
Optimal Path Planning under Temporal Logic Constraints

Stephen L. Smith Jana Tůmová Calin Belta Daniela Rus

Abstract— In this paper we present a method for auto-
matically generating optimal robot trajectories satisfying high
level mission specifications. The motion of the robot in the
environment is modeled as a weighted transition system. The
mission is specified by a general linear temporal logic formula.
In addition, we require that an optimizing proposition must
be repeatedly satisfied. The cost function that we seek to
minimize is the maximum time between satisfying instances of
the optimizing proposition. For every environment model, and
for every formula, our method computes a robot trajectory
which minimizes the cost function. The problem is motivated
by robotic monitoring and data gathering. In this setting, the
optimizing proposition is satisfied at locations where data can
be uploaded, and the formula specifies a an infinite horizon
data collection mission. Our method utilizes Büchi automata to
produce an automaton (which can be thought of as a graph)
whose runs satisfy the temporal logic formula. We then present
a graph algorithm which computes a path corresponding to the
optimal robot trajectory. We also present an implementation for
a robot performing a data gathering mission.

I. INTRODUCTION

The goal of this paper is to plan the optimal motion of
a robot subject to temporal logic constraints. This is an
important problem in many applications where the robot
has to perform a sequence of operations subject to external
constraints. For example, in a persistent data gathering task
the robot is tasked to gather data at several locations and
then visit a different set of upload sites to transmit the data.
Referring to Fig. 1, we would like to enable tasks such as
“Repeatedly gather data at locations P1, P4, and P5. Upload
data at either P2 or P3 after each data-gather. Follow the
road rules, and avoid the road connecting I4 to I2.” We
wish to determine robot motion that completes the task,
and minimizes a cost function, such as the maximum time
between data uploads.

Recently there has been an increased interest in using
temporal logic to specify mission plans for robots [1], [2],
[3], [4], [5], [6]. Temporal logic is appealing because it
provides a formal high level language in which to describe a
complex mission. In addition, tools from model checking [7],
[8], [9] can be used to verify the existence of a robot
trajectory satisfying the specification, and can produce a
satisfying trajectory. However, frequently there are multiple
robot trajectories that satisfy a given specification. In this

This material is based upon work supported in part by ONR-MURI Award
N00014-09-1-1051 and ARO Award W911NF-09-1-0088.

S. L. Smith and D. Rus are with the Computer Science and Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
MA 02139 (slsmith@mit.edu; rus@csail.mit.edu). J. Tůmová
and C. Belta are with the Department of Mechanical Engineering, Boston
University, Boston, MA 02215 (tumova@bu.edu;cbelta@bu.edu). J.
Tůmová is also affiliated with Faculty of Informatics, Masaryk University,
Brno, Czech Republic.

Fig. 1. An environment consisting of roads, intersections and parking
lots. An example mission in the environment is “Repeatedly gather data at
locations P1, P4, and P5. Upload data at either P2 or P3 after each data-
gather. Follow the road rules, and avoid the road connecting I4 to I2.”

case, one would like to choose the “optimal” trajectory
according to a cost function. The current tools from model
checking do not provide a method for doing this. In this
paper we consider linear temporal logic specifications, and
a particular form of cost function, and provide a method for
computing optimal trajectories.

The problem considered in this paper is related to vehicle
routing [10], where the goal is to plan routes for vehicles
to service customers. In [11], the authors consider a vehicle
routing problem with metric temporal logic constraints. The
goal is to minimize a cost function of the vehicle paths (such
as total distance traveled). The authors present a method for
computing an optimal solution by converting the problem to
a mixed integer linear program (MILP). The method applies
for specifications where the temporal operators are applied
only to atomic propositions. Thus, the method does not
apply to persistent monitoring and data gathering problems,
which have specifications of the form “always eventually.”
In addition, the approach that we present in this paper leads
to an optimization problem on a graph, rather than a MILP.

