Optimal Parallel Algorithms for Rectilinear Link

Distance Problems *
Andrzej Lingas Anil Maheshwari
Department of Computer Science Computer Systems and Communications Group
Lund University Tata Institute of Fundamental Research
Box 118, S-22100 Lund, Sweden Homi Bhabha Road, Bombay - 400 005, India
andrzej@dna.lth.se manil@tifrvax.tifr.res.in

Jorg-Riidiger Sack!

School of Computer Science
Carleton University
Ottawa, Ontario K1S 5B6, Canada
sack@scs.carleton.ca

Keywords: Computational geometry, Algorithms and data structures, Parallel computation, Link
distance, Rectilinear polygons.

Abstract

We provide optimal parallel solutions to several link distance problems set in trapezoided rec-
tilinear polygons. All our main parallel algorithms are deterministic and designed to run on the
exclusive read exclusive write parallel random- access machine (EREW PRAM). Let P be a trape-
zoided rectilinear simple polygon with n vertices. In O(logn) time using O(n/logn) processors we
can optimally compute

1. minimum rectilinear link paths, or shortest paths in the L; metric from any point in P to all
vertices of P,

minimum rectilinear link paths from any segment inside P to all vertices of P,
the rectilinear window (histogram) partition of P,

both covering radii and vertex intervals for any diagonal of P,

U o W N

a data structure to support rectilinear link distance queries between any two points in P
(queries can be answered optimally in O(logn) time by a uniprocessor).

Our solution to 5 is based on a new linear-time sequential algorithm for this problem which is also
provided here. This improves on the previously best known sequential algorithm for this problem
which used O(nlogn) time and space*. We develop techniques for solving link distance problems
in parallel which are expected to find applications in the design of other parallel computational
geometry algorithms. We employ these parallel techniques for example to optimally compute (on a
CREW PRAM) the link diameter, the link center and the central diagonal of a rectilinear polygon.

*This research work was partially supported by TFR.

"The research of the third author was partially supported by Natural Sciences and Engineering Council of Canada.
*Independently, Schuierer [31] obtained a linear-time sequential algorithm.

1 Introduction

The lLink distance between two points s and ¢ inside a polygon P is the minimum number of segments
(straight edges) required to connect s and ¢ inside P. The link distance is an appropriate distance
measure in environments such as motion planning, broadcasting transmission, or VLSI, where making
a turn is more expensive than moving along a straight-line motion (see [32]). The study of link distance
problems has recently attracted a lot of attention in computational geometry, see e.g. [2, 3, 6, 10,
11, 12, 17, 20, 28, 29, 32, 33]. Many of these sequential algorithms run in linear time in triangulated
polygons. Combined with the recent triangulation algorithm by Chazelle [5] these algorithms are now
optimal.

The very recent parallel triangulation algorithm by Clarkson et al. [7], and Goodrich [13] have
intensified the need for parallel algorithms which are optimal after triangulation or trapezoidal decom-
position. For the Euclidean distance measure now optimal parallel algorithms have been developed for
a variety of computational geometry problems set in triangulated polygons [13, 15]. These problems
include the parallel construction of data structures for answering shortest path queries or shooting
queries, solving visibility problems, constructing shortest paths trees, and relative convex hulls. At
present no parallel algorithm is known for solving non-trivial link distance problems optimally in tri-
angulated polygons. An efficient parallel algorithm for computing a minimum link path between two
vertices in a simple polygon is due to Chandru et al. [6]. Their algorithm runs in O(lognloglogn)
time using O(n) processors on the CREW-PRAM, where 7 is the number of vertices in the input
polygon. Ghosh and Maheshwari developed a link center algorithm which runs in O(log? nloglogn)
time using O(n?) processors [12]. For details on PRAM models, see [18].

Even in the sequential setting link distance related problems seem to be more difficult to solve
than the corresponding problems using the geodesic distance measure. The difficulties stem from the
fact that several minimum link paths may exist connecting a given pair of vertices, while the minimum
geodesic path is always unique.

In this paper we present optimal parallel algorithms for a variety of rectilinear link distance prob-
lems set in trapezoided rectilinear polygons [27, 29]. A rectilinear polygon ' is one whose edges are all
aligned with a pair of orthogonal coordinate axes, which we take to be horizontal and vertical without
loss of generality. Rectilinear polygons are commonly used as approximations to arbitrary simple
polygons; and they arise naturally in domains dominated by Cartesian coordinates, such as raster
graphics, VLSI design, robotic, or architecture. A rectilinear polygon is called trapezoided if both its
vertical and horizontal visibility maps are given (see [13, 14] for trapezoidation in parallel). Some of
the problems discussed in this paper either explicitly or implicitly deal with the construction of one or
more rectilinear paths. A (simple) rectilinear path inside a rectilinear polygon P is a simple path inside
P that consists of azis-parallel (or orthogonal) segments only. The rectilinear link distance between
two points in P is defined as the minimum number of segments of any rectilinear path connecting the
two points. A corresponding path is called a minimum rectilinear link path and its computation arises
e.g. in robotics and VLSI problems.

Unless otherwise specified all algorithms are deterministic, run in O(logn) time and have an
optimal time-processor product; they are designed for a PRAM of the exclusive-read exclusive write
(EREW) variety. In particular we have solved:

Minimum rectilinear link paths: The sequential computation of rectilinear link paths has received
considerable attention in computational geometry; see for example [3, 8, 9, 29]. de Berg [3] proposed
an optimal sequential algorithm for computing a minimum rectilinear link path between two vertices
in a rectilinear polygon P. Parallel algorithms for optimally computing a rectilinear link path between

TRectilinear polygons are also called orthogonal polygons, isothetic polygonsand rectanguloid polygonsin the literature.

two points inside a trapezoided rectilinear polygon have been proposed by [23, 24]; they run in O(logn)
time using O(n/logn) processors on the EREW PRAM.

A challenging problem which has been well-studied in computational geometry is the determination
of distances (in e.g. the Euclidean or link metric) from a point or vertex to all vertices inside a polygon
[33, 34]. In the context of link distance problems the study is motivated for example as follows. Suppose
that a broadcast station is placed at some point inside a polygonally bounded domain; each vertex
represents a location and must be reached by a signal originating from the broadcast station. The
objective is to determine the total number of retransmissions necessary to reach each location. We
give an optimal algorithm to compute the rectilinear link distance from a point to each vertex of
a rectilinear polygon. Our algorithm can also be used to solve the above broadcasting problem for
rectilinear domains. It also yields an optimal algorithm for computing the shortest path from a point
to all vertices in the L metric.

To solve this and other rectilinear link distance problems we require the information about the
rectilinear link distances and the rectilinear link paths from a diagonal or segment in P to all vertices
of P. We show that these minimum link distance problems can be solved in O(logn) time using
O(n/logn) processors. The required information is provided by the rectilinear window (or histogram)
partition from a diagonal of P introduced next. The problem of computing the link distance from a
diagonal or segment to all vertices of P may also find applications. For example, assume that a robot
is mounted on a track and that its arm is built out of telescopic links. The question of how many
rectilinear links the robot must have to reach all vertices can be solved using our result.

Rectilinear window (or histogram) partition: A fundamental tool used for solving a number of link
distance problems is the window partition developed by Suri [33]. Its analog for rectilinear polygons
is the rectilinear window partition or histogram partition introduced by Levcopoulos [21] who used
it in the design of approximation algorithms of optimal polygon decompositions. In the sequential
setting window and histogram partitions have been used to efficiently solve a variety of problems
including link path computation and link distance queries [32, 33], the link center [10], central link
segment problem [1], and the construction of bounded Voronoi diagrams [19]. For the parallel setting
we provide an optimal algorithm for determining a histogram partition from any segment in P. Thus
our method might be used to parallelize several known interesting sequential algorithms. We use this
tool e.g. to compute the link diameter, answer rectilinear link distance queries, and for finding the
covering radius and intervals of segments as discussed next.

Segment covering radius and verter intervals: Let d be a segment joining two boundary points of
P. The covering radius (or link distance) of d is the value which minimizes the maximum rectilinear
link distance from a point on d to each point in P. The covering radius is realized between a point on
d and a vertex of P; its optimal parallel computation is described in this paper. The rectilinear link
distance from a vertex v of P to d is the minimum rectilinear link distance from » to any point on d.
In general, this distance is realized to more than one point on d; the set of all such points on d form a
interval called the vertex interval on d. These intervals are instrumental in de Berg’s [3] link diameter
algorithm and rectilinear link distance query algorithm. We give an optimal parallel algorithm for
computing the vertex intervals on d for all vertices of P. This algorithm enables us to construct a
data structure for answering link queries, finding the link diameter of a rectilinear polygon, and to
compute the vertex-to-vertex link distances already mentioned.

Parallel construction of a data structure for rectilinear link distance queries: de Berg [3] presents an
O(nlogn) sequential-time and O(nlogn) space algorithm for constructing a data structure to support
rectilinear link distance queries between any two points in P. We describe an optimal parallel algorithm
whose total work is O(n) (queries can be answered optimally in O(log n) time by a uniprocessor); where
work is the product of the number of processors and parallel time. Our parallel algorithm therefore
implies a linear-time sequential algorithm for solving this problem which improves on the O(nlogn)
time bound established by de Berg. Independently, a linear-time algorithm has been discovered by

Schuierer [31]; (vertex-vertex queries can be answered in constant time). Link distance queries find
applications e.g. in placements of mobile units or robots. Suppose that a constant number of mobile
units are operating in a rectilinearly bounded domain. Mobile units are assumed to take significantly
longer to turn than to move along a straight line. In case of an emergency encountered at some location
(point) in the domain the unit having the shortest link distance is to be dispatched. The problem can
be solved by using a constant number of link distance queries posed to our data structure.

