
Chen and Tan Journal of Inequalities and Applications         (2023) 2023:33 
https://doi.org/10.1186/s13660-023-02937-x

R E S E A R C H Open Access

Optimal partial regularity for very weak
solutions to a class of nonlinear elliptic
systems
Shuhong Chen1* and Zhong Tan2

*Correspondence:
shiny0320@163.com
1Fujian Key Laboratory of Big Data
Application and Intellectualization
for Tea Industry, Wuyi University,
Wuyishan 354300, Fujian, China
Full list of author information is
available at the end of the article

Abstract
We consider optimal partial regularity for very weak solutions to a class of nonlinear
elliptic systems and obtain the general criterion for a very weak solution to be regular
in the neighborhood of a given point. First, by Hodge decomposition and the
technique of filling holes, we establish the relation between the very weak solution
and the classical weak solution. Furthermore, combining the technique of p-harmonic
approximation with the method of Hodge decomposition, we obtain the partial
regularity result. In particular, the partial regularity we obtained is optimal.
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1 Introduction
In this paper, we are concerned with optimal partial regularity for very weak solutions of
nonlinear elliptic systems of the following type:

– div A(x, u,∇u) = f (x) + div
(|∇u|p–2∇u

)
, x ∈ �, (1.1)

where � ⊂ Rn is a bounded domain, n ≥ 2, N > 1, 1 < p < +∞, the Caratheodony function
A(x, u, h) : � × Rn × RnN −→ Rn satisfies the following conditions:

(H1) There exists a constant α > 0 such that

A(x, u, h)h ≥ α|h|p, ∀h ∈ RnN , x ∈ �, u ∈ Rn;

(H2) There exists a constant β > 0 such that
〈
A(x, u1, h1) – A(x, u2, h2), (h1 – h2)

〉 ≥ β
(|h1| + |h2|

)p–2|h1 – h2|2;

(H3) There exists a constant β ≤ γ < +∞ such that

∣∣A(x, u, h)
∣∣ ≤ γ

(|h|p–1 + |u|(p–1)α + ϕ(x)
)
, x ∈ �, u ∈ Rn, h ∈ RnN ,

where 0 < α < n
n–(p–1) , ϕ(x) ∈ L

p
p–1 (�).
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Now, we can definite the very weak solutions of a nonlinear elliptic system.

Definition 1.1 We call a function u ∈ W 1,r(�) (max{1, p – 1} ≤ r < p) a very weak solution
to the nonlinear elliptic system (1.1), if the integral equality

ˆ
�

A(x, u,∇u) · ∇φ dx =
ˆ

�

f (x) · φ dx –
ˆ

�

|∇u|p–2∇u · ∇φ dx

holds for all functions φ(x) ∈ C∞
0 (�).

The definition of a “very weak solution” was put forward by Iwaniec [14]. In 1994,
Iwaniec observed that: in the integral sense, the integrable index of a weak solution should
be no less than the natural index minus 1. Then, he defined a “very weak solution”, and es-
tablished the relation between the very weak solution and the classical weak solution for
the homogeneous A-harmonic equation. The conclusion has been extended to the case of
an inhomogeneous A-harmonic system by Zhao and Chen [25].

Greco and Luigi et al. [12, 19] generalized this result to a p-Laplace-type system with
the form

div
[[

G(x)∇u,∇u
] p–2

2 G(x)∇u
]

= 0.

The same result of inhomogeneous p-Laplace-type systems with the form

div
[[

A(x)∇u,∇u
] p–2

2 A(x)∇u
]

= div
(√

A(x)F(x)
)
,

had been found by Stroffolini [20].
Soon afterwards, similar results were extended to the elliptic system, parabolic system,

p-Laplace system, etc., under all kinds of conditions. Of course, they obtained fruitful
results [1–8, 13, 15–18, 22–24]. Note that the A-operator in the equations considered
above is independent of the very weak solution u. Furthermore, the results obtained in the
above works only prove that the very weak solution is in fact the classical weak solution.

Motivated by the above works, we study the partial regularity theory of very weak solu-
tions to the nonlinear elliptic system (1.1) in this paper. The differences from the previous
works are the following three cases:

(i) The A-harmonic operator A(x, u,∇u) in the system (1.1) is not only dependent on the
very weak solution u, but also on the gradient of the very weak solution ∇u;

(ii) The inhomogeneous term f (x) + div(|∇u|p–2∇u) has both a general function term
f (x), and a divergence term with p-Laplace-type div(|∇u|p–2∇u).

(iii) Here, we not only consider the relation between the very weak solution u and the
classical weak solution, but also establish the optimal partial regularity for the very weak
solution, i.e., u ∈ C1,1(��0).

All of this means that we not only need to solve the problems caused by the very weak
solution u in the A-harmonic operator, but also should overcome the difficulties from the
inhomogeneous term f (x)+div(|∇u|p–2∇u). The elemental but most important item is the
inhomogeneous term composing two completely different form functions, which allow us
to find some new appropriate methods.
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In order to overcome these difficulties and obtain the desired conclusion, we use the
method of Hodge decomposition to reveal the relation between the very weak solution
and the weak solution. Then, by the technique of p-harmonic approximation, we establish
the optimal partial regularity. Now, let us show them one by one.

First, in order to handle the problems from the very weak solution u of the A-harmonic
operator, we should construct an appropriate type of Hodge decomposition. Then, com-
bining the Sobolev embedding theorem, Young’s inequality, and the estimations of Hodge
decomposition, we resolve the problem.

For the inhomogeneous term f (x) + div(|∇u|p–2∇u), since it is composed of two terms:
the general function f (x) and the p-Laplace-type divergence function div(|∇u|p–2∇u), if
we select one of the Hodge decomposition terms φ as the test function in the definition
of the very weak solution, we can obtain the required estimation for the general function
term f (x) in the proof of the Caccioppoli second inequality. On the other hand, if the
function η2u is selected as the test function, the divergence term div(|∇u|p–2∇u) cannot
be processed.

To solve these problems, we combine the method of the A-harmonic approximation
technique with Hodge decomposition |∇(ηv)|–ε∇(ηv) = ∇φ + H . Select φ of Hodge de-
composition as the test function, and then match the estimator of each item, in particular
the estimator of H with minimal coefficient ε, and then combine all kinds of inequalities.
The key thing is making full use of the minimal coefficient ε in the H estimator again and
again. Finally, we obtain the suitable Coccioppoli second inequality.

However, due to the divergence term div(|∇u|p–2∇u) in the inhomogeneous term [9,
20], we cannot obtain the conditions of the A-harmonic approximation lemma [1, 21].
Fortunately, the conditions for the p-harmonic approximation lemma [10] can be derived.
Thus, in this paper, we choose the p-harmonic approximation method to establish the
decay estimation.

Finally, by the standard iterative method, the optimal partial regularity for the very weak
solution u of the system (1.1) is obtained. That is,

Theorem 1.1 Assume that f ∈ L
nq

n(p–1)+q
loc (�), q > p > 1 + 1

n , u ∈ W 1,r(�), (max{1, p – 1} ≤
r < p) is a very weak solution of the system (1.1) under the conditions (H1)–(H3). Then,
u ∈ W 1,p(�) and there exists an open set �0 ⊂ �, such that u ∈ C1,1(� \ �0), where

�\�0 = 
1 ∪ 
2,

with


1 =
{

x0 ∈ � : lim inf
ρ→0+

 
Bρ (x0)

|∇u – (∇u)x0,ρ |p dx > 0
}

,

and


2 =
{

x0 ∈ � : lim sup
ρ→0+

(|ux0,ρ | + |(∇u)x0,ρ |) = ∞
}

.

In particular,

meas(�\�0) = 0.
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2 Preliminaries
In this section, we introduce the p-harmonic approximation lemma and some basic re-
sults, which we will use in the proof of the main theorem. The first one we recall is the
p-harmonic approximation lemma [10].

Lemma 2.1 ([8]) For any ε > 0, there exists a positive constant δ ∈ (0, 1], depending only
on n, N , p and ε, such that: Whenever u ∈ W 1,p(Bρ , RN ) with ρp–n ´

Bρ
|Du|p dx ≤ 1 is ap-

proximately p-harmonic in the sense that:

∣
∣∣
∣ρ

p–n
ˆ

Bρ

|Du|p–2Du · Dϕ dx
∣
∣∣
∣ ≤ δρ sup

Bρ

|Dϕ| (2.1)

holds for all ϕ ∈ C1
0(Bρ , RN ). Then, there exists a p-harmonic function h ∈ W 1,p(Bρ , RN )

such that:

ρp–n
ˆ

Bρ

|Dh|p dx ≤ 1, (2.2)

and

ρ–n
ˆ

Bρ

|h – u|p dx ≤ εp. (2.3)

The next feature we study is a standard estimate for second-order homogeneous elliptic
systems with a constant coefficient coming from Campanato [6]. The result is established
by the Caccioppoli inequality for h and its derivative of any order.

Lemma 2.2 For A, α, β and γ given in the conditions (H1)-(H3), there exists a constant
C0 (without loss of generality, we assume that C0 ≥ 1) depending only on n, N , α, β and γ ,
such that for arbitrarily p-harmonic function h on Bρ(x0), the following inequality holds:

ρp sup
B ρ

2
(x0)

|∇h|p + ρ2p sup
B ρ

2
(x0)

∣∣∇2h
∣∣p ≤ C0ρ

p–n
ˆ

Bρ (x0)
|∇h|p dx.