The contribution of this paper is to present a cost function
for which we can determine an optimal robot trajectory that
satisfies a general linear temporal logic formula. The cost
function is motivated by problems in monitoring and data
gathering, and it seeks to minimize the time between satisfy-
ing instances of a single optimizing proposition. Our solution,
summarized in the OPTIMAL-RUN algorithm of Section IV,
operates as follows. We represent the robot and environment
as a weighted transition system. Then, we convert the lin-
ear temporal logic specification to a Büchi automaton. We
synchronize the transition system with the Büchi automaton
creating a product automaton. In this automaton a satisfying
run is any run which visits a set of accepting states infinitely
often. We show that there exists an optimal run that is in

5

3

5
10

7 8

q1

q3q2

q0

Π = {recharge, gather, upload}

L(q0) = ∅

L(q2) = {gather}

L(q1) = {upload}

L(q3) = {upload, recharge}

Fig. 2. An example of a weighted transition system. A correct run
of the system is for instance q0q2q1q0q2q3q0 . . ., producing the word
∅{gather}{upload}∅{gather}{upload,recharge}∅

“prefix-suffix” structure, implying that we can search for runs
with a finite transient, followed by a periodic steady-state.
Thus, we create a polynomial time graph algorithm based
on solutions of bottleneck shortest path problems to find an
optimal cycle containing an accepting state. We implement
our solution on the physical testbed shown in Fig. 1.

For simplicity of the presentation, we assume that the
robot moves among the vertices of an environment modeled
as a graph. However, by using feedback controllers for
facet reachability and invariance in polytopes [12], [13]
the method developed in this paper can be easily applied
for motion planning and control of a robot with “realistic”
continuous dynamics (e.g., unicycle) traversing an environ-
ment partitioned using popular partitioning schemes such as
triangulations and rectangular partitions.

Due to page constraints we omit all proofs of all results.
An extended version of this paper, which includes all proofs,
can be found in [14].

II. PRELIMINARIES

In this section we briefly review some aspects of linear
temporal logic (LTL). LTL considers a finite set of variables
Π, called atomic propositions, each of which can be either
true or false. Propositions can capture properties such as “the
robot is located in region 1”, or “the robot is recharging.”

Given a system model, LTL allows us to express the time
evolution of the state of the system. We consider a type of
finite model called the weighted transition system.

Definition II.1 (Weighted Transition System). A weighted
transition system is a tuple T := (Q, q0, R,Π,L, w), con-
sisting of (i) a finite set of states Q; (ii) an initial state
q0 ∈ Q; (iii) a transition relation R ⊆ Q×Q; (iv) a set of
atomic propositions Π; (v) a labeling function L : Q→ 2Π;
(vi) a weight function w : R→ R>0.

We assume that the transition system is non-blocking,
implying that there is a transition from each state. The
transition relation has the expected definition: given that the
system is in state q1 ∈ Q at time t1, the system is in state
q2 at time t1 + w

(
(q1, q2)) if and only if (q1, q2) ∈ R. The

labeling function defines for each state q ∈ Q, the set L(q)
of all atomic propositions valid in q.

For our transition system we can define a run rT to be
an infinite sequence of states q0q1q2 . . . such that q0 ∈ Q0,
qi ∈ Q, for all i, and (qi, qi+1) ∈ R, for all i. A run rT
defines a word L(q0)L(q1)L(q2) . . . consisting of sets of
atomic propositions valid at each state. An example of a
weighted transition system is given in Fig. 2.

Definition II.2 (Formula of LTL). An LTL formula φ over
the atomic propositions Π is defined inductively as follows:

φ ::= > | α | φ ∨ φ | ¬φ | Xφ | φU φ

where > is a predicate true in each state of a system,
α ∈ Π is an atomic proposition, ¬ (negation) and ∨
(disjunction) are standard Boolean connectives, and X and
U are temporal operators.

LTL formulas are interpreted over infinite runs (generated
by the transition system T from Def. II.1). Informally, Xα
states that at the next state of a run, proposition α is true (i.e.,
α ∈ L(q1)). In contrast, α1 U α2 states that there is a future
moment when proposition α2 is true, and proposition α1 is
true at least until α2 is true. From these temporal operators
we can construct two other useful operators Eventually (i.e.,
future), F defined as Fφ := >U φ, and Always (i.e.,
globally), G, defined as Gφ := ¬F¬φ. The formula Gα
states that proposition α holds at all states of the run, and
Fα states that α holds at some future time instance.

