AD-A161 791

UNCLASSIFIED

OPTIMAL PARALLEL ALGORITHMS FOR INTERGER SORTING AND
GRAPH CONNECTIVITY(U)> HARVARD UNIVY CRANBRIDGE MA RIKEN
COMPUTATION LAB_ J H REIF 1985 TR-@8-85
NO0O814-80-C-0647

A e e —
DA RS B I SR A Dl o

ARSI A SIS AR AT n A i SRR AN o A0 0l v hen A e S S A .

’ - P P s

L

ez 2
li22

22

""IEI s

L2 2 e

2

rerEEEF

rr
r
rr

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREA&U OF STANDARDS - (963 - &

.
oty

o R D

2

o oAy

A SRAMARERASHEMARAIAIA A

OPTIMAL PARALLEL ALGCK
INTEGER SORTING AND GRAPH (

John H. Reif
TR-08-85

AD-A161 791

Harvard University '

Center for Research :
in Computing Technology -

A

Aiken Computation Laboratory
33 Oxford Street
Cambridge, Massachusetts 02138

OPTIMAL PARALLEL ALGORITHMS FOR
INTEGER SORTING AND GRAPH CONNECTIVITY

John H. Reif
TR-08-85

This document has been
for publ: ralecan and sale; ita
) dlstributioa L v .udited,

T AT TR T YT T TR Y T ORaScIh sk 2aait 2 A I

secum'rv CLASSIFICATTON OF THIS PAGE (When D.u Entered) unCla581tled o ' ' ’ ’ _ '_]
READ INSTRUCTIONS S
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM LT
1. REPORT NUMBER 2. GOVT ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER
4. TITLE cand Subtitle) S. TYPE OF REPORT & PERIOD COVERED
AN OPTIMAL PARALLEL ALGORITHM FOR INTEGER Technical Report
SORTING 6. PERFORMING ORG. REPORT NUMBER
TR-08-85
7. AUTHORC(s) 8. CONTRACT OR GRANT NUMBER(s)
NO0014-80-C~0647

John H. Reif

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ERADJ ELEMEN PROJEEEST TASK

PROQ
AREA & WORK UNIT NUM

Harvard University
Cambridge, MA 02138

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research 1985
800 North Quincy Street S NUWSER GF PAGES
Arlington, VA 22217 10

t4. MONITORING AGENCY NAME & ADDRESS(if diflerant from Controlling Ollice) 15. SECURITY CLASS. (of this raport)

Same as above

1Sa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. OISTRIBUTION STATEMENT (of this Report)

L CHERS

This document has been approved
for publ: relecie cmd wale; it
distribution la unlinlted. b

17. DISTRISUTION STATEMENT (of the abstract entered in Block 20, il different lrom Report)

unlimited

8. SUPPLEMENTARY NOTES

unlimited

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

randomized computation, parallel computation, optimal algorithms,
sorting, P-RAM

20. ABSTRACT (Continue on reverse side if necessary and identity by block number)

See reverse side.

DD , :’2:"7, 1473 EoiTion oF 1 NOV 6313 OBSOLETE
S/N 0102-114- 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Bntered)

o - -) P S R I

"'M’&AL. P T S T o G Ry

P T T e

“,;.\'-"-.\ T S T e N L R

LN PR T S L AL L T Tl i

o v .
AT A .

0. ABSTRACT

We assume a parallel RAM model which allows
both concurrent writes and concurrent reads of global
memory. Our algorithms are randomszed: each proces-
sor is allowed an independent random number genera-
tor. However our stated resource bounds hold for worst
case input with overwhelming likelihood as the input
size grows.

We give a new parallel algorithm for integer sort-
ing where the integer keys are restricted to at most
polynomial magnitude. Our algorithm costs only loga-
rithmic time and is the first known where the product
of the time and processor bounds are bounded by a
linear function of the input size. These simultaneous
resource oounds are asymptotically optimal. All previ-
ous known parallel sorting aigorithms required at least
a linear number of processors to achieve logarithmic
time bounds, and hence were nonoptimal by at least a
logarithmic factor.

D P R B I
. LA N e LT e T

IR - . - - . - - . " " -
N, WA N, WO, P LIPW, PUUIPS ., W WA YLIP W ShAP L V.. W)

- Tz e

A large literature exists on efficient sequential
RAM algorithms with time bound linear in the input
size. Many of these algorithms require sorts to be done
on integers of at most polynomial magnitude. For
example, the depth first search algorithms of [Tarjan,
'72] and [Hoperoft and Tarjan, 73| require the edges
(which may be considered integers) to be sorted into
adjacency lists. A)(n log n) comparison sort such
as QUICK-SORT or HEAP-SORT would not be
sufficiently efficient for these applications. Instead, the
BUCKET-SORT (see {Aho, Hoperoft, and Ullman, 74])
is used to sort in linear time. The BUCKET-SORT
algorithm is sufficiently simple and elegant so thatitis - .
widely used in practice. -

The goal of this paper is to develop an efficient R
and possibly practical integer sorting algorithm for a SR
parallel RAM model, but we will utilize quite different
techniques—such as randomization.

Ty

ey

DR A g o

*
. This work was supported by Office of Naval Research Contract N0O0014-80-C-0647.
’4
[P S PPN SR SRRSO AAC AR AR -~ -‘:---'--s‘. ;1‘;'.".:"‘.'— -‘.':- ~". e

Ll M s e o o

T T~y

LR it it e i o

ccession
A .Eor

Optimal Parallel Algorithms for NTIS GRAXI
DTIC TAB g
Integer Sorting and Graph Connectivity Unannounced
Justification#_
, By
John H. Reif* Distribution/

_—

Availatility Codes

Aiken Computation Lab.

Harvard University Avall and/or

Cambridge, Massachusetts Dist Special
-
Al
March, 1985 i
0. ABSTRACT
--We give?new parallel algorithms for integer sorting and undirected graph
connectivity problems such as connected components and spanning forest. ,Ou;-cif R

algorithms cost only logarithmic time and are the first known that are optimal:
the product of their time and processor bounds are bounded by a linear function
of the input size. All previous known parallel algorithms for these problems required
at least a linear number of processors to achieve logarithmic time bounds, and hence

were nonoptimal by at least a logarithmic factor.

TR o ce [
We assume a parallel RAM model which allows both concurrent writes and concurrent

reads of global memory. Owr algorithms are randomized; each processor is allowed an
independent random number generator; however our stated resource bounds hold for

worst case input with overwhelming likelihood as the input size grows.

S A N A A L R i o R A A

‘»".r."."..'“.'..'.-. Y

1. INTRODUCT I ON

1.1 Optimal Sequential RAM Algorithms

A large literature exists on efficient sequential algorithms with time bound
linear in the input size. This literature generally assumes the sequential Random
Access Machine Mcdel (RAM); for an introduction to this literature see [Aho, Hopcroft,
and Ullman, 74]. Perhaps the most influential works done in this area were the graph
algorithms of [Tarjan, 72] and [Hopcroft and Tarjan, 73). These efficient sequential
algorithms relied on linear time algorithms for (1) bucket sort, and (2) depth
first search.

This linear time bucket sort was essential to depth first search since the edges
must be sorted into adjacency lists. By ingenious use of both (1) and (2), Hopcroft
and Tarjan derived linear time algorithms for graph problems such as connected compo-
nents, spanning forest, and biconnected components.

