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Abstract. In this paper, we first present some new results about the Welch-Gong (WG) trans-
formations, followed by a description of the WG stream cipher family which is built upon
an LFSR and a WG transformation over an extension field. The randomness properties of
keystreams produced by a decimated WG cipher are derived based on the new results. We also
discuss the selection criteria for choosing the optimal parameters for a WG cipher in order to
achieve the maximum level of security. Finally, we present the optimal parameters for the WG
transformations over F2m , 7 ≤ m ≤ 16 based on the proposed criteria.
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1 Introduction

The WG stream cipher family is a set of hardware-oriented synchronous stream ciphers
based on the Welch-Gong (WG) transformations, which consists of the WG stream ciphers
and their decimated variants. A (decimated) WG cipher is composed of a linear feedback
shift register (LFSR) over an extension field, followed by a (decimated) WG transformation
defined over the same extension field, where the LFSR with a primitive polynomial is able
to generate a sequence of maximum period. The WG stream cipher family can be regarded
as nonlinear filtering generators and output one keystream bit per clock cycle. In particular,
the generated keystreams of the WG cipher family have the desired randomness properties
such as long period, balanced, 2-level autocorrelation, and t-tuple distributions. Moreover,
the linear complexity of a keystream produced by a WG cipher is high and can be determined
exactly.

The WG stream cipher is first proposed by Nawaz and Gong in 2005, which is a profile 2
candidate of the eSTREAM project [6]. Later on, two lightweight variants of the WG stream
cipher named WG-7 [13] and WG-8 [7] have been proposed for securing resource-constraint
smart devices. While the WG-7 stream cipher is composed of an LFSR of length 23 and a
WG-7 transformation over F27 , the WG-8 stream cipher consists an LFSR of length 20 and
a WG-8 transformation over F28 . Recently, Fan and Gong proposed to use the stream cipher
WG-16 for providing confidentiality and integrity over 4G-LTE networks [8].

The security of a WG cipher is dependent on the length of the LFSR and the cryptographic
strength of the WG transformation used in the cipher. As a result, the known cryptanalytic
attacks such as correlation attacks [19, 15], algebraic attacks [3], cube attacks [5], discrete
fourier transformation (DFT) attacks [11], distinguishing attacks [18], differential attacks
[20], and time-memory-data tradeoff attacks [2] can be applied to the WG stream cipher
family. Therefore, the selection of the parameters for a WG cipher is crucial in order to thwart
existing attacks. In this paper, we first present some new results on WG transformations. We
then give a mathematical description of the WG stream cipher family, including its operation
as well as the randomness properties of the keystreams produced by a decimated WG cipher.
In order to achieve the highest security against exiting attacks, we describe some criteria
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on selecting the optimal parameters for a WG cipher. Finally, we summarize the optimal
parameters for the WG transformations over F2m , 7 ≤ m ≤ 16.

The remainder of the paper is organized as follows. In Section 2, we define some terms
and notations that will be used in this paper. In Section 3, we present some new results on
WG transformations. Section 4 describes the WG stream cipher family and characterizes the
randomness properties of the generated keystreams. In Section 5, we list a set of criteria for
selecting a decimated WG transformation for a WG cipher and in Section 6 we present the
optimal parameters for WG transformations over F2m , 7 ≤ m ≤ 16. Finally, in Section 7, we
conclude the paper.

2 Background

In this section, we define and describe some terms and notations that will be used throughout
this work.

Notation:

- F2: the Galois field with two elements.

- F2m = GF (2m): an extension field with 2m elements, which is defined by a primitive
element α that is a root of a primitive polynomial over F2.

- Fm
2 : a vector space with 2m elements and each element is of m-tuple.

- Tr(x) = x+ x2 + · · ·+ x2
m−1

: the trace function mapping from F2m to F2.

2.1 Nonlinearity of Boolean Functions and Vector Boolean Functions

Let f(x0, · · · , xn−1) be a Boolean function in n variables. The Hadamard (or Walsh or Fourier)
transform of f is defined by

f̂(w) =
∑
x∈Fn

2

(−1)f(x)+w·x =
∑

x∈F2n

(−1)f(x)+Tr(wx)

where w = (w0, · · · , wn−1) ∈ Fn
2 and w · x =

∑n−1
i=0 wixi, the inner product of w and x.

The distance between two binary vectors a = (a0, · · · , an−1) and b = (b0, · · · , bn−1),
denoted by d(a,b), is defined as the number of disagreements of terms of a and b, i.e.,

d(a,b) = |{i : ai 6= bi, 1 ≤ i < n }| or equivalently d(a,b) = H(a + b)

where H(x) is the Hamming weight of x.