Using the algorithms developed in this paper we provide optimal CREW-PRAM solutions to the
following problems:

Link diameter: The link diameter of a rectilinear polygon P is the maximum rectilinear link
distance between any pair of points in P. It is realized between a pair of vertices of P. Knowledge
of the link diameter helps to determine the worst constellation of a placement a mobile unit can have
with respect to the location of an emergency. The link diameter is also instrumental in finding the link
center and the link radius of a simple polygon [20, 10, 17, 25]. Nilsson and Schuierer [25] gave a linear-
time algorithm for finding the link diameter thus improving on an earlier result of de Berg. Using the
techniques developed in this paper we develop an optimal parallel implementation of their algorithm.
The algorithm takes O(log” nlogn) time and performs O(n) work. In addition to reporting the value
of the diameter our algorithm reports a pair of vertices and a link path connecting them whose link
distance is the diameter. The analysis of the algorithm leads to an interesting recurrence relation and
may provide a tool for designing other optimal parallel algorithms from existing sequential ones.

Link center, link radius, and central diagonal: An interesting geometrical min-max problem is to
determine the set of points x in a polygon P at which the maximum link distance from z to any other
point in P is minimized. The set of points z is called the link center; its determination has been
studied in [20, 25, 10, 12, 17]. Most algorithms for computing the link center report as a by-product
the value of the link radius which is the maximum link distance from a point in the link center to all
points in P. To efficiently compute the link center of a simple polygon, Djidjev et al. [10] introduce
the concept of a central diagonal of a simple polygon; subsequently termed splitting chord by [25]
in the context of rectilinear polygons. Our results are O(log™nlogn) time and O(n) work-optimal
(CREW-PRAM) algorithms for the problems of computing the rectilinear link center, link radius, and
central diagonal of a rectilinear polygon.

We use the following tools previously developed in parallel computing: Lowest common ancestor
in a tree [30], tree operations including the Euler tour technique [36], tree contraction and traversals
[18], point location in planar subdivision [35] and parenthesis matching [4, 22]. For the other tools
such as parallel prefix, list ranking and doubling, see [16, 18].

The paper is organized as follows: in Section 2 we introduce some notation and state some pre-
liminaries. In Section 3 we describe our parallel algorithms for determining the link distances from
a diagonal (or segment) to all other diagonals of a rectilinear polygon and from a diagonal to all
vertices. In Section 4 we describe the construction of a rectilinear window partition. The parallel
and sequential construction of a data structure for answering point-to-point link distance queries is
provided in Section 5. In Section 6 we discuss the parallel determination of the link diameter. In
Section 7 we discuss an optimal CREW-PRAM algorithm for computing the link center, link radius,
and a central diagonal. In Section 8 we summarize the results obtained in this paper and discuss a
few open problems.

2 Preliminaries

Throughout, all geometric objects (polygons, paths, boundaries, distances, etc.) are implicitly assumed
to be rectilinear (i.e., each of their constituent segments is parallel to one of the coordinate axes). We
assume that the simple rectilinear polygon P is given as a clockwise sequence of vertices py, pa, ..., P

with their respective z and y coordinates. The symbol P is also used to denote the (closed) region of
the plane enclosed by P. Let bd(P) denote the boundary of P. If w and v are two points on bd(P)
then the clockwise boundary of P from u to v is denoted as bd(u,v). Two points of P are said to be
(rectilinearly) visible if there is a (rectilinear) line segment joining them that lies totally inside P. A
vertex u of P is reflex if the internal angle at that vertex is greater than 180°, conwvez otherwise.

A line segment c interior to P is a chord if ¢ is axis parallel and the end points of ¢ are on bd(P).
A histogram is a rectilinear polygon that has one distinguished edge, called its base, whose length is
equal to the sum of the lengths of the other edges that are parallel to it. We define a histogram H
inside P having an axis parallel chord ¢ in P as its base to be the maximum area histogram interior
to P with ¢ as its base. A window is a maximal segment of the boundary of the histogram H which is
not part of the boundary of P. A window w of H partitions P into two subpolygons. The subpolygon
of P, not containing H, is referred to as the pocket associated with w.

As a preprocessing step, in this paper, we require the horizontal and vertical visibility maps. By
horizontal and vertical visibility maps we mean that each edge is extended (possibly to both sides)
towards the polygon interior until the boundary of the polygon is reached. These extensions can
be computed by the algorithms of Goodrich [13] and Goodrich et al. [14]. We insert the extension
points of each edge as vertices on the boundary of the polygon. Note that the number of new vertices
introduced on the boundary is linear. From now onwards we assume that both horizontal and vertical
visibility maps are provided as a part of the input. For simplicity we refer to a rectilinear polygon
together with its visibility map as a trapezoided rectilinear polygon.

3 Optimal parallel algorithms for computing link distances

In this section we present optimal parallel algorithms to compute link distances from a horizontal or
vertical segment d (or a diagonal) within a rectilinear polygon P to all vertices of P and from a point
(or a vertex) to all vertices of P.

A diagonalin P is a horizontal or vertical closed straight-line segment within P joining a point on
an edge e; to a vertex of an edge e;, where ¢; and e; are neither equal nor incident to each other. A
diagonal is mazimal if it is not properly contained in any other diagonal. Analogously, a diagonal is a
minimal diagonal if it does not contain properly any other diagonal. The link distance from a diagonal
d to a vertex v is defined as the minimum among the link distances from z to v, where z € d. The link
distance between two straight-line segments d and d’ is defined as the minimum over link distances
between z and y, where z € d and y € d’ and is denoted by LD(d,d’).

3.1 Link distances from a minimal diagonal to all maximal diagonals

We may assume without loss of generality that the minimal diagonal d is horizontal. It splits P
into two subpolygons : the top subpolygon and the bottom subpolygon. Consider the horizontal
trapezoidation of the bottom subpolygon and the tree T dual to it. Root the tree at the trapezoid
bounded by d. Now consider all the maximal horizontal diagonals within the subpolygon. The tree T
induces a rooted tree U on the set of the maximal horizontal diagonals as follows: if the trapezoid «
is the parent of the trapezoid t in T, then the maximal horizontal diagonal that separates « from ¢
is the parent in U of the other maximal horizontal diagonal edging ¢. In this section first we present
an optimal parallel algorithm for computing the link distance from d to all the horizontal maximal
diagonals in the bottom subpolygon. Then using this information we compute the link distance from
d to all vertices in the subpolygon. Algorithm 1 computes the link distance from d to all maximal
horizontal diagonals of P. In the following theorem we show that Algorithm 1 correctly computes the
link distance between the diagonals and it runs in O(logn)-time using O(n/logn) processors.

1. Mark all minimal diagonals that lie within the bottom polygon.

2. Compute the tree T' dual to the horizontal trapezoidation of the bottom polygon.
3. Root T at the trapezoid incident to d.

4. Compute the rooted tree U.

5. For each non-root maximal diagonal « in U compute its furthest ancestor f(u) in U that is
visible from it.

6. Compute the directed tree U’ on the set of maximal diagonals in U such that u is a child of f(u)
if f(u) is defined otherwise u is a child of the root diagonal d.

7. For each diagonal w in U’ compute its distance d(u) to the root diagonal d in of U’ (i.e. the
number of edges on the path to the root).

8. For each diagonal w in U define its link distance md(u) to the root diagonal d as follows: If f(u)
is defined then md(u) := 2d(u) — 1 else md(u) = 1.

9. Repeat Steps 1-8 for the top polygon in place of the bottom polygon.

Algorithm 1: Algorithm for computing the link distances from d to all maximal horizontal diagonals

Theorem 3.1 Let d be a minimal horizontal diagonal in a (trapezoided) rectilinear simple polygon
P. Algorithm 1 computes for all mazimal horizontal diagonals of P their minimum link distance to d
within P in O(logn)-time using O(n/logn) EREW PRAM processors.

Proof: The correctness of Algorithm 1 follows by induction on the value of md(u). If md(u) = 1
then the link distance from u to d is indeed 1. Suppose md(u) > 1. Assume inductively that the link
distance from f(u) to d is md(f(u)). Any link path R from u to d within P either crosses f(u) vertically
or has a vertical link starting from f(u) towards d in U. To reach the crossing point or the vertical
link, starting from u, R needs exactly two links by the definition of f(u). Hence, the total length L(u)
of R is 24+ L(f(u)) which by induction is 2 +2d(f(u)) — 1 which is 2d(u) — 1 by d(f(u)) = d(u) — 1.

It remains to be shown that each step of the above algorithm can be implemented within the
bounds claimed in the theorem thesis.

Step 1: Knowing for each horizontal diagonal e of P (in particular d) the vertex and the edge of P bridged
by e and assuming that the vertices of P are numbered with consecutive integers 1,2, ...n, we
can mark all minimal diagonals within the bottom polygon in O(logn)-time using O(n/logn)
Processors.

