
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

December 1993

Optimal Parallel Randomized Algorithms for the Voronoi Diagram Optimal Parallel Randomized Algorithms for the Voronoi Diagram

of Line Segments in the Plane and Related Problems of Line Segments in the Plane and Related Problems

Sanguthevar Rajasekaran
University of Pennsylvania

Suneeta Ramaswami
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation

Sanguthevar Rajasekaran and Suneeta Ramaswami, "Optimal Parallel Randomized Algorithms for the

Voronoi Diagram of Line Segments in the Plane and Related Problems", . December 1993.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-93-99.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/265
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F265&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/265
mailto:repository@pobox.upenn.edu

Optimal Parallel Randomized Algorithms for the Voronoi Diagram of Line Optimal Parallel Randomized Algorithms for the Voronoi Diagram of Line
Segments in the Plane and Related Problems Segments in the Plane and Related Problems

Abstract Abstract
In this paper, we present an optimal parallel randomized algorithm for the Voronoi diagram of a set of n
non-intersecting (except possibly at endpoints) line segments in the plane. Our algorithm runs in O(log n)
time with very high probability and uses O(n) processors on a CRCW PRAM. This algorithm is optimal in
terms of P.T bounds since the sequential time bound for this problem is Ω(n log n). Our algorithm
improves by an O(log n) factor the previously best known deterministic parallel algorithm which runs in

O(log2 n) time using O(n) processors [13]. We obtain this result by using random sampling at "two stages"
of our algorithm and using efficient randomized search techniques. This technique gives a direct optimal
algorithm for the Voronoi diagram of points as well (all other optimal parallel algorithms for this problem
use reduction from the 3-d convex hull construction).

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-93-99.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/265

https://repository.upenn.edu/cis_reports/265

Optimal Parallel Randomized Algorithms for the

Voronoi Diagram of Line Segments in the
Plane and Related Problems

Sanguthevar Rajasekaran

Suneeta Ramaswami

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

December 1993

Optimal Parallel Randomized Algorithms for the Voronoi Diagram

of Line Segments in the Plane and Related Problems*

Sanguthevar Raj asekaran Suneeta Ramaswarnif

Department of Computer and Information Science,

University of Pennsylvania, Philadelphia, PA 19104

Abstract

In this paper, we present an optimal parallel randomized algorithm for the Voronoi diagram of a set

of n non-intersecting (except possibly at endpoints) line segments in the plane. Our algorithm runs

in O(1ogn) time with very high probability and uses O(n) processors on a CRCW PRAM. This

algorithm is optimal in terms of P.T bounds since the sequential time bound for this problem is

R(n1og n). Our algorithm improves by an O(1og n) factor the previously best known deterministic

parallel algorithm which runs in 0(log2n) time using O(n) processors [13]. We obtain this result

by using random sampling at "two stages" of our algorithm and using efficient randomized search

techniques. This technique gives a direct optimal algorithm for the Voronoi diagram of points as

well (all other optimal parallel algorithms for this problem use reduction from the 3-d convex hull

construction).

1 Introduction

Voronoi diagrams are elegant and versatile geometric structures which have applications for a

wide range of problems in computational geometry and other areas. For example, computing the

minimum weight spanning tree, or the all-nearest neighbor problem for a set of line segments can

be solved immediately and efficiently from the Voronoi diagram of line segments. As we learnt

from [18], these diagrams can also be used to compute a country's territorial waters! Certain two-

dimensional motion planning problems can be solved quickly when the Voronoi diagram is available

[20]. 'l'hus, exploiting parallelism to obtain faster solutions is a desirable goal. In this paper, we are

interested in developing an optimal parallel randomized algorithm on a PRAM (Parallel Random

Access Machine) for the construction of the Voronoi diagram of a set of non-intersecting (except

'This paper has been submitted for review to the Symposium on Computational Geometry to be held in Stony

Brook, June 1994.

 h his research is partially supported by ARO Grant DAAL03-89-C-0031 including participation by the U.S. Army

Human Engineering Laboratory.

possibly at endpoints) line segments in the plane. The first sequential algorithm for this problem

was given by Lee and Drysdale [18], which ran in 0(n10g2n) time. This run-time was later improved

to O(n1ogn) in numerous papers (Kirkpatrick [16], Yap 1241 and Fortune [lo]), which is optimal

since sorting can be reduced to this problem. The best known parallel deterministic algorithm was

given by Goodrich, 0 '~ l in la ing and Yap [13] and runs in 0(log2n) time using O(n) processors. It

seems unlikely that existing deterministic techniques can be used to improve this run-time.

2 Background

Recent years have seen significant advances in parallel algorithm design for computational geometry

problems. Some of the earliest work in this area was done by C11ow [5] and Aggarwal et. al. [I].

In these papers, the authors gave parallel algorithms for various fundamental problems such as

two-dimensional convex hulls, planar-point location, trapezoidal decomposition, Voronoi diagram

of points, triangulation etc., which are known to have sequential run-times of O(n1og n). Most of

their algorithms, though in NC, were not optimal in P.T bounds and a number of them have since

been improved. Atallah, Cole and Goodrich [3] demonstrated optimal deterministic algorithms

(O(n) processors and O(log n) run-time) for many of these problems by applying the versatile

technique of cascading divide-and-conquer and building on data structures developed in [l]. Cole

and Goodrich give further applications of this technique in [8]. Reif and Sen [23] also obtained

optimal randomized parallel algorithms for a number of these problems; these algorithms use n

processors and run in O(log n) time with very high probability.

The important problems of constructing Voronoi diagrams of points in two dimensions and

convex hulls of points in three dimensions, however, eluded optimal parallel solutions for a long

time. Both these problems have sequential run-times of O(nlogn). Aggarwal et. al. [l] gave

0(log2n) and 0(log3n) time algorithms (using a processors) for the Voronoi diagram and convex

hull problems, respectively, and the technique of cascaded-merging could not be extended to these

problems to improve their run-times [8]. Very recently, Goodrich [12] has given an algorithm for

3-d convex hulls that does optimal work, but has 0(log2n) run-time, and Amato and Preparata [2]

have described an algorithm that runs in O(1og n) time but uses nl+' processors. Randomization,

however, proves to be very useful in obtaining optimal run-time as well as optimal P.T bounds1.

In [22], Reif and Sen gave an optimal randomized algorithm for the construction of the convex hull

of points in three dimensions. Since the problem of finding the Voronoi diagram of points in two

dimensions can be reduced to the three-dimensional convex hull problem, they also obtained an

optimal parallel method for the former. Their algorithm runs in O(1og n) time, using n processors,

with very high probability, and there are no known deterministic algorithms that match these

bounds

'Sorting can be reduced to these problems, and hence the best possible run-time will be O(1og n) on EREW and

CREW PRAMS.

3 The Use of Randomization

The technique of randomization has been used to design sequential as well as parallel algorithms for

a wide range of problems. In particular, efficient randomized algorithms have been developed for

a number of computational geometry problems. Recent work by Clarkson and Shor [6], Mulmuley

[19], and Haussler and Welzl [14] has shown that random sampling can be used to obtain better

upper bounds for various geometric problems such as higher-dimensional convex hulls, halfspace

range reporting, segment intersections, linear programming etc.