The nonlinearity of f , denoted as Nf , is defined by the minimum distance between f and
all affine functions. In other words,

Nf = min
w∈Fn

2 ,c∈F2

d(f,w · x + c)

or equivalently

Nf = 2n−1 − 1

2
f̂max

where

f̂max = max
w∈Fn

2

|f̂(w)|.
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We say that F is an (n,m)-vectorial Boolean function or simply an (n,m)-function if it
a function mapping from Fn

2 to Fm
2 . An (n,m)-function F can be written as

F (x0, · · · , xn−1) = (f0(x0, · · · , xn−1), f1(x0, · · · , xn−1), · · · , fm−1(x0, · · · , xn−1))

where fi’s are Boolean functions in n variables.

The nonlinearity of F , denoted as NF , is defined by

NF = min
b∈F2m

Nb·F

where b · F is the inner product. Or equivalently,

NF = 2n−1 − 1

2
F̂max

where

F̂max = max
w∈Fn

2 ,b∈Fm
2

|b̂ · F (w)|.

Let F be an (n,m)-vectorial boolean function. For any a (6= 0) ∈ Fn
2 ,b ∈ Fm

2 , we call that
F is differently k-uniform distributed if the following equation has at most k solutions in Fn

2

F (x) + F (x + a) = b.

2.2 Resiliency and Propagation of Boolean Functions

Let f be a Boolean function in n variables. The additive autocorrelation of f is defined as

Af (a) =
∑

x∈F2n

(−1)f(x)+f(x+a), a ∈ F2n .

We say that f has k-order propagation if Af (a) = 0 for 1 ≤ H(a) ≤ k. Again, we say that a

balanced Boolean function f is k-resilient if f̂(λ) = 0 for 1 ≤ H(λ) ≤ k.

2.3 Algebraic Immunity of Boolean Functions

Let Bn be the set consisting of all Boolean functions in n variables. The algebraic immunity
of f in n variables, denoted by AI(f), is defined as

AI(f) = min
g∈Bm

{deg(g) | fg = 0 or (f + 1)g = 0}

where deg(g) is the algebraic degree of g. For a Boolean function f in n variables, the maxi-
mum value of the algebraic immunity is equal to dn2 e.

The linear span or linear complexity of a sequence is defined as the length of the shortest
LFSR that generates the sequence. Moreover, the linear span of a function f(x) is defined by
the number of nonzero coefficients in f(x) =

∑
i cix

i.
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2.4 WG transformations

Let m mod 3 6= 0 and k be a positive integer such that m = 3k− 1 or m = 3k− 2. We define
a function t(x) = x + xq1 + xq2 + xq3 + xq4 over F2m where qi’s are given by q1 = 2k + 1,
q2 = 22k−1 + 2k−1 + 1, q3 = 22k−1 − 2k−1 + 1, and q4 = 22k−1 + 2k − 1 for m = 3k − 1 and
q1 = 2k−1 + 1, q2 = 22k−2 + 2k−1 + 1, q3 = 22k−2 − 2k−1 + 1, and q4 = 22k−1 − 2k + 1 for
m = 3k − 2. Then, the Welch-Gong (WG) transformation is defined by

f(x) = Tr(t(x+ 1) + 1), x ∈ F2m . (1)

Fact 1 ([17]) Let f(x) be the WG transformation defined by Eq. (1), then

f(x) =
∑
i∈I

Tr(xi)

where I = I1 ∪ I2, I1 = {22k−1 + 2k−1 + 2 + i : 0 ≤ i ≤ 2k−1 − 3} and I2 = {22k + 3 + 2i : 0 ≤
i ≤ 2k−1− 2} for m = 3k− 1 and I = {1} ∪ I3 ∪ I4, I3 = {2k−1 + 2 + i : 0 ≤ i ≤ 2k−1− 3 and
I4 = {22k−1 + 2k−1 + 2 + i : 0 ≤ i ≤ 2k−1 − 3} for m = 3k − 2.

3 The New Results on the WG Transformations

Let m 6≡ 0 mod 3 and k be a positive integer such that 3k ≡ 1 mod m. The function t(x) from
F2m to F2m is defined as t(x) = x+xr1 +xr2 +xr3 +xr4 , where r1 = 2k + 1, r2 = 22k + 2k + 1,
r3 = 22k − 2k + 1, r4 = 22k + 2k − 1. A WG permutation, denoted by WGperm(x), is a
permutation over F2m , whereas a WG transformation, denoted by WG(x), is a function from
F2n to F2. The functions WGperm(x) and WG(x) are defined as

WGperm(x) = t(x+ 1) + 1 (2)

WG(x) = Tr(WGperm(x)) =
∑
i∈I

Tr(xi), x ∈ F2m (3)

where I is the set consisting of coset leaders modulo 2m − 1.

Note that ri’s are computed by the rules given in [4] for making t(x) a permutation, and
the exponents ri’s are different from the exponents qi’s in Eq. (1) which are taken from [17].
However, WG(x) is identical for both representations.

