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We present a parallel algorithm for two dimensional text searching over
a general alphabet. This algorithm is optimal in two ways. First, the total
number of operations on the text is linear. Second, the algorithm takes
time O(log m) on a CREW PRAM (where m is the length of the longest
dimension of the pattern), thus matching the lower bound for string
matching on a PRAM without concurrent writes. On a CRCW, the algorithm
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1. INTRODUCTION

In this paper, we present the first efficient parallel algorithm for two dimensional
pattern matching over a general alphabet. Our text processing phase, which has
been traditionally emphasized in pattern matching algorithms (see, e.g., [Vis91,
Gal92]) is optimal in that its work is linear and its running time is optimal; i.e.,
it matches the lower bound for CREW PRAMs. Furthermore, it makes no assump-
tions about the character alphabet. On a CRCW PRAM, our algorithm runs optimally
in O(log log m) time. The design of such an algorithm was posed as an open problem
by Vishkin [Vis85] as early as 1985.
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The techniques used in this algorithm are those of two dimensional periodicity.
But, we have added important new knowledge and insight to the two dimensional
periodicity theory, namely the dense periodic phenomenon. Dense periodicity turns
out to have broad uses. In addition to the parallel text scanning presented here, it
has been used to optimally solve another open problem, that of two dimensional
compressed matching [ABF97].

Note that the pattern preprocessing we use is not work optimal. Since the
appearance of this algorithm [ABF93], another algorithm has been published by
Cole et al. [CCG+93] that optimally preprocesses the pattern. In addition, the
Cole et al. algorithm, does O(1) text searching on a CRCW PRAM. That algorithm
differs from ours in that it uses properties of one dimensional periodicity.

Before describing our algorithm we present some background on sequential and
parallel string matching.

The classical string matching problem has as its input a text string T of length n
and a pattern string P of length m. The elements in the text and pattern are taken
from an alphabet set 7. The output is all text locations i where there is a character-
by-character match with the pattern, i.e., T[i+j&1]=P[ j], j=1, ..., m.

String matching is one of the most widely studied problems in computer science
and has many linear time solutions, starting with Knuth et al. [KMP77] and
Boyer and Moore [BM77]. Parallel algorithms for string matching have also been
extensively studied. After a long series of papers by Vishkin, Galil, and others, Galil
gave a constant time, optimal string matching algorithm for the CRCW PRAM
[Gal92]. Breslauer and Galil [BG90] gave an 0(log log m) time lower bound for
CRCW PRAM string matching which Galil avoided in his O(1) algorithm by
ignoring preprocessing time. An 0(log m) time lower bound on the CREW PRAM
follows from the lower bound for computing the OR of m bits [CDR86].

In recent years there has been growing interest in multidimensional pattern
matching, largely motivated by problems in low-level image processing [RK82].
Various algorithms exist for the exact two dimensional matching problem which is
defined similarly to the string matching problem but the text and pattern are
rectangular matrices rather than strings.

Baker [Bak78] and, independently, Bird [Bir77] used the Aho and Corasick
[AC75] dictionary matching algorithm to obtain a O(n2 log |7| ) algorithm for
the exact two dimensional matching problem. In [ABF94], we showed a two
dimensional matching algorithm which was linear in the text size. In [GP92] and,
using different methods, in [ABF92] the preprocessing for our algorithm was
also improved to linear, thus matching the bounds for one dimensional string
matching. Both of these algorithms are alphabet independent, that is, the times
are linear even with an unbounded alphabet. The first work optimal parallel
algorithm for two dimensional matching was given by Kedem et al. [KLP89].
Their algorithm runs in time O(log m) on a CRCW PRAM. However, this
algorithm assumes a fixed alphabet and requires space quadratic in the input
size.