Clarkson and Shor [6] used random sampling techniques to obtain tight bounds on the expected

use of resources by algorithms for various geometric problems. The main idea behind their general

technique is to use random sampling to divide the problem into sn~aller ones. The manner in which

the random sample is used to divide the original input into subproblems depends on the particular

geometric problem under consideration. They showed that for a variety of such problems, given a

randomly chosen subset R of the input set S, the expected size of each subproblem is O(ISJ/IRI)

and the expected total size is O((S1). A sample that satisfies these conditions is said to be good, and

bad otherwise. They showed that any randomly chosen sample is good with constant probability,

and hence bad with constant probability as well. This allows us to obtain bounds on the expected

use of resources, but does not give high probability results (i.e. bounds that hold with probability

> (1 - l / n f f) , where n is the input size, and a > 0). As pointed out by Reif and Sen [22],

this fact proves to be an impediment in the parallel environment due to the following reason:

Parallel algorithms for such problems are, typically, recursive. For sequential algorithms, since the

expectation of the sum is the sum of expectations, it is enough to bound the expected run-time

of each step. For recursive parallel algorithms, the run-time at any stage of the recursion will be

the maximum of the run-times of the subproblems spawned at that stage. There is no way of

determining the maximum of expected run-times without using higher moments. Moreover, even

if we can bound the expected run-time at the lowest level of the recursion, this bound turns out to

be too weak to bound the total run-time of the algorithm.

In [22], Reif and Sen give a novel technique to overcome this problem. A parallel recursive

algorithm can be thought of as a process tree, where a node corresponds to a procedure at a

particular stage of the recursion, and the children of that node correspond to the subproblems

created at that stage. The basic idea of the technique given in [22] is to find, at every level of the

process tree, a good sample with high probability. By doing this, they can show that the run-time of

the processes at level i of the tree is O(logn/2') with very high probability, and hence the run-time

of the entire algorithm is O(log n) with very high probability. By choosing a number of random

samples (say g(n) of them; typically g (n) = O(log n)), we are guaranteed that one of them will

be good with high likelihood. The procedure to determine if a sample is good or not will have

to be repeated for each of the g(n) samples. However, we would have to ensure that this would

not cause the processor bound of O (n) to be exceeded aad this is done by polling i.e. using only

a fraction of the input (l /g (n) , typically) to determine the "goodness" of a sample. The idea is

that the assessment of a sample (good or bad) made from this smaller set is a very good reflection

of the assessment that would be made from the entire set. Thus they have a method to find a

good sample efficiently at every level of the process tree, and is useful for converting expected value

results into high probability results.

Note that the total size of the subproblems can be bound to only within a constant multiple

of the original problem size. Thus in a process tree of O(log1og a) levels, this could lead to a

polylogarithmic factor increase in processor bound. In [6], Clarkson and Shor get around this

problem by using only a constant number of levels of recursion in their algorithm. They are able

t o do this by combining the divide-and-conquer technique with incremental techniques (which are

inherently sequential; see [6] for further details). As mentioned earlier, Reif and Sen's [22] strategy

to handle this problem is to eliminate redundancy at every level of the process tree. This step is

non-trivial and quite problem-specific. Our approach in this paper gets rid of this need altogether.

In other words, we do not need to devise a method to control total problem size at every level of

the process tree. The basic idea is to use random sampling at two stages of the algorithm. We

show that the polylog factor increase in processor bound actually gives us a method to choose much

larger samples. By choosing samples in this manner, we are essentially able to ignore the problem

of increase in processor bound. By developing efficient search strategies to determine subproblems,

we are able to obtain an optimal algorithm for the Voronoi diagram of line segments in the plane.

We think that our approach is general enough to apply to other problems as well.

We would like to point out that our strategy applies to the Voronoi diagram of points in the

plane as well, thus giving a direct algorithm for this problem (instead of using the reduction to 3-d

convex hulls). During the course of the paper, we will point out the analogous steps for the case of

points in the plane.

4 Preliminaries, Definitions and Notation

The parallel model of computation that will be used in this paper is the Concurrent Read Concurrent

Write (CRCW) PRAM. This is the sychronous shared memory model of parallel computation in

which processors may read from or write into a memory cell simultaneously. Write conflicts are

resolved arbitrarily; in other words, the protocol used for resolving such conflicts does not affect

our algorithm. Each processor performs standard real-arit hmetic operations in constant time. In

addition, each processor has access to a random number generator that returns a random number

of O(1ogn) bits in constant time. A randomized parallel algorithm A is said to require resource

bound f (n) with very high probability if, for any input of size n, the amount of resource used by A

is at most ?.a. f (n) with probability 2 1 - l /na. for positive constants E, a (a > 1). O is used to

represent the complexity bounds of randomized algotithms i.e. A is said to have resource bound

O(f (n)). The following is an important theorem.

Theorem 4.1 (Reif and Sen, [23]) Given a process tree that has the property that a procedure

at depth i from the root takes time Ti such that Pr[Ti 2 ~ (t ') ~ a l o g n] 5 2-(")'"10gn, then all the

leaf-level procedures are completed in O(log n) time, where k and ar are constants greater than zero,

and 0 < t' < 1.

Note that the number of levels in the process tree will be O(log1ogn). Intuitively, the above

theorem says that if the time taken at a node which is at a distance i from the root is O((1og n)/2')

, d), a straight line

, d)), a parabolic arc

I- B(a, c), a straight line

Figure 1: The bisector of two line segments sl and s 2

with high probability, then the run-time of the entire algorith~n is O(log n).

4.1 Voronoi Diagrams

We now give definitions and establish some notation for the geometric objects of interest in this

paper i.e. Voronoi diagrams (these definitions are standard; see e.g. [13, 181). Let S be a set of

nonintersecting closed line segments in the plane. For simplicity of description, we will asslime

that the elements of S are in general position i.e. no three of them are cocircular. Following the

convention in [18, 241, we will consider each segment s E S t o be composed of three distinct

objects: the two endpoints of s and the open line segment bounded by those endpoints. The

Euclidean distance between two points p and q is denoted by d(p, q). The projection of a point

q on to a closed line segment s with endpoints a and b, denoted proj(q, s) , is defined as follows:

Let p be the intersection point of the straight line containing s (call this line y) , and the line

going through q that is perpendicular to 7. If p belongs to s , then projjq, s) = p. If not, then

proj(q, s) = a if d(q, a) < d(q, b) and proj(q, s) = b, otherwise. The distance of a point q

from a closed line segment s is nothing but d(q, proj(q, s)) . By an abuse of notation, we denote

this distance as d(q, s) . Let s l and s2 be two objects in S. The bisector of sl and s 2 , B(s l , sa),

is the locus of all points q that are equidistant from sl and sz i.e. d(q, sl) = d(q, s 2) Since the

objects in S are either points or open line segments, the bisectors will either be parts of lines or

parabolas. The bisector of two line segments is shown in Figure 1. Note that if S is a set of points,

the distance relation is the obvious one, and all the bisectors are parts of straight lines. The formal

definition is stated below, followed by an important theorem.