The following lemma in this section is a result of the property for a very weak solution.
That is,

Lemma 2.3 ([26]) Assume that f ∈ L
nq

n(p–1)+q (�), q > p, then there exists an integral expo-
nent 1 < r1 = r1(n, p,α,β) < p < r2 = r2(n, p,α,β) < +∞, such that for every very weak solu-
tion u ∈ W 1,r1 (�), there is u ∈ W 1,r2 (�). This means that the very weak solution u in fact
is a classical weak solution.

Hodge decomposition is a critical tool to obtain the desired regularity result.

Lemma 2.4 ([12]) Let � ⊂ Rn be a regular domain, ω ∈ W 1,r
0 (�, RN ), r > 1, and –1 <

ε < r – 1. Then there exist φ ∈ W 1, r
1+ε

0 (�, RN ) and a divergence free matrix-field H ∈
L r

1+ε (�, RnN ) such that

|∇ω|ε∇ω = ∇φ + H . (2.4)
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Moreover,

‖H‖ r
1+ε

≤ Cr(�, m)|ε|‖∇ω‖1+ε
r . (2.5)

Here, the most important case is where ε is negative. For u ∈ W 1,r
loc(�, RN ), one can apply

(2.4) with ω = u – u0 and ε = r – p. Note that ∇φ ∈ L
r

r–p+1 (�, RnN ), thus φ can be illustrated
as a test function in the very weak solution definition.

The following idea has been found in the context of quasiregular mappings [11].

Lemma 2.5 ([11]) Let u(x) ∈ Lp(BR), BR ⊂ �, f ∈ Lt(BR), t > p, and the integral inequality

 
B R

2

|u|p dx ≤ K
( 

BR

|u|s dx
) p

s
+ θ

 
BR

|u|p dx +
 

BR

|f |p dx

holds for 1 ≤ s < p, 0 ≤ θ ≤ 1; Then, there exists an integral coefficient p′ = p′(K , n, p, θ ),
(t ≥ p′ > p), such that u ∈ Lp′

loc(�), and for some constant C′ = C′(n, p, K , θ ), we have

( 
B R

2

|u|p′
dx

) 1
p′

≤ C′
( 

BR

|u|p dx
) 1

p
+ C′

( 
BR

|f |p′
dx

) 1
p′

.

The last result we would introduce in this section is an elemental but necessary inequal-
ity.

Lemma 2.6 ([14]) Suppose X and Y are vectors of an inner product space. Then,

∣∣|X|εX – |Y |εY
∣∣ ≤ 1 – ε

1 + ε
2–ε|X – Y |1+ε

for –1 < ε ≤ 0, and
∣
∣|X|εX – |Y |εY

∣
∣ ≤ 1 + ε

(|Y | + |X – Y |)ε|X – Y |

for ε ≥ 0.

3 Caccioppoli second inequality
To establish optimal partial regularity for the very weak solution to the inhomogeneous
A-harmonic system (1.1), we should establish a suitable Caccioppoli-type inequality.

Theorem 3.1 (Caccioppoli second inequality) Assume that u ∈ W 1,r1
loc (�, RN ) with 1 + 1

n <
r1 = r1(n, p,α,β) < p < r2 = r2(n, p,α,β) < +∞ is a very weak solution to the inhomogeneous
A-harmonic system (1.1) under the conditions (H1)-(H3), f ∈ L

nq
n(p–1)+q (�), q > p. Then for

every x0 ∈ �, u0 ∈ RN , p0 ∈ RnN and arbitrarily ρ, R : 0 < ρ < R < min(1, dist(x0, ∂�)), we
have u ∈ W 1,p

loc (�, RN ) and
ˆ

BR/2(x0)
|∇v|p dx ≤ C̃1

ˆ
BR(x0)

|v∇η|p dx + C̃2

ˆ
BR(x0)

Rp dx

+ C̃3

(
–
ˆ

BR(x0)
|∇v|p–ε dx

) p
p–ε (

αnRn)1+ p
n ,

where constants C̃1, C̃2 and C̃3 depend only on β , α, γ , and C(n, p).
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Proof Consider a cut-off function η ∈ C∞
0 (BR(x0)), satisfying 0 ≤ η ≤ 1, η ≡ 1 on BR/2(x0)

and |∇η| < C
R . Assume that u ∈ W 1,p–ε

loc (�) (0 < ε < 1
2 ) is a very weak solution to the system

(1.1), then for fixed constant u0 ∈ RN , p0 ∈ RnN , x0 ∈ �, we can find that v = u – u0 – p0(x –
x0) ∈ W 1,p–ε

loc (�) (0 < ε < 1
2 ).

Consider Hodge decomposition (Lemma 2.4) of the following type:

∣∣∇(ηv)
∣∣–ε∇(ηv) = ∇φ + H , with φ ∈ W 1, p–ε

1–ε

loc (�), (3.1)

here, H ∈ L
p–ε
1–ε (�) is a vector field with zero divergence, and satisfies

‖∇φ‖ p–ε
1–ε

≤ C(n, p)
∥∥∇(ηv)

∥∥1–ε

p–ε
, (3.2)

‖H‖ p–ε
1–ε

≤ C(n, p)ε
∥∥∇(ηv)

∥∥1–ε

p–ε
. (3.3)

Let

E(η, v) =
∣
∣∇(ηv)

∣
∣–ε∇(ηv) – |η∇v|–εη∇v. (3.4)

Using the element inequality:

∣
∣|X|–εX – |Y |–εY

∣
∣ ≤ 2ε 1 + ε

1 – ε
|X – Y |1–ε , 0 < ε < 1, X, Y ∈ Rn,

which means that

∣∣E(η, v)
∣∣ ≤ 2ε 1 + ε

1 – ε
|v∇η|1–ε .

Now, from (3.1) and (3.4), we can find that

∇φ = E(η, v) + |η∇v|–εη∇v – H . (3.5)

Take the function φ in the Hodge decomposition (3.1) as a test function, by the definition
of a very weak solution, we have

ˆ
�

[
A(x, u,∇u) – A(x, u, p0)

] · ∇φ dx

=
ˆ

�

f (x) · φ dx –
ˆ

�

|∇u|p–2∇u · ∇φ dx –
ˆ

�

A(x, u, p0) · ∇φ dx.

Substitute the expression of ∇φ into the above equation to obtain

ˆ
BR(x0)

[
A(x, u,∇u) – A(x, u, p0)

] · |η∇v|–εη∇v dx

=
ˆ

BR(x0)

[
A(x, u,∇u) + |∇u|p–2∇u

] · H dx

–
ˆ

BR(x0)

[
A(x, u,∇u) + |∇u|p–2∇u

] · E(η, v) dx

–
ˆ

BR(x0)
|∇u|p–2∇u · |η∇v|–εη∇v dx
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–
ˆ

BR(x0)
A(x, u, p0) · |η∇v|–εη∇v dx

+
ˆ

BR(x0)
f (x) · φ dx. (3.6)

It is given by condition (H2) that

β

ˆ
BR(x0)

|∇v|p–1|η∇v|–εη∇v dx

≤ β

ˆ
BR(x0)

(|∇u| + |p0|
)p–2|∇u – p0| · |η∇v|–εη∇v dx

≤
ˆ

BR(x0)

[
A(x, u,∇u) – A(x, u, p0)

] · |η∇v|–εη∇v dx. (3.7)

Using the monotonicity of p-Laplace operators:

(|∇u|p–2∇u – |p0|p–2p0
)
(∇u – p0) ≥ 0.

We have

β

ˆ
BR(x0)

|∇v|p–1|η∇v|–εη∇v dx

≤
ˆ

BR(x0)

[
A(x, u,∇u) + |∇u|p–2∇u

] · H dx

–
ˆ

BR(x0)

[
A(x, u,∇u) + |∇u|p–2∇u

] · E(η, v) dx

–
ˆ

BR(x0)

[|∇u|p–2∇u – |p0|p–2p0
]
(∇u – p0) · |η∇v|–εη dx

–
ˆ

BR(x0)

[
A(x, u, p0) + |p0|p–2p0

] · |η∇v|–εη∇v dx

+
ˆ

BR(x0)
f (x) · φ dx

≤
ˆ

BR(x0)

[
A(x, u,∇u) + |∇u|p–2∇u

] · H dx

–
ˆ

BR(x0)

[
A(x, u,∇u) + |∇u|p–2∇u

] · E(η, v) dx

–
ˆ

BR(x0)

[
A(x, u, p0) + |p0|p–2p0

] · |η∇v|–εη∇v dx

+
ˆ

BR(x0)
f (x) · φ dx.