The goal of this paper is to achieve similar results (i.e., optimal algorithms)
for a parallel RAM model, but we will utilize quite different techniques (i.e.,
randomization);

1.2 Known Parallel RAM Algorithms

The performance of a parallel algorithm can be specified by bounds on its prin-
cipal resources: processors and time. We generally let P denote the processor
bound and T denote the time bound. For most nontrivial problems such as sorting
and the above graph problems, the product P-T is lower bounded by at least a constant
times the input size. Thus for these problems, we consider a parallel algorithm to be
optimal if P-T = O(input size). For example, given a graph of n vertices and m
edges, a parallel graph connectivity algorithm is optimal if P-T= O(n+m). Of course,
if we have an optimal algorithm with any processor bound P, then we also have (by the
obvious processor simulation) an optimal algorithm for any processor bound P', where
P2P'21. Hence an optimal algorithm may also be useful in practical situations

where we have a limited number of processors.

R e S SRS

.o

44

¥ B g e ey T e —‘.ﬂ-.‘;.-‘.."‘.‘,__-:‘;':"_-v'."""*"."i..Y~.‘l’---'.“

We assume a parallel RAM model of [Shiloach and Viskin, 81). The processors
are synchronous, and each is a unit cost sequential RAM which in a single step may
either read or write into a memory cell or register, or perform an arithmetic opera-
tion on an integer. Each memory cell and register may contain at most a logarithmic
nurber of bits in the input size. This parallel RAM model allows multiple reads at a
single memory cell and also allows multiple writes at a single memory cell, where
multiple writes are allowed to be resolved arbitrarily. This model is known as the
CRCW paréllel RAM and is quite robust, see [Kucera, 82) for its relation to other
parallel machine models. 1In addition we allow each processor an independent random
' number generator.

There are a number of known algorithms for sorting in logarithmic time using a

linear number of processors; for example [Reischuk, 82) gives a randomized parallel
RAM algorithm (which unfortunately requires memory cells of nl/2 bits each). |[Reif
and Valiant, 83]) give a randomized parallel algorithm (which has only moderate constant
bounds and reguires memory cells of O(log n) bits each), and [.Ajtai, Komlbs, and
Szemeredi 83; and leighton, 84)] give a deterministic parallel algorithm. This last
result of [Leighton, 84] appeared to finally settle the problem of parallel sorting
since PT =..(n logn) 1is a known lower bound in the case of comparison sorting. How-
ever, these lower bounds on PT need not hold for integer sorting: sorting n integers
on the range [n]* (note that the restriction to the range [n] is natural, since RAM
memory cells can only contain numbers with at most a logarithmic number of bits.)
Integer sorting is all that is reguired for most practical applications of interest,
for example for putting a list of edges into adjacency list representative by sorting
the edges by the vertices from which they depart. On the other hand, an optimal

integer sort is essential in the derivation of any optimal parallel graph algorithm

which requires the edges to be put in adjacency list representation.

*
Note throughout this paper, we let [n] denote {1,...,n}.

P T T e T

8 D T P AU B B . PR

- = . . - o . - o - . . . - . - L
-) - - - . 3 . - - . . - . - o - . - 0. » 0 . . S . . - LA e e J
PV SR Py Py I Sy R Y R A PRI T N A U A A I A S S P L I P I R I TP T ISR e

-

b o e o o o
P B
“

;
®

3

| R U A
PR [,

At A - Ld
.. - DR £ A P Srah aeoh o et o

LA A AR AR A i A e A s ave ae o g 0 & oo o, C A s wn g oma o on]

Previously T=0(log n) time bounds and simultaneocus P=n+m processor bounds
have been given for connected components [Shiloach and Vishkin,83] and spanning trees
[pverbuch and Shiloach, 83) of graphs with n wvertices and m edges. All these
previous algorithms had a PT= Q{((n+m)log n) bound, which was a logarithmic factor
more resources than optimal for logarithmic time bounds. [{Tarjan and Vishkin, 83]
pose as an open problem to find optimal parallel graph algorithms.

In fact no optimal graph searching method has been proposed for parallel RAM,
for any sublinear time bounds, except in the special case where the graph is extremely
dense (i.e., m= Q(nz)). [Chin, Lam and Chen, 82] and [vishkin, 81],
both give 0O(log n)2 time connectivity algorithms requiring (n2+m)/(log n)2
processors, which is optimal only if m= Q(nz).

Vishkin conjectured that randomized techniques would be needed to get optimal
parallel graph connectivity algorithms. Indeed the literature contains some interesting
attempts to use randomization to derive optimal parallel algorithms for graph problems.
For example [Vishkin, B84) recently gave a randomized algorithm for finding the number
of successors on a linear list which used an optimal number of processors with an almosf{
logarithmic time bound. (However, Vishkin's algorithm assumed an oracle which provided
a random permutation, but he provided no efficient method for parallel construction of
random permutations.) Also [Reif, 84] gave a randomized parallel graph algorithm which
had optimal processor bounds only for graphs with m2n(log n)2 edges.

1.3 Our optimal Parallel RAM Algorithms

Our main results are optimal randomized parallel RAM algorithms:
(1) O(log n) time, n/log n processor algorithms for integer sorting
(2) O(log n) time, (m+n)/log n processor algorithms for connected components

and spanning forests for any graph of n vertices and m edges.

- »

Here O denotes that the upper bound holds within a constant factor with over-
whelming likelihood, for the worst case input. In particular, we let T(n) = O(f (n)) j
denote 3c V a21l, V sufficiently large n, T(n) €caf(n) holds with probability at

least 1-1/n%.

I S e S A A S A & 20 A i T e e §

Our integer sorting algorithm is quite easy to implement and may be of some
practical use, since it has very moderate constant factors.

1.4 Organization of This Paper

In Section 2, we give a known optimal algorithm for parallel prefix computation
which will be of some use in devising our optimal parallel algorithms.

In Section 3, we give our optimal parallel algorithm for integer sorting, which
achieves its efficiency by some interesting new randomization techniques. As an
immediate consequence, (see Appendix A3) we get an optimal parallel algorithm for
computing a random permutation.

{ . In Section 4 (and Appendix A4) we give ou:r algorithm for graph connectivity. It
is derived in stages where we consider graphs of decreasing density. We first give
. a simple logarithmic time algorithm called RANDOM-MATE, which is nonoptimal, but
utilizes randomization in an essential and new way. We next modify this algorithm
so that it is optimal for graphs of n vertices with at least m2n{log n)2 edges.

Then we give efficient parallel rcductions from various cases of sparse graphs

to the case m2n(log n)z.
In the Appendix Al we give some useful upper bounds for the tails of various

probability distributions which arise in the analysis of our algorithms.

In a separate paper we give applications of our optimal parallel graph connec-

tivity algorithm to finding Euler cycles, biconnected components, and minimum

spanning trees.

2. PARALLEL PREFIX COMPUTATION

2.1 Prefix Circuits

et D be a domain and let o be an associative operation which takes 0(1)
sequential time over this domain. The prefix computation problem is defined as follows:
input X(1),...,X(n) €D

output X(1),X(1) 0 X(2),...,X(l)o ... 0 X(n).

s e

S e e T e, I I TP S S - . -, .« . . - - - -
e L UL SWI VW S S R N P T S R AR P L SV PL A SR R SR -'~‘-'~‘.i
. A e et T T T T et w0 .

.. “-"'lf.'.-—;-—.-_v_r_-_-ﬁ-jr_(T - - -

- Y ¥ W >

[Ladner and Fischer, 80] show prefix computation can be done by a circuit of
size n and depth O(log n).

Known techniques attributed to Brent, give the following processor improvement:
LEMMA 2.1. Prefix corputation can be done in time O(log n) using n/logn F-RAl
rroccssors.