Definition 4.2 The Voronoi region, V7[;;(s), a.ssociated with an object s in S i s the locus of all points

that are closer to s than to any other object in ,S i.e. br(s) = (p 1 d(p, s) 5 d (p , s t) for all

st E S) . The Voronoi diagram of S, Vor(S), is the union of the Voronoi regions V (s) , s E S .

The boundary edges of the Voronoi regions are called Voronoi edges, and the vertices of the diagram,

Voronoi vertices.

Theorem 4.3 (Lee et al. [18]) Given a set S of n objects in the plane (in this paper, these

objects will either be nonintersecting closed line segments or points), the number of Voronoi regions,

Voronoi edges, and Voronoi vertices ofVor(S) are all O (n) . To be precise, for n > 3, Vor(S) has

at most n vertices and at most 3n - 5 edges.

It is convenient to divide Voronoi regions into smaller regions by augmenting the diagram in the

following way (such an augmentation was originally proposed by Kirkpatrick [16]): If v is a Voronoi

vertex of V (s) , and if v' = proj(v, s) , then the line segment obtained by joining v and v' is a spoke

of V (s) . Note that a spoke of V(s) must lie entirely in V (s) since V (s) is generalized-star-shaped

with nucleus s [18]. The spokes define new sub-regions within V (s) . These sub-regions bounded

by two spokes, part of e and a Voronoi edge are called primitive regions (prims for short) [13]. For

each line segment s , there are spokes that are perpendicular to s at its endpoints. These come from

(degenerate) vertices that demarcate the region of V (s) that is closer to the open line segment from

the region that js closer to the endpoints. Some spokes and prims are shown in Figure 1. Hereafter,

all references to the Voronoi diagram will assume that it is augmented as above.

In the case of the Voronoi diagram of points, all bisectors are straight lines and hence two

bisectors can intersect at most once. However for line segments, the bisectors are composed of

straight line segments and parabolic arcs. Consequently, we give the following lemma, which will

be of use to us later on in the paper.

Lemma 4.4 Given line segments s , sl and s2 in the plane, the two bisectors B (s , s l) and B (s , .sa)

can intersect at most twice.

We give below some results that will be useful for the brute force construction of the Voronoi

diagram of a sample of the appropriate size, and will be used in the course of our algorithm. We

state the results for line segments as well as points.

Lemma 4.5 The Voronoi diagram of a set of n line segments in the plane can be constructed on

a CREW PRAM in O(log n) time using nr3 processors.

Proof: Omitted.

Lemma 4.6 The Voronoi diagram of a set of n points in the plane can be constructed on a CREW

PRAM in O(1og n) using n2 processors.

The above lemma follows easily from the fact that intersections of n half-planes can be found

in O(1ogn) time using n processors [l, 41. (Amato and Preparata's [2] method, though a more

complicated approach, would give us the same result.) The followirlg are well-known results that

give us non-optimal parallel algorithms for the Voronoi diagram problems. These will be used when

the input t o a subproblem is of an appropriately small size. Any polylogarithmic time parallel

algorithm that uses n processors will be enough for our requirements.

Lemma 4.7 (Goodrich et. al., [13]) The Voronoi diagram of a set of n line segments in the

plane can be constructed on a C R E W P R A M in 0(log2n) time using n processors.

Lemma 4.8 (Aggarwal et. al., [I]) The Voronoi diagram of a set of n points i n the plane can

be constructed on a CREW P R A M in 0(log2n) time using n processors.

5 Randomized Algorithms for Voronoi Diagrams

In this section, we develop an optimal parallel randomized algorithm for the construction of the

Voronoi diagram of a set of line segments in the plane. As we mentioned in Section 3, Reif and

Sen [22] use the novel technique of polling to give an optimal randomized algorithm for the three-

dimensional convex hull problem. This immediately gives an optimal randomized method for the

Voronoi diagram construction of a set of points in the plane because this problem is O(1ogn)

(parallel) time reducible to the 3-d convex hull problem. However, no analogous reduction is at

hand for the case of line segments. Our optimal parallel randomized algorithm tackles the Voronoi

diagram problem directly which, to our knowledge, has not been done before. The technique that

we present in the forthcoming sections is general enough that it can be applied to the case of line

segrnents as well as points in the plane in order to obtain optimal randomized parallel algorithms.

As a result, we also obtain a new and simpler randomized parallel method for the Voronoi diagram

of points. We would like to point out here that even though, for the sake of sin~plicity, we restrict

our attention to line segments in the plane, this technique would be applicable even when the input

consists of circular arcs (see Yap's [24] sequential algorithm for some detail on including circular

arcs).

5.1 Outline of the Method

We give here a broad outline of our parallel algorithm here. Let S = { s l , s2, . . . , s,) be the input

set of line segments in the plane and let R be a random sample from S . Let IRI = n' for some

0 < t < 1. The sample R will be used to divide the original input S into smaller subproblems so

that each of these can be solved in parallel. The technique of using a random sample to divide the

original probleni into subproblems will be useful only if we can show that the subproblems are of

roughly equal size (O(nl-')) and that the total size of all the subproblems is almost equal to the size

of the original problem (O(n)). The expected value resource bounds for computational geometry

problems obtained by Clarkson and Shor [6] will be applied here. As mentioned in Section 3, due

to the nature of randomized parallel algorithms it is necessary to efficiently find, at each level of the

process tree, such a sample with high probability. The technique of polling developed by Reif and

Sen [22] will be utilised towards this end. So a crude outline of the algorithm could be as follows.

1. Construct the Voronoi diagram of R using the brute force technique described in Lemma 4.5 of

Section 4 (Lemma 4.6 for the Voronoi diagram of points in the plane). Call this diagram Vor(R). We

use Vor(R) to divide the original problem into smaller problems which will be solved in parallel.

2. Process Vor(R) appropriately in order to efficiently find the input set of line segments to each of these

subproblems.

3. Recursively compute (in parallel) the Voronoi diagram of each subproblem

4. Obtain the final Voronoi diagram from the recursively computed Voronoi diagrams.

By choosing an appropriate t, we can ensure that the first step can be done in O(1ogn) time

using n processors. In Section 5.4, we describe the use of a randomized search technique in order

to efficiently find the subproblems defined by a chosen sample. We show that step 2 can be carried

out in O(1og n) time with high probability using n processors. In Section 5.5, we describe the merge

technique to compute the Voronoi diagram from recursively computed Voronoi diagrams (this step

is non-trivial) and show that the final merge step can be done in O(log n) time using n processors.

Thus, the recurrence relation for the run-time is T(n) = T(nl-') + ~ (l o g n) , which solves to

O(log n) (this follows from Theorem 4.1). However, the description of the algorithm that we have

given here is incomplete.