≤ I1 + I2 + I3 + I4. (3.8)

By the boundedness (H3) of the operator A, we can obtain

I1 =
ˆ

BR(x0)

[∣∣A(x, u,∇u)
∣∣ + |∇u|p–1] · H dx
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≤ (γ + 1)
ˆ

BR(x0)
|∇u|p–1 · H dx

+ γ

ˆ
BR(x0)

|u|(p–1)α · H dx + γ

ˆ
BR(x0)

ϕ(x) · H dx

≤ 2p–1(γ + 1)
ˆ

BR(x0)
|∇v|p–1 · H dx + 2(p–1)αγ

ˆ
BR(x0)

|v|(p–1)α · H dx

+
ˆ

BR(x0)

[
2p–1(γ + 1)|p0|p–1 + 2(p–1)αγ

∣
∣u0 + p0(x – x0)

∣
∣(p–1)α + γ ϕ(x)

] · H dx

= J1 + J2 + J3. (3.9)

From Holder’s inequality, the estimate of H , and Young’s inequality, we can find that

J1 = 2p–1(γ + 1)
ˆ

BR(x0)
|∇v|p–1 · H dx

≤ 2p–1(γ + 1)
(ˆ

BR(x0)
|∇v|p–ε dx

) p–1
p–ε

·
(ˆ

BR(x0)
H

p–ε
1–ε

) 1–ε
p–ε

≤ 2p–1(γ + 1)C(n, p)ε
(ˆ

BR(x0)
|∇v|p–ε dx

) p–1
p–ε

·
(ˆ

BR(x0)

∣
∣∇(ηv)

∣
∣p–ε

) 1–ε
p–ε

≤ 2p–ε(γ + 1)C(n, p)ε
ˆ

BR(x0)
η1–ε|∇v|p–ε dx

+ 2p–ε(γ + 1)C(n, p)ε
(ˆ

BR(x0)
|∇v|p–ε dx

) p–1
p–ε

·
(ˆ

BR(x0)
|v∇η|p–ε dx

) 1–ε
p–ε

≤ 2p–ε(γ + 1)C(n, p)ε
ˆ

BR(x0)

(
η1–ε + η

)|∇v|p–ε dx

+ 2p–ε(γ + 1)C(η)C(n, p)ε
ˆ

BR(x0)
|v∇η|p–ε dx. (3.10)

By Holder’s inequality and the inequality (3.3), we can find that

J2 = 2(p–1)αγ

ˆ
BR(x0)

|v|(p–1)α · H dx

≤ 2(p–1)αγ

(ˆ
BR(x0)

|v|(p–ε)α dx
) p–1

p–ε

·
(ˆ

BR(x0)
|H| p–ε

1–ε dx
) 1–ε

p–ε

≤ 2(p–1)αγ C(n, p)ε
(ˆ

BR(x0)
|v|(p–ε)α dx

) p–1
p–ε

·
(ˆ

BR(x0)

∣∣∇(ηv)
∣∣p–ε dx

) 1–ε
p–ε

.

Noting that 0 < α < n
n–(p–1) , and letting

p′ =
n(p – ε)
n + 1 – ε

< p – ε, p′′ =
np′

n – p′ =
n(p – ε)
n – p + 1

> p – ε.



Chen and Tan Journal of Inequalities and Applications         (2023) 2023:33 Page 9 of 27

Then, when 1 ≤ α < n
n–(p–1) , by Holder’s inequality, Sobolev’s inequality, and Young’s

inequality, we have

J2 ≤ 2(p–1)αγ C(n, p)ε
(ˆ

BR(x0)
|v| np′

n–p′ dx
) n–p′

np′ (p–1)α

·
(ˆ

BR(x0)
dx

)1– n–p′
np′ (p–1)α(ˆ

BR(x0)

∣
∣∇(ηv)

∣
∣p–ε dx

) 1–ε
p–ε

≤ 2(p–1)αγ C(n, p)ε
(ˆ

BR(x0)
|∇v|p′ dx

) 1
p′ (p–1)α

·
(ˆ

BR(x0)
dx

)1– n–p′
np′ (p–1)α(ˆ

BR(x0)
|v∇η + η∇v|p–ε dx

) 1–ε
p–ε

≤ 2(p–1)αγ C(n, p)ε
(
αnRn)[1– (n–p′)(p–1)α

np′ +(1– p′
p–ε )· 1

p′ (p–1)α]· p–ε
p–1

·
(ˆ

BR(x0)
|η∇v|p–ε dx

)α

+ 2(p–1)αγ C(n, p)C(η)ε
(ˆ

BR(x0)
|v∇η|p–ε + |η∇v|p–ε dx

)

≤ 2(p–1)αγ C(n, p)ε
(
αnRn)[ (p–ε)α

n + p–ε
p–1 –α] ·

(ˆ
BR(x0)

|η∇v|p–ε dx
)α

+ 2(p–1)α+(1–ε)γ C(η)C(n, p)ε
[ˆ

BR(x0)
|v∇η|p–ε dx +

ˆ
BR(x0)

|η∇v|p–ε dx
]

≤ C1ε

ˆ
BR(x0)

|η∇v|p–ε dx + C2ε

ˆ
BR(x0)

|v∇η|p–ε dx, (3.11)

where

C1 = 2(p–1)αγ C(n, p)‖v‖(α–1)(p–ε)
W 1,p–ε |BR|[ (p–ε)α

n + p–ε
p–1 –α] + 2(p–1)α+(1–ε)γ C(η)C(n, p),

C2 = 2(p–1)α+(1–ε)γ C(η)C(n, p).

If 0 < α < 1, using Holder’s inequality twice and then combining Young’s inequality and
Sobolev’s inequality, yields

J2 = 2(p–1)αγ C(n, p)ε
(ˆ

BR(x0)
|v|(p–ε)α dx

) p–1
p–ε

·
(ˆ

BR(x0)

∣∣∇(ηv)
∣∣p–ε dx

) 1–ε
p–ε

≤ 2(p–1)αγ C(n, p)ε
(ˆ

BR(x0)

(
1 + |v|(p–ε))dx

) p–1
p–ε

·
(ˆ

BR(x0)

∣
∣∇(ηv)

∣
∣p–ε dx

) 1–ε
p–ε

≤ 2(p–1)αγ C(n, p)ε
[ˆ

BR(x0)
dx +

ˆ
BR(x0)

|v|(p–ε) dx
]

+ 2(p–1)αγ C(n, p)ε
ˆ

BR(x0)

∣∣∇(ηv)
∣∣p–ε dx
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≤ 2(p–1)αγ C(n, p)ε
ˆ

BR(x0)
dx + 2(p–1)αγ C(n, p)ε

ˆ
BR(x0)

∣∣∇(ηv)
∣∣p–ε dx

+ 2(p–1)αγ C(n, p)ε
ˆ

BR(x0)
|v∇η|(p–ε) dx

≤ 2(p–1)αγ C(n, p)ε
[

2p–ε

ˆ
BR(x0)

ηp–ε|∇v|p–ε dx +
(
2p–ε + 1

)ˆ
BR(x0)

|v∇η|p–ε dx
]

+ 2(p–1)αγ C(n, p)ε
ˆ

BR(x0)
dx. (3.12)

Combining the inequalities (3.11) with (3.12), we can find that

J2 ≤ ε

[
C3

ˆ
BR(x0)

ηp–ε|∇v|p–ε dx + C4

ˆ
BR(x0)

|v∇η|p–ε dx + C5

ˆ
BR(x0)

dx
]

, (3.13)

where

C3 = max
{

2(p–1)α+(p–ε)γ C(n, p), C1
}

,

C4 = max
{

2(p–1)αγ C(n, p) · (2p–ε + 1
)
, C2

}
,

C5 = 2(p–1)αγ C(n, p).

Using Young’s inequality and Holder’s inequality, we can find that

J3 =
ˆ

BR(x0)

[
2p–1(γ + 1)|p0|p–1 + 2(p–1)αγ

∣
∣u0 + p0(x – x0)

∣
∣(p–1)α + γ ϕ(x)

] · H dx

≤
[ˆ

BR(x0)

[
2p–1(γ + 1)|p0|p–1 + 2(p–1)αγ |u0 + p0R|(p–1)α + γ

∣∣ϕ(x)
∣∣]

p–ε
p–1 dx

] p–1
p–ε

·
(ˆ

BR(x0)
H

p–ε
1–ε dx

) 1–ε
p–ε

≤ C(n, p)ε
[ˆ

BR(x0)

[
2p–1(γ + 1)|p0|p–1 + 2(p–1)αγ |u0 + p0R|(p–1)α + γ

∣
∣ϕ(x)

∣
∣]

p–ε
p–1 dx

] p–1
p–ε

·
(ˆ

BR(x0)

∣∣∇(ηv)
∣∣p–ε dx

) 1–ε
p–ε

≤ C(n, p)ε
ˆ

BR(x0)

[
2p–1(γ + 1)|p0|p–1 + 2(p–1)αγ |u0 + p0R|(p–1)α + γ

∣
∣ϕ(x)

∣
∣]

p–ε
p–1 dx

+ C(n, p)ε
ˆ

BR(x0)
|η∇v|p–ε dx + C(n, p)ε

ˆ
BR(x0)

|v∇η|p–ε dx.

By the estimates of J1, J2, and J3, one can derive that

I1 ≤ 2p–ε(γ + 1)C(n, p)ε
ˆ

BR(x0)

(
η1–ε + η

)|∇v|p–ε dx

+ 2p–ε(γ + 1)C(η)C(n, p)ε
ˆ

BR(x0)
|v∇η|p–ε dx

+ ε

[
C3

ˆ
BR(x0)

ηp–ε|∇v|p–ε dx + C4

ˆ
BR(x0)

|v∇η|p–ε dx + C5

ˆ
BR(x0)

dx
]
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+ C(n, p)ε
ˆ

BR(x0)

[
2p–1(γ + 1)|p0|p–1 + 2(p–1)αγ |u0 + p0R|(p–1)α + γ

∣∣ϕ(x)
∣∣]

p–ε
p–1 dx

+ C(n, p)ε
ˆ

BR(x0)
|η∇v|p–ε dx + C(n, p)ε

ˆ
BR(x0)

|v∇η|p–ε dx

≤ ε

[
C6

ˆ
BR(x0)

η1–ε|∇v|p–ε dx + C7

ˆ
BR(x0)

|v∇η|p–ε dx + C8

ˆ
BR(x0)

dx
]

,

where

C6 = 2p+1–ε(γ + 1)C(n, p) + C3 + C(n, p),

C7 = 2p–ε(γ + 1)C(η)C(n, p) + C4 + C(n, p),

C8 = C(n, p)
[
2p–1(γ + 1)|p0|p–1 + 2(p–1)αγ |u0 + p0|(p–1)α + γ

∥
∥ϕ(x)

∥
∥

L
p–ε
p–1

] p–ε
p–1 + C5.