Step 2: We build the tree T' by assigning to each marked diagonal a single processor. First the processor
checks whether the diagonal associated to it is the upper leftmost diagonal of P in a trapezoid in
constant time. If so the name of the diagonal is distributed to all the diagonals on the boundary
of the trapezoid as the identification of the trapezoid. It can be done in logarithmic time with
O(n/logn) processors by using parallel list ranking. Now, for each of the two trapezoids ¢
adjacent to a diagonal its processor finds the next clockwise trapezoid adjacent to ¢ and links
it with the other trapezoid adjacent to the diagonal. In this way a circular list of trapezoids
adjacent to t is created in constant time (or in logarithmic time using O(n/logn) processors by
Brent’s principle [18]).

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

3.2

The tree T can be rooted at the trapezoid containing d as part of its boundary by using the
Euler tour technique of [36]. It can be done optimally in logarithmic time [36].

Again using the Euler tour technique, we number the trapezoids in 7T in preorder. To each
minimal diagonal (i.e. marked diagonal), we assign the pair of preorder numbers of the adjacent
trapezoids. Next, using the horizontal trapezoidation, we form maximal alternating chains (lists)
of incident horizontal edges and minimal horizontal diagonals in constant time using a linear
number of processors (or in logarithmic time using O(n/logn) processors by Brent’s principle).
Observe that each such a list (chain) can be identified with a maximal horizontal diagonal u. By
using optimal list ranking, we assign the lowest preorder number Ip(u) of the trapezoids adjacent
to the minimal diagonals included by « to u. For convention, [p(d) = 0. We specially mark all
the preorder numbers that have been selected as the identifiers of maximal diagonals. Now, we
can identify the marked preorder numbers of trapezoids adjacent to » that are different from
Ip(u) as the children of Ip(u) in U. Thus the entire step can be done in logarithmic time using
O(n/logn) processors by Brent’s principle.

The given vertical trapezoidation divides the horizontal edges of P into a linear number of
maximal edge pieces whose insides are free from the vertical projection of vertices of P (see,
Figure 1). For all maximal horizontal diagonals u, we form a list of such pieces covered by
the alternating chain it corresponds to (see Step 4) in constant time using a linear number of
processors. Also, for all pieces p, we compute the vertically opposite pieces op(p) in constant
time using a linear number of processors. By Brent’s principle, the two above steps can be
implemented in logarithmic time using O(n/logn) processors. By applying parallel list ranking
to the lists of the pieces, we can assign to each of them the maximal diagonal u it belongs to.
Further, for each piece p covered by a maximal diagonal v we find the lowest common ancestor
lca(p) of w and the maximal diagonal including op(p) on the way to the root of U. Using Schieber
and Vishkin’s [30] parallel algorithm for the lowest common ancestor queries it can be done in
logarithmic time with optimal number of processors. Next, for all maximal diagonals u, we
compute the maximal diagonal f*(«) that is the most vertically remote [ca(p) where p is covered
by w. f*(u) is our preliminary candidate for f(u). By a standard processor-optimal technique for
computing maximum in logarithmic time it can be done in logarithmic time using O(n/logn)
processors. Now, we inductively define f(u) as the most vertically remote maximal diagonal
among f*(u) and the f(c)’s for children ¢ of . Note that this reduces the computation of f(u)
to finding a minimum of single values given by children and a single precomputed value at the
node u. Therefore, we can use the tree contraction technique here and compute the required
information by performing the work in logarithmic time using O(n/logn) processors [16, 18].

The edges of U’ are given by the pointers from u to f(u).

The distances d(u) can be computed in logarithmic time optimally by using the Euler tour
technique [36].

This step takes constant time and O(n) processors. Hence, it can be performed in logarithmic
time with O(n/logn) processors by the Brent’s principle.

Link distances to all vertices

Using the results of Theorem 3.1, we first present an algorithm for computing the link distances from
vertices v to a horizontal diagonal d in P. Consider a maximal horizontal diagonal e including w».
Next, let p, be the maximal piece of e that belongs to the perimeter of P, includes v and is free from
vertical vertex projections (see Step 5 of Algorithm 1). Let lca(p,) be the lowest common ancestor

of e and the maximal diagonal including the opposite piece op(p,) in the tree U (see Step 2 and 5 of
Algorithm 1). We may assume w.l.o.g that op(p,) does not belong to d. Note that lca(p,) is the most
remote vertically maximal diagonal where the first turning point of a minimum link path to d starting
vertically from v could occur.

Assume that lca(p,) is €. Any link path from v to d crosses ¢’ (see, Figure 2). By the definition
of €', if a minimum link path to d starts vertically from v it needs exactly two links to reach any
point from where e’ achieves its minimum link distance LD(e’,d) to d. Therefore, the minimum link
distance to d starting vertically from v is either LD(e’,d) + 2 or infinity if it is impossible to start
vertically from v. It remains to observe that the minimum link distance to d starting horizontally from
v is exactly LD(e,d)+ 1. The above argument immediately implies the correctness of Algorithm 2 for
the link distance between v and d.

1. Compute the diagonals e and ¢’.
2. Compute LD(e,d) and LD(e',d) by Algorithm 1.
3. LD(v,d) := if one can start vertically from v towards d then LD(¢',d) + 2 else x

4. LD(v,d) := min(LD(e,d)+ 1, LD(v,d))

Algorithm 2: An algorithm for computing the link distance from a vertex » to a horizontal diagonal

d

Now we analyze the complexity of the Algorithm 2. The maximal diagonal containing » can be
found in constant time using the data structures built by Algorithm 1. Also the maximal diagonal ¢’
can be found in constant time by using the above data structures, in particular Schieber and Vishkin’s
[30] parallel preprocessing for the lowest common ancestor queries. The minimum link distances in
Step 2 are optimally computed by Algorithm 1. Hence, by Brent’s principle, we obtain the following
theorem.

Theorem 3.2 Let d be a horizontal diagonal of a trapezoided rectilinear simple polygon P. Algorithm
2 computes the distance from d to all vertices of P in O(logn)-time using the EREW PRAM with
O(n/logn) processors.

Next we discuss how to solve the problem of computing for a point in P the link distances to all
vertices of P. For computing minimum link paths from a vertex in a simple polygon to all its vertices
a parallel algorithm has been presented in [12]; the algorithm runs in O(log® nloglogn) time using
O(n) processors on the CREW PRAM. From a given point p in a rectilinear polygon P we first shoot
in the four rectilinear directions towards the boundary of P thereby computing the horizontal and
vertical chord containing p. By Theorem 3.2 we can compute the link distances for the horizontal and
the vertical chord containing p to all vertices of P. If we wish to compute an approximation of the
link distances from p only we are done. The correct distance from p to a vertex v can differ by at
most one from the value obtained for » to one of the chords. The determination of the exact value is
significantly harder (as is the case for many link distance problems see e.g. [33]). We need to compute
the set of points, the interval, for » on the chord(s) having minimum link distance among all points
on the chord(s) (recall the introduction). Given that information and the corresponding value for the
link distance, the problem is solved. In Lemma 5.3 we will show that for a given rectilinear segment
in P all vertex intervals and the corresponding link distances can be optimally computed in O(logn).
It then follows,

Theorem 3.3 Let p be a point in a trapezoided rectilinear simple polygon P. The distance from p to all
vertices of P can be computed in O(logn)-time using the EREW PRAM with O(n/logn) processors.

Corollary 3.4 Let s be a rectilinear segment in o trapezoided rectilinear simple polygon P. The dis-
tance from s to all vertices of P can be computed in O(logn)-time using the EREW PRAM with
O(n/logn) processors.

Corollary 3.5 Let s be a rectilinear segment in a trapezoided rectilinear simple polygon P. Then the
Ly shortest path from any point or from s to all vertices of P can be computed optimally in O(logn)-
time using the EREW PRAM with O(n/logn) processors.

4 An optimal parallel algorithm for computing window partition

The window partition of a simple polygon was introduced by Suri [33] as a technique for preprocessing
a polygon that leads to efficient sequential algorithms for solving a number of link distance problems.
Window partitions have been effectively used for the sequential computation of vertex-vertex link
distance, link center [10], link query problems [2], etc.

Its analog for rectilinear polygons is the histogram partition introduced by Levcopoulos [21]. In
the histogram partitioning of a rectilinear polygon P. we partition P with respect to a diagonal d
in P into regions over which the link distance from d is same. First compute the visibility polygon
from d in P, which is a histogram with base d denoted as H(d). The histogram H(d) is the set of
points which can be reached from d by a link. Next remove the histogram H(d) from P; this results
in a partition of P into several subpolygons. The link distance two is realized from those points of
P — H(d) which are visible from some boundary edge of H(d). So for each window of H(d) compute
the histogram in P — H(d). This procedure of partitioning P into histograms is repeated till whole of
P is covered. Finally, a partition of P into histograms is obtained. This partition of P is termed as
the histogram partition.

In this section we present an optimal parallel algorithm for computing the histogram partition of
P with respect to a given diagonal d. As a consequence this fundamental tool is now available in
particular for solving link distance problems in parallel. The first step of our algorithm is to compute
the link distance from d to all vertices of P by Algorithms 1 and 2. Recall that, in the preprocessing
step, the extension points of each edge to bd(P) have been inserted as vertices on bd(P). We show an
important order property of the link distance of vertices of P and using this property we compute the
histogram partition of P. The diagonal d partitions P into two subpolygons P; and P,. We restrict
our attention to the subpolygon P;. The algorithm and the arguments for P, are analogous. To keep
the notation simpler, assume that P; is the subpolygon formed by bd(p1,p,) and the diagonal pip,,
where p; and p, are the endpoints of d. Algorithm 3 computes the histogram partition of P; with
respect to the diagonal d; for an illustration see Figure 3. The correctness of Algorithm 3 follows from
following lemmas.