The prefix swn computation problem is defined as follows: Given input integers
X(1),...,X(n) € [n], output the vector PREFIX-SUM(X) = (Y(0),¥Y(l),...,Y(n)) where

Y(0)=0 and Y(i) = L, X(j) for i€ [n]. By Lemma 2.1, we can do this computation

j<i

in time O(log n) wusing n/log n processors.

3. AN OPTIMAL PARALLEL SORTING ALGORITHM

3.1 Known Sorting Algorithms

The integer sorting problem of size n is defined:

inrut keys kpreeork €ln)

outrut permutation = (c(1),...,0(n)) such that ko(l)g"' gko(n)'

The input keys kl,...,kn are not necessarily distinct. By use of the well known
and quite practical BUCKET-SORT algorithm [Aho, Hopcroft, and Ullman, 74],

LEMMA 3.1. Intecer sorting can be done in time O(n) by a deterministic sequential RAM.

Any comparison based sort requires PT= {(nlogn), and the best known parallel
sorts actually achieve these bounds. In particular, [Reif and Valiant, 83] show
LEMMA 3.2. n keys can be sorted in time O(log n) using n processors in a constant
ceiree network.

This algorithm uses memory cells of 0O(log n) bits. It can also be implemented
by the randomized P-RAM model. 1In addition, [Ajtai, Komlbs, and Szemeréedig3i],
[leighton, 84] give a deterministic sorting network which takes
C{log n) time with O(n) processors. 1In the following, we prove:

THEOREM 3.). Integer sort can be done ir time O(log n) wusing n/log n F-RAM

rrozegeors.

. 'f-‘.'.‘.' \.._‘A._‘.-_‘. . _:.__. Sl .' - s e e T T . -

CSIL NP NGNCULL. TP TG Sl W, WGP AT Vil W G Sl WAL S S N R

A T e N

~ - e WY A
ST AN .
R R R S

N R ".'!;'_"_ b Sl L S A oA Sl 0L o o

-6~

We will achieve PT=0(n) for integer sorting, making essential use of the

fact that the input keys k ...,kn are integers in [n] as in the case of all our

ll
graph applications. We would be quite surprised if any purely deterministic methods

yield PT=0(n) for parallel integer sort in the case of time bounds T= 0(log n).

Although we will use deterministic methods to solve some restricted integer sorting
problems, (see Lemmas 3.4 and 3.5 below) our optimal parallel algorithm for the

general integer sorting problem requires some interesting, new use of randomization
techniques (see lemmas 3.6 and 3.7). I

3.2 Easy Integer Sorting Problems]

Given a sequence of keys k

l,...,kne [n) 1let the key index sets be I(k) =)
{i'ki==k} for each key value k€ [n]. We will assume log n divides n.

LEMMA 3.3. Given I(Ll),...,I1(n), we can sort Kyreoork in O(log n) time using
P=n/log n processors.

Proof. see Appendix A3.

A sorting algorithm is stable if given k 'kn' the algorithm outputs a

NERE
permuation 0 of (1,...,n) where Vi, j€ [n] if ki==kj and 1<3j then

o(i) <o(3).

LEMMA 3.4, 4 stable sort of n keys kl,...,knE [log n] can be corputed in O(log n)
time using P=n/log n processors.

Proof. See Appendix A3.

LEMMA 3.5. n keys k ..,knE [(log n)z] can be sorted in O(log n) time using

1’

P=n/log n processors.

Proof. See Appendix A3.

0(1)

Note: We can similarly extend Lemma 3.5 to apply to key wvalues in {(log n) 1.

3.3 Randomized Sampling and Sorting in Key Domain [n/(log n)2]

In the following subsection, we fix a key domain [D] where D=n/(log n)2.

2
(We assume (log n) divides n). let the input keys be k ,...,kn€ [D] and

1l
their index sets be I(k) = {ilki==k} for each key value k€ [D].

o A RN S S RN R AT B CIVNLI L WK AV SR WAL WL W il Wi Al i DRy P e, Dy e i, I S U I A W I I L Ce

-r-.« I R A R S S i e)

-7-

LEMMA 3.6. Given as input kl,...,knG [D], we can compute N(1),...,N(D) 1in

O(log n) time using P=n/log n processors, such that I N(k) €0(n) and

k€ [D]
furthermore with high likelihood (in fact with probability =21- 1/n” for any given
a>1) N(k)2|1(k)| for each k€ [D].
As proof, we execute the following randomized sampling algorithm
Step 1 for each processor 7€ [P] in parallel do
do choose a random Sne [n] od
s*—{sl,...,sp}

Comment. Here we randomly choose a set S € [n] of P key indices.

Step 2 Sort ksl,...,ksp and compute index set Is(k) = {iE'S[ki=l<]
for each key value k€ [D].
Comment. Applying Lemma 3.2, this sorting can be done by known parallel
algorithms in O(log n) time using P processors.
Step 3 for each k€ [D] do
N(k) < d,(log n) (|Is(k) | + 1og n)
Comment. .do is a constant to be determined in the probabilistic analysis.
output N(1),...,N(D).
See Appendix A3 for a proof of the probabilistic bounds given in Lemma 3.6.
Lemma 3.7. n keys kl,...,knE [D), (where D=n/(log n)2) ean be sorted in
O0(log n) time using P=n/log n processors.
Proof. (We will actually use O(P) processors, but we observe that we can then slow
the computations down by a constant factor to reduce the processor bound to P.) Our
randomized algorithm is given below.
Step 1 Compute N(1),...,N(D) as defined in Lemma 3.6.
Comment. Here we use the random sampling algorithm of Lemma 3.6.
Step 2 (N(0),...,N(D)) « PREFIX-SUM(N(1),...,N(D))

Comment. This prefix-sum computation is done by Lemma 2.1 in O(log n) time

and O(P) processors.

e N T I T T WYY I YUY ™

SR

R NG A A A R At it el A W S A At A A A S Ml S i il sag B R o B e Ja & S burth o g — vy

Step 3 for each key value k€ [D]

do Pk<-{n|'n€[D] or N(k-1) + D<TSN(k) + D}. Using these P

A= ..
processors, construct a table " (Ak(l)'Ak(z)" ,Ak(N(k)),Ak(N(k)+l)))
and initialize each element of the table to be an empty list.

od

Step 4 for each 7€ [P] in parallel do
for each t=1,...,109 n sequentially do
in<-(n-1)log n+t
choose a random number rNE [N(k)]

attempt to add i_ to front of list 2ap. (r)
i 1q n
if successful (i.e., in is now in front of list Aki (rn))
m
then CONFLICT (i_)+0 else CONFLICT (i)+1 if
od od

Comment. Each processor 7€ [P] is responsible for keys k(ﬂ—l)log n+l
The inner loop for t=1,...,log n is executed sequentially so as to minimize
conflicts. In the t-th iteration of the inner loop, processor T attempts to add

the index i = (F-1)log n+t of the key kj, to the front of list Akiﬂ(riﬂ) where
r is a randomly chosen integer in [N(k)]. This may not be successful if some other
processor T' simultaneously attempts to add some other index in' to the front of

list Aki (rin)' Only one addition to this list will succeed. But this conflict will
m

=X .

only happen in the case ki",==k- and 7' makes the same unlucky choice of I =T,

im
Claim 3.1. Let n'=):ri1=l CONFLICT(i). Then n' € O(P). In particular, 3¢ Va1l
Prob(n'<a cn/log n) 21 - l/na.

Proof. See Appendix A3.