Our contribution is to give a work optimal algorithm that runs in O(log m) time
on a CREW PRAM which works for general alphabets using linear space. The
CRCW version of this algorithm runs optimally in O(log log m) time. The pattern
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preprocessing runs in O(log m) time with O(m2) CRCW processors or in O(log2 m)
time with O(m2�log m) CREW processors.

Our approach has some similarities to the fast parallel string matching algorithms.
Most of those algorithms use some notion of a witness, an idea which was introduced
in [Vis85]. We also make use of witnesses, though in a different way. The one
dimensional string algorithms rely on the fact that periodic strings can be broken
down into aperiodic substrings. The algorithm can then proceed by finding occurrences
of the smaller aperiodic string. We take a different approach. Amir and Benson
showed in [AB98] that periodicity in two dimensions has a much richer structure
than does periodicity in strings. In particular, there are four classes of periodicity
in rectangular arrays. Here, we achieve our efficient algorithm by dividing the four
classes into two groups and showing how each group is handled.

The paper is constructed as follows. In Section 2, we give a brief overview of two
dimensional periodicity and define dense lattice periodic arrays. In Section 3, we
formally describe the problem and give an outline of our algorithm. In Section 4,
we describe the use of witness tables. In Section 5, we describe the first phase of the
text processing in which we reduce the number of potential locations in which the
pattern may occur. Finally, in Section 6 we describe how to verify which of the
surviving candidates represent actual occurrences of the pattern in the text.

2. PRELIMINARIES

Central to our method are ideas about two dimensional periodicity developed in
[AB98]. There, periodicity in two dimensional arrays was defined. It was shown
that there are four classes of periodicity for rectangular arrays. For the present

FIG. 1. Each overlap without mismatch defines a source and a periodic vector.
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FIG. 2. (a) Basis vectors for a dense lattice periodic pattern. Here c1+c2<Wm�2X. (b) A pattern
that is not dense lattice periodic.

work, we do not need four classes. Rather we separate arrays into two classes, those
that are dense lattice periodic and those that are not. We call patterns in the first
class dense and those in the second class sparse.

Below, we give a formal definition of dense lattice periodic arrays, but first, we
introduce some terminology from [AB98]. An array or pattern is divided into four
quadrants (Fig. 1). Any location in a quadrant where a second copy of the pattern
could originate is termed a source. In quadrant I (upper left) for example, the
origin, P[0, 0], is a source. Each source P[r1 , c1 ] in quadrant I defines a periodic
vector v1=r1y+c1x where y is the unit vector in the direction of increasing row
index and x is the unit vector in the direction of increasing column index. We
denote the vector by its coefficients, thus v1=(r1 , c1). The smallest vector (in a
lexicographic ordering) is the basis vector for quadrant I. A basis vector v2=(r2 , c2)
for quadrant II (lower left) is similarly defined.

Definition. A pattern is dense lattice periodic if the coefficients of its basis
vectors meet the following two restrictions (Fig. 2):

1. All of |r1 |, |r2 |, |c1 |, |c2 |<Wm�2X.

2. Either |r1 |+|r2 |<Wm�2X or |c1 |+|c2 |<Wm�2X.

3. PROBLEM DESCRIPTION

The exact two dimensional matching problem is defined as follows:

Input: n_n square text matrix T[1 } } } n, 1 } } } n] and m_m square pattern
matrix P[0 } } } m&1, 0 } } } m&1].

Output: All locations, [i, j], in T where P occurs, i.e., T[i+r, j+c]=P[r, c],
r, c=0, ..., m&1.

For simplicity, we have defined the problem in terms of square arrays, but our
algorithm works for any rectangular array. We present below an overview of our
algorithm. In the discussion that follows, the term candidate refers to a possible
copy of the pattern in the text. The term candidate source or merely source refers
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to the origin P[0, 0] of a candidate. Two candidates are compatible if they can
overlap without any mismatches. A candidate is consistent with the text if each
element of the text in the candidate matches the corresponding pattern element.