As mentioned earlier, there is an important side-effect in such recursive algorithms that we have

to consider. When we use a random sample to divide the original problem into smaller ones, we can

succeed in bounding the total size of the subproblems to only within a constant multiple of n . In a

recursive algorithm, this results in an increase in the total problem size as the number of recursive

levels increases. For a sample size of 0 (n 2) , the depth of the process tree for a parallel randomized

algorithm would be O(1oglog n), and even this could result in a polylogarithmic factor increase in

the total problem size. In [22], Reif and Sen get around this problem by eliminating redundancy in

the input t o the subproblems a t every level of the recursion. In other words, since it is known that

the final output size is O(n) , it is possible to eliminate those input elements from a slibproblem

which do not contribute t o the final output. By doing this, they bound the total problem size at

every level of the process tree to be within c.n for some constant c. This step is non-trivial and, in

general, avoiding a growth in problem size in this manner can be quite complicated. Moreover, the

strategy that can be used t o eliminate redundancy seems to be very problem-specific. We describe a

method t o use sampling at two stages of the algorithm, which will help us t o overcome the problem

of the increase in total input size as our algorithm proceeds down the process tree. Moreover, it

appears that our strategy is general enough to be applicable to other kinds of problems as well.

This technique is described in further detail in Section 5.3.

Observe that the issue of bounding the total size of the subproblems does not come up in "one-

dimensional" problems like sorting because each element of the input set can lie in exactly one

subproblem. This is not the case for problems like Voronoi diagram construction. This property

makes it necessary t o device efficient search strategies in order to determine all the subproblems

that an element lies in. In our algorithm, this need is particularly important because of the fact that

one of the stages of sampling entails larger sample sizes (this will become clearer in Section 5.3).

Lie give such an efficient search strategy in Section 5.4.

Figure 2: The shaded area is t,he region C R (e) associated with the edge e.

5.2 Defining the Subproblems

We now give a precise descriptiori of how the Voronoi diagram of a random sample R is used to

divide the original inpi~t S into smaller problems. Let IRI = T. Consider a.n edge e of Vor(R). e

has two pri~nit~ive regions (prirns were defined in Section 4) on eit,her side of it; call these PA(F) and

F'kJe). Every vertex v of Vo(R) is equidista.nt from exactly three elements of R, and v is closer to

these three elements than to any ot,her element of R. Thus every vertex defines a circle such that

exactly three elements of R are incident on it and the interior of the circle is empty. Let DR(71)

denote the circle (and its interior) defined by Voronoi vertex v of Vor(R). Let v and vz be the two

vertices of e.

Consider now the region obtained by the union of F'Aje). Fk(e), and the two circles Dn(vl)

and DR(vZ) (see Figure 2); in the case of unbounded edges, we have two prims and one circle. Call

this region C R (r) . Observe that for the Voronoi diagram of points, it is enough to consider C R (e)

to be the union of just the two circles defined by the two vertices of P because the prilns pA(e) and

'Pk(e) always lie entirely within this union. This is not always the case for line segments, as can be

seen in Figure 2.

Remark: We would like the subproblem associated with every edge of Vo7(R) to sat,isfy the following

condition: if the final Voronoi region V (s ;) of elemeilt s, E ,S intersects ~ k (e) or P;(e), then we

would like at least all such s, to be part of the input associated with the edge e.

For every element si of S , consider the set of points that are closer to s; than to any other

element of R. In ol l~er words, consider the Voronoi region of si in the Voronoi diagram of the set

R U {s;). Denote this by v R (s i) . Cleaxly, the final Voronoi region of s; will be a region smaller

t'han (or equa.1 to) v R (s i) . An element s; will belong to the subproblem associated with edge e if

and only if vR(s;) has a non-empty intersect'ion with PA(e) and ~ i (e) . Observe that determining

input for. each slibprobleln in this manner satisfies the desired condition that we stated in the

remark a.bove. Note also that there might be s; thak are part of this inpnt whose final Voronoi

region 1fi.s;) does not intersect pA(e) or P i (e) . vR(s;) intersects Pk(e) and 'Pi(,) if and only if

the e1em.en.t s; h,a,s a non-empty iiztersection with C R (e) .

Let X(CR(e)) denote the set of all elements s; E S such that s; has a non-empty intersection

with CR(e). Thus, the input set for the subproblem associated with e will be nothing but X(CR(e)).

Each of the Vor(X(CR(e))) will be computed recursively. The number of edges in Vor(R) will be a t

most 3 r - 5 (Theorem 4.3), and, hence, so will the number of regions CR(e). Let CR = {CR(e) 1 e is

a Voronoi edge from Vor(R)}. We can now use Clarkson and Shor's result (Corollary 3.8, [6]) t o

obtain the following. Note that it takes four elements of R t o define each region CR(e): the two

elements that e bisects, and two other elements that determine the two vertices of e (referring now

to the notation used in [6], clearly b = 4 and the "ranges" identified by the function 6 are precisely

the regions CR(e) defined here).

Lemma 5.1 Given a random sample R of size r from a set of objects S of size n and using the

notation established above, both of tlze following conditions hold with probability a t least 112:

(a) max { I x (C ~ (e)) l I l kmax (n / r) logr
C R (~) E CR

where kmaz and ktot are constants (obtained from Corollary 3.8 in [6]).

Since E(lCRl) is O(r) , the above conditions guarantee that with probability a t least 112, the

total size of the subproblems is almost equal to the size of the original problem and the subproblems

are of roughly equal size. As in [6, 221, if a sample R of S satisfies these conditions then it is called a

good sample and bad otherwise. In order to solve the subproblems in parallel and obtain an optimal

run-time, R has to be a good sample with high probability.

5.3 Two Stages of Sampling

As mentioned in Section 3, Reif and Sen [22] describe the novel technique of polling in order t o

obtain a good sample with high probability from samples that are only expected t o be good. If

O(logn) samples are chosen, instead of just one, then it follows from Lemrna 5.1 that with high

probability one of these samples will be good. Let R1, R2, . . . , Ral,,, be these samples (where

the value of a is fixed according to the desired success probability of the algorithm) of size O (n t)

each. Let us assume for now that we have an efficient (n processors and O(1og n) time) procedure

t o compute the total subproblem size C
CRt(e) E CR;

I X(CRi (e)) 1 for each Vor(Ri). However, in

order to determine which of these R; is good, this procedure will have t o be repeated for each of

the O(log n) samples. This will mean an increase in the processor bound of O(n) which we want

t o avoid. Reif and Sen [22] introduce the idea of polling in order to overcome this problem. They

determine the goodness of sample R; by using only O(n/logbn) randomly chosen elements from the

input set, where b > 2 is some constant. The procedure t o determine the goodness of the a logn

samples can be run in parallel for all the Ri.

The randomized parallel algorithm is then run on the good sample found in the above manner.

However the technique outlined so far still does not guarantee that we stay within the desired

processor bound of O(n). The best bound that Lemma 5.1 can give us is that the total size of the

subproblenis a t level (i + 1) of the process tree is ktot times the total size of the subproblems a t

level i. This implies that after O(1og log n) levels, the total size could increase by a polylogarithmic

factor. Suppose the total size a t the leaf level of the process tree is a t most n.logcn, for some

constant c. If the input t o the divide-and-conquer algorithm were to be of size n/logcn, then the

total problem size a t the leaf level of the process tree would be O(n). This observation (along with

the results developed in the following sections) yields the following.