. L - Coh e s C .
R T T S - P R A e e . P I
LRI S PR PR S L T T R T L DR PR R

PN

RN S
- - - . - - - - .o S e =~ - - -
. BN ot N - A e e .
el ol e C e o . R L S TS A S A P S -
n D s NS S S AP S R R P PR T T A P A R o SN W W WA P oo S Rt)

-9-

Step 5 (u(0),...,u(n)) « PREFIX-SUM(CONFLICT(1),... , CONFLICT(n))
n' <«u(n)
for each 7€ (P} in parallel

do for each t=1,...,lo09 n sequentially

do i“*' (1-1)log n+t

i fi

. . . -
if CONFLICT(ln) then Ju(i“) o fi

od od

Comment. (jl,...,jn,) is the list of indices j such that CONFLICT(j)=1. Again,
the prefix computations can be done by applying lLemma 2.1.

Step 6. Sort k. ,...,kj and for each key value k€ [D] assign

31
A (N(k)+1)) {jllk=kj2}.

n'

Comment. In Ak(N(k)+1) we place the list {jz‘!k=kj } of conflicted indices with key
value k. Assuming n'<O(P), this step can be dor%e by known parallel sorting algo-
righms in time O(log n) using P processors.
Step 7. for each key value k€ [D]

do Construct table Al'g consisting of a list of all the elements of

the lists Ak(l), Pk(‘?),-o-,Ak(N(k)),Ak(N(kHl).

od

Comment. This is done in O(log n) time by careful use of the processor set Pk. In

particular, we first compute (a, (0),... ,ak(N(k)+1) }*PREFIX-SUM(]Ak(l) |]Ak(Z) [reees

]IH((k))|,|Ak(N(k)+1)[). Note that |IH((i)|<do log n for each i. Hence for each
i=1,...,N(k)+1 in parallel we can place the elements of Ak(i) into locations

A)'((ak (i-1)+1)),...,A’ (ak (1)) wusing a single processor TE€ Pk with time O(log n).

Step 8. Compute a permutation O of (1,...,n) such that the elements of Ai,...,Ab
appear in order.

Comment. We apply here Lemma 3.3,

output. 0= (0(1l),...,0(n)).

The total time for steps 1-8 is O(log n) using P processors. a

EER

AR A S SO S P
AP SR PR PG B, P, L1 L Ny P 2l o

-10~

3.4. Summary of Our Parallel Sorting Algorithm

Finally, we prove Theorem 3.1, by combining the above techniques. (We again
assume (log n)2 divides n.)
Input keys kl,...,knE [n]
2 2 .
i = 1 "=k -(k'-1) (log n) “41 for each i€ [n]
Step 1 Assign ki Tki/(log n) 1+1 and ki i (i) (log n)
2 K",....k" € [(log m)°]
Comment. k"'"'kr'ze [D] where D=n/{log n) and 10k g

1
Step 2 Sort k',...,k$€ [D] resulting in index sets I'(k)= {i] i==k} for each

1

key value k€ [D]

Comment. This is done by applying Lemma 3.7.
2 . . . o

< "lie1'(k)} < 1 n ielding ordered list L(k) of indices
Step 3 Sort {kiil (k)} € [(log n)7] vy g

in I'(k) for each key value k€ [D]
Comment. This is done by applying the stable sort of Lemma 3.5 to the ordered list
of keys I'(1l)...I'(D).

Step 4 Compute the permutation ¢ which orders the indices as L(1),...,L(D)

€...€k

Comment.. Here we apply Lemma 3.3, O satisfies ko(l) o (n)

output O
The Lemmas 3.2-3.7 and the appropriate use of prefix-sum computation (Lemma 2.1) imply
that each step can be done in O(log n) wusing P=n/log n processors. o

3.5 Optimal Parallel Generation of a Random Permutation

COROLLARY 3.1. A random permutation o of (l,...,n) can be constructed in
O0(log n) time using P=n/log n P-RAM processors.

Proof. See Appendix A3.

S R Sy
. . e e TR R R LT et e e T TR TR T e BN A At LA At M oun atub e

~11-

b, OPTIMAL PARALLEL GRAPH ALGORITHMS

Given a graph G, let CC(G) be the connected components of G. We prove in
this section:
THEOREM 4.1. For any graph G with n vertices and m edges we can compute CC(G)
in O(log n) time using (m+n)/log n parallel RAM processors.

(Note: Simple modifications of our algorithms also give a spanning forest of G

within the same resource bounds.)

The proof of Theorem 4.1 will be separated into three cases of decreasing density

of edges. 1In each case, we efficiently reduce the connected components problem to one

for a denser graph. The density reductions use various randomized sampling techniques

(see details in Appendix A4).

. T et et e - . - -
DA SRR AL AR R SR

S T B S A D M Mt Bl i e Bt M, vl il Sl dnul -
| - : B O i T T T TN T TR ST AT T AL L e e, vy

~12-

L.} A New, But Nonoptimal Randomized Algorithm

We begin by describing a new randomized algorithm RANDOM-MATE for computing CC(G)
of G= (V,E) with n vertices Vv=1{1,...,n} and m edges E. We will associate a
distinct processor with each vertex of V and each edge of E. This algorithm will
be nonoptimal since it runs in O(log n) time using n+m processors as did previous
parallel graph connectivity algorithms [Shiloach and Vishkin, 83]. However, RANDOM-MATE
has the advantage (not shared by the previous deterministic algorithms) that it can be
' modified to an optimal algorithm, as we prove in the Appendix A4.
Our randomized connectivity algorithm will be motivated by the following
[LEMMA 4.1. (The Random Mating lemma) et G= (V,E) be any graph. Suppose for each

vertex v€vV, we randomly, independently assign SEX(v) € {male, female}. Let vertex

v be active i1f there exists at least one departing edge {v,u}€E where u#v, and

let vertex v be rmated 1f SEX(v)=male and SEX(u)=female for at least one edge

{v,u}€E. Ther with probability 1/2 the number of mated vertices is at least 1/8
of all active vertices.
Proof. see Appendix A4.

To represent collapsed subgraphs, we use an array R which we view as pointers
mapping V=V. Let the graph collapsed by R be defined R(G)= (R(V),R(E)) where
R(V) = {R(v) [vEV} anda R(E) = {(R(v) JR(u))| {v,u}€E, R(V)#R(u)}. Each vertex r€ R(V)
is named a R-root. Our algorithm below (and the ones to follow) will always satisfy
R(R(v)) = R(v) for each vE€V. Hence the R pointers define a directed forest
(V, {tv,R(v))| vEV - R(M)}). Each tree in this forest will be called a R-tree; it

will have height <1 and will consist of a maximal set of vertices of V mapped

to the same R-root.
Initially we set R(v)=v for all v€V. We will prove that at the end of the

algorithm the vertices of R-trees are the connected components CC(G).

"
:
r
»
»
!
}.

We execute the main loop cologr1 times, where C, is a constant defined in the

proof below. On each execution of male, we merge together connected subgraphs by a

R T T U S i R) ‘p-

AR et e T e e e e T T T T e T e T e e et et e a W B LAt - . .

A AT S LI VPP AL AP OO LIRS . O IN o R et - LN e i - K
- PV P LW PN DR VR P WA SR S R R S i e e SN UM I R S T S G Y A _atatanalaan :

B e T Lt er e, ., et
Ll oo o el " Sl —h ol

IR B L ey DR L N T T et SR et A R LA I O SO SRR A Tl Bt A SRR S St S R Al Bl Al Sl 4

-13-

randomly assigning R-roots male or female with equal probability, and then letting

each R-root assigned male to be merged into a R-root assigned female, if there is an
edge between those corresponding subgraphs. Note that we can view this a mating
process where each male may be mated and merged into at most one female but many males
may merge into the same female.