Lemma 4.1 Let the link distance of p; and p; from d be a and b, respectively, where p; and p; are
two arbitrary vertices of Py and i < j. For each o' between a and b, there exist vertices on bd(p;,p;)
having link distance @’ from d.

Proof: trivial.]

Lemma 4.2 Let P be a rectilinear polygon and d o diagonal of P. Then the bracket sequence computed
by Algorithm 3 is well-formed.

1. Compute the link distance from d to all vertices of P; by Algorithms 1 and 2.

2. Construct an array, where the kth location in the array is the link distance of p; from d.
3. Assign an open parenthesis to p; and a closing parenthesis to p,,.

4. Assign an open parenthesis to a vertex p; if the link distance of p; ;1 is more than p;.

5. Assign a closing parenthesis to a vertex p; if the link distance of p;_1 is greater than p;.
6. Compute matching parenthesis by the algorithm of [4] or [22].

7. Construct the circular list of the vertices belonging to each histogram in the histogram partition.

Algorithm 3: Algorithm for computing the histogram partition

Proof: The proof is by induction on the link distance (or covering radius) L from diagonal d in P.
Let P be a rectilinear polygon with link distance L = 1 from d. Then P is a histogram and, in Step
3, Algorithm 3 computes one well-formed bracket pair for P. The result thus follows in this case.
Now let P be a rectilinear polygon with link distance L from d. Assume that for all polygons P’
and diagonals d’ in P’ with link distance at most L — 1 the result holds. Then compute the histogram
from d. This induces a number of windows in the histogram together with their associated pockets.
The link distance from a window to its pocket is at most L — 1 and thus the bracket sequence assigned
to it inductively is well-formed. The link distance of any vertex properly contained in a pocket is one
larger when computed from d than from the window. Thus the brackets assigned in each pocket are
also brackets for P computed from d. A window is entered at a vertex p; which is at link distance 1
from d and whose successor is at link distance 2; thus an opening parenthesis is assigned to p; by Step
4. On exiting the window the reverse holds and, by Step 5, a closing bracket is assigned to the vertex.
(Note that we have included the Steiner points of the trapezoidation as vertices.) The enclosure of
a well-formed bracket sequence by an opening and closing bracket (as produced in Step 3) is itself
well-formed. All well-formed sequences of the pockets are encountered in order and thus appear in
that order in the sequence of brackets associated with P. The concatenation of well-formed bracket
sequences is itself well-formed which completes the proof. U

Corollary 4.3 Vertices p; and p; form the base of a histogram in the histogram partition of P if and
only if they form a matching parenthesis pair.

Now we analyze the complexity of the above algorithm. Link distance from d to all vertices
of P can be computed in O(logn) time using O(n/logn) processors by the algorithm of Section 3.
Opening and closing parenthesis to the appropriate vertices can be assigned in O(logn) time using
O(n) operations. Parenthesis matching can be done by the algorithm of [4, 22] in O(logn) time using
O(n/logn) operations. Using the standard doubling technique, we can construct the circular list of
vertices belonging to each histogram in O(logn) time using O(n/logn) operations. Hence, the overall
complexity of the above algorithm is O(logn) time using O(n/logn) processors. We summarize the
results in the following theorem.

Theorem 4.4 A histogram (or window) partition of an n-vertex trapezoided rectilinear polygon with

respect to a diagonal can be computed in optimal O(logn) time using O(n/logn) processors on the
EREW PRAM.

10

5 Results on link queries

In this section we present an optimal parallel algorithm to preprocess a simple rectilinear polygon
P such that the rectilinear link distance between two query points s and ¢ in P can be computed
efficiently. We show that the query data structure can be computed in optimal O(logn) time using
O(n/logn) processors on the EREW PRAM. Given this data structure, a processor can answer link
distance queries between two points in O(logn) time.

Let e be a horizontal diagonal inside P that partitions P into two subpolygons P; and P». For all
query point pairs where one of the query points is in P; and the other in P;, any link path between the
two query points intersects e. For these pairs we compute the link distance between the query points
and e and then appropriately compose these two link distances to obtain the link distance between
the query points. For all other pairs the problem reduces to that of finding the link distance in a
subpolygon of P.

In the following we first show how to compose the two link distances, if the query points are in
the different subpolygons of e. For the diagonal e and a vertex v of P, let e(v,[) be the part of e that
can be reached from v with a path 7 of length [such that the last segment of 7 is perpendicular to e.
Let the rectilinear link distance from v to e be defined as the distance from v to a closest point on e:
d(v,e) = min{d(v, q)|q € e} = d,. The following lemma due to de Berg [3] enables us to compose the
two link distances.

Lemma 5.1 (de Berg [3]) Let the diagonal e cut P into two subpolygons such that s and t lie in
different subpolygons, and let d(s,e) = d, and d(t,e) = d;. Then d(s,t) = ds + d; + A, where

-1 if e(s,ds)Ne(t,d;) #0
0 4f e(s,ds)Ne(t,dy) = 0A
(e(s,ds+1)Ne(t,d)) #0Ve(s,ds) Ne(t,de+1)#0)

+1 otherwise

A =

The above lemma suggests that to compose the two link distances it is sufficient to compute the
fast interval e(v,d,) and the slow interval e(v,d, + 1) for each vertex v in the subpolygon, where e
is the diagonal and d, = d(v,e). The following lemma of de Berg [3] shows that for any vertex v at
distance d, > 2 from e, there exists a vertex v,.,; such that any point on e(v,d,) can be optimally
reached via v,.,¢. Similarly, a vertex v, .2 exists such that any point on e(v,d, + 1) can be reached
via Uperto.

Lemma 5.2 (de Berg [3])

1. Let v be a vertex of P with d(v,e) = d, > 2. Then a vertex v,..; of P exists such that
dy,oy = dy— 1 ord = d, — 2 and e(Vpext, dy,.,,) = e(v,d,). Moreover, for every point
z € e(v,d,) there exists a shortest path m = l1ly...1q, from v to © with v,e. € lo.

VUnext

2. Let v be a vertex of P with d(v,e) = d, > 1. Then a verter vz of P exists such that
Ao,y = dy and e(Vpept, do,.,.) = €(v,d, + 1). Moreover, for every point z € e(v,d, + 1) there
exists a shortest path © = l1ly...03, from v to with v,epo € lo.

Using the above lemmas, Algorithm 4 computes the intervals e(v,d,) and e(v,d, 4+ 1) and the
vertices v,y and v,,.,0 for each vertex » of P in optimal O(logn) time using O(n) operations.

Lemma 5.3 Algorithm 4 computes e(v,d,), e(v,dy, + 1), Vpext and vpepiz for each vertex v of P in
optimal O(logn) time using O(n/logn) processors on the EREW PRAM.

11

1. Compute the histogram partition of P with respect to e by Algorithm 3.
2. Project all vertices of each histogram onto its base.
3. For each histogram compute the vertex-edge visible pairs.

4. For a vertex v with d, > 2, there are exactly two possibilities for v,.,;. Let v € Hy, , i.e., the
histogram at a distance d, in the histogram partitioning of P. Either turn immediately while
entering into the histogram Hy ¢ from H;, and v,,.,; is a vertex of the base of Hy, . or turn as
late as possible and v,,.,; is a vertex of the edge of Hy, _4 that is visible from v.

5. For all vertices » with d, < 2, compute e(v, d,) and for all vertices v with d, > 2 assign a pointer
to its next vertex v,,cp.

6. Using the pointer jumping technique [16], for each vertex w assign a pointer to a vertex v for
which e(v,d,) is known and d, < 2. Assign e(w,d,) = e(v,d,).

7. Perform analogous steps for computing e(v, d, + 1).

Algorithm 4: Algorithm for computing intervals

Proof: The correctness of the algorithm follows from Lemma 5.2. Now we analyze the parallel
complexity of the algorithm. The histogram partition of P can be computed in O(logn) time using
O(n) operations by Algorithm 3. Various visibility information within a trapezoided histogram can
be computed in optimal O(n) operations. The pointer jumping technique requires O(logn) time using
O(n) operations [16]. Hence, the overall complexity of the algorithm follows.]

Lemma 5.4 If the query pair (s,t) is located on different sides of the diagonal e of P, then the link
distance between s and t can be computed in optimal O(logn) time.