In this section, we investigate how to determine the set I in Eq. (3) in the case of 3k ≡
1 mod m. Based on the set I, we compute the algebraic degree of the Boolean form as well
as the linear span of a WG transformation. Moreover, we show that the algebraic degree and
linear span are the same as those presented in [10].

3.1 New Exponent Sets I’s

When k in WG(x) is computed from the equation m = 3k − 1 or m = 3k − 2, the exponent
sets I’s have been discovered in Fact 1. We now determine the new exponent sets I’s in
Theorems 1 and 2 when k is chosen as 3k ≡ 1 mod m for m ≡ 2 mod 3 and m ≡ 1 mod
3, respectively. Note that for m mod 3 = 1 and m mod 3 = 2, we have 2m = 3k − 1 and
m = 3k − 1 for some positive integer k, respectively. These facts are extensively used in the
proofs of Theorems 1 and 2 below.
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Theorem 1. Let k be a positive integer such that 3k ≡ 1 mod m and m ≡ 2 mod 3. Then

WG(x) = Tr(t(x+ 1) + 1) =
∑
i∈I

Tr(xi) (4)

where I = I1 ∪ I2, I1 = {22k−1 + 2k−1 + 2 + j : 0 ≤ j ≤ 2k−1 − 3} and I2 = {22k + 2 · j + 1 :
1 ≤ j ≤ 2k−1 − 1}.

Proof. After expansion, the first three terms of t(x+ 1) + 1 can be written as

x+ (x+ 1)2
k+1 + (x+ 1)2

2k+2k+1 = x+ x2
k

+ x2
2k+1 + x2

2k+2k + x2
2k+2k+1. (5)

(x+ 1)2
2k−2k+1 = (x+ 1)(x+ 1)2

k(2k−1) = (x+ 1)(x2
k

+ 1)2
k−1 =

2k−1∑
i=0

xi·2
k+1 +

2k−1∑
i=0

xi·2
k
.

(6)

(x+ 1)2
2k+2k−1 = (x+ 1)2

2k
(x+ 1)2

k−1 =
2k−1∑
i=0

x2
2k+i +

2k−1∑
i=0

xi. (7)

Combining Eqs. (5) - (7), we obtain

Tr(t(x+ 1) + 1) = Tr

x22k+2k+1 +
2k−1∑
i=0

xi·2
k+1 +

2k−1∑
i=0

x2
2k+i


= Tr

x22k+2k+1 +
2k−1∑
i=0

xM(i) +
2k−1∑
i=0

xN(i)


where M(i) = i · 2k + 1 and N(i) = 22k + i. Using the facts that M(i) = N(2i) and

Tr(xM(2k−1)) = Tr(xN(2)), we obtain

WG(x) = Tr(t(x+ 1) + 1)

= Tr

x22k+2k+1 +

2k−1−1∑
i=1

xM(i+2k−1) +
2k−1−1∑
i=1

xN(2i+1)


= Tr

x22k+2k+1 +
2k−1−1∑
i=1

x2
2k−1+1+2k·i +

2k−1−1∑
i=1

x2
2k+2i+1


= Tr

2k−1−1∑
i=2

x2
2k−1+2k−1+i +

2k−1−1∑
i=1

x2
2k+2i+1


= Tr

2k−1−3∑
i=0

x2
2k−1+2k−1+2+i +

2k−1−1∑
i=1

x2
2k+2i+1


=

2k−1−3∑
i=0

Tr
(
x2

2k−1+2k−1+2+i
)

+
2k−1−1∑
i=1

Tr
(
x2

2k+2i+1
)

(8)

as 22k−1(22k−1 + 1 + 2k · i) = 22k−1 + 2k−1 + i when 23k−1 ≡ 1 mod 2m − 1. �
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Theorem 2. Let k be a positive integer such that 3k ≡ 1 mod m and m ≡ 1 mod 3. Then

WG(x) = Tr(t(x+ 1) + 1) =
∑
i∈I

Tr(xi) (9)

where I = I1 ∪ I2 ∪ I3 ∪ I4, I1 = {2 k−1
2 + 2 + i : 0 ≤ i ≤ 2

k−1
2 − 2}, I2 = {2 k+1

2 + 1 + 2(i +

2
k−1
2 (2j+1 − 1) + 2j − 1) : 0 ≤ j ≤ k−7

2 , 1 ≤ i ≤ 2j}, I3 = {2 k+1
2 + 1 + 2(i+ 2

k−1
2 (2

k−3
2 − 1) +

2
k−5
2 −1) : 1 ≤ i ≤ 2

k−5
2 } and I4 = {2 k+1

2 +1+2(i+2
k−1
2 (2

k−1
2 −1)+2

k−3
2 −1) : 2 ≤ i ≤ 2

k−3
2 }.