It will be useful to define D(E)={(v,u)|{v,u}€E}U {(u,v)|[{v,ul€E} to be the
directed edges derived from E.
algorithm RANDOM-MATE

input graph G= (V,E) with n= |lv] and m= |E].

initialize for each Vv€V in parallel do R(v)<« v od

main loop: for t= 1,...,co log n

do

assign sex: for each v€V in parallel do

if R(v)=v then
comment v is currently a R-root
randomly assign SEX(v) € {r_n_@ﬁ, femalel
£i od
merge: for each (v,u) € D(E) in parallel do MATE(v,u)
collapse: For each vE€V in parallel
do R(v) « R(R(V))
comment collapse the R-trees to depth
od od
output R(1),...,R(n)
Also we define
procedure MATE(v,u)
if SEX(R(v)) =male and SEX(R(u)) = female

then R(R(v)) + R(u) fi

comment attempt to mate male R-root R(v) with female R-root R(u).

P I A N AT A S AT, SR, S . VA A
sy e el "4 Anuntvantenboialninihtaihend PP SR ST A . X W Y B Iy | o W, ' 3 ol

LA G Al g Red e Batl Bl Al Mg Bad Sndh Sl Ral Wk Ang aeie i Al i St el S S i

L1t S e s e & sl i Jend Sauh St Anamh Sl dnd

-14-

Claim 4.1. The vertex set of each R-tree is always within a single connected

component of CC(G).

Proof. See Appendix A4.

Note RANDOM-MATE may have incorrect output if after cologxl iterations, there
still exists an active R-root. But the main body can easily be altered to test if
3{v,u} € E such that R(v) #R(u) and if so, go back to the main loop.

RANDOM-MATE then yields the following (nonoptimal) result:
LEMMA b.2. For any graph G with n vertices and m edges, we can compute CC(G)

in time O(log n) wusing m+n processes.

Proof. See Appendix Ad.

4.2-4.4 Optimal Parallel Algorithms for Various Edge Densities

We hope our careful description of RANDOM-MATE has interested the reader enough
to read the proof of Theorem 4.1 given in the Appendix. The proof is broken into
three cases:

2

(1) m 2 n(log n)

(2) m 2 n(log n)l/3

(3) m < n(log n)l/3

Cases (1) and (2) apply random sampling techniques and various modified and
improved forms of RANDOM-MATE which use (m+n)/log n processors. Case (3) uses
a variant of RANDOM-MATE with a randomized conflict resolution technique similar
The

to the conflict resolution techniques used in our integer sorting algorithm.

details are found in Appendix A4.

ACKNOWLEDGEMENTS

The author thanks S. Rajasekaran and Paul Spirakis for a careful reading of

this manuscript.

P .' 'I."i S - L Yk ‘A n i A A o 00 il Sie~ e

=15~

REFERENCES

aho, A., J. Hopcroft, and J. Ullman, The Design and Analysis of Computer Algorithms,
?ddison-Wesley, 1974,

Angluin, D. and L.G. Valiant, "Fast Probabilistic Algorithms for Hamiltonian Paths
and Matchings," J. Comp. Syst. Set., 18 (1979), pp. 155-193.

Ajtai M., J. Komlbs, and E. Szemerédi, "An O(nlogn) Sorting Network," Proc. 15th
Annual Symposium on the Theory of Computing, 1983, pp. 1-9,

Awerbuch, B. and Y. Shiloach, "New Connectivity and MSF Algorithms for Ultracomputer
and PRAM," IEEE Conf. on Parallel Comput., 1983.

- Batcher, K., "Sorting Networks and Their Applications," Spring Joint Computer Conf.
32, AFIPS Press, Montrale, N.J., pp. 307-314.

¢hin, F.Y., J. Lam, and I. Chen, "Efficient Parallel Algorithms for Some Graph
Problems," CACM, vol. 25, No. 9 (Sept. 1982), p. 659.

Chernoff, H., "A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on
the sum of Observations,"” Annals of Math. Statisties, Vol. 23, 1952.

Feller, W., An Introduction to Probability Theory and Its Applieations, Vol. 1,
Wiley, New York, 1950.

Fitch, F.E., "Two Problems in Concrete Complexity: Cycle Detection and Parallel
Prefix Computation,” Ph.D. Thesis, Univ. of California, Berkeley, 1982.

Hirschberg, D.S., A.K. Chandra, and D.V. Sawata, "Computing Connected Components on
Parallel Computers," CACM, Vol. 22 (1979), p. 461.

Hoeffding, W., "On the Distribution of the Number of Successes in Independent Trials,"
Ann. of Math. Stat. 27, (1956), 713-721.

Hopcroft, J.E. and R.E. Tarjan, "Efficient Algorithms for Graph Manipulation," Comm.
ACM 16(6), (1973), 372-378.

Johnson, N.J, and S. Katz, Discrete Distributions, Houghton Mifflin Comp., Boston,
Ma, 1969.

Kucera, L., "Parallel Computation and Conflicts in Memory Access," Information Pro-
cessing Letters, Vol. 14, No. 2, April 1982.

Kwan, S.C. and W.L. Ruzzo, "Adaptive Parallel Algorithms for Finding Minimum
Spanning Trees," International Conference on Parallel Programming, 1984.

leighton, T., "Tight Bounds on the Complexity of Parallel Sorting," 16th Symp. on
Theory of Computing, Washington, D.C., 1984, pp. 71-80.

ladner, R.E. and M.J. Fischer, "Parallel Prefix Computation,"” J. A4dssoc. Cbmputing
Mech., vol. 27, No. 4, Oct. 1980, pp. 831-838.

.t e et te el L U T U L S YU S S .- e -
. R e R I N A

)
]
‘ ----- . -
Y., . T LTt e e Lt e ettt
e o ol e bemdand an e 2t e as e e et

- L L e %
o e e e St

ST T T Y

it aade - v e v Ty -
ST SR A ORI S M i M Al Ml Al A4 S h w040 AvA sen ane s o v

Bl |

~16-

Nath, D. and S.N. Maheshwari, "Parallel Algorithms for the Connected Components and
Minimal Spanning Tree Problems," Inform. Proc. Letts., Vol. 14, No. 2, April 1982.

Rabin, M.0., "Probabilistic Algorithms," in: Algorithms and Complexity. J.F. Traub
(ed.), Academic Press, New York, 1976.

Reif, J., "Symmetric Complementation,” J. of the ACM, Vol. 31, No. 2, (1984), pp. 401-421

Reif, J., "On the Power of Probabilistic Choice in Synchronous Parallel Computations,"
SIAM J. Computing, Vol. 13, No. 1, (1984), pp. 46-56.

Reif, J.H. and J.D. Tyger, "Efficient Parallel Pseudo-Random Number Generation,"”
Technical Report TR-07-84, Harvard University, 1984,

h Reif, J.H., "Optimal Parallel Algorithms for Graph Connectivity," Tech. Rept. TR-08-84,
Harvard University, Center for Computing Research, 1984.

Reif, J.H. and L.G. Valiant, "A Logarithmic Time Sort for Linear Size Networks," Proc.
15th Annual ACM Symp. on the Theory of Computing, pp. 10-16 (1983).

i R. Reischuk, "A Fast Probabilistic Parallel Sorting Algorithm," Proc. of 22nd IEEE
Symp. on Foundations of Computer Science (1981), 212-219.

A Savaée, C. and J. Ja'Ja', “"Fast Efficient Parallel Algorithms for Some Graph Problems,"
- SIAM J. on Corputing, Vol. 10, N. 4 (Nov. 1981), p. 682.