Now, we can obtain the following inequality by the boundedness (H3) of the operator
A(x, u,∇u),

I2 ≤ (γ + 1)
ˆ

BR(x0)
|∇u|p–1∣∣E(η, v)

∣∣dx + γ

ˆ
BR(x0)

|u|(p–1)α∣∣E(η, v)
∣∣dx

+ γ

ˆ
BR(x0)

∣∣ϕ(x)
∣∣∣∣E(η, v)

∣∣dx

≤ 2p–1(γ + 1)
ˆ

BR(x0)
|∇v|p–1∣∣E(η, v)

∣
∣dx + 2(p–1)αγ

ˆ
BR(x0)

|v|(p–1)α∣
∣E(η, v)

∣
∣dx

+
ˆ

BR(x0)

(
2p–1(γ + 1)|p0|p–1 + 2(p–1)αγ

(|u0| + |p0|
)(p–1)α + γ

∣
∣ϕ(x)

∣
∣)

∣
∣E(η, v)

∣
∣dx

= K1 + K2 + K3.

From Young’s inequality and the estimate of |E(η, v)|, we have

K1 = 2p–1(γ + 1)
ˆ

BR(x0)
|∇v|p–1∣∣E(η, v)

∣∣dx

≤ 2p–1+ε(γ + 1)
1 + ε

1 – ε

ˆ
BR(x0)

|∇v|p–1|v∇η|1–ε dx

≤ ε

ˆ
BR(x0)

|η∇v|p–ε dx + C
(
εηp–ε

)
(

2p–1+ε(γ + 1)
1 + ε

1 – ε

) p–ε
1–ε

×
ˆ

BR(x0)
|v∇η|p–ε dx. (3.14)

For 0 ≤ α < n
n–(p–1) with p′ = n(p–ε)

n+1–ε
< p – ε, p′′ = np′

n–p′ = n(p–ε)
n–p+1 > p – ε, combining Holder’s

inequality, Young’s inequality, and the Sobolev inequality, we have

K2 = 2(p–1)αγ

ˆ
BR(x0)

|v|(p–1)α∣∣E(η, v)
∣∣dx

≤ 2(p–1)α+εγ
1 + ε

1 – ε

ˆ
BR(x0)

|v|(p–1)α|v∇η|1–ε dx
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≤ 2(p–1)α+εγ
1 + ε

1 – ε

(ˆ
BR(x0)

|v|(p–ε)α dx
) p–1

p–ε
(ˆ

BR(x0)
|v∇η|p–ε dx

) 1–ε
p–ε

≤ 2(p–1)α+εγ
1 + ε

1 – ε

(ˆ
BR(x0)

|v| np′
n–p′ dx

) n–p′
np′ (p–1)α(

αnRn) n–(n–p+1)α
n · p–1

p–ε

·
(ˆ

BR(x0)
|v∇η|p–ε dx

) 1–ε
p–ε

≤ 2(p–1)α+εγ
1 + ε

1 – ε

(ˆ
BR(x0)

|∇v|p′ dx
) 1

p′ (p–1)α(
αnRn) n–(n–p+1)α

n · p–1
p–ε

·
(ˆ

BR(x0)
|v∇η|p–ε dx

) 1–ε
p–ε

.

For 1 ≤ α < n
n–(p–1) , by Young’s inequality and then Holder’s inequality, we have

K2 ≤ 2(p–1)α+εγ
1 + ε

1 – ε

(
αnRn) n–(n–p+1)α

n + (1–ε)α
n εη

(ˆ
BR(x0)

|∇v|p–ε dx
)α

+ 2(p–1)α+εγ
1 + ε

1 – ε
C(εη)

ˆ
BR(x0)

|v∇η|p–ε dx

≤ 2(p–1)α+εγ
1 + ε

1 – ε

(
αnRn) n–(n–p+ε)α

n C
(‖v‖W 1,p–ε

) · ε
ˆ

BR(x0)
η|∇v|p–ε dx

+ 2(p–1)α+εγ
1 + ε

1 – ε
C(εη)

ˆ
BR(x0)

|v∇η|p–ε dx. (3.15)

If 0 < α < 1, then using Young’s inequality, Holder’s inequality, and Young’s inequality in
turn, we can find that

K2 ≤ 2(p–1)α+εγ
1 + ε

1 – ε
εη

(ˆ
BR(x0)

|∇v|p′ dx
) 1

p′ (p–ε)α(
αnRn) n–(n–p+1)α

n

+ 2(p–1)α+εγ
1 + ε

1 – ε
C(εη)

ˆ
BR(x0)

|v∇η|p–ε dx

≤ 2(p–1)α+εγ
1 + ε

1 – ε
εη

(ˆ
BR(x0)

|∇v|p–ε dx
)α(

αnRn) n–(n–p+ε)α
n

+ 2(p–1)α+εγ
1 + ε

1 – ε
C(εη)

ˆ
BR(x0)

|v∇η|p–ε dx

≤ 2(p–1)α+εγ
1 + ε

1 – ε
ε

ˆ
BR(x0)

η|∇v|p–ε dx + 2(p–1)α+εγ
1 + ε

1 – ε
εη

(
αnRn)1+ (p–ε)α

n(1–α)

+ 2(p–1)α+εγ
1 + ε

1 – ε
C(εη)

ˆ
BR(x0)

|v∇η|p–ε dx. (3.16)

From the estimates of (3.15) and (3.16), we have

K2 ≤ 2(p–1)α+εγ
1 + ε

1 – ε
max

{(
αnRn) n–(n–p+ε)α

n C
(‖v‖W 1,p–ε

)
, 1

}
ε

ˆ
BR(x0)

η|∇v|p–ε dx
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+ 2(p–1)α+εγ
1 + ε

1 – ε
C(εη)

ˆ
BR(x0)

|v∇η|p–ε dx

+ 2(p–1)α+εγ
1 + ε

1 – ε
εη

(
αnRn)1+ (p–ε)α

n(1–α) .

Proceed to estimate K3 by Young’s inequality, the estimate of E(η, v) and the definition
of ϕ(x), we can find that

K3 =
ˆ

BR(x0)

(
2p–1(γ + 1)|p0|p–1 + 2(p–1)αγ

(|u0| + |p0|
)(p–1)α + γ

∣∣ϕ(x)
∣∣)∣∣E(η, v)

∣∣dx

≤ 2ε 1 + ε

1 – ε

×
ˆ

BR(x0)

(
2p–1(γ + 1)|p0|p–1 + 2(p–1)αγ

(|u0| + |p0|
)(p–1)α + γ

∣
∣ϕ(x)

∣
∣)|v∇η|1–ε dx

≤ 2ε 1 + ε

1 – ε
ε

ˆ
BR(x0)

(
2p–1(γ + 1)|p0|p–1 + 2(p–1)αγ

(|u0| + |p0|
)(p–1)α + γ

∣
∣ϕ(x)

∣
∣)

p–ε
p–1 dx

+ 2ε 1 + ε

1 – ε
C(ε)

ˆ
BR(x0)

|v∇η|p–ε dx.

From the estimates of K1, K2 and K3 we find that

I2 ≤ C9ε

ˆ
BR(x0)

|η∇v|p–ε dx + C10

ˆ
BR(x0)

|v∇η|p–ε dx + C11ε

ˆ
BR(x0)

dx,

where

C9 = 1 + 2(p–1)α+εγ
1 + ε

1 – ε
max

{(
αnRn) n–(n–p+ε)α

n C
(‖v‖W 1,p–ε

)
, 1

}
,

C10 = C
(
εηp–ε

)(
2p–1+ε(γ + 1)

1 + ε

1 – ε

) p–ε
1–ε

+ 2(p–1)α+εγ
1 + ε

1 – ε
C(εη) + 2ε 1 + ε

1 – ε
C(ε),

C11 = 2ε 1 + ε

1 – ε

[(
2p–1(γ + 1)|p0|p–1 + 2(p–1)αγ

(|u0| + |p0|
)(p–1)α + γ

∥
∥ϕ(x)

∥
∥

L
p–ε
p–1

) p–ε
p–1

+ 2(p–1)αη
(
αnRn) (p–ε)α

n(1–α)
]
.

By the condition (H3) and the estimate of K2, we can obtain that

I3 ≤
ˆ

BR(x0)

(
(γ + 1)|p0|p–1 + γ |u|(p–1)α + γ ϕ(x)

)|η∇v|1–ε dx

≤ 2(p–1)αγ

ˆ
BR(x0)

|v|(p–1)α|η∇v|1–ε dx

+
ˆ

BR(x0)

(
(γ + 1)|p0|p–1 + 2(p–1)αγ

(|u0| + |p0|
)(p–1)α + γ ϕ(x)

)|η∇v|1–ε dx

≤ I31 + I32.