Algorithm Overview

As in many pattern matching algorithms our algorithm consists of a pattern
preprocessing part and a text scanning part.

Pattern Preprocessing. The pattern is analyzed as described in [AB98]. From
this analysis we determine whether the pattern is dense or sparse and we obtain a
witness table (described below).

Text Processing. Performed in two phases:

(1) Block compatibility: The text is partitioned into disjoint blocks of size
m�2_m�2. Within any block, only compatible candidate sources remain. This phase
differs in its details depending upon whether the pattern is dense or sparse.

(2) Candidate verification: We select a constant number of pattern elements
with which to compare each text element. Each text element is then compared with
its assigned pattern elements and we propagate the results of the tests to the candidate
sources, thereby verifying which of the candidates are actual occurrences of the pattern.

4. PATTERN PREPROCESSING

We begin with the preprocessing part of the algorithm. Its input is an m_m
pattern P. The output of this step is (1) a classification of the pattern as being dense
or sparse and (2) a table Witness[&m�2 } } } m�2, 0 } } } m�2].

4.1. Witness Idea

The witness idea was introduced by Vishkin [Vis85]. Suppose we are given two
overlapping candidate patterns in the text. It may turn out that the two candidates
cannot coexist because they disagree in the area of overlap. The witness table gives

FIG. 3. (a) Pattern P. (b) Two compatible copies. Here Witness[1, 2]=[6, 6]. (c) Two incompatible
copies. Here Witness[1, 1]=[1, 2] where a pair of mismatched elements (arrowed) is P[1, 2]=X{
P[1+1, 1+2]=P[2, 3]=0.

5PARALLEL TWO DIMENSIONAL TEXT SEARCHING
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FIG. 4. The character at T[r+i+a, c+j+b] rules out one or both candidate patterns.

us a location in their overlap where the candidates disagree on the character. By
looking at the text character at that location, at least one of the candidates can be
eliminated. This is the duel paradigm [Vis85].

More formally, our table Witness indicates whether two copies, P1 and P2 , of the
pattern can overlap without mismatch. Let the two copies be offset so that the
origin P[0, 0] of P2 overlaps P[i, j] of P1 . If the area of overlap does not mismatch,
we call the candidates compatible and indicate this by setting Witness[i, j]=[m, m].
Otherwise, some pair of elements in the overlap mismatches. The candidates are incom-
patible. Let Witness[i, j]=[a, b]. Then one such mismatched pair of overlapping
positions is P[a, b] in P2 and P[i+a, j+b] in P1 . See Fig. 3 for an example.

We apply the witness information in the following way (Fig. 4). Suppose we have
two candidate patterns P1 and P2 in the text T. Perform a duel with P1 and P2 .
Suppose that P1 has origin at T[r, c] and that P2 has origin at T[r+i, c+ j].
(This is the same offset as described above.) Then by lookup in the Witness table,
we find that these patterns are incompatible and that a witness exists in location
P[a, b] relative to the origin of P2 . We now examine T[r+i+a, c+ j+b]. The
character that occurs there mismatches P[a, b], ruling out P2 , or it mismatches
P[i+a, j+b], ruling out P1 , or it mismatches and rules out both.

The witness table construction can be done in time O(log m) using O(m2) CRCW
processors or in O(log2 m) time using O(m2�log m) CREW processors [AB98].
A more recent optimal parallel algorithm is described in [CCG+93].

5. BLOCK COMPATIBILITY

In the first phase of the text processing, we find compatible candidates using the
dueling paradigm. Initially, we assume that every location in the text is a candidate
source. In the block compatiblity step, we partition the text into disjoint blocks of
size m�2_m�2 and reduce the number of candidates so that any two candidates
within a block are compatible. We eliminate candidates only when they are incon-
sistent with the text. If the pattern is dense, the blocks are built up in stages from
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smaller blocks. As we combine blocks, we maintain the property of compatibility of
sources within a block. If the pattern is sparse, then we treat the columns of the text
independently, dividing them into disjoint strips of length m�2, by joining smaller
strips and maintaining compatibility of the candidates within the strips. Finally,
m�2 of the strips of length m�2 are joined into a block, and all the candidates within
the block are simultaneously tested for compatibility with each other.