Shiloach, Y. and U. Vishkin, "Finding the Maximum Merging and Sorting in a Parallel
4 Computation Model," J. of Algorithms, Vol., 2, (1981), p. 88.

Shiloach, Y. and U. Vishkin, "An O(log n) Parallel Connectivity Algorithm," J. of
s Algorithms, Vol. 3 (1983), p. 57.

] Tarjan, R.E., "Depth Forest Search and Linear Graph Algorithms," SIAY J. Computing
1(2), pp. 146-160 (1972).

Tarjan, R.E. and U. Vishkin, "An Efficient Parallel Biconnectivity Algorithms,"
Technical Report, Courant Institute, New York University, New York, 1983.

Vishkin, U., "An Optimal Parallel Connectivity Algorithm," Tech. Report RC9149, IBM
Watson Research Center, Yorktown Heights, New York, 1981, to appear in Discrete
Mathematics

Vishkin, U., "Randomized Speed-Ups in Parallel Computation,” Proc. of the 16th Annual
ACM Symp. on Theory of Computing, Washington, D.C., April 1984, pp. 230-239.

. -0 DAL IR) “ . . B - e e o I
PO n M T e e . e CRITRIE VLA S I CE D T I
(NSRS A, PRI I) -“\.' R IR I S S A * »

PO 0 T el S G UL T

T——

DA B e - b Al A S L AR S aL e ava s g A vl sl o as o P vl s aswi Sumh Shes SNRCELS Sedh aass oas teh oo

-17-

APPENDIX Al: Probabilistic Bounds

The randomized algorithms in the preceding sections are analyzed by applying the
following probabilistic bounds on the tails of binomial and hypergeometric distribu-
tions (see also [Feller, 80]).

Let random variable X upper bound random variable Y (and Y Tower bound X)
if for all x such that 0Xx<1l, Prob(X<x)<Prob(Y<x).

Al.1 Binomial Distributions

A binomial variable X with parameters n,p is the sum of n independent

Bernoulli trials, each chosen to be 1 with probability p and O with probability
x (n
k=0 'k
The bounds of [Chernoff, 52] and [Angluin and Valiant, 79] imply

1-p. The binomial distribution function is Prob(X<x) = X) pn(l-p)n_k.

LEMMA Al.1. Ve,p,n where 0<p<1 and 0 <eg <1,
Prob (X< 1 (1-€)pny) € exp (—€2np/2)
Prob (X 21 (1+e)npl) < exp (-€2np/3) .

LEMMA Al.2. [Hoeffding, 56). ILet X e e X be independent binomial variables. Then

1
n
i=1 %4

z is upper bound by a binomial variable with parameters n,p with mean

n
np = Zi=1 mean (Xi).

Al.2 Hypergeometric Distributions

Fix p,s where O0<p<€1 and 0<s€<n. Let A be a subset of {1,...,n} of
size np. A hypergeometric variable Y with parameters s,np,n is defined as
= ISﬂAI where S is a random sample of s elements of {1,...,n} chosen
without replacement.

Suppose we independently choose s<€n random integers r_,...)T €{1,...,n}. Let

ll
index i be the conflicted if 3 distinct a,b such that ra=rb=i. let 2 be

the total number of conflicted indices i€ {1,...,n}.

LEMMA Al.3. 2z s upper bounded by a hypergeometric variable with parameters s,s,n.

[Johnson and Katz, 69] attribute the following bound to Uhlmann.

-18-

LEMMA Al. 4. If X <s binomial with parameters s,p and Y 18 hypergeometric with

parameters s,np,n then

s . <o < nx
Prob (X< x) > Prob (Y € x) for 0<P S oIy e D)

and

(1+nx/(s-1)) ¢

< > < i <
Prob (X< x) > Prob (Y < x) for (s 1) Sps€l

APPENDIX A3: Proof of Parallel Sorting Algorithms

Proof of Lemma 3.3. Compute (h ,....h) = PREFIX-SUM(|1(1)|,...,|T()|) in o0O(log n)

using P processors by lLemma 2.1. We then set O(h +1),...,G(nk) to consecutive

k-1

elements in I(k) wusing a total of ©(log n) time and P processors (the required

processor assignment can easily be done by using the prefix sum computation.) Then

0

k €...%< is a rt.
o(1) = s©

ko(n)

Proof of Lemma 3.4. To each processor TE€ [P), we assign key indices J(T) =

{3](7-1)1og n<3j Smin(n,mlogn)}. Let each processor T sequentially sort the keys
{ijjG.J(n)} by BUCKET-SORT in time O(log n), and so compute each list JTT K=

’
(j€.J(ﬂ)|kj==k) in increasing order of indices for each key value k€ [log n]. Then

J to form the list

for each key value k€ [log n] we compose the lists J .o
1,k P,k

I(k) of indices with key value k. Finally, we apply Lemma 3.3 to compute the required

permutation ¢ ordering the indices as they appear in I(1),...,I(P). The total time
is Oflog n) wusing P processors. o

Proof of Lemma 3.5. Llet k{ = rki/log nl+l and let k; =ki —(ki—l)log n+l for each

i€ [P]. We first apply Lemma 3.4 to get a sort of k',...,ké, yielding a permutation

1
0. Then we apply Lemma 3.4 again to get stable sort of k;(l)""'k;(n)' yielding a
i '. ... v R I
permutation © Then ko'(l)\‘ ﬁgko'(n)' and hence 0©' is a sort of kl, ik

Proof of Lemma 3.6. 1If do(log n)22 [1(x)| then always N(k) >do(109 n)2> |1 (k) |.
2

Else suppose do(loq n) <|I(k)l. |Is(k)| is upper bounded by a binomial variable

with parameters n/log n, II(k)[/n. The Chernoff bounds given in Appendix A.1,

Lemma Al.1l, imply 3c Va 21 if <, =(CG)-1 then

ST el e . SRR T .'.~.-.‘-".-.~.'.‘.-._‘L.;\‘\-.-A
- . ot ey B S T S S NI e P e e T e Ve Tl T a et L
[NGRS W, PRI AP LIPS AP WA S B Sl AP L LS. PR . TSP P .. Ay S g 2 S & o B o A 3 o B b AP WY SOy vy iy Ny e

;

1

v Y ow

i AN

S . . s
Kol o

-19-

prob (|1, (x) | >(§bﬂx(k)l/1og n)>1-1/n%. since N(x)>d |1 (k)|log n, the probability

bounds hold as claimed. o
. , . . a

Proof of Claim 3.1. By Lemma 3.6, with likelihood 21-1/n , we can assume

N(k)?’ll(k)l. Let nk==Zi€N(k) CONFLICT(i). The key observation is that on each

stage t, 1/log n of the key indices of 1I(k) are assigned to random positions of

the table Ak' Let LV be the number of indices i €N(k) where CONFLICT(i)
’

. Coaas _<log n
is set to 1 on stage t. Then by definition nk —Xt=1 nk,t'

We now apply the probabilistic bounds given in Appendix A.1l, and we consider upper

bounds on probability variables to be over the range of probability densities from

a a
1/n to 1-1/n . By Lemma Al.3, each n.

5.t is upper bounded by a hypergeometric
’

variable with parameters |I(k)|/log n, lI(k)l/log n, |I(k)]. Then Lemma Al.4 implies

each LU is upper bounded by a binomial variable with parameters N(k)/log n, 1/log n,

Hence by (Hceffding's inequality) Lemma Al.2, n,_ = Zlog n is upper bounded by a

x t=1 "k,t

binomial variable with parameters N(k), 1/log n. Furthermore N(k) €£0(n), so

e (p]

Zk€[D] n, is upper bounded (by Hoeffding's inequality) by a binomial variable with
parameters O(n), 1l/log n. The Chernoff bounds given in Lemma Al,l immediately imply

the claimed probabilistic bounds on n'. o

Proof of Corollary 3.1. We execute the following algorithm.