Theorem 5.2 The Voronoi diagram of a set of n line segments can be constructed in O(1og n)

time with high probability using nlogCn processors.

The above theorem actually enables us t o choose samples of size much larger than O(nC). In

particular, such a sample S' could be of size O(n/logqn), q being a constant > c. If St is a good

sample, then it would again divide the original input into smaller problems of roughly equal size (i.e.

X (Csl(e)) would be of size roughly O(logqn) for all Voronoi edges e in Vor(St)) and C (X(Cst(e)) 1
would be 0 (n) . In order t o compute the Voronoi diagram of these subproblems, we can then use

any non-optimal algorithm like the one stated in Lemma 4.7 (Lemma 4.8 for points in the plane).

We would, however, like to bc able t o find such a good sample S' with high probability. As we know

from Lemma 5.1, there is a constant probability that St is a good sample. As before, if we choose

O(1og n) such samples, we know that at least one of them will be good with very high probability.

Let N = n/logqn. Let S1, Sz, . . . , Sdlogn be the O(1ogn) samples of size N each. Since the

size of Si is large, we obviously cannot afford to construct Vor(S;) using a brute force technique

(as we can do with samples of size O(nC)). We will have to run the randomized parallel algorithm

using each of these Si as input. Let R;, R;, . . . , RglagN be the O(1og N) random samples, each

of size N', chosen from 5';. Thus the skeleton of our algorithm will now be as follows. Note that

the testing of the samples S; is done with respect to a restricted input set (polling).

Algorithm VORONOI-DIAGRAM;

mN := n/logqn.

Pick d log n random samples S1, Sz, . . . , S d l o g n of size N each.

Let I be a random subset of the input set S such that (I1 = n/log%, q being a constant < q.

St := PICK-THE-RIGHT-SAMPLE(S~, S2, . . . , Sdlogn, I) .

Partition the entire input S according t o the good sample S t ; such a method is given in Sec-

tion 5.4.

Solve each subproblem using a non-optimal technique (Lemma 4.7 or Lemma 4.8).

Merge the results (see Section 5.5).

Function PICK-THE-RIGHT-SAMPLE(S~, S2,. . . , S d l o g n , I).

Do the following in parallel for each S; (1 5 i 5 d log n).

. .
1. (a) Choose a logn random samples R;, R;, . . . , ~i~~~~ each of size N i from the set Si.

(b) Construct the Voronoi diagram of each H.: (1 5 j 5 alog N) using the brute force

technique described in Lemma 4.5 of Section 4 (Lemma 4.6 for the Voronoi diagram of

points in the plane).

(c) Determine which of these R",S a good sample for Si.Hence the inputs to the method

in Section 5.4 will be R: and S;. Suppose R;, is one such good sample; with high

probability, there will be such a j'.

(d) Use R;, t o divide Si into smaller subproblems.

(e) Recursively compute (in parallel) the Voronoi diagram of each subproblem.

(f) Obtain the final Voronoi diagram Vor(Si) from these recursively computed Voronoi di-

agrams.

2. Compute the total subproblems size when restricted to I (this is polling). Hence the inputs

to the method in Section 5.4 will be S; and I .

a Return the best S;; with high probability there will be such an S;.

Observe that in the above function, it will not be necessary to use polling in step l(c) because

of the smaller size of the S;. The whole point of polling is to ensure that the processor bound of

0 (n) is not exceeded. However, we can afford to use, for all 1 5 i 5 dlog n , the whole set S; t o

determine the goodness of R; (1 5 j < a logn) because (d l o g n) . (u l o g n) . is o(n) as long as

4 > 3.

We know that each of the Vo<S;) can be constructed in O(1ogn) time with very high prob-

ability (more accurately, we will know this for sure after the next two sections). But we want

to be sure that every one of the Vor(S;) will be constructed in O(1ogn) time with high probabil-

ity. 'This follows i&ediately from the fact that for events Al, A2, . . . (not necessarily disjoint),

Pr[u;A;] < C;Pr[A;] Suppose the probability that the construction of Vor(Si) takes more than

/3 logn steps is 5 n-ff for some constants cr and P. Then it follows from the stated inequality that

the probability that the construction of one or more of the Vor(S;) takes more than P logn time is

< (n-").(d log n). Consequently, the probability that all the Voronoi diagrams Vo<S1), Vor(S2),

. . ., Vor(Sdlogn) are constructed in O(1og n) time is > (1 - (n-").(dlogn)), which is very high.

It will be necessary to process the Voronoi diagram of the random sample appropriately so

that we have a fast method to find the subproblems defined by it. Note that in our scheme it

is imperative that we have an efficient algorithm t o perform this processing. In other words, we

cannot afford to have a parallel algorithm that uses a polynomial number of processors. Whereas in

[22] , since the sample size is always O(nE), they can choose an appropriate t such that the processor

bound of O(n) is maintained, we do not have this flexibility. This is because of the large sample

size during the first stage of sampling. In the following section, we give an efficient method that

satisfies our requirement.

5.4 Finding X(CR(e)) for each CR(e)

Let R be a random sample chosen from a set S, and let I R(= r . (Hence R could either be one of

the S; chosen from the original input S (r = N and S = S) or one of the R: chosen from S; (r = N'

and S = S;).) Let us assume Vor(R) is available to us; Vor(R) would have been constructed either

through a brute-force technique or tlze divide-and-conquer method outlined in the previous section.

We now describe a method to process Vor(R) appropriately so that we can find X(CR(e)) (C S) for

all Voronoi edges e of Vor(R) in O(1og n) time with high probability using O(n) processors. Note

that we obviously cannot sequentially determine all the subproblems that an element of S lies in

because this could be as large as O(r) .

5.4.1 Processing Vor(R) to Form the Search Data Structure VorDS(R)

Let U be a triangulated subdivision with u vertices. A subdivision hierarchy is a sequence Ul , U2, . . . ,
Uh(U) of triangulated subdivisions satisfying the following conditions: (1) U1 = U , (2) IUh(,) (= 3,

and (3) each region of Ui+l intersects at most r regions of Ui for some constant r. The idea of us-

ing fractional independent sets2 to build a subdivision hierarchy was first proposed by Kirkpatrick

[17]. Subdivision hierarchies can be used to construct efficient search data structures. Randomized

pa.ralle1 algorithms to solve this problem efficiently were given independently by Dadoun and Kirk-

patrick [9] and by Reif and Sen [23]. We can clearly use the same idea of fractional independent

sets to build a hierarchy of Voronoi diagrams that will be very useful for our purposes.

The dual DV(R) of the Voronoi diagram Vor(R) of a set of elements R is the graph which has a

node for every element in R and an edge between two nodes if their corresponding Voronoi regions

share a Voronoi edge (for the case when R is a set of points, the dual is the well-known Delaunay

triangulation of the set of points). Z)V(R) is planar, and can be used to build a hierarchy of Voronoi

diagrams. By a slight abuse of notation, for each segment s E R, we will use s to refer to its

corresponding node in the graph VV(R) as well (hence R will refer to the set of nodes when we

talk about DV(R)).