Proof: Suppose that we can locate the vertices v,,0;; and v,..12 of s and ¢, then we can compute
their intervals on e by Algorithm 4 and compose them by Lemma 5.1 to obtain the link distance
between s and t. Now we describe the data structures to compute v,,c.+ and v,.,12 vertices for a query
point v. One data structure is required to compute the edge of H;, _; that is hit by an axis-parallel
query ray entering H;, _q through the base of Hy, , another data structure is used to compute the edge
of H,, that is hit by a ray parallel to the base of Hy,. (Analogously for rays entering through the
base.) Note that H,, is the histogram in the histogram partition of P, containing v, at link distance
d, from diagonal e. So we need to preprocess each histogram for ray shooting queries with rays that
are parallel to the base of the histogram. This can be achieved by adding segments that are parallel
to the base from every reflex vertex of each histogram to the opposite side. These segments can be
added in optimal parallel work. Note that the total number of segments introduced is linear. We can
locate the histograms containing the query points in O(logn) time by the algorithm of Tamassia and
Vitter [35]. Hence, the lemma follows. O

Next we state the procedure for computing the link distance between the query points when they
are located on the same side of the diagonal e. Algorithm 5 describes the procedure for computing
a data structure for answering such link distance queries. Algorithm 6 describes the procedure for
answering of queries. Algorithm 6 requires two procedures which are also described in detail. Without

12

loss of generality assume that the query pair is located in the subpolygon P;. Further, to simplify the
notation we denote P; by P.

1. Compute the histogram partition of P with respect to e by Algorithm 3.

2. Construct the dual tree Ty of the histogram partition of P. The nodes in Ty are histograms
and there is an edge between two histograms, if the corresponding histograms are incident to a
common window.

3. Construct a data structure to answer lowest common ancestors queries in Ty by the algorithm
of Schieber and Vishkin [30].

4. Construct a planar point location data structure over the histogram partition of P by the
algorithm of Tamassia and Vitter [35].

5. Compute the data structure to locate v,,0,; and ;.12 for query points in the relevant histograms
as follows.

(a) Compute the v,,.,; vertex for each vertex v of P by Algorithm 4.

(b) For each vertex v of P, assign a pointer to its v,.,; vertex; this defines a tree referred to
by T,ert. The parent of v in Terr 18 Vpest-

(¢) Create a dummy node to root the forest T,...

(d) For each vertex v in the tree T),.,; compute the corresponding histogram on whose base v
forms a fast interval.

(e) Assign a label to each vertex v in T, as follows. Let H be the histogram corresponding
to v. The vertex v is assigned a label ¢ if the depth of the node corresponding to H in Ty
is <.

(f) Compute the preorder numbering of the nodes in T,.,; by the algorithm of Tarjan and
Vishkin [36] and store the nodes (pointers to them) in the consecutive location in a linear
array A.

(g) Construct the data structure to answer lowest common ancestor queries in T),.,; by the
algorithm of Schieber and Vishkin [30].

(h) Perform the analogous steps for v,..42 replacing fast intervals by slow intervals and T,
by Tneth-

Algorithm 5: Algorithm for computing the link query data structure.

Lemma 5.5 Algorithm 5 runs in O(logn) time using O(n/logn) processors on the EREW PRAM
and the size of the data structure computed by it is linear.

Proof: The number of histograms in the histogram partition of P is linear. Therefore, the num-
ber of nodes in Tp is at most O(n). The lowest common ancestor data structure of Schieber and
Vishkin [30] and the planar point location data structure of Tamassia and Vitter [35] require O(logn)
construction time using a linear number of operations and space. Since the vertices v,cp: and vyep9
for each vertex v are unique, the number of nodes in trees T,.,; and T, ..o is linear. The preorder
numbering of vertices in the tree can be computed by using Euler tour technique of Tarjan and Vishkin
[36] in O(logn) time using linear number of operations and storage. We need a suitable representation

13

. Locate the histograms containing s and ¢ by the algorithm of Tamassia and Vitter [35].

. Compute the node corresponding to the lowest common ancestor histogram of the histograms
containing s and ¢ in T by the algorithm of Schieber and Vishkin [30].

. Let H be the histogram corresponding to the lowest common ancestor node in Ty, If s and ¢
are located in H then compute the link distance between them as follows :

Without loss of generality assume that the base of H is horizontal and the interior of H is above
the base.

If s =t then LD(s,t) = 0 else if s and ¢ are visible then LD(s,t) = 1.

Otherwise, let ¢ be the maximal vertical segment passing through ¢ in H and let s’ be the
maximal horizontal segment passing through s in H.

If ¢ and ¢’ intersects then LD(s,t) = 2 else it is 3.

The segments s’ and ¢’ are computed using the horizontal and vertical trapezoidation of H.

. Let ws (or w;) be the window in H of the pocket containing s (respectively,) and let H,
(respectively, H¢) be the histogram with base w; (respectively, w;). Compute the slow and fast
intervals from s (respectively, t) on w; (respectively, w;) by Algorithm 7.

. Let the link distance from s to w,; be d, and the link distance from ¢ to w; be d;. The link
distance LD(s,t) between s and ¢ is ds 4+ d; + A, where A is as given by Algorithm 8.

Algorithm 6: Algorithm for answering link queries.

. Compute the next vertex of the query point s by the procedure discussed in Lemma 5.3 and call
it v.

. **Procedure for locating the vertex u (corresponding to the histogram H,) on the path from v
to the root of T, for which (1) LD(u,ws) < 2 and (2) the interval formed by « and v on w;
is same. **

Perform a binary search in the array A computed in Algorithm 5 (Step 5f) in the following
manner.

a

b

(a) Compute the middle element, say =, of A.
Compute the lowest common ancestor, z’ of z and v by the algorithm of [35].
g

c¢) If the label of z’ is same as that of u, then « = z’ and the binary search ends.

)
)
)
d) Otherwise ** Label of u # label of z/.**

If the preorder number of > v or the level of #’ is greater than w, then perform a binary
search in the left half of A else in the right half of A.

(
(

3. Assign to s the interval formed by © on H,.

4. Repeat this procedure to compute intervals of ¢ on w;.

Algorithm 7: Algorithm for computing intervals.

14

1. Let the base of histogram H be horizontal and assume that the interior of H is above its base.
Decide whether the pockets wy and w; are visible (w, and w; are said to be visible if there exist
a segment dd’ which lies completely inside H and d € wy and d’' € w;). This is done as follows:
Let a and b be the lower endpoints of the pockets w, and w;, respectively. Let ¢’ and &’ be the
maximal horizontal segment from a and b respectively in H. Compute whether o’ intersects w;
or b’ intersects w,.

2. (*** Pockets w, and w; are not visible **%)
Neither o’ intersects w; nor b’ intersects w;. Let endpoints of the fast and the slow interval
from s on w; be (s1,82) and (81, $3), respectively. Let sosh and s3s5 be the maximal horizontal
segment through s, and s3 in H. Let w] be the maximal vertical segment containing w; in H.
Similarly, let endpoints of the fast and the slow interval from ¢ on w; be (t1,3) and (¢1,13),
respectively. Let tot, and t¢3t5 be the maximal horizontal segment through ¢, and ¢3 in H. Let
w’ be the maximal vertical segment containing w, in H.
If (8985 intersects wj or toty intersects w’) then A =1
else if (s3s5 intersects w} or t3t} intersects w’) then A = 2
else A = 3.

3. (*** Pockets w, and w; are visible **%)
Either ¢’ intersects w; or b’ intersects w,. Project the interval endpoints sy, s, s3 on w; and
analogously project t1,13,1t5 on w;.
If 8185 and t1t5 are visible then A = -1
else if 8583 and t1t9 are visible then A =0
else if s1$9 and tyt3 are visible then A =0
else if 8583 and tyt3 are visible then A =1
else if 8183 and t1t3 are not visible then A = 2.

Algorithm 8: Algorithm for computing A.

15

of T to support Euler tour technique. For each node v, in T, we require all of its children to be in a
linked list. It is possible to compute the appropriate linked lists by using simple geometric properties
of rectilinear polygons as mentioned in Step 4 of Algorithm 4, modifying Step 5 of Algorithm 1, and
the trapezoidation of P. U

Lemma 5.6 A single processor can answer link distance queries in O(logn) time by executing Algo-
rithm 6.

Proof: To prove the correctness, we show that Algorithm 7 correctly computes the required
intervals, since the proof of the rest is straightforward. In the following we show the correctness of
Algorithm 7.

Observe that the label of a node in T, is its level number in T',.,;. Hence, the labels of nodes in
T,cxt decrease monotonically along any path from the leaf node to the root of T),..;. We are interested
in locating a node with a specific label (i.e. the label of «) along the path from v to the root of T),.y.
From the above observations, it can be seen that the binary search described in Algorithm 4 locates
the appropriate node in O(logn) time.

Now we analyze the complexity of the algorithm. The histograms containing the query points s
and ¢ can be located in O(logn) time by the algorithm of [35]. Lowest common ancestor of two nodes
in a tree can be computed in constant time [30]. The required visibility informations can be computed
in at most O(logn) time in a trapezoided histogram. The binary search in the array A to locate the
vertex u takes O(logn) time. The algorithm for computing A requires at most O(logn) time since
the projection of interval points to the windows of the pockets can be achieved within the claimed
complexity bound. U

Theorem 5.7 A data structure which supports rectilinear link distance queries in any n-verter trape-
zoided rectilinear polygon can be constructed in O(logn) time using O(n/logn) processors on the
EREW PRAM. Using this data structure a single processor can answer link distance queries between
two points in O(logn) time.