Step 1 for each processor 7€ [P] in parallel
do £g£ each t=1,...,log n
do in<~ (7~1)log n+t
randomly chose ki € [P]

il
od od

Step 2 Sort k ..,kn and compute I{(k) = {ilki==k} for each key value k€ [P]

1
Comment. The sort can be done by Lemma 3.1 in time O(log n) using P processors.

CLAIM 3.2. With high likelihood, |I(k)|<O0(log n) for each k€ [P}. In particular

3c Ya 21 Prob(|I(k)|Scalog n)>1 -1/n°.

Proof. Each iI(k)I is upper bounded by a binomial variable with parameters n,

log n/n. Hence the claimed bounds follow from the Chernoff bounds of Lemma Al.l. O

A S TR TR TP T T L UL R L L R I A S
P SR WG W SR W NP DR N . S . B T DA L TR L .

L A Sl el el el Snadh e e oy ARt Ty

r"v"v" B T T Ty T
-20-

Step 3 for each 7€ [P] in parallel

do let L(k) be a random permutation of the elements of I (k) od
Comment. A random permutation I(k) can easily be sequentially computed
in o(]1(x)|) time by a single processor.
Step 4 Compute = (0{1),...,0(n)), the permutation of (1,...,n) which

gives the order of appearance of the indices in L(l),...,L(P).

Comment. This can be done in O0O(log n) time by Lemma 3.3,
output random permutation of O,

The total time for the steps 1-4 is O(log n) using P processors.

=21~

APPENDIX A4: Proof of Theorem 4,1

L ALk.) Analysis of RANDOM-MATE

Proof of Lemma 4,1

Let F be a spanning forest of G. By deleting at most 1/2 the edges of
F (but no active vertices), we get F' €F, a forest of trees of height 1, which
contains all the active vertices. On the average, at least 1/4 of the leaves of
eaca tree of F' are mated, since their root has probability 1/2 of being
assigned female, and half of the leaves on the average will be (independently)
assigned male. Hence with probability 1/2, at least 1/8 of all active vertices
are mated. (Note: we can improve this result to show 2 1/4 of all active
vertices are mated on the average.) o

Proof of Claim Lk,1. We prove this by induction on the number of relaticns of

the main loop. This initially holds when R(v) =v for all v €V. Suppose the
claim holds up to the t -1 iteration of the main loop. Then a R-root r is
merged into an R-root r' by assigning R(R(r)) <«R(r') only if 3{v,u} €E
such that r =R(v) and r' =R(u). Hence the claim hol . after the ¢t'th
iteration of the main loop. =]

Proof of Lemma 4.2.

Let Rt be the value of the array R Jjust before the beginning of the ¢t'th
iteration of the main loop. Let a Rt—root r be active if 3{u,v} €E such that
Rt(v) =r but Rt(v) %Rt(u). Let nt be the number of distinct active Rt—roots on the
t'th iteration. Let the execution of RANDOM-MATE of the t'th iteration be a success

if nt+1.<vnt where Y =1/8., By Lemma 4,1, the total number of

successes after to iterations is lower bounded by a binomial variable with

parameters to' 1/2., Observe that if we have logY n+1 successes after t0

iterations, then n, =0. By the Chernoff bounds on the binomial given in Lemma Al.1l
0
of the Appendix A, Va 21 Eco such if t, =S, logn then

Prob(nt =0) 2Prob (the number of successes after to iterations is 21 +logYn) 21 -l/na.
0

- . e . e P T T T SR R e
CP I P I T ettt rah T e e et D T e AL AR ” L. o~
B o L. e, . « P v . % « ¥ o % 0 T . -

PO Y
LI SR Y
(390 JPR
A I IR

B A T I— P e At L et i e S e fafe fiet St g s Jhre Sk it St S it gencign S See Aeb e Ao 4

-22-

. ‘o o . .
Thus with probability 2 1-1/n , after y logn iterations of RANDOM-MATE there are
no remaining active vertices. D

A4,2 An Optimal Algorithm for 2 n(log n)2 Edges

In this subsection we take as input a graph G = (V,E) such that v={1,...,n}
and the edge set E is of size m 2n(log n)2.

Our algorithm RANDOM-MATE'will be a simple modification of RANDOM~MATE.,

To avoid unnecessary notation (ie, the use of ceiling and floor functions) we
assume without loss of generality that log n divides m.

We will use a total of P =n/log n processors. We will begin by sorting the
list D(E) of directed edges into adjacency list arrays E(l),...,E(n) where E(v)
is an array containing the sets of directed edges departing vertex v. Since
ID(E)W =2'E|, by Theorem 3.1, this sorting can be done in O(log n) time wusing
P processors.,

We assign to each vertex v€V a set of 1log n consecutive rrocessors
Pv'={(v-l) logn+1l,...,v logn}. We alter the main loop of RANDOM-MATE to < xecute
o logn times (instead of y logn times) where N is a co .1t to be determined
below. We also delete the original code at label merge, and sul .itu' 1in its
place;

merge: for each v €V in parallel
do for each processor - €Pv in parallel

de iﬁ E(v) #8 then

choose a random edge (v,u) €E(v) fi

MATE (u,v)

od
An edge {v,u} is an R-loop if R(v) =R(u).
Claim 4.2, va21 3cl, with probability 2 1 -1/n" there are at most m/log n edges
of E which are not R-loops after the €1 logn iterations of the main loop of

RANDOM-MATE' .

PP

G R \‘.._'.."_._:_‘.._"-_ KRR “..'Q._' ._-.." ...-.-_'... et

a® s a
o

LW RO, SR, L Y

Proof. Let Rt be the value of the R array just before the t'th iteration

of the main loop. Ilet R -root r be semiactive if at least 1/log n of the
edges {{v,u} €E]R(v) =r} are not Rt-loops. Let né be the number of semiactive
Rt-roots. We can assume without loss of generality that n 24, For any semiactive

Rt—root r, with probability at least (1 -1/log n)1Og n 21/4, some process of Pv

chooses an edge {v,u} €E on step t such that R(v) =r, R(u) #r and we execute
MATE (v,u). Also, prob(SEX(R(v)) =male and SEX(R(u)) =female) =1/4. Hence using

arguments similar to Lemma 4.1 we have with probability at least 1/2, at most Y'nt

semiactive Rt—roots are not merged on step t to other Rt—roots where Y' =31/32,

Let the t'th iteration of the main loop be successful if né+1.<néy'. We have just

shown the t'th iteration is successful with probability at least 1/2. The total
number of successes after tl =c, logn iterations is lower bounded by a binomial

variable with parameters t 1/2, The Chernoff bounds of Lemma Al.l imply:

1'
] a
Vo 21 Scl with probability 2 1-1/n, the number of successes after tl iterations

is > logy, n. But n'l =0 after 1 +1ogY, n successful iterations, and hence there
are no remaining semiactive R-roots.

After completing execution of these modified main loop, RANDOM-MATE' deletes
each R-loop edge {u,v} €E (where R(u) =R(v)) in time O(log n) wusing P
processors. Finally, RANDOM-MATE' executes the original procedure RANDOM-MATE
described in 4.1 to collapse the resulting graph to its connected components.
Hence we have
LEMMA 4.3, In time O(log n) ueing m/log n processors we can compute CC(G) for

any graph G with n vertices and m2n(log n)? edges.