Observe that when R is a set of line segments in the plane, DV(R) could be a multigraph (i.e.

there could be more than one edge between two nodes): this is because a bisector can be split into

two or more pieces in Vor(R). It can be shown that every interior face of VV(R) must be triangular.

In a triangulated subdivision, the exterior face is assumed to be a triangle as well. If DV(R) does

not have a triangular exterior face, we can assume that R has been augmented appropriately so

that we have this property (this can be done in O(1ogr) time using r processors). Thus DV(R)

is a planar subdivision in which the interior faces as well as the exterior face is triangular and we

ca.n use fractional independent sets to construct a hierarchy of Voronoi diagrams in the following

manner.

In the remainder of this paper, we use VR(s) to denote the Voronoi region of s E R in the

Voronoi diagram Vor(R). Also, as in [17], we will assume that every node of a fractional independent

set is an internal node DV(R), and the degree of each such node is less than or equal to r, where

T is a fixed constant (for our purposes, it suffices to assume that r = 6). Let R1 = R. Consider a

fractional independent set W of R1 in the graph DV(R1), and let R2 = R1 - W . Let s be a node

in W. Let rRl(s) represent the set of neighbors of s in DV(RI) (obviously (rRl (s) l < r) . Since

'1f G = (V, E) is a planar graph, then a set X C V is a fractional independent set of G if (1) the degree of each

vertex v E X is less than or equal to some constant d (2) no two vertices of X are connected by an edge (i.e. the

set X is an independent set) and (3) 1x1 > c IVl for some fraction c.

W is an independent set, we know that rR1(s) c R2. Then we have the following.

Lemma 5.3 For an element .sf E R2, VR2 (sf) contains a part of the region VR, (s) (i.e.

VR~(S') n VRl (s) # 0) if and only if s' E rR1 (s) .

Proof: Obvious.

It is now easy t o construct Vor(R2) from Vor(R1). First, we know from [9, 231 that with very

high probability, we can find such an independent set W in constant time using r processors (the

idea is t o use randomized symmetry breaking; see [15] for a clear exposition). Now, t o determine

the part of VR,(s) that belongs t o VR2(sf) for each sf E rR1(s), all we have t o do is compute the

intersection of the regions defined by the bisectors B(sl, s") for all s" IZ rRl (s). This can clearly

be done in constant time. If we do this for all s E W, it follows from Lemma 5.3 that the resulting

diagram will be Vor(R2). Thus we see that DV(R2) can be obtained from 'DV(R1) in constant time

using r processors: For all s E W, (a) delete the node s and the edges between s and members

of (s) and (b) add edges between pairs of elements from r R l (s) if they share a Voronoi edge

in V0r(R2) (there will be a t most 3 such new edges for each s). Note that for each new prim of

Vor(R2), we can determine in constant time the prims of Vor(R1) that it intersects.

We can repeat on R2 the steps described above and obtain a new set R3 and the graph 'DV (R3),

and we can continue the process until we have a set of size 3. In other words, we can build a

hierarchy (analogous t o the subdivision hierarchy of Kirkpatrick [17]) of Voronoi diagrams Vor(R1),

Vor(R2), . . ., Vor(Rh) where h = O(1og r) . This will take O(1og r) time and r processors with high

probability. We build the search data structure as we construct this hierarchy of Voronoi diagrams.

The da ta structure is a directed acyclic graph VorDS(R) that contains a node for each primitive

region in the diagrams Vor(Ri) (1 5 i 5 h). Each prim of V O ~ (R ~ + ~) is a node in the (i + 1)-th

level of VorDS(R) and has a directed edge to those nodes at level i with which it has a non-empty

intersection. Obviously the degree of each node in the data structure is less than or equal t o r.

Thus we have the following.

Lemma 5.4 The search data structure VorDS(R) can be built in O(1ogr) time with very high

probability using r processors, where T = JR1.

5.4.2 Searching VorDS(R) to find X(CR(e)) for all CR(e)

Once VorDS(R) has been constructed, we want to search it efficiently in order t o find the input

set t o each subproblem determined by R i.e. X(CR(e)) for CR(e) E CR. Essentially, each element

s E S searches through VorDS(R) to determine all the subproblems that it lies in, and this is

done in parallel for all such s . Note that this is also the step that allows us to determine if R is a

good sarnple or not. (Hence in our algorithm, S may sometimes be a polling set that is a subset

of the original input S.) Let (S I = N . We first state the basic idea of how the search proceeds

and omitting some important details; a sketch of the details follows.

For each element s E S, we start off the search by determining the prims a t level h that vRh(s)

intersects3. Obviously vRh(s) is of constant size and hence this step can be carried out in constant

time using O (N) processors. Our algorithm works in phases. We describe the steps during one

phase: Suppose that for s E S, a processor II has reached the node corresponding to prim P at

level (i + 1) of VorDS(R). As we know from the previous section, P intersects a constant number

of prims at level i . Let these be called PI, Pz,. . ., Pp (note that p will be less than or equal to T,

the maximum degree of a node in VorDS(R)). Without loss of generality, let sl, s ~ , . . . , s, be the

elements of R; such that for 1 < j < p Pj belongs to VRp (sj), respectively. If B(s, s j) intersects

prim Pj, then n generates a request for a new processor in the following manner: it randomly

generates a processor label and writes into that processor to indicate that it is being requested.

There could be write conflicts during this step and an arbitrary processor will succeed (in the case

of a success, the new processor will need to know Fj and s so as to continue the search from the

node corresponding to Pj) . Obviously II can carry out this step in constant time (p steps). In

order to be sure that this scheme works, we need to know that for each s E S, every prim that

should be reached at level i is reachable from level (i + 1) in the above described manner. This

follows from the lemma given below (we omit the proof, which is quite straightforward).

Lemma 5.5 If vR*(s) intersects a prim P at level i, then vRt+l(s) must intersect at least one of

the prims that P intersects at level (i + 1) of VorDS(R).

Proof: Omitted.

We described one phase of the algorithm above. During the next phase, another set of requests

are generated in a similar manner (including the ones that weren't satisfied in the previous phase),

and so on. It follows from the above lemma that by searching through VorDS(R) in the described

manner, we can find vR(s) and hence all the subproblems that s lies in.

There is an important fact that we have ignored so far. In order to carry out this search step

efficiently, we want the total number of requests to be O(NlogN), and the method we have just

described does not guarantee that because of the following. For s E S, let y R i (s) (1 < i < h)

be the set of prims in Vor(R;) that V R ~ (s) intersects. The prims in YRl(s) (= yR(s)) define all

the subproblems that s lies in. Now, in order to carry out the search efficiently, we need to make

sure that for good samples the amount of work done for s (i.e. the number of requests made for s)

at each level of VorDS(R) is bounded above by a l ~ ~ (s) l for some positive constant CT. If we can

show this, then we know that the total number of requests over all h levels of the data structure

will be O(MogN) for a good sample. We device a technique to achieve this. We will not go into

the details, for lack of space and appeal to intuition instead: The problem with sending s to every

prim of Y R<s) at every level i is that at some levels lYRi (,)I might be larger than the final IyR(s) 1.