Proof. For m ≡ 1 mod 3, we have 2m = 3k − 1 for some odd positive integer k. Therefore,

we obtain 23k−1 mod (2m − 1) = 1 and 2
3k−1

2 mod (2m − 1) = 1. Using the equation 23k−1

mod (2m − 1) = 1, we can write WG(x) as Eq (8). Furthermore, using the equation 2
3k−1

2

mod (2m − 1) = 1, Eq (8) can be written as

WG(x) = Tr(t(x+ 1) + 1)

=

2k−1−3∑
i=0

Tr

(
x2

k−1
2 +2k−1+2+i

)
+

2k−1−1∑
i=1

Tr

(
x2

k+1
2 +2i+1

)

=
2k−1−3∑
i=0

Tr
(
xP (i)

)
+

2k−1−1∑
i=1

Tr
(
xQ(i)

)
(10)

where P (i) = 2
k−1
2 +2k−1+2+i and Q(i) = 2

k+1
2 +2i+1 and we denote by P and Q the set of

P (i)’s and Q(i)’s, respectively. Note that all Q(i)’s are odd and P (i)’s might be odd or even
and some exponents belong to both P and Q. We then apply the following transformation
k−1
2 times: at j-th (2 ≤ j ≤ k−1

2 ) iteration, 2k−1−j odd exponents will be canceled out from

P and Q as they occur in both P and Q and after cancellation P (i) is set to be P (i)
2 . In the

first iteration (i.e., j = 1), only 2k−2 − 1 elements will be canceled out from P (i) and Q(i).
Then, after simplification, Eq. (10) can be written as

WG(x) = Tr(t(x+ 1) + 1) =

2
k−1
2 −2∑
i=0

Tr

(
x2

k−1
2 +2+j

)
+

k−7
2∑

j=0

2j∑
i=1

Tr

(
x
2
k+1
2 +1+2

(
i+2

k−1
2 (2j+1−1)+2j−1

))

+

2
k−5
2∑

i=1

Tr

(
x
2
k+1
2 +1+2

(
i+2

k−1
2

(
2
k−3
2 −1

)
+2

k−5
2 −1

))
+

2
k−3
2∑

i=2

Tr

(
x
2
k+1
2 +1+2

(
i+2

k−1
2

(
2
k−1
2 −1

)
+2

k−3
2 −1

))
.

Hence the result is established. �

We note that in both cases the total number of exponents in I is equal to (2d
m
3
e − 3) for m

mod 3 = 1 and k+1
2 = dm3 e as well as for m mod 3 = 2 and k = dm3 e. Moreover, the set I

contains the exponents that belong to different cyclotomic cosets.

3.2 Algebraic Degree and Linear Span

We now calculate the algebraic degree of a WG transformation for the case of m mod 3 = 1.
When m satisfies m mod 3 = 2, the algebraic degree of a WG transformation is (

⌈
m
3

⌉
+ 1)

and the proof is similar to that of Theorem 5 in [10].



Optimal Parameters for the WG Stream Cipher Family 7

Property 1. Let WG(x) be the WG transformation defined by (9), then the algebraic degree
of WG(x), denoted as deg(WG(x)), is given by

deg(WG(x)) =
k + 1

2
+ 1 =

⌈m
3

⌉
+ 1.

Proof. It is known that the algebraic degree of WG(x) is determined by the largest Hamming

weight of the exponents in (9). For j = 2k + 2
k+1
2 − 1 ∈ I4, H(j) = k+1

2 + 1 is the maximum
Hamming weight among all exponents in I and for m ≡ 1 mod 3. Thus, the algebraic degree
of WG(x) is equal to k+1

2 + 1 = dm3 e+ 1. �

Theorem 3. Let WG(x) be the WG transformation defined by (9), then the linear span of
WG(x), denoted as LS(WG(x)), is given by

LS(WG(x)) = m
(

2
k+1
2 − 3

)
= m

(
2d

m
3
e − 3

)
.

Proof. The proof is similar to that of Theorem 3 in [10]. �

Theorem 4. Let WG(x) =
∑

i∈I Tr(xi) be the WG transformation defined by Eq. (3). Then
there exists at least one exponent j ∈ I such that j is coprime with 2m − 1.

Proof. We observe that for m mod 3 = 2, j = r = 22k + 3 and for m mod 3 = 1, j =
s = 2k−1 always exist in the exponent set I. To prove the result, we only need to show that
gcd(r, 2m − 1) = 1 as the exponent s = 2k−1 is coprime to 2m − 1. We have

gcd(22k + 3, 2m − 1) = gcd(22k + 3, 23k−1 − 1)

= gcd(22k + 3, (23k−1 − 1)− (22k + 3) · 2k−1)
= gcd(22k + 3, 3 · 2k−1 + 1)

= gcd(3 · (22k + 3), 3 · 2k−1 + 1) since gcd(3, 3 · 2k−1 + 1) = 1

= gcd(3 · (22k + 3)− 2k+1 · (3 · 2k−1 + 1), 3 · 2k−1 + 1)

= gcd(2k+1 − 9, 3 · 2k−1 + 1)

= gcd(2k+1 − 9, 31) since gcd(4, 2k+1 − 9) = 1.