Proof: The complexity bounds follow from Lemmas 5.4, 5.5 and 5.6. Now we show the correct-
ness. If the query point are located in different subpolygons of e then the correctness follows from
Lemma 5.4. If the query points are located within a histogram of the histogram partition of P, the
correctness is obvious. Assume that the query points s and ¢ lie in different histograms and let H be
the lowest common ancestor histogram of them in the dual tree T (Step 2, Algorithm 6). Observe
that the link path from s to ¢ passes through the histogram H. Now we compute the intervals on the
windows of the pockets of H containing s and ¢ and appropriately compose the two link distances.
The binary search (Step 2, Algorithm 7) computes the correct node u since the labels of vertices in
any path from a node to the root are monotonically decreasing. Hence, the correctness follows. U

Since our parallel algorithm performs a total work of O(n) we obtain a linear time sequential
algorithm for computing the link query data structure. It is also possible to design a linear time
sequential algorithm which is simpler than one obtained by straight-forward adaptation of our parallel
algorithm (see [23]). Independently, a linear-time algorithm has also been proposed by Schuierer [31].

Theorem 5.8 A data structure can be computed in linear time, which allows rectilinear link distance
queries between two query points in an n-vertex rectilinear polygon to be answered in O(logn) time.

16

6 Link diameter

In this section we present a work-optimal parallel algorithm for computing the link diameter of an
n-vertex simple rectilinear polygon P. Our approach yields a general technique for designing optimal
parallel algorithms. The link diameter of P is defined as Diam(P) = maz{LD(s,t)|s,t € P}, where
LD(s,t) denotes the link distance between two points s and ¢ in P. The diameter is realized between a
pair of vertices of P [32]. In addition to computing the value Diam(P) we are interested in producing a
pair of vertices whose link distance realizes the diameter and a minimum link path of length Diam(P)
between these.

A sequential method for computing the rectilinear link diameter of a rectilinear polygon was
developed by de Berg [3] (see Algorithm 9); it runs in O(nlogn) time. A parallel algorithm for
computing link diameter can be designed by providing a parallel implementation of each step of
Algorithm 9 as follows.

In Step 2, an appropriate cut segment e is computed from the given horizontal and vertical trape-
zoidation of P. In Step 4, the value of M is computed by analyzing several cases in the algorithm of
[3]. The majority of the computation entails the computation of intersections of slow and fast intervals
on e (from the vertices in the subpolygons P; and P,) and the computation of dominance relationships
among the end points of slow and fast intervals. It can be seen that intersections and dominance pairs
can be computed in parallel by using parallel prefix operations. So this naive parallel algorithm runs
in O(log®n) time using O(n/logn) processors.

1. If P is a rectangle then Diam(P) = 2, otherwise go to Step 2.

2. Compute a cut segment e of P that cuts P into two subpolygons Py and P,, such that |Py|, | Py| <
3

3. Compute di:=max {LD(v,e)| where v is a vertex of P;} and compute dy:= max {LD(v,e)|
where v is a vertex of P}, recursively.

4. Compute M = maz{LD(v,w)|v € Py, w € Py}.

5. Let Diam(P) := maxz(Diam(Py), Diam(Py), M).

Algorithm 9: de Berg’s algorithm for computing the link diameter

Nilsson and Schuierer [26] gave a linear time algorithm for this problem. Based on the following
observations they presented an algorithm which differs from de Berg’s algorithm in only the third
Step. They observe that the value of M is at least dy + dy — 1. W.l.o.g. one may assume that d; > dy
then Diam(P;) < 2dy 4+ 1. Thus there is no need to recur on Py if Diam(P;) < dy 4+ dz — 1. This
implies that these values for Diam(P;) which are of interest for the diameter computation lie in the
range from dy + dy — 1 to 2dy + 1. They [26] presented a linear time (in the size of P;) algorithm for
determining whether Diam(P;) < 2d; — 1 < M and for computing the exact value of Diam(P;) in
case D(Py) > 2dy — 1. The recurrence relation for the time complexity T'(n) of their entire algorithm
is T(n) = T(3n) + O(n) which is O(n).

We analyze the parallel complexity of the above linear time algorithm. Assume that we can
determine in optimal parallel work either whether Diam(P;) < M or, if this is not the case, the exact
value of Diam(P;). Then a straightforward parallel implementation of the above sequential algorithm
will give rise to the following recurrence for the time complexity T'(n) of the parallel algorithm;
T(n) = T(3n)+O0(logn) = O(log? n). It can be seen that the processor complexity of the algorithm is

17

O(n/logn). It would appear that a straightforward parallel implementation of the sequential algorithm
does not lead to any improvement in the complexity of the parallel algorithm.

We develop a more complex O(log™ nlogn) time implementation of the algorithm which is work
optimal. This implementation may be seen as a general technique for implementing algorithms of
the same sequential flavor. The sequential algorithm has a time complexity which is described by a
recurrence of the form T'(n) = T'(¢n) + O(n), with ¢ < 1. A sequential execution of the algorithm can
be seen as traversing a path from the root of a binary tree to a leaf node. Linear (in the subproblem
size) time is spent at level ¢ to determine which of the two subproblems at level ¢ + 1 needs to be
solved. For the parallel execution, each of the O(logn) sequential recursion steps can be implemented
optimally in logarithmic (in the size of the subproblem) parallel time. Furthermore, the subproblems
are either known in advance or can be determined at no additional cost (this is clarified later).

We analyze the computation in the recursion tree. The recursion tree is a binary tree with O(logn)
levels. Once the computation at the root level has been completed the algorithm needs to recur on
either the left or the right subtree. During the computation at the second level, which is of size
O(cn), a fraction of the O(n) processors are idle and this holds analogously for any subsequent level
of the computation. So we can perform the computation simultaneously in several levels instead of
performing it level by level (in a sort of speculative way). Thus unlike the sequential computation the
parallel computation performs work on more than one node per level of the tree. While the total work
performed by the sequential algorithm is only linear the difficulty arises because a parallel algorithm
does not know in advance which path of the recursion tree will be taken. Notice that this is not a
straight-forward application of Brent’s principle.

The algorithm consists of two phases. During the first phase we sequentially process the first
O(log™ n) levels using O(n/log" nlogn) processors on each level. After this step the problem size
is reduced to at most O(n/21°g*”). Then, in a second phase, we employ a parallel algorithm to
solve all subproblems on several adjacent levels at the same time. This is repeated O(log™n) times
taking O(logn) time each and requiring O(n/log* nlogn) processors in total. To prove the claimed
complexity bounds we begin by showing that the first phase can be executed in O(log" nlogn) time
using O(n/log™ nlogn) processors.

In the first phase of the algorithm we solve one subproblem on each of the first O(log™ n) levels. We
allocate for each level O(n/log” nlogn) processors which perform their work level by level. Analysis
of the first phase shows that O(log* nlogn/2') time is taken to execute levels 2! < log* n and for the
levels loglog™ n < ¢ < log™n, O(logn) time is taken. Hence, the total time taken to execute all levels
(level 0 to log™n) sums to O(log™ nlogn).

The second phase of our parallel algorithm has O(log”™ n) stages. During the ith stage we solve all

subproblems associated with a subtree of the recursion tree. The subtree of the ¢th stage is rooted at
22
a vertex of level ¢ = 2% 1 2's and it consists only of nodes on levels a to 2*. The total size of

the subproblems associated with this subtree is easily seen to be O(n). For the ith stage let T be the
recursion subtree rooted at v, where v is a vertex at level a. Since the total size of the subproblems
associated with T is O(n) we can assign a linear number (in the size of the subproblem associated with
a node) of processors to the subproblem associated with each node. It is crucial that we know the
subproblems that need be worked on. For the diameter algorithm this determination is given below.
Each node of T' can solve its associated subproblem and determine which of its children will be active
for the next step of the recursion in optimal parallel work. Now we know for each node in T', which
child will be active during the next recursion step. We can find the path from v to a leaf of T of the
active nodes in the recursion for example by using the standard method of doubling. Let this leaf
node be v'. In the (i + 1)** stage, the recursion subtree will be rooted at v’ and will have nodes from
levels 2% to 22°. Tt is easy to see that each stage of the recursion can be implemented in O(logn) time

18

using O(n/logn) processors. Since there are in all O(log™ n) levels, the total complexity of the above
algorithm will be O(log*nlogn) time using O(n/logn) processors. Since after the first phase, the size
of the problem left is only O(n/21°g* "), so the number of the processors required in the second phase
is only O(n/log” nlogn).

The analysis given so far is general and does not depend on the particular geometric properties
of the diameter problem. We expect it to be useful for any algorithm whose sequential computation
follows the above pattern. What remains to be shown for the computation of the link diameter is
that all subproblems required at each level of the recursion can be determined within the claimed
complexity bounds. Let a be a level in the recursion tree and T be the associated subtree rooted at
some node on that level. Let b = 2% be the leaf level for T. Denote by P; the polygon associated with
root(T'). For phase 2 we took b = 2% and solved the entire subproblem for T in time O(logn) using
O(n/logn) processors. We need to identify all subproblems in T in the same time/processor bounds.
We do this level by level taking O(1) time per level and thus in all taking O(logn) time using sufficient
number of processors. It is known that there exists a diagonal in P splitting the polygon associated
with root(T) into two subpolygons of sizes (i.e. number of vertices) no less than 1/4s and no more
than 3/4s, where s is the number of vertices in P; [3].

