) 0

Proof of Claim 4.1. We prove this by induction on the number of relations of

the main loop. This initially holds when Rv) =v for all v EV. Suppose the

claim holds up to the t -1 iteration of the main loop. Then a R-root r is

merged into an R-root r' by assigning R(R(r)) -R(r') only if 3{v,u} EE

such that r =R(v) and r' =R(u). Hence the claim hol. after the t'th

iteration of the main loop.

Proof of Lemma 4.2.

Let Rt be the value of the array R just before the beginning of the t'th

iteration of the main loop. Let a R -root r be active if 3{u,v} EE such thatt

R tv) =r but R t(v) R t (u). Let nt be the number of distinct active R t-roots on the

t'th iteration. Let the execution of RANDOM-MATE of the t'th iteration be a SucceSS

if nt+1 <-n t where *y=1/8. By Lemma 4.1, the total number of

successes after t0  iterations is lower bounded by a binomial variable with

parameters to, 1/2. Observe that if we have log n +1 successes after to

iterations, then n =0. By the Chernoff bounds on the binomial given in Lemma A1.1to0

of the Appendix A, V c>l 3c0 such if to =c0 logn then

Prob(n =0) >,Prob(the number of successes after t iterations is >1 +log n) l-1/n
S" 0

-a
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Thus with probability 1 1-1/n , after c0 logn iterations of RANDOM-MATE there are

no remaining active vertices. 0

A4.2 An Optimal Algorithm for > n(log n) 2  Edges

In this subsection we take as input a graph G =(V,E) such that V ={l,...,n}

2
and the edge set E is of size m>/n(log n)

Our algorithm RANDOM-MATE iwill be a simple modification of RANDOM-MATE.

To avoid unnecessary notation (ie, the use of ceiling and floor functions) we

assume without loss of generality that log n divides m.

We will use a total of P =n/log n processors. We will begin by sorting the

list D(E) of directed edges into adjacency list arrays E(l),...,E(n) where E(v)

is an array containing the sets of directed edges departing vertex v. Since

[D(E)"( =21E I, by Theorem 3.1, this sorting can be done in 6(log n) time using

P processors.

We assign to each vertex vE V a set of log n consecutive ,-,essors

P ={(v-l) logn +l,...,v logn}. We alter the main loop of RANDOXI:-ATE to Executev

cI logn times (instead of c0 logn times) where c1  is a cc nt to be determined

below. We also delete the original code at label merge, and sul -itut in its

place;

merge: for each v EV in parallel

do for each processor - EP in parallel
- - v

do if E(v) '0 then

choose a random edge (v,u) EE(v) fi

MATE (u,v)

od

od

An edge {v,u} is an R-Zoop if R(v) =R(u).

Claim 4.2. Va >I 3c,, with probability 1-i/n" there are at most m/log n edges

of E which are not R-loops after the cI logn iterations of the main loop of

RANDOM- MATE'.

• . -. -.. .. .. ......... -..... .. ... .. .. -. - ..... - . .. .. -.. - - .. . . . -. . .-. '.' .. .- ' .- - .. . . -.- .
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Proof. Let Rt be the value of the R array just before the t'th iteration

of the main loop. Let Rt-root r be semiactive if at least l/log n of the

edges {{v,u} EEIR(v) =r! are not R t-loops. Let n' be the number of semiactivet t

R t-roots. We can assume without loss of generality that n,>-4. For any semiactive

R t-root r, with probability at least (1 -l/log n)log n >1/4, some process of Pv

chooses an edge {v,u} EE on step t such that R(v) =r, R(u) 3r and we execute

MATE(v,u). Also, prob(SEX(R(v)) =male and SEX(R(u)) =female) =1/4. Hence using

arguments similar to Lemma 4.1 we have with probability at least 1/2, at most 'nt

semiactive Rt-roots are not merged on step t to other R t-roots where y' =31/32.

Let the t'th iteration of the main loop be successful if n' <n y'. We have just
t+l

shown the t'th iteration is successful with probability at least 1/2. The total

number of successes after tI =c1 logn iterations is lower bounded by a binomial

variable with parameters ti, 1/2. The Chernoff bounds of Lemma A1.1 imply:

a
Va i 3c1 with probability > 1 -1/n , the number of successes after tI iterations

is > log., n. But n' =0 after 1 +log n successful iterations, and hence there
t1

are no remaining semiactive R-roots.

After completing execution of these modified main loop, RANDOM-MATE' deletes

each R-loop edge {u,v} EE (where R(u) =R(v)) in time O(log n) using P

processors. Finally, RANDOM-MATE' executes the original procedure RANDOM-MATE

described in 4.1 to collapse the resulting graph to its connected components.

Hence we have

LEMMA 4.3. In time O(log n) using m/log n processors we can compute CC(G) for

any graph G with n vertices and m>n(log n)
2 edges.

1/3A4.3 An Optimal Algorithm for , n(log n) Edges

LEMMA 4.4. Given any graph G = (V,E) with n vertices and m >n(log n) I/ 3 edges,

we can compute CC(G) in time O(log n) using (m+n)/log n processors.

To prove this lemma, we describe another modification of RANDOM-MATE which

we call RANDOM-MATE". We will give a simplified description of RANDOM-MATE". We

will take as input a graph G =(V,E) with n vertices m>n(log n)1/3 edges.
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In this case, we assign to each processor 7E [m/log n] a set Vi of (log n)
I/ 2

distinct consecutive vertices of V= {l,...,n}. Also we again construct, by sorting

E, adjacency list arrays E(1),...,E(n).