We now need to show that gcd(2k+1− 9, 31) = 1. It can be easily checked that 31 - (2k+1− 9)
for k = 0, 1, 2, 3, 4. For k ≥ 5, we write k as k = 5l + i, 0 ≤ i ≤ 4 and l ≥ 1. Again it can be
verified that (2k+1− 9) ≡ (2i+1− 9) mod 31 for k ≥ 5. Therefore, gcd(2k+1− 9, 31) = 1. This
completes the proof. �

4 The Decimated WG Stream Cipher Family

In this section, we describe the WG stream cipher family that consists of the WG ciphers as
well as their decimated variants. Moreover, we also present the randomness properties of the
keystreams generated by various instances of the WG stream cipher family.

4.1 Description of a WG Stream Cipher and Its Decimation

A WG stream cipher is based on a WG transformation and can be regarded as a nonlinear
filter generator over an extension field F2m . A WG cipher, as shown in Figure 1, consists of an
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LFSR of length l, followed by a WG transformation over F2m . The characteristic polynomial
of the LFSR is a primitive polynomial p(x) of degree l over F2m , i.e., p(x) = xl+

∑l−1
i=0 cix

i, ci ∈
F2m and the LFSR generates an m-sequence over F2m with period 2n−1 where n = ml. Note
that the WG cipher family is defined over F2m for m 6≡ 0 mod 3 as a WG transformation
exists only if m 6≡ 0 mod 3. During the initialization phase, the cipher is executed for 2l clock
cycles with the feedback signal Init. When the cipher goes into the running phase, the only
feedback is within the LFSR and one keystream bit is generated per clock cycle. We denote
a WG cipher/generator with an LFSR of l stages over F2m as a WG(m, l) generator.

Tr(·)

1

WGperm(·)

m

keystream

⊕

m

⊕ ⊕m

a0a1· · ·al−2al−1

cl−2cl−1 c0c1
m m m

m m m

· · ·

m m· · ·

⊕

mm

m
WG(·)m

Init

m

Fig. 1. The WG Stream Cipher Family

We denote by {ak}k≥0 the LFSR sequence over F2m and {sk}k≥0 the output sequence or
keystream over F2. The mathematical expressions of updating the LFSR internal state and
the output sequence of the WG(m, l) generator are given by

ak+l =

{∑l−1
i=0 ciai+k +WGperm(ak+l−1) 0 ≤ k < 2l (initialization phase)∑l−1
i=0 ciai+k k ≥ 2l (running phase)

sk = WG(ak+3l−1), k = 0, 1, · · ·

where WGperm(x) and WG(x) denote the WG permutation and WG transformation, re-
spectively, as defined in Section 3.

Definition 1. A decimated WG permutation and decimated WG transformation are de-
fined as WGperm(xd) and WG(xd), respectively, where gcd(d, 2m − 1) = 1. In other words,
WGperm(xd) is the composition of WGperm(x) and the monomial xd, whereas WG(xd) is
the composition of WG(x) and xd. In symbol, WGperm(xd) = WGper(x)◦xd and WG(xd) =
WG(x) ◦ xd.

Definition 2. When two functions WGperm(x) and WG(x) in a WG(m, l) generator are
replaced by their respective decimations, i.e., WGperm(xd) and WG(xd), the resulting gen-
erator, denoted as WGd(m, l), is referred to as a decimated WG cipher/generator.
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4.2 Randomness Properties of Decimated WG Keystreams

It is known that an output sequence or keystream of a WG(m, l) generator has the following
randomness properties.

Proposition 1 ([9]). For a WG(m, l) generator, an output sequence/keystream has the fol-
lowing randomness properties.

(a) Period is 2n − 1.
(b) It is balanced.
(c) It has an ideal 2-level autocorrelation property.
(d) Any t-tuple is equally likely distributed (ideal t-tuple distribution) (1 ≤ t ≤ l).
(e) Linear span or linear complexity, denoted by LSWG(m,l), increases exponentially in m,

which can be determined exactly as

LSWG(m,l) = m
∑
i∈I

lH(i),

where H(i) is the Hamming weight of integer i.

Note that both the linear span and the resistance to algebraic attacks are determined by
the algebraic degree of the WG transformation when the LFSR is fixed. The algebraic degree
of WG(x) is given by

deg(WG(x)) = max
i∈I

H(i) =
⌈m

3

⌉
+ 1

where WG(x) =
∑

i∈I Tr(xi).
According to Theorem 8.4 and Proposition 8.7 in [9], a decimated WGd(m, l) has the same

randomness properties as those listed in Proposition 1 except for the linear span. Furthermore,
we have the following randomness properties for a keystream produced by a decimated WG
cipher.