Combing Holder’s and Young’s inequalities with Sobolev’s theorem,

I31 = 2(p–1)αγ

ˆ
BR(x0)

|v|(p–1)α|η∇v|1–ε dx
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≤ 2(p–1)αγ

(ˆ
BR(x0)

|η∇v|p–ε dx
) 1–ε

p–ε
(ˆ

BR(x0)
|v|(p–ε)α dx

) p–1
p–ε

≤ 2(p–1)αγ ε

ˆ
BR(x0)

|η∇v|p–ε dx + 2(p–1)αγ C(ε)
ˆ

BR(x0)
|v|(p–ε)α dx

≤ 2(p–1)αγ ε

ˆ
BR(x0)

|η∇v|p–ε dx

+ 2(p–1)αγ C(ε)
(ˆ

BR(x0)
|v| np′

n–p′ dx
) n–p′

np′ ·(p–ε)α(
αnRn)1– n–p′

np′ ·(p–ε)α

≤ 2(p–1)αγ ε

ˆ
BR(x0)

|η∇v|p–ε dx

+ 2(p–1)αγ C(ε)
(ˆ

BR(x0)
|∇v|p′ dx

) 1
p′ ·(p–ε)α(

αnRn)1– n–p+1
n ·α .

In the case of 1 ≤ α ≤ n
n–(p–1) , noting that v ∈ W 1,p–ε(�) and p′ < p – ε, we can find that

I31 ≤ 2(p–1)αγ ε

ˆ
BR(x0)

|η∇v|p–ε dx

+ 2(p–1)αγ C
(‖v‖W 1,p′ , ε

)(
–
ˆ

BR(x0)
|∇v|p′ dx

) 1
p′ ·(p–ε)(

αnRn)1+ p–ε
n .

If 0 < α < 1, then by Young’s inequality, we can obtain that

I31 ≤ 2(p–1)αγ ε

ˆ
BR(x0)

|η∇v|p–ε dx

+ 2(p–1)αγ C(ε)
(ˆ

BR(x0)
|∇v|p′ dx

) 1
p′ ·(p–ε)α(

αnRn) (p–1)α
n · (αnRn) n(1–α)

n

≤ 2(p–1)αγ ε

ˆ
BR(x0)

|η∇v|p–ε dx + 2(p–1)αγ εαnRn

+ 2(p–1)αγ C(ε)
(

–
ˆ

BR(x0)
|∇v|p′ dx

) 1
p′ ·(p–ε)(

αnRn)1+ (p–ε)
n .

This means that

I31 ≤ 2(p–1)αγ ε

ˆ
BR(x0)

|η∇v|p–ε dx + 2(p–1)αγ εαnRn

+ 2(p–1)αγ max
{

C(ε), C
(‖v‖W 1,p′ , ε

)}
(

–
ˆ

BR(x0)
|∇v|p′ dx

) 1
p′ ·(p–ε)(

αnRn)1+ (p–ε)
n .

Using Holder’s inequality and then Young’s inequality, yields that

I32 =
ˆ

BR(x0)

(
(γ + 1)|p0|p–1 + 2(p–1)αγ

(|u0| + |p0|
)(p–1)α + γ ϕ(x)

)|η∇v|1–ε dx

≤
(ˆ

BR(x0)
|η∇v|p′ dx

) 1–ε
p′ (

αnRn) 1–ε
n

(
αnRn)1– 1–ε

p′ – 1–ε
n
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· [(γ + 1)|p0|p–1 + 2(p–1)αγ
(|u0| + |p0|

)(p–1)α + γ
∥∥ϕ(x)

∥∥
L

p′
p′–(1–ε)

]

≤ C(ε)
(

–
ˆ

BR(x0)
|η∇v|p′ dx

) p–ε
p′ (

αnRn)1+ p–ε
n + ε

(
αnRn) n+1–ε

n

· [(γ + 1)|p0|p–1 + 2(p–1)αγ
(|u0| + |p0|

)(p–1)α + γ
∥
∥ϕ(x)

∥
∥

L
p′

p′–(1–ε)

] p–ε
p–1 .

Now, from the estimates of I31 and I32, we can find that

I3 ≤ 2(p–1)αγ ε

ˆ
BR(x0)

|η∇v|p–ε dx

+ C12

(
–
ˆ

BR(x0)
|∇v|p′

) 1
p′ ·(p–ε)(

αnRn)1+ p–ε
n + C13ε

ˆ
BR(x0)

dx,

with

C12 = 2(p–1)αγ max
{

C(ε), C
(‖v‖W 1,p′ , ε

)}
+ C(ε),

C13 = 2(p–1)αγ

+
(
αnRn) 1–ε

n · [(γ + 1)|p0|p–1 + 2(p–1)αγ
(|u0| + |p0|

)(p–1)α + γ
∥
∥ϕ(x)

∥
∥

L
p′

p′–(1–ε)

] p–ε
p–1 .

Finally, noting that 1 + 1
n < p < n and p′ = n(p–ε)

n+1–ε
< p – ε, then using Holder’s inequality,

Sobolev’s inequality and Hodge decomposition in turn, we have

I4 =
ˆ

BR(x0)
|f ||φ|dx

≤
(ˆ

BR(x0)
|f | np′/(1–ε)

(n+1)p′/(1–ε)–n dx
) (n+1)p′/(1–ε)–n

np′/(1–ε)
(ˆ

BR(x0)
|φ| np′/(1–ε)

n–p′/(1–ε) dx
) n–p′/(1–ε)

np′/(1–ε)

≤
(ˆ

BR(x0)
|f | np′/(1–ε)

(n+1)p′/(1–ε)–n dx
) (n+1)p′/(1–ε)–n

np′/(1–ε)
(ˆ

BR(x0)
|∇φ|p′/(1–ε) dx

)(1–ε)/p′

≤
(ˆ

BR(x0)
|f | np′/(1–ε)

(n+1)p′/(1–ε)–n dx
) (n+1)p′/(1–ε)–n

np′/(1–ε)

·
(ˆ

BR(x0)

∣∣E(η, v) + |η∇v|–εη∇v – H
∣∣p′/(1–ε) dx

)(1–ε)/p′

≤
(ˆ

BR(x0)
|f | np′/(1–ε)

(n+1)p′/(1–ε)–n dx
) (n+1)p′/(1–ε)–n

np′/(1–ε) · 21+ε 1 + ε

1 – ε

(ˆ
BR(x0)

|v∇η|p′ dx
)(1–ε)/p′

+ 2
(ˆ

BR(x0)
|f | np′/(1–ε)

(n+1)p′/(1–ε)–n dx
) (n+1)p′/(1–ε)–n

np′/(1–ε)
(ˆ

BR(x0)
|η∇v|p′ dx

)(1–ε)/p′

+ 2
(ˆ

BR(x0)
|f | np′/(1–ε)

(n+1)p′/(1–ε)–n dx
) (n+1)p′/(1–ε)–n

np′/(1–ε)
(ˆ

BR(x0)
|H|p′/(1–ε) dx

)(1–ε)/p′

= L1 + L2 + L3.
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Noting that p′ < p – ε, using Holder’s inequality and then Young’s inequality, we can find
that

L1 =
(ˆ

BR(x0)
|f | np′/(1–ε)

(n+1)p′/(1–ε)–n dx
) (n+1)p′/(1–ε)–n

np′/(1–ε) · 21+ε 1 + ε

1 – ε

(ˆ
BR(x0)

|v∇η|p′ dx
)(1–ε)/p′

≤ 21+ε 1 + ε

1 – ε

(ˆ
BR(x0)

|f | np′/(1–ε)
(n+1)p′/(1–ε)–n dx

) (n+1)p′/(1–ε)–n
np′/(1–ε)

· (αnRn)(1– p′
p–ε )( 1–ε

p′ )
(ˆ

BR(x0)
|v∇η|p–ε dx

) (1–ε)
p–ε

≤ 21+ε 1 + ε

1 – ε
ε‖f ‖

p–ε
p–1

L
np′/(1–ε)

(n+1)p′/(1–ε)–n

(
αnRn)1+ p–ε

n(p–1)

+ 21+ε 1 + ε

1 – ε
C(ε)

ˆ
BR(x0)

|v∇η|p–ε dx.

By Young’s inequality, we have

L2 = 2
(ˆ

BR(x0)
|f | np′/(1–ε)

(n+1)p′/(1–ε)–n dx
) (n+1)p′/(1–ε)–n

np′/(1–ε)
(ˆ

BR(x0)
|η∇v|p′ dx

)(1–ε)/p′

≤ 2‖f ‖
L

np′/(1–ε)
(n+1)p′/(1–ε)–n

(
αnRn)1+ 1

n – (n+p–ε)(1–ε)
n(p–ε)

×
( 

BR(x0)
|η∇v|p′ dx

)(1–ε)/p′(
αnRn) (n+1–ε)(1–ε)

n(p–ε) + (p–1)(1–ε)
n(p–ε)

≤ ε‖f ‖
p–ε
p–1

L
np′/(1–ε)

(n+1)p′/(1–ε)–n

(
αnRn)1+ ε(p–ε)

n(p–1)

+ C(ε)
( 

BR(x0)
|η∇v|p′ dx

) (p–ε)
p′ (

αnRn)1+ p–ε
n .