)1/4
In this case we will execute the main loop only c2 (log n) iterations where

c2 is a constant to be defined below. We modify the main loop by substituting in

place of the code at label merge, an assignment of R'(v)- R(v) for each vertex vE V

and then the following code:

merge: for each processor TrE [m/log n] in parallel do

for each v E V T

do for i= l,...,(log n)1
/ 4

if R(v) = R' (v) and E(v) # 0 then

do choose a random edge (v,u)E E(v)

MATE(v,u) fi od

od

The test R(v) = R'(v) insures that the resulting R-trees will be of height <1 after

executing the code at label collapse. Note that the resulting main loop takes time

O(log n)3/ 4 per iteration, and so the total time is O(log n) using m/log n processors

CLAIM 4.3. 3c such that with probability 1 as n-0, there are at most m/(log n)
1/ 1 2

2

edges of E which are not R-loops after c 2(log n)I/ 4 iterations of the main loop of

RANDOM-MATE".

Proof of Claim 4.3. The proof is almost identical to that of Claim 4.2, except that

1/12

in this case we must redefine a R -root to be semiactive if at least ii(Clo n) of

t

the edges {{v,u} EEIR(v) =v) are not R t-loops. If we let n"t be the number of (so

defined) semiactive R -roots, th- again we have Prob(n" <nly') <1/2 where again

t -(on)1/4 t+

Y' =31/32. Hence with probability > 1 2-(lg no semiactive R-root exists

after c 2(log n)1/
4 iterations, where c2 is determined by Lemma Al.I. 0

Claim 4.3 implies that after 12 applications of RANDOM-MATE", the resulting

graph has only m/log n edges, and hence we can apply RANDOM-MATE, Lemma 4.1,

to completely collapse the graph and hence to determine its connected components

An. 6(log n) time using m/log n processes.
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A4.4 An Optimal Algorithm for <n(Iog n)1/ 3  Edges

Let G= (V,E) to be a graph with n vertices and m n(log n)1 / 3 edges. By

Lemma 4.4, it suffices to show in time O(log n) using P = (m+n)/log n processors

we can reduce the problem of computing CC(G) to the problem of computing the connected

components of a partially collapsed graph with < O(m/(log n) / 3) vertices and < m

edges. Without loss of generality we can assume m >n -1 and 2m is divisible by log n.

Let D(E) =((v1,ul),...,(v2mU2m)) be a list of the directed edges derived from

E. We begin by computing a random permutation a of (l,...,2m) by Corollary 3.1

in time O(log n) using P processors. We initially assign R(v) =v and

SEX(v) =female for each vertex v EV. This can easily be done in O(log n) time

using P processors. Then we execute the following log n steps:

for t =l,...,log n do

for each processor T E [2m/log n] in parallel

do MATE'(vo((._I)log n+t),ua((7._l)log n+t)) od

do

where we define:

procedure MATE'(v,u)

SEX(R(v)) - male

if SEX(R(u)) = female then R(R(v)) - R(u) fi

Note that each of iteration step takes only time 0(l) using P processors. Let a

vertex of R(G) be special if either it is isolated, or has degree > (log n) 1/3
, 
or

1/3
is adjacent (by an edge of R(G)) to a vertex of degree > (log n)

CLAIM 4.4. The resulting partially collapsed graph R(G) has ( O(n/log n) 1/3

vertices which are not special, and < m edges.

Proof of Claim 4.4. Let Rt be the value of R just before the t'-th iteration.

Let Et  be the set of directed edges chosen on the t'-th iteration, so D(E) =Ut Et

Let Mt be the number of edges (v,u) EE t such that

(i) v has degree (log n) in R (G) and

(ii) a processor T executes MATE(v,u) but finds SEX(R(u)) )female, so

does not assign R(R(v)) 4-R(u).
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Observe that initially, all vertices v EV have been assigned SEX(v) =female,

and that on successive stages t = ,.,log n at most m/(log n-t) <n(log n) /3/(log n-

, vertices vE V have been assigned SEX(v) = male.

We can upper bound M by a hypergeometric variable, and then apply Lemma AI.4
Mt

to show that Mt is upper bounded (for probabilities in the range from 1/na to

p Q 1/3
1-1/na) by a binomial variable with parameters m/log n, max((log n) /(log n-t),l).

log n

Applying (Hoeffding's inequality) Lemma A1.2, we get Zt= 1  M is upper bounded by
t=l t

a ioilwt enIlogt~ n m/ log n) 2/3 (log n-t))<- ((m loglog n)/(log n) 
2/ 3 )

a binomial with mean so /

t=l m/Con) Cont)((iloogn/lg)
*1/3 2/3

O(n/(log n)I ) and parameters m, O((loglog n)/(log n)). Then I Mt +lt

O(n/(log n) / 4 ) gives an upper bound on the number of vertices of R(G) which are

not special. Finally we apply the Chernoff bounds of Lemma A1.1 proving the Claim. 0

To complete the reduction, we delete each isolated R-root of R(G), and for each

rE R(V) with degree < (log n)I1 3 in R(G), we reassign R(r)- r' if there exists an1/

edge (r,r')E R(E) such that r' has degree > (log n)1/ 3 in R(G). We also

update R'(v)- R(R(v)) for each vEV. These final steps can easily be done in O(log n)

time using (m+n)/log n processors. The resulting further collapsed graph R'(G) has

<( n/(log n) / 3) vertices and < m edges. Therefore we can apply Lemma 4.4 to

completely collapse R'(G) to R"(G). The array R" specifies the connected

components of G. Thus we have shown:

LEMMA 4.5. Given any graph G with n vertices and mnn(log n)
I / 3 edges, we can

compute CC(G) in b(log n) time using (m+n)/log n processors.

This completes the proof of Theorem 4.1.
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