Ak.3 An Optimal Algorithm for 2 n(log n)l/3 Edges

LEMMA 4,4, Given any graph G =(V,E) with n vertices and m>n(log n)1/3 edges,

we ean compute CC(G) in time O(log n) using (m+n)/log n processors.
To prove this lemma, we describe another modification of RANDOM=-MATE which
we call RANDOM-MATE". We will give a simplified description of RANDOM-MATE". We

1/3
will take as input a graph G =(V,E) with n vertices m2n(log n) / edges.

- --~_.'_.~_'~.~>‘\....‘ CEREY
CTARNIUWL LS LR

DECNOE S o e

Bade s s amat gty

_in 6(lqg.n) time using m/log n

P
Nk ol Sl l

Ty -y

[N Sl et At Aaf el el Al ed -l aull b g v-v"

-24- |

In this case, we assign to each processor T7E€ [m/log n] a set V“ of (log n)l/2
distinct consecutive vertices of V= {1,...,n}. BAlso we again construct, by sorting
E, adjacency list arrays E(1),...,E(n).
. . . 1/4)
In this case we will execute the main loop only cz(log n) iterations where
c, is a constant to be defined below. We modify the main loop by substituting in

place of the code at label merge, an assignment of R'(v) «R(v) for each vertex vE€V

and then the following code:
merge: for each processor 7€ [m/log n] in parallel do

for each v€ VTr

do for i=1,...,(log n)l/4

if R(v)=R'(v) and E(v) ¥ @ then
do choose a random edge (v,u) € E(v)
MATE(v,u) fi od

od

The test R(v)=R'(v) insures that the resulting R-trees will be of height <1 after

executing the code at label collapse. Note that the resulting main loop takes time

3/4
0(log n) / per iteration, and so the total time is O(log n) wusing m/log n processor

CLAIM 4.3. 3c2 such that with probability 1 as n-—>%®, there are at most m/(log n)l/12

edges of E which are not R-loops after c2(log n)l/4 iterations of the main loop of

RANDOM-MATE".

Proof of Claim 4.3. The proof is almost identical to that of Claim 4.2, except that
1/12

in this case we must redefine a R -root to be semiactive if at least 1/(log n) of
t -

the edges {{v,u} EEﬂR(v) =v} are not Rt-loops. If we let n; be the number of (so

defined) semiactive Rt-roots, th~n again we have Prob(ng+l.<n€y') €1/2 where again

1/4
y' =31/32. Hence with probability 21 _2-(log n) no semiactive R-root exists
/4

iterations, where ¢

after c2(log n)1 is determined by Lemma Al.l. o

2
Claim 4.3 implies that after 12 applications of RANDOM-MATE", the resulting
graph has only m/log n edges, and hence we can apply RANDOM~MATE, Lemma 4.1,

to completely collapse the graph and hence to determine its connected components

processese. !

. . - E T Y .- D G
. . . P ST - L S R D T A et e Tt et .t
o PL . e e It I AT P I e e R S N -
o et . e . I e P S o LRt TR T ST A YR - LTRSS SV)
A e e T e e e T et «“* e NI S, - . e Tam .
TP N

o«

-25-

Ab.4 An Optimal Algorithm for <n(log n)l/3 Edges

let G= (V,E) to be a'graph with n vertices and m<n{log n)l/3 edges. By
lemma 4.4, it suffices to show in time 5(109 n) wusing P = (m+n)/log n processors
we can reduce the problem of computing CC(G) to the problem of computing the connected
components of a partially collapsed graph with <€ 0O(m/{log n)1/3) vertices and €m
edges. Without loss of generality we can assume m2n-1 and 2m is divisible by 1log n.

Let D(E) =((vl,ul),...,(v2m,u2m)) be a list of the directed edges derived from
E. We begin by computing a random permutation o of (l,...,2m) by Corollary 3.1
in time a(log n) wusing P processors. We initially assign R(v) =v and
SEX(v) =female for each vertex v €V. This can easily be done in 0(log n) time
using P processors. Then we execute the following log n steps:

for t=1,...,109g n do

for each processor m € [2m/log n] in parallel

gg MATE' (v)} od

o((7=1)1og n+t)'uo((n-1)log n+t) —
do

where we define:
procedure éATE'(v,u)
SEX(R(v)) < male
if SEX(R(u)) = female then R(R(v)) « R(u) fi
Note that each of iteration step takes only time O(l) wusing P processors. Let a
vertex of R(G) be special if either it is isolated, or has degree 2 (log n)l/3, or
is adjacent (by an edge of R(G)) to a vertex of degree 2 (log n)1/3.

~ 3
CLAIM L,4, The resulting partially collapsed graph R(G) has < O(n/log n)l/)

vertices which are not special, and € m edges.

Proof of Claim 4.4, Let R_ be the value of R just before the t'-th iteration.

let Et be the set of directed edges chosen on the t'-th iteration, so D(E) =Ut Et'

Let M be the number of edges (v,u) EEt such that

t
. 1/3
(i) v has degree {(log n) in Rt(G) and

(ii) a processor T executes MATE(v,u) but finds SEX(R(u)) #female, so

does not assign R(R(v)) «R(u).

DT I e AP R @t e et . e T N T T, T T T et e et e s e T e L I e
B R AR L I It e S T T AT L S Yo A N A ST « e e 0, e - STt St
cfat et et atebalteded et el st adea B Boa o gb oo o

. e P N T A JEENUR L AP LI
. IR AT A SUPCUR Tk SN B M WP P I P 1 S P R V)

I Tl W W L U

"
e

‘ n ' y
RS
. PR
. . R

S 4ad el Bl g g SiaghAadh S-S At el 2ndh Sl k- 0o & andt AP At

~26=

Observe that initially, all vertices v €V have been assigned SEX(v) =female,

/

and that on successive stages t=1,...,lo09 n at most m/(log n-t) <n(log n)l 3/(log n-

vertices v€V have been assigned SEX(v) = male.
We can upper bound Mt by a hypergeometric variable, and then apply lemma Al.4

to show that Mt is upper bounded (for probabilities in the range from l/na to
a . 1
1-1/n") by a binomial variable with parameters m/log n, max({(log n) /3/(log n-t),1).

log n .
=1 Mt is upper bounded by
/3

3(log n-t)) € ({(m loglog n)/(log n)2
/3

Applying (Hoeffding's inequality) lemma Al.2, we get I

log n /

2
e=1 ({log n))

a binomial with mean X

/3

< 0(n/(log n)1) and parameters m, O((loglog n)/(log n)2

/4

). Then X Mt +

O(n/(log n)l) gives an upper bound on the number of vertices of R(G) which are

not special. Finally we apply the Chernoff bounds of Lemma Al.l proving the Claim. D

To complete the reduction, we delete each isolated R-root of R(G), and for each

/3

r€ R(V) with degree < (log n)l in R(G), we reassign R{r)<«r' if there exists an

edge (r,r') € R(E) such that r' has degree 2 (log n)l/3 in R(G). We also

update R'(v)+ R(R(v)) for each v€V. These final steps can easily be done in O(log n)
time using (m+n)/log n processors. The resulting further collapsed graph R'(G) has

< O(n/ (log n)l/3

) vertices and S m edges. Therefore we can apply lLemma 4.4 to
completely collapse R'(G) to R"(G). The array R" specifies the connected
components of G. Thus we have shown:

LEMMA 4.5, Given any graph G with n vertices and m<n{log n)l/3

edges, we can
corpute CC(G) in ©O(log n) time using (m+n)/log n processors.

This completes the proof of Theorem 4.1.

™o W W TN N W W W W W Y W e T W I VW W NS
PO e e S e L s T

END

———

o

R AN §

€T i

LMY