Proposition 2. The decimated WGd(m, l) has the same randomness properties (a)-(d) as
described in Proposition 1, and the linear span of a WGd(m, l) keystream is given by

LSWGd(m,l) = m
∑
i∈I

lH(d·i)

where (d · i) is reduced by modulo 2m − 1. Furthermore, the algebraic degree of WG(xd) is
determined by

deg
(
WGd(xd)

)
= max

i∈I
H(d · i).

Theorem 5. For WG(x) =
∑

i∈I Tr(xi), there exist some coset leader d modulo 2m− 1 with
gcd(d, 2m − 1) = 1 and some i ∈ I satisfying

H(d · i) = m− 1

and for this d, WG(xd) achieves the maximum algebraic degree.

Proof. In Theorem 4, we have showed that there exists at least one i ∈ I such that gcd(i, 2m−
1) = 1. Since the set I contains (2d

m
3
e − 3) decimation numbers and for some i ∈ I with

gcd(i, 2m − 1) = 1, the decimation numbers di = (2m−1−1)
i · 2j−1, 1 ≤ j ≤ m, reduced by

modulo (2m− 1), can be used in WG(x) to achieve the maximum Hamming weight m− 1 in
the decimated exponent set I. Therefore, for d = di, the algebraic degree of WG(xd) achieves
the maximum value m− 1. �
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Definition 3. The decimation d such that WG(xd) has maximum algebraic degree and max-
imum algebraic immunity is referred to an optimal decimation.

Proposition 3. If WGd(m, l) has an optimal decimation d, the linear span is lower bounded
by

LSWGd(m,l) > mlm−1.

For a WG cipher WG(m, l), the lower bound of the linear span of a keystream is bounded by
mld

m
3
e+1. On the other hand, the linear span of a ketsream produced by a decimated WG

cipher WGd(m, l) for an optimal decimation d is lower bounded by mlm−1.

4.3 Optimal Decimations for decimated WG ciphers

In a decimated WG cipher WGd(m, l), the most complicated module is WGperm(xd) from
an implementation point of view, where one needs to first compute xd. Thus the Hamming
weight of d should be as small as possible subject to other requirements such as nonlinearity,
and differential k-uniform distribution. In Tables 1 to 4, we list all values of d for which
deg(WG(xd)) = m− 1 for 7 ≤ m ≤ 16.

5 Cryptographic Properties of Decimated WG Permutations and
Transformations

In this section, we present the criteria of selecting an optimal decimation number for a (dec-
imated) WG cipher. With an optimal decimation number, a decimated WG transformation
has good cryptographic properties, thereby offering a maximum level of security.

5.1 Resilience to Linear and Differential Cryptanalysis

For odd m’s, it is known that WG(x) has the following cryptographic properties (see [10]).

(a) Nonlinearity is given by 2m−1 − 2(m−1)/2.
(b) It is 1-order resilient.
(c) Additive autocorrelation between f(x+ a) and f(x) has three values: 0,±2(m+1)/2.
(d) It has 1-order propagation property.

However, there are no theoretical results about: 1) The above cryptographic properties of
WG(x) when m is even; 2) The above cryptographic properties of WG(xd) for both odd
and even m’s; and 3) The nonlinearity and differential k-uniform distribution of WGperm(x)
and WGperm(xd) for both odd and even m’s. Fortunately, we can check those properties by
computation for 7 ≤ m < 30 in practice.

5.2 Criteria for Selecting Decimated WG Transformations and Permutations

Together with the results in Section 4, we obtain the following criteria for selecting an optimal
decimation d.

1. Optimal decimation number for WG(xd): select d such that both the algebraic degree
and the algebraic immunity of WG(xd) are maximum, i.e., deg(WG(xd)) = m − 1 and
AI(WG(xd)) = dm/2e. Define

O = {d : gcd(d, 2m − 1) = 1, deg(WG(xd)) = m− 1, AI(WG(xd)) = dm/2e}.
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2. Cryptographic properties of WG(xd): select d ∈ O such that WG(xd) has the following
properties.

(a) Hamming weight of d should be as small as possible.

(b) Nonlinearity of WG(xd), denoted by Nd, should be as large as possible.

(c) Let Resid be the number of λ such that ˆWGd(λ) = 0 for H(λ) = 1. Since the
degree of WG(xd) is maximum, the resiliency is equal to zero. Hence, the decimation
number d should be chosen such that Resid is as large as possible. Essentially, Resid
characterizes the number of components functions that cannot be approximated by
the linear functions.