Definition. A k-block B is a subbarray of the text T of size 2k_2k. Specifically,
k-block B[i, j] for k=0, ..., log m&1, i, j=0, ..., (n�2k)&1 is

T[i } 2k+1.. . (i+1) } 2k, j } 2k+1. . . ( j+1) } 2k].

Algorithm A. Block Compatibility.

Input: Text T, pattern P, and Witness table.

Output: Cand[i, j], where Cand[i, j]=T if T[i, j] is a candidate source and
Cand[i, j]=F otherwise, such that for each (log m&1)-block of text (size m�2_m�2),
the candidates within the block are compatible and no candidate has been eliminated
except when it is inconsistent with the text.

In the next two sections, we describe the different procedures for Algorithm A
based on whether the pattern is dense or sparse.

5.1. Sparse Case

We stated earlier that a sparse pattern is one that is not dense lattice periodic.
In this section, though, we will treat as sparse those patterns that do not meet the
criteria of the following lemma. We have kept the definition of dense patterns as
stated earlier because the lemmas we prove in the following section are of interest
in their own right and because the definition has already proven useful in another
context [ABF97].

Lemma 1. If a pattern is periodic in both its first row and first column, then the
pattern is dense lattice periodic.

Proof. If the pattern is periodic in its first row, then there is a quadrant I
periodicity vector v1=r1 y+c1x with r1=0 and c1<Wm�2X. Similarly, if the pattern
is periodic in its first column, then there is a quadrant II periodicity vector v2=
r2y+c2x with r2<Wm�2X and c2=0. The vectors meet the restricitions for dense
lattice periodic patterns. K

By Lemma 1, patterns that are sparse cannot be periodic in both the first column
and the first row. This means either that overlapping sparse patterns aligned on
their first column with a vertical separation of less than m�2, or overlapping sparse
patterns aligned on their first row with a horizontal separation of less than m�2,
have a mismatch. But, now, we will also consider dense lattice periodic patterns
that are not periodic in both the first row and first column to be sparse. From the
pattern preprocessing, we can determine if a pattern is periodic as stated above and

7PARALLEL TWO DIMENSIONAL TEXT SEARCHING
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if not, in which direction, either row or column, the pattern is not periodic. For the
remainder of this section we will assume that the pattern is not column periodic.

We want to produce (log m&1)-blocks containing compatible candidates. We
will describe the procedure for a single block B. All blocks are done in parallel. The
procedure consists of two parts. First (A1) we eliminate all but, at most, one candidate
in each column of B. Second (A2), we simultaneously compare all the candidates
in the columns of B for compatibility.

Procedure A1. Column Sparseness.

The idea is the following. Build a binary tree with the elements in the column as
the leaves. Starting at the leaves, look up the witness for consecutive pairs of
candidates. At most one candidate survives to the next stage because the pattern is
not periodic in a column. Continue up the tree, performing duels between surviving
candidates. At the top, at most one candidate survives. This simple description has
complexity O(log m) time and O(m) processors. Breslauer and Galil [BG90] showed
that for a nonperiodic string of length m, the algorithm above can be modified to
find the surviving candidate within a text segment of length m�2 in linear work in
O(log log m) time on a CRCW PRAM since it is analagous to computing the maximum
of m�2 numbers. Using a similar method to reduce the work, we find a single surviving
candidate in each column in O(log m) time with O(m�log m) CREW processors.

Procedure A2. Join Strips.

There is now one survivor per column (of length m�2), so we have m�2 candidates
in each (log m&1)-block. In constant time, we now perform all pairwise compatibility
checks (duels) within each block. Finally, we determine which candidates survive all
such comparisons. Let Mark be an m�2_m�2 table to hold the results of the duels.
All entries in Mark are initialized to zero. See Fig. 5.