Assume that the dual tree of the horizontal and vertical trapezoidation of the polygon P are avail-
able. Note that the dual trees need not be binary trees. We simplify the exposition by first assuming
the (arbitrary) CRCW computation model. Associate a processor with each diagonal; the processor
computes in O(1) time the number of vertices in each of its two subpolygons. A diagonal is a candidate
diagonal if the number of vertices in the two subpolygons fall within the bounds required. Processors
associated with candidate diagonals are called candidate processors. All candidate processors write
their name into a common location. One of them will succeed and by using the common read all
candidates are informed of the so selected diagonal. Each vertex computes in which of the two sub-
polygons it lies and updates it vertex number (subtracting the number of vertices cut off in the other
portion). All diagonals which cross the selected diagonal are also updated in the constant time. It is
easy to observe that the above algorithm runs in the desired complexity on the CRCW PRAM.

Now we discuss the CREW implementation. Clearly, several candidates may exist. We need to
show that these candidates can select one diagonal among themselves in O(1) time. We claim that
there are only a constant number of connected components containing such candidates in the dual
trees. In each connected component, to select one candidate, we choose the highest (in the tree sense).
Each node in the dual tree determines whether its parent is also a candidate in which case it does
nothing; otherwise, it is the highest and it is the selected candidate in its connected component. We
run this test on each of the constant number of connected components. As will be shown in the
following lemma the number of connected components and thus the number of selected candidates is
constant.

Since the dual trees are not constant degree trees, we need to convert them to binary trees in order
to avoid concurrent writes. This can be done by the algorithm in [16]. Hence, each node in the dual
tree can determine, in constant time without using any concurrent writes, whether it is the selected
node in its component. The correctness follows from the following lemma.

Lemma 6.1 In each dual tree (of a horizontal and vertical trapezoidation) there exist only a constant
number of connected components of nodes representing diagonals which split the polygon into no less
than 1/4th and no greater than 3/4th of its size.

Proof: Let n be the total number of vertices in the polygon. Assume that the dual trees
(corresponding to horizontal and vertical trapezoidation) are rooted at some node. First we show that
along any path from a leaf to the root in the dual tree, there is at most one connected component of
nodes representing diagonals which split the polygon appropriately.

19

Let a, b and ¢ be three nodes along a leaf-to-root path, encountered in that order. Furthermore,
assume that the diagonals corresponding to the nodes ¢ and ¢ are candidate diagonals. Then there
are at least 1/4n vertices in the subpolygon split by the diagonal corresponding to a not containing
the diagonal corresponding to b.Analogously for ¢. Thus, by definition, the diagonal corresponding to
b is a candidate diagonal.

There are at least 1/4n nodes in each subpolygon corresponding to the subtree rooted at the root
of each connected component. Since the dual tree is of size n, it follows that the number of connected
components is constant. U

Now we show that we can solve each subproblem in optimal work. Using algorithm of Section 5
we compute the intervals I; = {e(v,dy)|v € P»} and I, ={e(v,dy+ 1)|v € Py}. Then we test whether
the inequality for Diam(P;) is met; if this is not so, we compute the exact value of Diam(P;). The
overall parallel complexity of this procedure is O(logn) time using O(n/logn) processors. The main
result of this section is stated in the following theorem.

Theorem 6.2 The rectilinear link diameter of an n-vertex simple rectilinear polygon can be computed
in O(log* nlogn) time using O(n/log* nlogn) processors on the CREW-PRAM. A link path connecting
two vertices of P realizing the diameter can be found in O(logn) time using O(n/logn) processors on
an FREW-PRAM.

The above technique is general and works for any sequential algorithm whose run time can be
analyzed in the same way. The designer of the parallel algorithm must take care that the subproblems
are available for phase 2 of the algorithm.

7 Central diagonal and link center

In this section we present parallel algorithms for computing the link radius, a central diagonal, and
the link center of an n-vertex simple rectilinear polygon P. Djidjev et al. [10] introduced the concept
of central diagonal for simple polygons. A central diagonal is a diagonal, say d, for which the difference
between the covering radii to the two subpolygons induced by d is minimized. They showed that a
central diagonal exists for which the covering radius difference is at most one (in absolute value); it
can be found in O(nlogn) time [10]. Furthermore they showed that the covering radii of a central
diagonal differs from the link radius R of P by at most one. Thus a central diagonal is near the link
center, or more precisely, the link center of a simple polygon is in the 2-visibility region of any central
diagonal. This was used to compute, in O(nlogn) time, the link center of a simple polygon [10] as
well as to find a shortest central segment inside P [1] (this bound has independently been claimed in
17).

A central segment is a segment in P which minimizes the covering radius to both sides. A robot
having telescoping links and moving along a track can reach every point of the simple polygon P with
the minimum number of links if the track is placed at the central segment. A shortest central segment
minimizes the track length. For simple polygons a shortest central segment can be found in O(nlogn)
time.

For rectilinear polygons Nilsson et al. [25] made analogous observations regarding the central
diagonal; they called such a ‘diagonal’ a splitting chord. We prefer to keep the notation central
diagonal. A central diagonal exists whose covering radius difference is at most one and whose covering
radii on either side is R-1 or R, where R is the link radius of P.(The covering radius of a diagonal
within a subpolygon is the maximum link distance of any vertex in the subpolygon to the diagonal.)
A central diagonal can be found in linear time. Using the techniques developed in this paper, the
approach taken by Nilsson et al. is easily parallelizable; it is thus only sketched here.

20

To find a central diagonal first a diameter realizing path is constructed which can be done using
the results of Section 6. Let vy, v be determined as a vertex pair realizing the diameter as its link
distance; again these can also be found using the results developed in Section 6. The segment at the
lower median index position on the path from v to v has been shown to be in the vicinity of a central
diagonal [25]. Finding a central diagonal then reduces to computing covering radii to both sides from
at most four chords. This is done using the optimal parallel interval computation given in Section 5.
Except for the diameter computation all steps can be performed in optimal parallel time. Since our
diameter computation takes O(log™ nlogn) time we get,

Theorem 7.1 A central diagonal in an n-verter simple rectilinear polygon can be computed in
O(log* nlogn) time using O(n/log™ nlogn) processors on the CREW PRAM.

The link center of a simple polygon P is the set of points z in P at which the maximal link
distance from z to any other point in P is minimized. The link center-problem has several potential
applications. It could arise when locating a transmitter so that the maximum number of retransmission
needed to reach any point in a polygonal region is minimized, or when choosing the best location for
a mobile unit minimizing the number of turns needed to reach any point in a polygonal regions. In
[10] and [17] an O(nlogn) time algorithm was given to determine the link center of a simple n-vertex
polygon. In [25] a linear time sequential algorithm for computing the rectilinear link center of P was
presented. The rectilinear link center of a rectilinear polygon is obtained by using the rectilinear link
distance. We show that the algorithm of [25] can be parallelized by using the techniques developed in
this paper. In the following we sketch their algorithm and show how it can be parallelized.

First compute the link radius R of P. The link radius of P is the maximum link distance from
a point in the link center to any vertex of P. It has been shown in [20] that [Diam(P)/2] < R <
[Diam(P)/2] + 1. Using the above inequality, we know that R can have one of two possible values.
Compute the link center of P by assuming first the lower value of R. Either this is the correct value
of R, or the algorithm will report that the link center is empty. In either case the exact value of R is
known.

Compute the central diagonal d of P. Let d split P into two subpolygons, P, and P;. Let dy (or
dy) denote the maximum link distance from d to all vertices in P; (respectively, Py). Without loss of
generality assume that d is vertical, P; is to the left of d, and P, is to the right of d. Since d is the
central diagonal, dy,ds > R — 1. Compute the part of the link center lying in P, and in P;. Since the
computations are analogous, we discuss the computation of the link center in P;. If R < dy, then the
link center in P, is contained inside the histogram of d in P;.

The computation of the link center in a histogram H is based on the following. For each window
w of H, compute the region of H that can be reached from the vertices in the pocket of w by using at
most R links. Once this region for each pocket is determined, the remaining task is to intersect these
regions for all pockets. The region in H induced by each pocket can be determined by knowing the
slow and fast intervals from the vertices inside the pocket to the window w of the pocket. The region
due to each pocket in H is shown to be monotone and thus can be intersected efficiently to obtain the
link center in H.

If dy = R — 1 then the link center is contained in the 2-visibility region of d in P,. There are two
main cases depending on whether the fast intervals for vertices in P; have a non-empty intersection
on d, or not. In each case there are various subcases not elaborated on here; and finally the compu-
tation is reduced to that of computing the link center in a histogram. In the following we state these
procedures that are required by the algorithm in [25] to compute the link center and briefly discuss
their parallel implementation.

Central diagonal d : Compute the central diagonal using the results of Theorem 7.1.

21

1-visibility (or histogram) and 2-visibility polygons from d: We first compute the window partition of
the polygon with respect to d using the algorithm in Section 4. From the window partition we can
easily compute the 1-visibility and the 2-visibility polygon from d.

Slow and fast intervals: We need to compute slow and fast intervals from vertices inside the pockets
to their respective windows or to the diagonal d. The slow and fast intervals can be computed by
Algorithm 4.

Sweeping a segment in the interior of P: In a few cases, during the computation of the rectilinear link
center, we need to compute the first point where an internal segment s, swept, horizontally or verti-
cally, inside P, intersects bd(P). The desired point of intersection can be computed by first locating
the edges of P which possibly can have an intersection when the segment is swept. After locating all
such edges, pick the one which is at the closest to s.