(d) Let AWGd
be the additive correlation of WG(xd) and Ad = maxa∈F2m

AWGd
(a). The

decimation number d should be chosen such that Ad is as small as possible. Moreover,
in order to thwart the differential attacks, the selection of d also needs to satisfy that
for H(a) = 1 we have as many Ad(a) = 0 as possible.

3. Cryptographic properties of WGperm(xd): select d ∈ O such that WGperm(xd) has the
following properties.

(a) The nonlinearity should be as large as possible.

(b) The value of k in a differential k-uniform distribution should be as small as possible.

6 Optimal Decimations for WG Permutations and Transformations

Based on the criteria presented in Section 5.2, we calculate the algebraic degree, nonlinearity,
algebraic immunity, Resid, and Ad for WG transformations as well as the nonlinearity and
differential k-uniform for WG permutations over the finite field F2m , 7 ≤ m ≤ 16, where
the primitive polynomials given in Table 3.5 of [9] are used to construct F2m . Our results
are summarized in Tables 1 to 4. Due to the high computational complexity, we cannot
compute the nonlinearity and differential k-uniform of WG permutation for m = 14 and 16.
Instead we compute the upper and lower bounds, denoted by Nu and Nl, respectively, of
the nonlinearities of the component functions of WG permutations in these cases, where we
consider a WG permutation as an (m,m)-vector Boolean function.

Table 1. Optimal parameters for WG-7/8

Decimation d Hamming Degree of AI of Nonlinearity of (Resid, Ad) of Nonlinearity of k-uniform of

weight of d WG(xd) WG(xd) WG(xd) WG(xd) WGperm(xd) WGperm(xd)

WG-7

63 6 6 4 50 (1, 3) 42 10

5 2 6 3 30 (1, 0) 30 10

9 2 6 3 50 (1, 3) 44 8

13 3 6 3 42 (3, 0) 42 6

21 3 6 3 42 (0, 2) 42 12

WG-8

19 3 7 4 108 (3, 4) 92 10

61 5 7 4 110 (0, 0) 92 12

13 3 7 3 80 (0, 0) 80 16
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Table 2. Optimal parameters for WG-10/11

Decimation d Hamming Degree of AI of Nonlinearity of (Resid, Ad) of Nonlinearity of k-uniform of

weight of d WG(xd) WG(xd) WG(xd) WG(xd) WGperm(xd) WGperm(xd)

WG-10

73 3 9 5 470 (1, 0) 436 14

29 4 9 5 456 (0, 0) 424 18

43 4 9 5 460 (0, 0) 416 14

179 5 9 5 460 (3, 1) 436 14

125 6 9 5 456 (0, 2) 412 12

511 9 9 5 460 (1, 0) 436 12

59 5 9 4 420 (0, 0) 412 12

WG-11

203 5 10 6 932 (0, 0) 908 14

373 6 10 6 882 (0, 0) 882 12

149 4 10 5 946 (0, 0) 922 14

179 5 10 5 962 (0, 0) 920 12

333 5 10 5 952 (0, 0) 920 12

245 6 10 5 962 (2, 2) 918 12

175 6 10 5 902 (0, 0) 902 14

687 7 10 5 946 (0, 0) 920 12

251 7 10 5 954 (0, 1) 924 14

501 7 10 5 958 (0, 0) 918 12

751 8 10 5 926 (0, 1) 914 12

7 Conclusion

In this paper, we presented some new results on WG transformations including determining
the new exponent set I when k is chosen as 3k ≡ 1 mod m. Then, we listed the randomness
properties of keystreams produced by a decimated WG cipher and discussed the selection
criteria for choosing the parameters of a (decimated) WG stream cipher in order to offer
the maximum level of security against existing attacks. Furthermore, we summarized all the
optimal parameters for WG transformations over F2m , 7 ≤ m ≤ 16.

Acknowledgements: The authors would like to thank Dr. Zilong Wang for his help in
proving Theorem 4.
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Table 3. Optimal parameters for WG-13/14

Decimation d Hamming Degree of AI of Nonlinearity of (Resid, Ad) of Nonlinearity of k-uniform of

weight of d WG(xd) WG(xd) WG(xd) WG(xd) WGperm(xd) WGperm(xd)