FIGURE 5
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Theorem 1. Procedures column sparseness and join strips are correct and run in
linear work and space in time O(log m) on a CREW PRAM and in time O(log log m)
on a CRCW PRAM.

Proof. The correctness of the procedures follows from the preceding comments.
As pointed out above, procedure column sparseness executes within the desired
bounds. In procedure join strips, there are m�2 candidates per block of size m�2_m�2.
We perform all O(m2) duels in O(1) time and O(m2) space to store the marks. Then,
each candidate must perform an OR over the answers of its duels to see if it is
eliminated. Once again, the OR is computable optimally within the desired bounds
[Ja� J92]. K

5.2. Dense Case

When the pattern is dense, a text block of size k_k may contain as many as k2

candidates so the column sparseness will not help us here. We use a different technique.
As in procedure column sparseness, the method is analagous to computing the
maximum of a list of numbers. Our goal is to eliminate enough candidates so that
within each (log m&1)-block, all candidates are compatible.

Procedure A3. Blocks Merge.

At each stage k, we will effectively do all pairwise duels between members of sets
of k-blocks. The size of the sets of merged blocks will be noted below, but depends
on the type of processor used. The algorithm for finding the maximum (MAX) of a
list of numbers [Ja� J92] works by building a tree as described in procedure column
sparseness in the previous section. It proceeds by finding the maximum of larger
and larger blocks and relies on the fact that each block has a single maximal value.
Since each of our blocks may contain more than one candidate, if we adopt the
MAX algorithm, we need to show how to compare all candidates within two blocks
in constant work and how to eliminate a block of candidates in constant time.

Having presented these subprocedures, we can then simply apply the standard
MAX algorithm [Ja� J92] which, on a CREW PRAM, combines 2 blocks per stage,
giving a running time of O(log m) and on a CRCW PRAM combines 22 i

blocks in
stage i, giving a running time of O(log log m).

5.2.1. Comparing Blocks in Constant Work. For each k_k block, we have only
k2�log m CREW or k2�log log m CRCW processors available. Therefore, if we
require that every candidate look at a witness, we would need super-constant time
per stage. Instead, we use representative candidates from each block and find the
witnesses (if they exist) for those candidates. We will treat the representative of a
block as the MAX value of this computation. Initially, the representative is the single
candidate in its 0-block. In order to specify the representative candidate to be
carried up the tree after a duel, we define > over two representatives as follows:

Definition. For two representatives X and Y, let X>>Y mean that X occurs
first in a lexicographic ordering of the indices, first by row and then by column.
Then, X>Y if one of the following three conditions holds:

9PARALLEL TWO DIMENSIONAL TEXT SEARCHING
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1. X and Y are compatible and X>>Y.

2. X is incompatible with Y and X wins a duel with Y.

3. X is incompatible with Y, both are inconsistent with the text, and X>>Y.

Example. Let candidate X occur at T[4, 8] and candidate Y occur at T[4, 12].
Note that X>>Y. If X and Y are compatible, then X>Y. If Y wins a duel with X,
then Y>X. If both X and Y are found to be inconsistent with the text through a
duel, then X>Y.

We want a witness that can eliminate all the candidates in either of the two
blocks. But, the witness w we get from the witness table may not fall within the
common overlap of all the candidates in the two blocks. In this case, it is always
possible to find an alternate witness w$ that does fall within that overlap. In the
following two lemmas, we show that the region of common overlap of all the
candidates for the two blocks has dimensions Wm�2X_Wm�2X, the witness w lies
within Wm�2X rows and�or columns of this region and that such a region must
always contain an alternate witness.