An LTL formula can be represented in an automata-
theoretic setting as Büchi automaton, defined as follows:
Definition II.3 (Büchi Automaton). A Büchi automaton is
a tuple B := (S, S0,Σ, δ, F), consisting of (i) a finite set of
states S; (ii) a set of initial states S0 ⊆ S; (iii) an input
alphabet Σ; (iv) a non-deterministic transition relation δ ⊆
S × Σ× S; (v) a set of accepting (final) states F ⊆ S.

The semantics of Büchi automata are defined over infinite
input words. Setting the input alphabet Σ = 2Π, the seman-
tics are defined over the words consisting of sets of atomic
propositions, i.e. those produced by a run of the transition
system. Let ω = ω0ω1ω2 . . . be an infinite input word of
automaton B, where ωi ∈ Σ for each i ∈ N (for example, the
input ω = L(q0)L(q1)L(q2) . . . could be a word produced
by a run q0q1q2 . . . of the transition system T).

A run of the Büchi automaton over an input word ω =
ω0ω1ω2 . . . is a sequence rB = s0s1s2 . . ., such that s0 ∈ S0,
and (si, ωi, si+1) ∈ δ, for all i ∈ N.
Definition II.4 (Büchi Acceptance). A word ω is accepted
by the Büchi automaton B if and only if there exists rB over
ω so that inf(rB)∩F 6= ∅, where inf(rB) denotes the set of
states appearing infinitely often in run rB.

For any LTL formula φ over a set of atomic propositions
Π, there exists a Büchi automaton Bφ with input alphabet
2Π accepting all and only the infinite words satisfying
formula φ [7]. Efficient translation implementations have
been developed in [15], [16]. The size of the obtained Büchi
automaton is, in general, exponential with respect to the size
of the formula. However, the exponential complexity is in
practice not restrictive as the LTL formulas are typically quite
small. An example of a Büchi automaton is given in Figure 3.

III. PROBLEM STATEMENT AND APPROACH

Consider a single robot in an environment represented
as a transition system (as defined in Section II) T =
(Q, q0, R,Π,L, w). A run in the transition system starting
at q0 defines a corresponding trajectory of the robot in the

>
>

gather ∧ upload

>

gather

gather ∧ upload

upload
s0 gather

s2s1

Π = {recharge, gather, upload}

Fig. 3. A Büchi automaton corresponding to LTL formula (GF gather∧
GFupload) over the alphabet Π. The illustration of the automaton is
simplified. In fact, each transition labeled with > represents |2Π| transitions
labeled with all different subsets of atomic propositions. Similarly, a
transition labeled with gather represent |2Π|/2 transitions labeled with
all subsets of atomic propositions containing the proposition gather, etc.

environment. The time to take transition (q1, q2) ∈ R (i.e.,
the time for the robot to travel from q1 to q2) is w(q1, q2).

To define our problem, we assume that there is an atomic
proposition π ∈ Π, called the optimizing proposition. We
consider LTL formulas of the form

φ := ϕ ∧GFπ, (1)

where ϕ can be any LTL formula over Π, and GFπ specifies
that the proposition π must be satisfied infinitely often, and
will simply ensure well-posedness of our optimization.

Let each run of T start at time t = 0, and assume that
there is at least one run satisfying LTL formula (1). For
each satisfying run rT = q0q1q2 . . ., there is a corresponding
word of sets of atomic propositions ω = ω0ω1ω2 . . ., where
ωi = L(qi). Associated with rT there is a sequence of time
instances T := t0, t1, t2, . . ., where t0 = 0, and ti denotes
the time at which state qi is reached (ti+1 = ti+w(qi, qi+1)).
From this time sequence we can extract all time instances at
which the proposition π is satisfied. We let Tπ denote the
sequence of satisfying instances of the proposition π.