In other words, there may be levels i such that the number of prims in y R i (s) could be less than

the number of prims in yRt+l (s) . Note that in this case, we would like to have a way to ignore

these "extra prims" in yRi+l(s), since we know they are not going to contribute to the final yR(s) .

We device a technique so that for any s E S, the number of prims that s looks at increases (or

rather, does not decrease) from level (i + 1) to level i . Let YRi(s) be the set of prims at level i that

3 ~ e c a l l that we use v R (s) to denote the region that is closer to s than to any other element in R i.e. the Voronoi

region of s in the Voronoi diagram of R U { s) .

s actually looks a t , YRZ(s) C y R a (s) . Then IYRL(s)l monotonically increases as s is percolated from

i = h to i = 1. We do this by doing a form of look-ahead in VorDS(R). Thus we can show that for

a good sample, the total number of requests over all levels of VorDS(R) will be O(NlogN).

The search through this data structure is carried out by the dynamic allocation of processors

to each segment s E S. The idea is to use a number of processors proportional to JyR1(s)I for s.

We use randomized techniques for dynamic processor allocation, as given by Reif and Sen [21]. We

mentioned above that write conflicts (when requesting a processor) are resolved arbitrarily. Assume

that the probability of success in such a case is 112. Also, since the total subproblems size over

all levels of VorDS(R) is O(N1og N) (for good samples), this will be the total number of requests

for processors. It is shown in [21] that for such a randomized allocation technique, all the requests

will be satisfied in O(1ogN) phases with very high likelihood using O (N) processors. If the search

through VorDS(R) is incomplete after these O(1ogN) phases (i.e, there are requests that haven't

been satisified), then we can reject R with high confidence.

Note that since the data structure that we are searching through is a directed acyclic graph,

it is possible that an s E S may arrive at the same node through two different paths. In such

instances, we want to avoid repeating searches that have already commenced. We would like t o

use O (N 1 o g N) space in order to solve this problem; we can use randoniized hashing techniques

t o achieve this goal. This will use O(N) space for each level of VorDS(R). From Gil, Matias and

Vishkin [ll] , we know that we can certainly do this in O(log*N) time (nearly constant) with high

probability by doing an optimal amount of work at each phase. But we show that over all the levels

of the da ta structure, the total processing time is O(1ogN) with high probability (omitted for lack

of space). Thus we have the following.

Lemma 5.6 We can find X(CR(e)) for all CR(e) E CR in O(logN) time using O (N) processors

and O(NlogN) space, where R is a random sample of S and IS(= N.

5.5 Merging Recursively Computed Voronoi Diagrams

In the previous section, we described the method to find the subproblems determined by a random

sample from the input set S . So assume now that for a good sample R, X(CR(e)) has been found

for all CR(e) E CR. The diagrams Vor(X(CR(e))) will be computed recursively, in parallel for ea.ch

CR(e). We want to merge these Voronoi diagrams t o form Vor(S). In the remainder of the section,

we describe the method t o perforni this merge step efficiently.

The final Voronoi diagram of S can be constructed by computing the final Voronoi region V (s)

for each element s E S. V(s) can be determined by finding the intersection of all the Voronoi

regions of s that have been computed recursively in the subproblems. As before, let 1R1 = r and

let IS1 = N. Since R is a good sample of S, we know that the total size of the subproblems is

less than or equal t o ktot N . It follows therefore that the total number of Voronoi edges in all the

recursively computed Voronoi diagrams must be less than 3.ktot N (since the number of Voronoi

edges in Vor(X(CR(e))) is less than 3. lX(CR(e))().

Consider the set of subproblems in which s E S lies. Let TR(s) be the set of recursively corn-

puted Voronoi regions of s in these subproblems. That is4, l R (s) = {VxccR(e))(~) I X(CR(e) E CR)

The Voronoi regions will be represented as the collection of their Voronoi edges. Note that the total

size of all the TR(s) for all s E S will also be O (N) since every Voronoi edge is counted exactly

two times over the regions TR(s) for all s E S (once for each of the two Voronoi regions that it

borders). Every Voronoi edge in TR(s) is part of some bisector B(s, s f) (sf E S). In the case of

line segments, computing the intersection of these bisectors to find V(s) is not an efficient strategy

because of the fact that two such bisectors can intersect twice (see Lemma 4.4). The following

lemma provides us with a solution.

Lemma 5.7 Every Voronoi vertex of the final Voronoi region V(s) appears as a vertex in a t least

one of the Voronoi regions in the set TR(s).

Proof: Let v be a Voronoi vertex that is part of the final region V(s). v must lie in some primitive

region P of Vor(R). v is equidistant from three elements of S, one of them being s ; let the other

two be sf and s". Moreover, v is closer to these three elements than it is to any other element in S .

Obviously then, v must lie in v R (s) , v R (s f) and VR(s") and hence all three of these regions must

intersect prim 'P. Let ef be the Voronoi edge of Vor(R) that borders prim 'P. Then all three of s ,

sf and s" must belong t o X(CR(ef)). Clearly then, v will be a part of the diagram Vor(X(CR(ef)))

since v is closer t o s, sf and sf' than t o any other element of S . In particular, v will be part of the

Voronoi region V
x(CR(ef))

(s) , which proves our claim.

Thus we just have to search the set of vertices that appear in the Voronoi regions in TR(s) and

eliminate those vertices that are not part of V(s). We do this as follows. The vertices of any Voronoi

region of an element s have well-defined sorted order defined by the projection of the vertices on s

(this is given as the function p ro j in Sectioil 4). Assume that the vertices appear in clockwise order

(with respect to some axis that is fixed on s). We merge in parallel the Voronoi vertices of the

regions in TR(s) according t o this ordering by using the cascading divide-and-conquer technique

that sorts optimally [Cole [7],Atallah, Cole and Goodrich [3]], until finally we are left with the

vertices of V (s) . Each leaf of the merge tree will contain a Voronoi vertex from the regions in

TR(s) along with the Voronoi edge to its right (for some unbounded edges, we will need t o create

a "dummy" vertex a t m). Let y, be the total number of Voronoi edges in TR(s) .