WG-13

195 4 12 7 3950 (0, 0) 3856 14

345 5 12 7 3912 (0, 0) 3858 54

377 6 12 7 3968 (1, 0) 3872 14

1365 6 12 7 3962 (1, 0) 3856 14

733 7 12 7 3948 (0, 1) 3850 14

951 8 12 7 3968 (0, 0) 3836 16

1271 8 12 7 3936 (0, 4) 3832 14

273 3 12 6 3902 (0, 0) 3844 16

85 4 12 6 3926 (0, 0) 3860 14

585 4 12 6 3910 (0, 0) 3868 14

227 5 12 6 3914 (0, 1) 3870 16

327 5 12 6 3950 (1, 0) 3850 14

301 5 12 6 3944 (0, 0) 3860 14

1189 5 12 6 3718 (0, 0) 3718 16

315 6 12 6 3936 (0, 3) 3854 14

455 6 12 6 3874 (0, 0) 3856 14

489 6 12 6 3954 (0, 0) 3850 14

725 6 12 6 3954 (0, 1) 3846 16

819 6 12 6 3926 (0, 0) 3860 14

1175 6 12 6 3934 (0, 0) 3840 18

1205 6 12 6 3798 (0, 0) 3798 16

431 7 12 6 3926 (0, 0) 3866 16

505 7 12 6 3946 (1, 0) 3858 16

875 7 12 6 3970 (0, 0) 3862 14

863 8 12 6 3822 (0, 0) 3822 14

893 8 12 6 3964 (0, 2) 3850 16

1879 8 12 6 3926 (0, 0) 3848 28

1979 9 12 6 3642 (0, 0) 3642 16

4095 12 12 6 3932 (2, 4) 3860 14

WG-14 (Nl, Nu)

47 5 13 7 7960 (0, 0) (7900, 7966) –

59 5 13 7 7868 (0, 0) (7900, 7958) –

203 5 13 7 7936 (0, 0) (7898, 7940) –

461 6 13 7 7868 (0, 0) (7898, 7956) –

1133 6 13 7 7936 (0, 0) (7888, 7962) –

1181 6 13 7 7824 (1, 1) (7874, 7952) –

1351 6 13 7 7924 (1, 3) (7896, 7946) –

2771 7 13 7 7980 (1, 0) (7906, 7960) –

703 8 13 7 7954 (0, 0) (7908, 7962) –

1003 8 13 7 7968 (0, 0) (7908, 7946) –

2519 8 13 7 7900 (0, 1) (7884, 7954) –

3757 8 13 7 7700 (0, 0) (7908, 7944) –

1019 9 13 7 7946 (0, 0) (7908, 7952) –

2527 9 13 7 7926 (1, 0) (7884, 7946) –

3059 9 13 7 7974 (0, 0) (7902, 7962) –

3563 9 13 7 7940 (2, 0) (7896, 7946) –

1919 10 13 7 7948 (2, 0) (7898, 7950) –

7103 11 13 7 7898 (0, 3) (7856, 7944) –

7151 11 13 7 7644 (0, 0) (7892, 7968) –
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Table 4. Optimal parameters for WG-16

Decimation d Hamming Degree of AI of Nonlinearity of (Resid, Ad) of (Nl, Nu) k-uniform of

weight of d WG(xd) WG(xd) WG(xd) WG(xd) of WGperm(xd) WGperm(xd)

WG-16

1057 3 15 8 32160 (0, 1) (32146, 32240) –

157 5 15 8 32192 (1, 0) (32048, 32230) –

409 5 15 8 32224 (0, 0) (32080, 32256) –

451 5 15 8 32176 (0, 0) (32168, 32252) –

1187 5 15 8 32272 (0, 0) (32150, 32236) –

2137 5 15 8 31960 (0, 0) (32134, 32242) –

4681 5 15 8 32240 (0, 1) (32084, 32254) –

469 6 15 8 32288 (0, 0) (32098, 32244) –

1393 6 15 8 32048 (0, 0) (32172, 32248) –

2251 6 15 8 31968 (0, 0) (32112, 32248) –

2473 6 15 8 32252 (0, 0) (32138, 32252) –

1327 7 15 8 32256 (0, 0) (32142, 32252) –

1397 7 15 8 32128 (0, 0) (32152, 32236) –

1933 7 15 8 32204 (1, 0) (32128, 32242) –

2741 7 15 8 32096 (0, 4) (32108, 32236) –

3223 7 15 8 32136 (0, 0) (32144, 32256) –

4411 7 15 8 32248 (0, 0) (32182, 32236) –

4789 7 15 8 32292 (0, 0) (32130, 32246) –

5213 7 15 8 32290 (0, 0) (32140, 32252) –

1771 8 15 8 32242 (0, 0) (32040, 32250) –

3419 8 15 8 32328 (1, 0) (32124, 32260) –

3449 8 15 8 32032 (0, 0) (32124, 32264) –

10651 8 15 8 32208 (0, 0) (32154, 32254) –

10667 8 15 8 32016 (1, 0) (32152, 32252) –

6043 9 15 8 32276 (2, 0) (32134, 32240) –

7771 9 15 8 32248 (0, 0) (32126, 32242) –

3581 10 15 8 32188 (0, 0) (32172, 32256) –

7673 10 15 8 31840 (1, 0) (32114, 32260) –

13631 10 15 8 32232 (0, 0) (32102, 32266) –

14327 12 15 8 32262 (0, 0) (32170, 32244) –

32767 15 15 8 32310 (0, 0) (32146, 32244) –