Our goal is to synthesize a run rT (or robot trajectory)
satisfying LTL formula (1), and minimizing the cost function

C(rT) = lim sup
i→+∞

(Tπ(i+ 1)− Tπ(i)) , (2)

where Tπ(i) is the ith satisfying time instance of proposition
π. Note that a finite cost in (2) enforces that GFπ is
satisfied. Thus, the specification appears in φ merely to
ensure that any satisfying run has finite cost.
Problem III.1. Determine an algorithm that takes as input
a weighted transition system T , an LTL formula φ in form
(1), and an optimizing proposition π, and outputs a run rT
minimizing the cost C(rT) in (2).
Remarks III.2 (Comments on problem statement). Cost
function form: The transition system produces infinite runs.
Thus, cost function (2) evaluates the steady-state time be-
tween satisfying instances of π. In the upcoming sections we
design an algorithm that produces runs which reach steady-
state in finite time. Thus, the runs produced will achieve the
cost in (2) in finite time.

Expressivity of LTL formula (1): The LTL formula ϕ in
(1) allows us to specify various rich robot motion require-
ments. Some examples are global absence (G¬ψ, globally
keep avoiding ψ), response (G (ψ1 ⇒ Fψ2), whenever ψ1

holds true, ψ2 will happen in future), reactivity (GFψ1 ⇒

GFψ2, if ψ1 holds in future for any time point, ψ2 has to
happen in future for any time point as well), and sequencing
(ψ1 U ψ2 U ψ3, ψ1 holds until ψ2 happens, which holds until
ψ3 happens). For concrete examples, see Section V. �

IV. PROBLEM SOLUTION

In this section we describe our solution to Problem III.1
which applies ideas from automata-theoretic model checking.

A. The Product Automaton

Consider the weighted transition system T , and a propo-
sition π ∈ Π. In addition, consider an LTL formula φ =
ϕ ∧ GFπ over Π in form (1), translated into a Büchi
automaton Bφ. We now define a new object, which we call
the product automaton.
Definition IV.1 (Product Automaton). The product automa-
ton P = T × Bφ between the transition system T and
the Büchi automaton Bφ is defined as the tuple P :=
(SP , SP,0, δP , FP , wP , SP,π), consisting of

(i) a finite set of states SP = Q× S,
(ii) a set of initial states SP,0 = {q0} × S0,

(iii) a transition relation δP ⊆ SP × SP , where(
(q, s), (q̄, s̄)

)
∈ δP if and only if (q, q̄) ∈ R and

(s,L(q), s̄) ∈ δ.
(iv) a set of accepting (final) states FP = Q× F .
(v) a weight function wP : δP → R>0, where

wP
(
(q, s), (q̄, s̄)

)
= w(q, q̄), ∀

(
(q, s), (q̄, s̄)

)
∈ δP .

(vi) a set of states SP,π ⊆ SP in which the proposition π
holds true. Thus, (q, s) ∈ SP,π if and only if π ∈ L(q).

The product automaton (as defined above) can be seen as
a Büchi automaton with a trivial input alphabet. Since the
alphabet is trivial, we omit it. Thus, we say that a run rP in
product automaton P is accepting if inf(rP) ∩ FP 6= ∅.

As in the transition system, we associate with each run
rP = p0p1p2 . . ., a sequence of time instances TP :=
t0t1t2 . . ., where t0 = 0, and ti denotes the time at which the
ith vertex in the run is reached (ti+1 = ti + wP(pi, pi+1)).
From this time sequence we can extract a sequence TP,π ,
containing time instances ti, where pi ∈ SP,π (i.e. TP,π
is a sequence of satisfying instances of the optimizing
proposition π in T). The cost of a run rP on the product
automaton P (which corresponds to cost function (2) on
transition system T) is

CP(rP) = lim sup
i→+∞

(TP,π(i+ 1)− TP,π(i)) . (3)

The product automaton can also be viewed as a weighted
graph, where the states define vertices of the graph and the
transitions define the edges. Thus, we at times refer to runs
of the product automaton as paths. A finite path is then a
finite fragment of an infinite path.