Using the estimate of H , Holder’s and Young’s inequalities, in turn, we have

L3 = 2
(ˆ

BR(x0)
|f | np′/(1–ε)

(n+1)p′/(1–ε)–n dx
) (n+1)p′/(1–ε)–n

np′/(1–ε)
(ˆ

BR(x0)
|H|p′/(1–ε) dx

)(1–ε)/p′

≤ 2
(ˆ

BR(x0)
|f | np′/(1–ε)

(n+1)p′/(1–ε)–n dx
) (n+1)p′/(1–ε)–n

np′/(1–ε)

· (αnRn)(1– p′
p–ε ) 1–ε

p′
(ˆ

BR(x0)
|H| p–ε

1–ε dx
) 1–ε

p–ε

≤ 2‖f ‖
L

np′/(1–ε)
(n+1)p′/(1–ε)–n

(
αnRn)1+ 1

n – (n+1–ε)(1–ε)
n(p–ε)

· (αnRn) (1–ε)2
n(p–ε) C(n, p)ε

(ˆ
BR(x0)

∣
∣∇(ηv)

∣
∣p–ε dx

) 1–ε
p–ε

≤ 22–ε‖f ‖
L

np′/(1–ε)
(n+1)p′/(1–ε)–n

(
αnRn)1+ 1

n – n(1–ε)
n(p–ε)
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· C(n, p)ε
[(ˆ

BR(x0)
|η∇v|p–ε dx

) 1–ε
p–ε

+
(ˆ

BR(x0)
|v∇η|p–ε dx

) 1–ε
p–ε

]

≤ 23–εC(n, p)ε‖f ‖
p–ε
p–1

L
np′/(1–ε)

(n+1)p′/(1–ε)–n

(
αnRn)1+ p–ε

n(p–1)

+ 22–εC(n, p)ε
[ˆ

BR(x0)
|η∇v|p–ε dx +

ˆ
BR(x0)

|v∇η|p–ε dx
]

.

From L1, L2, and L3, we can find that

I4 ≤ C14

ˆ
BR(x0)

|v∇η|p–ε dx + 22–εC(n, p)ε
ˆ

BR(x0)
|η∇v|p–ε dx

+ C(ε)
( 

BR(x0)
|η∇v|p′ dx

) (p–ε)
p′ (

αnRn)1+ p–ε
n

+ C15ε‖f ‖
p–ε
p–1

L
np′/(1–ε)

(n+1)p′/(1–ε)–n

(
αnRn),

with

C14 = 21+ε 1 + ε

1 – ε
C(ε) + 22–εC(n, p)ε,

C15 = 21+ε 1 + ε

1 – ε

(
αnRn) p–ε

n(p–1) +
(
αnRn) ε(p–ε)

n(p–1) + 23–εC(n, p)
(
αnRn) p–ε

n(p–1) .

From the estimates of I1, I2, I3 and I4, we have

β

ˆ
BR(x0)

η1–ε|∇v|p–ε dx

≤ ε
[
C6 + C9 + 2(p–1)αγ + 22–εC(n, p)

]ˆ
BR(x0)

η1–ε|∇v|p–ε dx

+ [C7ε + C10 + C14]
ˆ

BR(x0)
|v∇η|p–ε dx

+
[
C12 + C(ε)

]
( 

BR(x0)
|∇v|p′ dx

) 1
p′ (p–ε)(

αnRn)1+ p–ε
n

+ ε
[
C8 + C11 + C13 + C15‖f ‖

p–ε
p–1

L
np′/(1–ε)

(n+1)p′/(1–ε)–n

](
αnRn).

Choosing ε small enough such that it satisfies

β – ε
[
C6 + C9 + 2(p–1)αγ + 22–εC(n, p)

]
> 0 and 0 < ε < Rp,

and further letting the integral region of the left side in the former estimate formula is
BR/2(x0), then by Lemma 2.5, we can find that there exists an integral coefficient r > p – ε,
such that u ∈ W 1,r(�) and

ˆ
BR/2(x0)

|∇v|r dx ≤ C′
1

ˆ
BR(x0)

|v∇η|r dx + C′
2

ˆ
BR(x0)

Rp dx

+ C′
3

(
–
ˆ

BR(x0)
|∇v|p–ε dx

) r
p–ε (

αnRn)1+ r
n .
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Applying Lemma 2.5 to repeat the above derivation process over and over again, we can
finally complete the proof of Theorem 3.1. �

4 Decay estimate
In this section, our primary purpose is to establish the decay estimate. This is a critical
step for proving the regularization of very weak solutions to system (1.1). Here, we use
the p-harmonic approximation technique to establish the regularity result. Therefore, we
should verify the conditions of the p-harmonic approximation lemma first. That is,

Lemma 4.1 Suppose that u ∈ W 1,p–ε(�) is a very weak solution to system (1.1) under the
conditions (H1)-(H4), then for every x0 ∈ �, u0 ∈ RN , p0 ∈ RnN , 0 < ρ ≤ R ≤ 1, and arbitrary
φ ∈ C1

0(Bρ(x0), RN ) with supBρ (x0) |∇φ| ≤ 1, the integral inequality

∣∣
∣∣ρ

p–n
ˆ

Bρ (x0)
|∇v|p–2∇v · ∇φ dx

∣∣
∣∣ ≤ αnρ

p[C19�
(
x0,ρ, (∇u)xo ,ρ

)
+ C18

] · sup
Bρ (x0)

|∇φ|,

holds for v = u – u0 – p0(x – x0) and

�
(
x0,ρ, (∇u)xo ,ρ

)
=
 

Bρ (x0)
|∇v|p dx.

Proof By Theorem 3.1, we can find that u ∈ W 1,p(�).
Let Bρ(x0) ⊂ BR(x0) be an arbitrary ball, by the definition of very weak solutions to the

system (1.1), we can find that

ˆ
Bρ (x0)

[
A(x, u,∇u) – A(x, u, p0)

] · ∇φ dx

=
ˆ

Bρ (x0)
f (x) · φ dx –

ˆ
Bρ (x0)

|∇u|p–2∇u · ∇φ dx –
ˆ

Bρ (x0)
A(x, u, p0) · ∇φ dx.

By the condition (H2), we can deduce that

β

ˆ
Bρ (x0)

|∇u – p0|p–2(∇u – p0) · ∇φ dx

≤ β

ˆ
Bρ (x0)

(|∇u| + |p0|
)p–2(∇u – p0) · ∇φ dx

≤
ˆ

Bρ (x0)

[
A(x, u,∇u) – A(x, u, p0)

] · ∇φ dx.

Combining the above two equations, we can obtain that,

β

ˆ
Bρ (x0)

|∇u – p0|p–2(∇u – p0) · ∇φ dx ≤ L41 + L42 + L43,

where

L41 =
ˆ

Bρ (x0)
f (x) · φ dx,
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L42 = –
ˆ

Bρ (x0)
|∇u|p–2∇u · ∇φ dx,

L43 = –
ˆ

Bρ (x0)
A(x, u, p0) · ∇φ dx.

For φ ∈ C1
0(Bρ(x0), RN ), by Holder’s inequality and then Sobolev’s inequality, we can es-

timate that

L41 ≤
(ˆ

Bρ (x0)

∣
∣f (x)

∣
∣

n(p–ε)
n(p–1)+(p–ε) dx

) n(p–1)+(p–ε)
n(p–ε)

(ˆ
Bρ (x0)

|φ| n(p–ε)
n(1–ε)–(p–ε)

) n(1–ε)–(p–ε)
n(p–ε)

≤
(ˆ

Bρ (x0)

∣
∣f (x)

∣
∣

n(p–ε)
n(p–1)+(p–ε) dx

) n(p–1)+(p–ε)
n(p–ε)

(ˆ
Bρ (x0)

|∇φ| p–ε
1–ε dx

) 1–ε
p–ε

≤ sup
Bρ (x0)

|∇φ| · ‖f ‖
L

n(p–ε)
n(p–1)+(p–ε)

(
αnρ

n) n+1
n .

Using Holder’s inequality and Young’s inequality again, yields that

L42 ≤ sup
Bρ (x0)

|∇φ|
ˆ

Bρ (x0)
|∇u|p–1 dx

≤ sup
Bρ (x0)

|∇φ| · 2p–1
[ˆ

Bρ (x0)
|∇u – p0|p–1 dx +

ˆ
Bρ (x0)

|p0|p–1 dx
]

≤ sup
Bρ (x0)

|∇φ| · 2p–1
[(ˆ

Bρ (x0)
|∇u – p0|p dx

) p–1
p

(ˆ
Bρ (x0)

dx
) 1

p
+ |p0|p–1αnρ

n
]

≤ sup
Bρ (x0)

|∇φ| · 2p–1
[( 

Bρ (x0)
|∇u – p0|p dx

)
+

(|p0|p–1 + 1
)
]
αnρ

n.

Finally, by the condition (H3), we find that

L43 ≤ sup
Bρ (x0)

|∇φ|
ˆ

Bρ (x0)

∣∣A(x, u, p0)
∣∣dx

≤ sup
Bρ (x0)

|∇φ|
ˆ

Bρ (x0)
γ
[|p0|p–1 + |u|(p–1)α + ϕ(x)

]
dx

≤ γ sup
Bρ (x0)

|∇φ|
[
(|p0|p–1 + 2(p–1)α(|u0|(p–1)α + |p0|(p–1)α)

+
∥∥ϕ(x)

∥∥
L1

)
αnρ

n

+
ˆ

Bρ (x0)

∣∣u – u0 – p0(x – x0)
∣∣(p–1)α dx

]
.

If 0 < α ≤ 1, by Holder’s inequality, Young’s inequality, and Poincare’s inequality, in turn,
we have

ˆ
Bρ (x0)

∣
∣u – u0 – p0(x – x0)

∣
∣(p–1)α dx

≤
(ˆ

Bρ (x0)

∣∣u – u0 – p0(x – x0)
∣∣p dx

) (p–1)α
p

(ˆ
Bρ (x0)

dx
)1– (p–1)α

p
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≤
ˆ

Bρ (x0)

∣∣u – u0 – p0(x – x0)
∣∣p dx +

ˆ
Bρ (x0)

dx

≤
ˆ

Bρ (x0)
|∇u – p0|p dx +

ˆ
Bρ (x0)

dx =
[ 

Bρ (x0)
|∇u – p0|p dx + 1

]
αnρ

n.