Lemma 2. If two candidate c1 and c2 have sources within the same (log m&1)-
block, then the witness w for those two candidates (if it exists) lies within Wm�2X rows
and�or columns of the common overlap of all the candidates in the block, which has
size Wm�2X_Wm�2X.

Proof. (Figure 6.) The common overlap for all possible candidates with sources
in the log m-block B[i, j] is T[(i+1) } Wm�2X . . . (i+2) } Wm�2X, ( j+1) } Wm�2X . . .
( j+2) } Wm�2X]=R1 . Note that R1 has size Wm�2X_Wm�2X. The witness w for any
pair of candidates c1 and c2 occurs somewhere in the region T[i } Wm�2X . . . (i+3) }
Wm�2X, j } Wm�2X . . . ( j+3) } Wm�2X]=R2 , depending upon the exact locations of c1

and c2 and their witness. Any point in R2 is within Wm�2X rows and�or columns
of R1 . K

FIG. 6. Any witness w occurs within m�2 rows and�or columns of R1 .
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Lemma 3. If v1=r1y+c1x and v2=r2y+c2 x are the basis vectors of a dense
lattice periodic pattern, and a lattice with such basis vectors is laid over the text T,
then every block of size Wm�2X_Wm�2X must contain a lattice point.

Proof. (Figure 7.) Consider a unit cell of the lattice on the text T. Label the
nodes of the cell, in clockwise order, p1 , p2 , p3 , and p4 , where p1 is the upper left
corner of the cell. By the definition of basis vectors from [AB98], p1 p2=v1=
r1y+c1x and p4p1=v2=r2 y+c2x. Because the pattern is dense lattice periodic, all
of |r1 |, |r2 |, |c1 |, |c2 |<Wm�2X. Therefore, for an Wm�2X_Wm�2X block of text to fit
within the lattice cell without containing a lattice point, it must fit within the rectangular
area bounded by such a cell. (It cannot, for example, squeeze between two adjacent
nodes.) But, the largest such rectangular region has at most Wm�2X&2 columns if
|c1 |+|c2 |<Wm�2X or at most Wm�2X&2 rows if |r1 |+|r2 |<Wm�2X. K

By Lemma 3, an alternate witness for w must lie within R1 . Additionally, it must
lie on a point of the lattice defined by the basis vectors of the pattern v1 and v2 and
with origin at w. In order to find an alternate witness w$, we will store the locations
of the lattice points in an array Alt. Then, Alt will indicate the position of an
alternate witness, permitting lookup in constant time. Since w always lies within
Wm�2X rows and�or columns of R1 (by Lemma 2), the size of Alt is linear in the size
of the pattern.

Let

ri, j=i } r1+j } r2

ci, j=i } c1+j } c2

be the coordinates of the lattice points reached from w along i vectors v1 and j
vectors v2 . We will precompute the locations of all lattice points within a 2m_2m
block around w.

Procedure A3.1. Alternate Witness Table.

For all i, j=&m, ..., m pardo:

If &m�ri, j�m and &m�ci, j�m

then Alt[ri, j , ci, j ]=[ri, j , ci, j].

Example. Let v1=(2, 3), v2=(&1, 4) and m=10. Then, some values assigned
by Procedure A3.1 are

Alt[0, 0]=[0, 0]

Alt[2, 3]=[2, 3]

Alt[&2, &3]=[&2, &3]

Alt[1, 7]=[1, 7]

Alt[&1, 4]=[&1, 4].

11PARALLEL TWO DIMENSIONAL TEXT SEARCHING
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FIG. 7. Region R1 cannot fit within the rectangular area bounded by a unit cell.

The location of the lattice points with respect to w are now stored in Alt. In the
remainder of this procedure, we fill out the remaining entries in Alt by propagating
the locations of the lattice points up and left. The method is similar to that described
in Section 6 and will not be further described here. A typical result is illustrated
in Fig. 8.