Each accepting run of the product automaton can be
projected to a run of the transition system satisfying the LTL
formula as follows.
Proposition IV.2 (Product Run Projection, [7]). For any
accepting run rP = (q0, s0)(q1, s1)(q2, s2) . . . of the product
automaton P , the sequence rT = q0q1q2 . . . is a run of

T satisfying φ. Furthermore, the values of cost functions
CP and C are equal. Similarly, if rT = q0q1q2 . . . is a
run of T satisfying φ, then there exists an accepting run
rP = (q0, s0)(q1, s1)(q2, s2) . . . of the product automaton P ,
such that the values of cost functions C and CP are equal.

Finally, we need to discuss the structure of an accepting
run of a product automaton P .

Definition IV.3 (Prefix-Suffix Structure). A prefix of an
accepting run is a finite path from an initial state to an
accepting state f ∈ FP containing no other occurrence
of f . A periodic suffix is an infinite run originating at
the accepting state f , and periodically repeating a finite
path originating and ending at f , and containing no other
occurrence of f (but possibly containing other vertices in
FP). An accepting run is in prefix-suffix structure if it
consists of a prefix followed by a periodic suffix.

Intuitively, the prefix can be thought of as the transient,
while the suffix is the steady-state periodic behavior.

Lemma IV.4 (Prefix-Suffix Structure). At least one of the
accepting runs rP of P that minimizes cost function CP(rP)
is in prefix-suffix structure.

The proof of the previous result is contained in [14].

Definition IV.5 (Suffix Cost). The cost of the suffix
p0p1 . . . pnp0p1 . . . of a run rP is defined as follows. Let
t0,0, t0,1, . . . , t0,n, t1,0, t1,1 . . . be the sequence of times at
which the vertices of the suffix are reached on run rP . Extract
the sub-sequence Tsuf

P of times ti,j , where pj ∈ SP,π (i.e. the
satisfying instances of proposition π in transition system T).
Then, the cost of the suffix is Csuf

P (rP) = maxi∈N(Tsuf
P (i +

1)− Tsuf
P (i)).

From the definition of the product automaton cost CP and
the suffix cost Csuf

P we obtain the following result.

Lemma IV.6 (Cost of a Run). Given a run rP with prefix-
suffix structure and its suffix p0p1p2 . . . pnp0p1 . . ., the value
of the cost function CP(rP) is equal to the cost of the suffix
Csuf
P (rP).

Our aim is to synthesize a run rT of T minimizing the
cost function C(rT) and ensuring that the word produced
by this run will be accepted by B. This goal now translates
to generating a run rP of P , such that the run satisfies the
Büchi condition FP and minimizes cost function CP(rP).
Furthermore, it is enough to consider runs in prefix-suffix
structure (see Lemma IV.4). From Lemma IV.6 it follows that
the whole problem reduces to finding a periodic suffix rsuf

P =
fp1p2 . . . pnfp1 . . . in P , such that: (i) f is reachable from
an initial state in SP,0, (ii) f ∈ FP (i.e., f is an accepting
state), and (iii) the cost of the suffix rsuf

P is minimum among
all the suffices satisfying (i) and (ii). Finally, we can find
a finite prefix in P leading from an initial state in SP,0 to
the state f in the suffix rsuf

P . By concatenating the prefix
and suffix, we obtain an optimal run in P . By projecting the
optimal run to T , via Proposition IV.2, we obtain a solution
to our stated problem.

B. Graph Algorithm for Shortest Bottleneck Cycles

We now focus on finding an optimal suffix in the product
automaton. We cast this problem as a path optimization on
a graph. To do this, let us define some terminology.

A graph G = (V,E,w) consists of a vertex set V , an edge
set E ⊆ V × V , and a weight function w : E → R>0. A
cycle in G is a vertex sequence v1v2 . . . vkvk+1, such that
(vi, vi+1) ∈ E for each i ∈ {1, . . . , k}, and v1 = vk+1.
Given a vertex set S ⊆ V , consider a cycle c = v1 . . . vkvk+1

containing at least one vertex in S. Let (i1, i2, . . . , is) be
the ordered set of vertices in c that are elements of S (i.e.,
Indices with order i1 < i2 < · · · < im, such that vj ∈ S
if and only if j ∈ {i1, i2, . . . , is}). Then, the S-bottleneck
length is max`∈{1,...,s}

∑i`+1−1
j=i`

w(ej), where is+1 = i1. In
words, we S-bottleneck distance is defined as follows.