Furthermore, in the case of 1 < α < n
n–(p–1) , using Holder’s inequality, Young’s inequality,

and then Sobolev’s inequality, we can derive that

ˆ
Bρ (x0)

∣∣u – u0 – p0(x – x0)
∣∣(p–1)α dx

≤
(ˆ

Bρ (x0)

∣∣u – u0 – p0(x – x0)
∣∣

n(p–1)
n–(p–1) dx

) n–(p–1)α
n

(ˆ
Bρ (x0)

dx
)1– n–(p–1)α

n

≤
ˆ

Bρ (x0)

∣
∣u – u0 – p0(x – x0)

∣
∣

n(p–1)
n–(p–1) dx +

ˆ
Bρ (x0)

dx

≤
(ˆ

Bρ (x0)
|∇u – p0|p–1 dx

) n
n–(p–1)

+
ˆ

Bρ (x0)
dx

≤
(ˆ

Bρ (x0)
|∇u – p0|p dx

) n(p–1)
p[n–(p–1)]

(ˆ
Bρ (x0)

dx
) n

p[n–(p–1)]
+
ˆ

Bρ (x0)
dx

≤
(ˆ

Bρ (x0)
|∇u – p0|p dx

) n
n–(p–1)

+
(ˆ

Bρ (x0)
dx

) n
n–(p–1)

+
ˆ

Bρ (x0)
dx

≤ αnρ
n
[

C
(‖v‖W 1,p

) 
Bρ (x0)

|∇u – p0|p dx +
((

αnρ
n) p–1

n–(p–1) + 1
)
]

.

Combining the estimates of both the case of 0 < α ≤ 1 and the case of 1 < α < n
n–(p–1) for´

Bρ (x0) |u – u0 – p0(x – x0)|(p–1)α dx, we can find that

L43 ≤ γαnρ
n sup

Bρ (x0)
|∇φ|

[
|p0|p–1 + 2(p–1)α(|u0|(p–1)α + |p0|(p–1)α)

+
∥
∥ϕ(x)

∥
∥

L1

+ max
{

C
(‖v‖W 1,p

)
, 1

} 
Bρ (x0)

|∇u – p0|p dx +
(
αnρ

n) p–1
n–(p–1) + 1

]

≤ αnρ
n sup

Bρ (x0)
|∇φ|

[
C16 + C17

 
Bρ (x0)

|∇u – p0|p dx
]

,

where

C16 = γ
[|p0|p–1 + 2(p–1)α(|u0|(p–1)α + |p0|(p–1)α)

+
∥∥ϕ(x)

∥∥
L1 +

(
αnρ

n) p–1
n–(p–1) + 1

]
,

C17 = γ max
{

C
(‖v‖W 1,p

)
, 1

}
.

Now, from the estimates of L41, L42 and L43 we have that
ˆ

Bρ (x0)
|∇u – p0|p–2(∇u – p0) · ∇φ dx

≤ αnρ
n sup

Bρ (x0)
|∇φ| · 1

β

[
(
αnρ

n) 1
n ‖f ‖

L
n(p–ε)

n(p–1)+(p–ε)
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+
(
2p–1 + C17

) 
Bρ (x0)

|∇u – p0|p dx + 2p–1(|p0|p–1 + 1
)

+ C16

]

≤ αnρ
n sup

Bρ (x0)
|∇φ|

[
C18 + C19

 
Bρ (x0)

|∇u – p0|p dx
]

,

with

C18 =
1
β

[(
αnρ

n) 1
n ‖f ‖

L
n(p–ε)

n(p–1)+(p–ε)
+ 2p–1(|p0|p–1 + 1

)
+ C16

]
,

C19 =
1
β

[
2p–1 + C17

]
.

Let

�
(
x0,ρ, (∇u)x0,ρ

)
=
 

Bρ (x0)
|∇u – p0|p dx =

 
Bρ (x0)

|∇v|p dx,

then,
ˆ

Bρ (x0)
|∇u – p0|p–2(∇u – p0) · ∇φ dx ≤ αnρ

n[C18 + C19�
(
x0,ρ, (∇u)x0,ρ

)]
sup

Bρ (x0)
|∇φ|.

The proof of Lemma 4.1 is complete. �

Lemma 4.2 Assume that u ∈ W 1,p–ε(�) is a very weak solution to the system (1.1) under
the conditions (H1)-(H3), then there exists a constant δ = δ(n, N , p) > 0 such that for 0 < ρ <
R ≤ 1, the smallness condition

�
(
x0,ρ, (∇u)x0,ρ

) ≤
(

δ

2

)p

holds, then for 0 < θ < 1
4 , the decay estimate

�
(
x0, θρ, (∇u)x0,θρ

) ≤ θp[C20�
(
x0,ρ, (∇u)x0,ρ

)
+ C21ρ

p],

holds.

Proof To prove the decay estimate, we should use the Caccioppoli second inequality.
Now, taking u0 = ux0,2θρ and p0 = p0 + μ∇h(x0) in Theorem 3.1, we can obtain that

ˆ
Bθρ (x0)

|∇u – (p0 + μ∇h(x0)|p dx

≤ C̃1

ˆ
B2θρ (x0)

|u – ux0,2θρ – (p0 + μ∇h(x0))(x – x0)|p
(2θρ)p dx + C̃2

ˆ
B2θρ (x0)

(2θρ)p dx

+ C̃3(
 

Bθρ (x0)
|∇u –

(
p0 + μ∇h(x0)|p–ε dx

) p
p–ε

(
αn(2θρ)n)1+ p

n , (4.1)

where

μ =
[
ρpα

p
p–1
n

(
C

p
p–1

19 �
(
x0,ρ, (∇u)x0,ρ

)
+

(
2
δ

C18

) p
p–1

)] 1
p

.



Chen and Tan Journal of Inequalities and Applications         (2023) 2023:33 Page 22 of 27

For establishing a decay estimate, the main aim now is to control the first term in the
right-hand side of (4.1).

Thus, for the corresponding constant δ ∈ (0, 1] in the p-harmonic mapping Lemma 2.1,
we suppose that

w(x) =
u – ux0,ρ – p0(x – x0)

μ

=
u – ux0,ρ – p0(x – x0)

[ρpα
p

p–1
n (C

p
p–1

19 �(x0,ρ, (∇u)x0,ρ) + ( 2
δ
C18)

p
p–1 )]

1
p

.

By Lemma 2.1, we can find that for arbitrary φ ∈ C1
0(Bρ(x0), RN ), that

∣
∣∣
∣ρ

p–n
ˆ

Bρ (x0)
|∇w|p–2∇w · ∇φ dx

∣
∣∣
∣

≤
ρp–n ´

Bρ (x0) |∇u – p0|p–2(∇u – p0) · ∇φ dx

[ρpα
p

p–1
n (C

p
p–1

19 �(x0,ρ, (∇u)x0,ρ) + ( 2
δ
C18)

p
p–1 )]

p–1
p

≤ ρp[C18 + C19�(x0,ρ, (∇u)x0,ρ)]

[ρp(C
p

p–1
19 �(x0,ρ, (∇u)x0,ρ) + ( 2

δ
C18)

p
p–1 )]

p–1
p

· sup
Bρ (x0)

|∇φ|

≤ ρ

[
δ

2
+ �

1
p
(
x0,ρ, (∇u)x0,ρ

)] · sup
Bρ (x0)

|∇φ|.

Assume that the smallness condition

�
1
p (x0,ρ, p0) ≤ δ

2

holds, then we can compute that

∣
∣∣
∣ρ

p–n
ˆ

Bρ (x0)
|∇w|p–2∇w · ∇φ dx

∣
∣∣
∣ ≤ ρδ · sup

Bρ (x0)
|∇φ|

and

ρp–n
ˆ

Bρ (x0)
|∇w|p dx ≤

ρp–n ´
Bρ (x0) |∇u – p0|p dx

ρpα
p

p–1
n [C

p
p–1

19 �(x0,ρ, (∇u)x0,ρ) + ( 2
δ
C18)

p
p–1 ]

≤ ρpαn�(x0,ρ, (∇u)x0,ρ)

ρpC
p

p–1
19 α

p
p–1
n �(x0,ρ, (∇u)x0,ρ)

≤ 1

C
p

p–1
19 α

1
p–1
n

< 1.