When we find the witness for two blocks B1=B(i, j ) and B2=B(s, t), the upper
left corner of region R1 is at T[(max(i, s)+1) } 2k, (max( j, t)+1) } 2k]. If w is at
T[rw , cw] then the alternate witness w$ is at Alt[(max(i, s)+1) } 2k&rw , (max( j, t)+1)
} 2k&cw].

5.2.2. Eliminating Candidates. When we run the MAX algorithm on the blocks,
we only have constant time per comparison to eliminate all the surviving candidates
per block. Since this can in general take too long, we mark blocks for elimination
rather than eliminate the candidates immediately. We simply keep a tree which
mimics the computation tree; i.e., if two blocks are compared in some stage i, they
are sibling nodes at height i from the leaves. Now, if some node needs deleting, by

FIG. 8. (a) The lattice points in a 2m_2m square around w. (b) The regions of propagation for the
alternate witnesses. Whenever the upper left corner of R1 falls within a shaded region, a specific alternate
witness is specified.
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which we mean that all the candidates in the block represented by the node do not
survive, we mark the node for deletion.

Such a deletion tree is of size O(m2). Once constructed, we need only start at the
root and propagate the deletion bits down to the leaves. On either a CRCW or
CREW PRAM, the processor allocation problem is straightforward and we can
finish the computation in time proportional to the depth of the tree, i.e., within the
same bounds as the MAX algorithm.

We summarize the discusion above with the following theorem.

Theorem 2. Procedure blocks merge is correct and runs in linear work and space
in time O(log m) on a CREW PRAM and in time O(log log m) on a CRCW PRAM.

6. VERIFICATION

Within each (log m&1)-block, all remaining candidates are now mutually
compatible. For each candidate, our final goal is to compare all candidate text
elements with their corresponding elements in the pattern. If none of the comparisons
results in a mismatch, then the candidate is an actual occurrence of the pattern.

Note that because patterns may overlap, the same text element may appear in
many candidates. Yet, we do not want to test each text element more than a constant
number of times. What comes to our aid is the fact that compatible candidates
agree on their areas of overlap. This leads to the following crucial observation:
Given a set of compatible candidates and a single text element, t, which they all
overlap, the consistency of all the candidates with the text at t can be determined
by comparing t to a single pattern element. If the comparison is a match, then all
the candidates are consistent with the text at t. If the comparison is a mismatch,
then all the candidates are inconsistent with the text.

What remains now is to show how to select a pattern element to be compared
with each text element and how to inform the candidates of the result of the test
(propagation).

We use sets of candidates within each (log m&1)-block. Each text element T[r, c]
may be contained by several candidates, the relevant candidates. Let the home block,
B[b(r), b(c)], be the (log m&1)-block containing T[r, c], where the block index
b(i)=wi�(m�2)x. Note that T[r, c] may have relevant candidates in each of nine
blocks, namely B[b(r)&s, b(c)&t], s, t=0 } } } 2. We call these nine blocks the relevant
blocks (Fig. 9).

Compatible candidates that are relevant to the same text element must agree on
the expected character in that element. Thus every element T[r, c] can be labeled
with a matrix Mr, c[s, t] # [true, false] where Mr, c[s, t]=true means that
T[r, c] equals the unique pattern symbol expected by all relevant candidates in
block B[b(r)&s, b(c)&t] and Mr, c[s, t]=false otherwise. Thus, every text
element needs to be compared to a single pattern element per relevant block, and
every candidate source that contains an element with the appropriate entry of M
set to false is not a pattern appearance and can be discarded.

We proceed independently for each block.

13PARALLEL TWO DIMENSIONAL TEXT SEARCHING
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FIG. 9. Relevant candidates for T[r, c] can have origins within nine log m&1-blocks, including the
home block. Here one relevant candidate is shown.

Algorithm B. Candidate Verification for Block B[i, j].

Step B.1: For every text location T[r, c] with a relevant candidate in
B[i, j] record a pattern coordinate pair (x, y), where (x, y) are the coordinates
of the pattern element P[x, y] with which T[r, c] should be compared.