We say that a Voronoi vertex v is hidden by a iToronoi edge e if the segment from v t o proj(v, s)

intersects e and v does not lie on e. In this case, this point of intersection on e will be denoted by

int(v, e). We give a crude description of the steps and omit details. Let L(K) be the list of vertices

at a node K of the merge tree at phase i of the cascaded merging. The idea is t o maintain a t K

a list of vertices VV(K) that consists of vertices that are not hidden by any of the Voronoi edges

encountered a t K until phase i . Every time a merge step takes place a t K, VV(K) is updated. If

a vertex v from L(K) is hidden by an edge e that just arrived a t K, we replace v by int(v, e) in

VV(K) and mark this vertex as spurious. Because cross-ranks5 between sibling nodes are known,

4 ~ e c a l l tha t we use V A (~) t o denote the Voronoi region of a E A in the diagram Vor(A).
' ~ e t A = {al , a z , . . . , a,) and B = { b l , b 2 , . . . , b,} be two sorted lists. The rank'of a , E A in B, denoted

rank(a, : B), is the number of elements of B that are less than or equal to a,. The rank of A in B rank(A : B) is the

array of ranks (r l , r z , . . . , r,) such tha t ri = rank(a, : B). rank(B : A) is similarly defined. A and B are said to be

cross-ranked if we know rank(A : B) and rank(B : A).

the above computation takes constant time at each phase i. Hence the run-time of the algorithm

will O(1og y,) using a total of O(y,) processors. We can now do a prefix scan operation on the

list VV at the root t o eliminate those vertices that were marked as spurious. Observe that from

Lemma 5.7 we know we do not have to worry about intersections between Voronoi edges. In other

words, even if such an intersection is a Voronoi vertex v in the final region V(s), we can ignore the

intersection because Lemma 5.7 guarantees that we will find v as a vertex in one of the regions of

TR(s) . We carry out this step in parallel for all s E S and since C , y, is 0 (N) , we have the

following.

Lemma 5.8 The Voronoi diagmm Vor(S) can be constructed from the recursively computed Voronoi

diagrams Vor(X(CR(e))) (CR(e) E CR) in O(1og N) time using O(N) processors.

6 Conclusions and Applications

It follows from the previous section that we have an optimal algorithm for the Voronoi diagram of

a set of line segments in the plane. We state this below.

Theorem 6.1 The Voronoi diagram of a set of n non-intersecting line segments in the plane can

be computed in d(log n) time using O(n) processors and 0 (n log n) space.

The above theorem immediately gives us optimal parallel randomized algorithms for computing

the minimum weight spanning tree and the all-nearest neighbor for the set of segments. We also

obtain an optimal parallel algorithm to plan the motion of an object from one point to another

while avoiding polygonal obstacles (see [20] for details).

Clarkson and Shor's [6] results established the effectiveness of random sampling in deriving

better expected bounds for computational geometry problems and Reif and Sen [22] demonstrate

how t o obtain high probability results from expected bounds, which is crucial for parallel algorithms.

Our result offers more evidence of the usefulness of randomization in obtaining more efficient

algorithms. It will be interesting to see if our technique can be applied t o other problems to obtain

more efficient results and perhaps less complicated algorithms since we believe that our approach is

simpler and more general. For instance, we think that the 3-d convex hull algorithm given by Reif

and Sen [22] could be simplified, especially since the surface of a convex polyhedron is topologically

equivalent to a bounded planar subdivision.

References

[l] A. Aggarwal, B. Chazelle, L. Guibas, C. 0 7 ~ l i n l a i n g , and C. K. Yap. Parallel Computational

Geometry. Algorithmica, 3:293-327, 1988.

[2] N. M. Amato and F. P. Preparata. An NC' Parallel 3D Convex Hull Algorithm. In Proc. 9th

ACM Symp. on Computational Geometry, 1993.

[3] M. J. Atallah, R. Cole, and M. T. Goodrich. Cascading Divide-and-Conquer: A Technique for

Designing Parallel Algorithms. SIAM J. Comput., 18(3):499-532, June 1989.

[4] M. J. Atallah and M. T. Goodrich. Efficient Parallel Solutions to Geometric Problems. In

Proc. 1985 IEEE Conf. on Parallel Processing, pages 411-417, 1985.

[5] A. Chow. Parallel Algorithms for Geometric Problems. PhD thesis, University of Illinois a t

Urbana-Champaign, 1980.

[6] K. L. Clarkson and P. W. Shor. Applications of Random Sampling in Computational Geometry,

11. Discrete Comput. Geom., 4:387-421, 1989.

[7] R. Cole. Parallel Merge Sort. SIAM J. Comput., 17(4):770-785, 1988.

[8] R. Cole and M. T. Goodrich. Optimal Parallel Algorithnzs for Polygon and Point-set Problems.

Algorithmica, 7:3-23, 1992.

[9] N. Dadoun and D. Kirkpatrick. Parallel Processing for Efficient Subdivision Search. In Proc.

Third ACM Symp. on Computational Geometry, pages 205-214, 1987.

[lo] S. Fortune. A Sweepline Algorithm for Voronoi Diagrams. In Proc. 2nd ACM Symp. on

Computational Geometry, pages 313-322, 1986.

[Ill J. Gil, Y. Matias, and U. Vishkin. Towards a Theory of Nearly Constant Time Parallel

Algorithms. In Proc. of Symp. on FOCS, 1992.

[12] M. T. Goodrich. Geometric Partitioning Made Easier, Even in Parallel. In Proc. 9th ACM

Symp. on Computational Geometry, 1993.

[I31 M. T. Goodrich, C. ~ ' ~ l i n l a i n g , and C. K. Yap. Constructing the Voronoi Diagram of a Set of

Line Segments in Parallel. In Lecture Notes in Computer Science: 382, Algorithms and Data

Structures, WADS, pages 12-23. Springer-Verlag, 1989.

[I41 D. Haussler and E. Welzl. €-nets and Simplex Range Queries. Discrete and Computational

Geometry, 2:127-152, 1987.

[I51 J. 5656. An Introduction to Parallel Algorithms, chapter 9, pages 441-450. Addison- Wesley

Publishing Company, 1992.

[16] D. G. Kirkpatrick. Efficient Computation of Continuous Skeletons. In Proc. 20th IEEE Symp.

on Foundations of Computer Science, pages 18-27,1979.

[I71 D. G. Kirkpatrick. Optimal Search in Planar Subdivisions. SIAM J. Comput., 12(1):28-35,

1983.

[18] D. T. Lee and R. L. Drysdale. Generalization of Voronoi Diagrams in the Plane. SIAM J.

Comput., 10(1):73-87, February 1981.

[I91 K. Mulmuley. A Fast Planar Partition Algorithm. In Proc. 20th IEEE Symp. on the Founda-

tions of Computer Science, pages 580-589, 1988.

[20] C. 0 ' ~ h l a i n ~ and C. K. Yap. A 'Retraction' Method for Planning the Motion of a Disc. J.

Algorithms, 6:104-111, 1985.

[21] J. H. Reif and S. Sen. Polling: A New Randomized Sampling Technique for Computational

Geometry. Manuscript.

[22] J. H. Reif and S. Sen. Optimal Parallel Randomized Algorithms for Three Dimensional Convex

Hulls and Related Problems. SIAM J. Comput., 21(3):466-485, 1992.

[23] J. H. Reif and S. Sen. Optimal Randomized Parallel Algorithms for Computational Geometry.

Algorithmica, 7:91-117, 1992.

[24] C. K . Yap. An O(n1ogn) Algorithm for the Voronoi Diagram of a Set of Simple Curve

Segments. Discrete and Computational Geometry, 2:365-393, 1987.

	Optimal Parallel Randomized Algorithms for the Voronoi Diagram of Line Segments in the Plane and Related Problems
	Recommended Citation

	Optimal Parallel Randomized Algorithms for the Voronoi Diagram of Line Segments in the Plane and Related Problems
	Abstract
	Comments

	tmp.1184336431.pdf.OBT1L