Note that

∣
∣∣
∣ρ

p–n
ˆ

Bρ (x0)
|∇w|p–2∇w · ∇φ dx

∣
∣∣
∣ ≤ ρδ · sup

Bρ (x0)
|∇φ|
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and

ρp–n
ˆ

Bρ (x0)
|∇w|p dx < 1

are exactly the two conditions required in the p-harmonic approximation lemma. There-
fore, we can apply Lemma 2.1 to find that: there exists a p-harmonic approximation func-
tion h ∈ W 1,p(Bρ(x0), RN ) such that the following smallness conditions hold,

ρp–n
ˆ

Bρ (x0)
|∇h|p dx ≤ 1

and

ρ–n
ˆ

Bρ (x0)
|w – h|p dx ≤ εp,

where δ = δ(n, N , p, ε) ∈ (0, 1) is the corresponding function required in Lemma 2.1.
With these two smallness conditions, we can estimate the first term on the right-hand

side of the equation (4.1). First, note that the mean of u(x) – (p0 + μ∇h(x0))(x – x0) over
B2θρ(x0) is ux0,2θρ , and by the minimality theorem of the mean value, we can deduce that

(2θρ)–n–p
ˆ

B2θρ (x0)

∣
∣u – ux0,2θρ –

(
p0 + μ∇h(x0)

)
(x – x0)

∣
∣p dx

≤ (2θρ)–n–p
ˆ

B2θρ (x0)

∣∣u – ux0,ρ – p0(x – x0) – μ
[
h(x0) + ∇h(x0)(x – x0)

]∣∣p dx

= (2θρ)–n–pμp
ˆ

B2θρ (x0)

∣∣w(x) – h(x0) – ∇h(x0)(x – x0)
∣∣p dx

≤ 2p(2θρ)–n–pμp
ˆ

B2θρ (x0)

[∣∣w(x) – h(x)
∣
∣p +

∣
∣h(x) – h(x0) – ∇h(x0)(x – x0)

∣
∣p]dx

≤ 2p(2θρ)–pμp
[

(2θρ)–n
ˆ

B2θρ (x0)

∣∣w(x) – h(x)
∣∣p dx

+ sup
B2θρ (x0)

∣∣h(x) – h(x0) – ∇h(x0)(x – x0)
∣∣p

]
. (4.2)

According to the properties of the function w(x) and the p-harmonic approximation
function h(x), it can be obtained that

(2θρ)–n
ˆ

B2θρ (x0)

∣
∣w(x) – h(x)

∣
∣p dx ≤ εp

and

sup
B2θρ (x0)

∣∣h(x) – h(x0) – ∇h(x0)(x – x0)
∣∣p

= sup
B2θρ (x0)

∣
∣∣∣
h(x) – h(x0)

x – x0
(x – x0) – ∇h(x0)(x – x0)

∣
∣∣∣

p
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≤ (2θρ)p sup
B2θρ (x0)

∣∣∇h(x) – ∇h(x0)
∣∣p

≤ (2θρ)2p sup
B2θρ (x0)

∣
∣∇2h(x)

∣
∣p

≤ (2θρ)2p sup
B ρ

2
(x0)

∣∣∇2h(x)
∣∣p

= (2θ )2pρ2p sup
B ρ

2
(x0)

∣∣∇2h(x)
∣∣p

≤ (2θ )2pC0ρ
p–n

ˆ
Bρ (x0)

|∇h|p dx

≤ C0(2θ )2p, (4.3)

here we have used Lemma 2.2.
Substituting the above two estimates into the inequality (4.2), we can obtain

(2θρ)–n–p
ˆ

B2θρ (x0)

∣
∣u – ux0,2θρ –

(
p0 + μ∇h(x0)

)
(x – x0)

∣
∣p dx

≤ 2p(2θρ)–pμp[εp + C0(2θ )2p]

≤ 2p(2θρ)–p
[
ρpα

p
p–1
n

(
C

p
p–1

19 �
(
x0,ρ, (∇u)x0,ρ

)
+

(
2
δ

C18

) p
p–1

)][
εp + C0(2θ )2p]

= α
p

p–1
n

[
C

p
p–1

19 �
(
x0,ρ, (∇u)x0,ρ

)
+

(
2
δ

C18

) p
p–1

][
θ–pεp + C022pθp]. (4.4)

Taking the estimate (4.4) into Theorem 3.1 with u0 = ux0,2θρ and p0 = p0 + μ∇h(x0), we
can find that

(2θρ)–n
ˆ

Bθρ (x0)
|∇u – (p0 + μ∇h(x0)|p dx

≤ C̃1α
p

p–1
n

[
C

p
p–1

19 �
(
x0,ρ, (∇u)x0,ρ

)
+

(
2
δ

C18

) p
p–1

]
[
θ–pεp + C022pθp]

+ C̃2(2θρ)–n
ˆ

B2θρ (x0)
(2θρ)p dx

+ C̃3(
 

Bθρ (x0)
|∇u –

(
p0 + μ∇h(x0)|p–ε dx

) p
p–ε (αn)1+ p

n (2θρ)p. (4.5)

Then, we use the minimality principle of the mean value, and letting p0 = (∇u)x0,θρ , to-
gether with ε = θ2p, yields

�
(
x0, θρ, (∇u)x0,θρ

)

= α–1
n (θρ)–n

ˆ
Bθρ (x0)

∣
∣∇u – (∇u)x0,θρ

∣
∣p dx

≤ α–1
n (θρ)–n

ˆ
Bθρ (x0)

|∇u – (p0 + μ∇h(x0)|p dx
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≤ C̃12nα
1

p–1
n

[
C

p
p–1

19 �
(
x0,ρ, (∇u)x0,ρ

)
+

(
2
δ

C18

) p
p–1

][
1 + C022p]θp

+ C̃22n+p(θρ)p

+ C̃32n+p(
 

Bθρ (x0)
|∇u –

(
p0 + μ∇h(x0)|p–ε dx

) p
p–ε (αn)

p
n (θρ)p

≤ θp[C20�
(
x0,ρ, (∇u)x0,ρ

)
+ C21ρ

p], (4.6)

with

C20 = 2nC̃1C
p

p–1
19 α

p
p–1
n

[
1 + C022p],

C21 = 2nC̃1α
p

p–1
n

(
2
δ

C18

) p
p–1 [

1 + C022p] + C̃22n+p + C̃32n+p‖u‖p
W 1,p–ε (αn)

p
n .

Noting that θ ∈ (0, 1
4 ), and letting p0 = (∇u)x0,θρ , we have

�
(
x0, θρ, (∇u)x0,θρ

) ≤ θp[C20�
(
x0,ρ, (∇u)x0,ρ

)
+ C21ρ

p].

The proof of Lemma 4.2 completed. �

5 Proof of the main results
The main purpose of this section is to establish the desired partial regularity, by the
method of standard iteration.

Proof of Theorem 1.1 To obtain the result of Theorem 1.1, we have proved Caccioppolli’s
second inequality and the decay estimate already. Finally, we should iterate the decay es-
timate. That is, we should show that for ∀j ∈ N , there holds

�
(
x0, θ jρ, (∇u)x0,θ jρ

) ≤ θ jp[C20�
(
x0,ρ, (∇u)x0,ρ

)
+ C21ρ

p].

Now, we take a constant t0 = t0(n, N , p, ε) > 0 such that

t0 ≤
(

δ

2

)p

, (5.1)

and choose ρ0 > 0 small enough, such that

C21
1 – Cj+1

20
1 – C20

ρ
p
0 <

1
2

t0. (5.2)

Then, for ρ ∈ (0,ρ0], from Lemma 4.2, we have

�
(
x0, θρ, (∇u)x0,θρ

) ≤ θp[C20�
(
x0,ρ, (∇u)x0,ρ

)
+ C21ρ

p].

In fact, if we can ensure that for j ∈ N , the inequality

�
(
x0, θ jρ, (∇u)x0,θ jρ

) ≤ t0
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holds. Then, the conclusion

�
(
x0, θ j+1ρ, (∇u)x0,θ j+1ρ

) ≤ θp[C20�
(
x0, θ jρ, (∇u)x0,θ jρ

)
+ C21

(
θ jρ

)p]

is satisfied.
Let us iterate this procedure now. Assuming that the iterative formula is valid for j =

0, 1, 2, . . . , j – 1, then

�
(
x0, θ jρ, (∇u)x0,θ jρ

)

≤ θp[C20�
(
x0, θ j–1ρ, (∇u)x0,θ j–1ρ

)
+ C21

(
θ j–1ρ

)p]

≤ C20θ
p[θp(C20�

(
x0, θ j–2ρ, (∇u)x0,θ j–2ρ

)
+ C21

(
θ j–2ρ

)p)] + C21
(
θ jρ

)p

= C2
20θ

2p�
(
x0, θ j–2ρ, (∇u)x0,θ j–2ρ

)
+ C21

(
θ jρ

)p[1 + C20]

≤ C3
20θ

3p�
(
x0, θ j–3ρ, (∇u)x0,θ j–3ρ

)
+ C21

(
θ jρ

)p[1 + C20 + C2
20

]

≤ · · ·
≤ Cj

20θ
jp�

(
x0,ρ, (∇u)x0,ρ

)
+ C21

(
θ jρ

)p[1 + C20 + C2
20 + · · · + Cj

20
]

= θ jp
[

Cj
20�

(
x0,ρ, (∇u)x0,ρ

)
+ C21

1 – Cj+1
20

1 – C20
ρ

]
≤ θ jpt0.

Now, we complete the whole iterative process.
Finally, according to the Holder continuous theorem, we can find that, if �(x0,ρ,

(∇u)x0,ρ) ≤ ( δ
2 )p and C21

1–Cj+1
20

1–C20
ρp ≤ t0

2 , then, the very weak solution u ∈ W 1,p–ε(�) of the
system (1.1) satisfies the result of Theorem 1.1. That is, u ∈ C1,1(��0).

The proof of Theorem 1.1 completed. �

6 Conclusion
In this paper, we mainly consider the partial regularity result of a class of the nonlinear
elliptic system (1.1). The inhomogeneous term is made up of two terms, the general func-
tion f (x) and the p-Laplace-type divergence function div(|∇u|p–2∇u). First, using Hodge
decomposition, we find the relation between the very weak solution and the classical weak
solution. That is, the very weak solution of the system (1.1) in fact is a classical weak so-
lution of the system (1.1). Then, by the p-harmonic approximation technique, we obtain
the partial regularity theory of the very weak solution of the system (1.1). In particular, the
partial regularity result we obtained is optimal.
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