Definition IV.7 (S-bottleneck length). Given a graph G =
(V,E,w), and a vertex set S ⊆ V , the S-bottleneck length of
a cycle in G is the maximum distance between appearances
of elements of S on the cycle. If the cycle contains no
elements of S, then its S-bottleneck length is +∞.

The bottleneck length of a cycle is defined as the maximum
length edge on the cycle [17]. In contrast, the S-bottleneck
length measures distances between vertices in S.

With the terminology in place, our goal is to solve the
constrained S-bottleneck problem:

Problem IV.8. Given a graph G = (V,E,w), and two vertex
sets F, S ⊆ V , find a cycle in G containing at least one
vertex in F , with minimum S-bottleneck length.

Our solution, shown in the MIN-BOTTLENECK-CYCLE
algorithm, utilizes Dijkstra’s algorithm [17] for computing
shortest paths between pairs of vertices (called SHORTEST-
PATH), and a slight variation of Dijkstra’s algorithm for
computing shortest bottleneck paths between pairs of vertices
(called SHORTEST-BOT-PATH).

SHORTEST-PATH takes as inputs a graph G = (V,E,w),
a set of source vertices A ⊆ V , and a set of destination
vertices B ⊆ V . It outputs a distance matrix D ∈ R|A|×|B|,
where the entry D(i, j) gives the shortest-path distance from
Ai to Bj . It also outputs a predecessor matrix P ∈ V |A|×|V |,
where P (i, j) is the predecessor of j on a shortest path from
Ai to Vj . For a vertex v ∈ V , the shortest path from v to
v is defined as the shortest cycle containing v. If there does
not exist a path between vertices, then the distance is +∞.

SHORTEST-BOT-PATH has the same inputs as SHORTEST-
PATH, but it outputs paths which minimize the maximum
edge length, rather than the sum of edge lengths.

Fig. 4 (left) shows an example input to the algorithm
and Fig. 4 (right) shows the optimal S-bottleneck cycle. In
the algorithm, one has to be careful that cycle lengths are
computed properly when f = s1, s1 = s2, or f = s2. This is
done by setting some entries of DF→S and DS→F to zero in
step 4, and by defining the cost differently when f 6= s1 = s2

in step 5. In the following theorem we show the correctness
of the algorithm. The proof is contained in [14].

MIN-BOTTLENECK-CYCLE(G,S, F)

Input: A directed graph G, and vertex subsets F and S
Output: A cycle in G which contains at least one vertex in F

and minimizes the S-bottleneck distance.
Shortest paths between vertices in S:1:
(D,P)← SHORTEST-PATH(G,S, S).
Define a graph GS with vertices S and adjacency matrix D.2:
Shortest S-bottleneck paths between vertices in S:3:
(Dbot, Pbot)← SHORTEST-BOT-PATH(GS , S, S).
Shortest paths from each vertex in F to each vertex in S, and4:
from each vertex in S to each vertex in F :
(DF→S , PF→S)← SHORTEST-PATH(G,F, S) and
(DS→F , PS→F)← SHORTEST-PATH(G,S, F).
Set DF→S(i, j) = 0 and DS→F (j, i) = 0 for all i, j such
that Fi = Sj .
For each triple (f, s1, s2) ∈ F × S × S, let C(f, s1, s2) be5:
DF→S(f, s1) +DS→F (s2, f), if f 6= s1 = s2, and
max

{
DF→S(f, s1) +DS→F (s2, f), Dbot(s1, s2)

}
,

otherwise.
Find the triple (f∗, s∗1, s

∗
2) that minimizes C(f, s1, s2).6:

If minimum cost is +∞, then output “no cycle exists.” Else,7:
output cycle by extracting the path from f∗ to s∗1 using
PF→S , the path from s∗1 to s∗2 using Pbot and P , and the
path from s∗2 to f∗ using PS→F .