Intersection of histograms: In order to compute the link center, we need to compute the intersection
region of a constant number of histograms, where the base of all of them is either horizontal or vertical.
Without loss of generality assume that their bases are horizontal. We compute the intersection region
with linear (in the size of the histograms) amount of work in parallel as follows. First sort the vertices
with respect to their z-coordinate. This can be done with linear amount of work, since the vertices
for each histogram are already sorted with respect to their z-coordinates. Now sweep a vertical line
from the left to the right, where the sweep line traces the region of intersection of the histograms. The
computation of the sweep line can be simulated easily in parallel in linear amount of work. Hence, we
can compute the intersection region of the histograms within the desired complexity.

Intersection of intervals: During the computation of the link center, we need to compute the inter-
section of the fast and slow intervals from vertices in Py (or P;) on d and from the vertices in the
pockets to their corresponding windows. The above intersection information can be computed from
the knowledge of the end points of the intervals. The interval endpoints can be computed by Algorithm
4.

Using the above steps, the rectilinear link center of a rectilinear polygon can be optimally computed.
We omit further details and state the result in the following theorem.

Theorem 7.2 The rectilinear link center of an n—vertexr rectilinear simple polygon can be computed
in O(log* nlogn) time using O(n/log” nlogn) processors on the CREW-PRAM.

It has been observed [20, 10] that any algorithm for constructing the link center which is based
on knowledge of the ezact value R of the link radius, i.e. the algorithm returns the empty set if R is
estimated to be too small, can be used to find the link radius. The above algorithm is of that kind
and thus we get:

Corollary 7.3 The rectilinear link radius of an n—verter rectilinear simple polygon can be computed
in O(log* nlogn) time using O(n/log* nlogn) processors on the CREW PRAM.
8 Conclusions and Open Problems

We have given optimal algorithms for a variety of fundamental problems involving the link distance
in trapezoided rectilinear polygons. As yet no optimal EREW algorithm is know for trapezoiding
rectilinear polygons and thus an obvious open problem is to find such an algorithm. A solution to this
problem implies that our algorithms are optimal even for (untrapezoided) rectilinear polygons. We

22

have also given applications of our algorithms to a number of other link distance problems yielding
optimal CREW-PRAM solutions for the link diameter, link center, link radius, and central diagonal
problems. The total work performed by each of these algorithms is O(n).

Acknowledgements : Authors gratefully acknowledge Torben Hagerup for suggesting an improve-
ment of the diameter algorithm over an earlier version of this paper. The authors would like to thank
the referee for suggestions which resulted in an improved presentation of this paper.

References

[1] L.G. Alexandrov, H.N. Djidjev and J.-R.. Sack, Finding a central link segment of a simple polygon
in O(nlogn) time, Technical Report No. SCS-TR-163, Carleton University, 1989.

[2] E.M. Arkin, J.S.B. Mitchell and S. Suri, Link queries and polygon approzimation, Proc. of the
3rd ACM-SIAM Symp. on Discrete Algorithms, 1991, pp. 269-279.

[3] M. de Berg, On rectilinear link distance, Computation Geometry: Theory and Applications, 1
(1991), pp. 13-34.

[4] O. Berkman, B. Schieber and U. Vishkin, Some doubly logarithmic optimal parallel algorithms
based on finding all nearest smaller values, Technical Report UMIACS-TR-88-79, University of
Maryland, 1988.

[6] B. Chazelle, Triangulating a simple polygon in linear time, Discrete and Computational Geometry,
4 (1991), pp. 485-524.

[6] V. Chandru, S.K. Ghosh, A. Maheshwari, V T Rajan and S. Saluja, NC-Algorithms for mini-
mum link path and related problems, Technical Report, Tata Institute of Fundamental Research,
Bombay, 1992.

[7] K.L. Clarkson, R. Cole and R.E. Tarjan, Randomized parallel algorithms for trapezoidal decom-
position, Proc. 7th ACM Symp. on Computational Geometry, 1991, pp. 152-161.

[8] K.L. Clarkson, S. Kapoor and P.M. Vaidya, Rectilinear shortest paths through polygonal obstacles
in O(n(logn)?) time, Proc. 3rd Annual ACM Symp. on Computation Geometry, 1987, pp. 251-
257.

[9] P.J. de Rezende, D.T. Lee and Y.F. Wu, Rectilinear shortest paths with rectangular barriers,
Discrete and Computational Geometry, 4 (1989), pp. 41-53.

[10] H.N. Djidjev, A. Lingas and J.-R Sack, An O(nlogn) algorithm for computing the link center of
a simple polygon, Discrete and Computational Geometry, 8 (1992), pp. 131-152.

[11] S.K. Ghosh, Computing the visibility polygon from a convex set and related problems, Journal of
Algorithms, 12(1991), pp. 75-95.

[12] S.K. Ghosh and A. Maheshwari, Parallel algorithms for all minimum link paths and link center
problems, SWAT 92, Lecture Notes in Computer Science, vol. 621, 1992,

[13] M.T. Goodrich, Planar separators and parallel polygon triangulation, Proc. ACM STOC, pp.
507-515, 1992.

[14] M.T. Goodrich, S. Shauck and S. Guha, Parallel methods for visibility and shortest path problems
wm simple polygons, Proc. 6th ACM Symposium on Computational Geometry, 1990, pp. 73-82.

23

[15]

[16]

[17]

[21]

[22]

[23]

[24]

[25]

[29]

[30]

[31]

[32]

J. Hershberger, Optimal parallel algorithms for triangulated simple polygons, Proc. 8th ACM
Symposium on Computational Geometry, 1992, pp. 33-42.

J. JAJa, An introduction to parallel algorithms, Addison-Weseley Publishing Company, 1992.

Y. Ke, An efficient algorithm for link distance-problems, Proc. 5th ACM Symposium on Compu-
tational Geometry, 1989, pp. 69-78.

R. M. Karp and R. Vijaya Ramachandran, Parallel Algorithms for Shared-Memory Machines,
Handbook of Theoretical Computer Science, Edited by J. van Leeuwen, Volume 1, Elsevier Science
Publishers B.V., 1990.

R. Klein and A. Lingas, Manhattonian Proximity in a Simple Polygon, Proc. 8th ACM Symp. on
Computational Geometry, 1992, pp. 312-319.

W. Lenhart, R. Pollack, J. Sack, R. Seidel, M. Sharir, S. Suri, G. Toussaint, S. Whitesides and
C. Yap, Computing the link center of a simple polygon, Discrete and Computational Geometry, 3
(1988), pp. 281-293.

C. Levcopoulos, On approzimation behavior of the greedy triangulation, Linkoping Studies in
Science and Technology, Ph.D. Thesis, No. 74, Link6éping University, Sweden, 1986.

C. Levcopoulos and O. Petersson, Matching parenthesis in parallel, Discrete and Applied Math-
ematics, 1992.

A. Lingas, A. Maheshwari and J.-R. Sack, Optimal parallel algorithms for rectilinear link distance
problems, Technical Report SCS-TR-213, School of Computer Science, Carleton University, 1992.

K. M. McDonald and J. G. Peters, Smallest paths in simple rectilinear polygons, IEEE Transac-
tions on Computer-Aided Design, Vol. 11, No. 7, 1992, pp. 864-875.

B.J. Nilsson and S. Schuierer, An optimal algorithm for the rectilinear link center of a rectilinear
polygon, Proc. 2nd Workshop on Algorithms and Data Structures, Springer Verlag, eds. F. Dehne,
J.-R. Sack, and N. Santoro, 1991, pp. 249-260.

B.J. Nilsson and S. Schuierer, Computing the rectilinear link diameter of a polygon, Computational
Geometry- Methods, Algorithms, and Applications, Lecture Notes in Computer Science 553,
Springer Verlag, eds.: H. Noltemeier and H. Bieri, 1991, pp. 203-216.

J. O’Rourke, Art gallery theorems and algorithms, Oxford University Press, 1987.

J.H. Reif and J.A. Storer, Minimizing turns for discrete movement in the interior of a polygon,
IEEE Journal of Robotics and Automation, RA-3 (1987), pp. 182-193.

J-R. Sack, Rectilinear Computational Geometry, Ph.D. Thesis, McGill University, 1984.

B. Schieber and U. Vishkin, On finding lowest common ancestors: Simplification and Paralleliza-
tion, SIAM J. on Computing, 17(1988), pp. 1253-1262.

S. Schuierer, Rectilinear path queries in a simple rectilinear polygon , STACS’93, Lecture Notes
in Computer Science, vol. 665, Springer-Verlag, 1993, pp. 282-293.

S. Suri, A linear time algorithm for minimum link path inside a simple polygon, Computer Vision,
Graphics and Image Processing, 35(1986), pp. 99-110.

24

[33] S. Suri, Minimum link paths in polygons and related problems, Ph.D. Thesis, Johns Hopkins
University, 1987.

[34] S. Suri, Computing furthest neighbors in simple polygons , J. Comput. Sci., 39(1989), pp. 220-235.

[35] R. Tamassia and J.S. Vitter, Optimal parallel algorithms for transitive closure and point location
in planar structures, Proc. 1st ACM Symposium on Parallel Algorithms and Architectures, pp.
339-408. 1989.

[36] R.E. Tarjan and U. Vishkin, An efficient parallel biconnectivity algorithm, SIAM Journal on
Computing, 14, pp. 862-874, 1982.

25