There may be several options for some locations, namely, the position of the text
element relative to each of its relevant candidates. However, any will do since all
candidate sources within block B[i, j] are now compatible. If a location is not
contained in any candidate it is left unmarked. We will later see how this step is
implemented.

Step B.2: Compare each text location T[r, c] with P[x, y], where (x, y)
is the pattern coordinate pair assigned to T[r, c] in the previous step. If
T[r, c]=P[x, y], then Mr, c[b(r)&i, b(c)& j] � true, else false.

Step B.3: Flag with a discard every candidate that contains a false
location within its bounds.

This flagging is done by the same method as in Step B.1.

Step B.4: Discard every candidate source flagged with a discard. The
remaining candidates represent all pattern appearances.

Our only remaining task is to show how to mark the text elements with the
appropriate pattern coordinate pairs. The implementation of this step relies on the
following lemma.

Lemma 4 [FRA88]. The first and last one in an array of length n containing
zeros and ones can be determined in O(1) time with O(n) processors on a CRCW
PRAM.

14 AMIR, BENSON, AND FARACH-COLTON



File: 643J 270515 . By:XX . Date:28:05:98 . Time:08:20 LOP8M. V8.B. Page 01:01
Codes: 2786 Signs: 2064 . Length: 52 pic 10 pts, 222 mm

Similarly, finding the first and last one in an array of length n can be accom-
plished optimally in O(log n) time on a CREW PRAM using a prefix sum [Ja� J92].

For each block B[i, j], we have an array Ci, j[1. . .3m�2, 1 . . .3m�2] in which we
will do our computation. All ones in the array represent surviving candidates in
B[i, j] and all other positions contain zeros. The information in Ci, j[r, c] applies
to text element T[i } (m�2)+r, j } (m�2)+c]. For clarity, we now refer to this as text
location T[r, c] and drop the subscripts on C.

The goal is to assign to each position C[x, y] a pair (a, b) such that C[a, b]=1
and both 0�x&a<m and 0� y&b<m. We refer to such a relevant candidate as
the ruler of C[x, y]. We proceed first within columns and then within rows (Fig. 10).

Independently for each column c, if column c contains all zeros, do nothing.
Otherwise, find the first and last occurrence of a ``one'' (candidate). Call the row
position of these ``ones'' rf and rl , respectively. Now we have several cases:

r<rf : Do nothing. There is no ``one'' in column c relevant to C[c, r].

rf�r<rl : Set the ruler of C[c, r] to be (c, rf). Since rl&rf�m�2, then the
candidate at C[c, rf] is close enough to C[c, r] to be relevant.

rl�r<rl+m: Set the ruler of C[c, r] to be (c, rl). Similarly, the candidate at
C[c, rl] is close enough to C[c, r] to be relevant.

rl+m�r: Do nothing. C[c, r] is too far from any candidate in column c.

Now we propagate along the rows with the following modifications. Instead of
finding the first and last candidate of each row, we find the the first and last
position which has been assigned a ruler in the previous phase.

Theorem 3. Algorithm B is correct and runs in time O(log m) with O(m2�log m)
CREW processors per block and linear space, thus O(log m) time, O(n2�log m) CREW
processors, and linear space for all blocks. Similarly, the algorithm runs optimally in
constant time on a CRCW with linear space.

FIG. 10. (a) Candidates in B[i, j]. (b) First and last rulers in the columns. (c) First and last rulers
propagated along the rows.
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Correctness. We need only show that if C[a, b] is assigned ruler (x, y), then
T[x, y] is a candidate. But this follows directly from the case analysis above. The
symmetric process of finding, for each candidate, if it has a relevant error can
clearly be computed within the same bounds.

Time. The bottleneck in the compuation is finding the first and last one in each
column and row. By Lemma 4, this step takes exactly the stated bounds. K
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