Fig. 4. A directed graph for illustrating the algorithm. The edge weights
are given by the Euclidean distance. The set F is a singleton given by the
blue diamond. The vertices in S are drawn as yellow squares. The thick blue
edges in the right figure form a cycle with minimum S-bottleneck length.

Theorem IV.9 (MIN-BOTTLENECK-CYCLE Optimality).
The MIN-BOTTLENECK-CYCLE algorithm solves the con-
strained S-bottleneck problem (Problem IV.8).

Computational Complexity: Let n, m, nS , and nF , be
the number of vertices (edges) in the sets V , E, S, and F ,
respectively. Then, the run time of the MIN-BOTTLENECK-
CYCLE algorithm is O

(
(nS+nF)(n log n+m+n2

S)
)
. Thus,

in the worst-case, the run time is O(n3). For sparse graphs
with nS , nF � n, the run time is O

(
(nS+nF)n log n

)
[14].

C. The OPTIMAL-RUN algorithm

The solution to Problem III.1 is given by the OPTIMAL-
RUN algorithm. Combining Lemma IV.4, Theorem IV.9, and
Proposition IV.2, we obtain the following result.

Theorem IV.10 (Correctness of OPTIMAL-RUN). The
OPTIMAL-RUN algorithm solves Problem III.1.

V. EXPERIMENTS

We have implemented the OPTIMAL-RUN algorithm in
simulation and on a physical road network testbed. The plat-
form shown in Fig. 1 is a collection of roads, intersections,

OPTIMAL-RUN(T , φ)

Input: A weighted transition system T , and temporal logic
specification φ in form (1).

Output: A run in T which satisfies φ and minimizes (2).
Convert φ to a Büchi automaton Bφ.1:
Compute the product automaton P = T × Bφ.2:
Compute the cycle MIN-BOTTLENECK-CYCLE(G,SP,π, FP),3:
where G = (SP , δP , wP).
Compute a shortest path from SP,0 to the cycle.4:
Project the complete run (path and cycle) to a run on T using5:
Proposition IV.2.

P1 P2

P3
P4

P5

I1 I2

I3 I4

25 25

371

141

23

23

183

206

160

30
53

74

67

127

104

2323

37

57

157

198

118

77

100

121

175

155

171
151

2020

28

74

100

77

2020

50

70

93

77

98 98

77

78

51

76

54

123

121

125

146

169

148 177

198

128

Fig. 5. The weighted transition system for the road network in Fig. 1.

and parking lots, connected by a simple set of rules (e.g., a
road connects two intersections, the parking lots can only be
located on the side of a road). The robot is a Khepera III
miniature car. The car can sense when intersections, roads,
parking lots, and obstacles. The car is programmed with
motion primitives allowing it to safely drive on a road, turn
in an intersection, and park. The car communicates through
Wi-Fi with a desktop computer, which is used as an interface
to the user (i.e., to enter the specification) and to perform all
the computation necessary to generate the control strategy.
Once computed, this is sent to the car, which executes the
task autonomously by interacting with the environment.

The motion of the car in the road network is modeled
as a weighted transition system (Def. II.1), and is shown in
Fig. 5. The set of states Q are intersections, parking lots,
and the branching points between the roads and parking
lots. The transition relation R shows how the regions are
connected and the transitions’ labels give distances between
them (measured in cm). In our testbed the robot moves at
constant speed ν, and thus the distances and travel times are
equivalent. For these experiments, the robot must drive on
the right side of road, and it cannot make U-turns. To capture
this, we model each intersection as four different states.
Note that, in reality, each state in Q has associated a set
of motion primitives, and the selection of a motion primitive
(e.g., go straight, turn right) determines the transition to one
unique next states. This motivates our assumption that the
weighted transition system from Def. II.1 is deterministic,
and therefore its inputs can be removed.

In our experiments, we considered the following task.
Parking spots P2 and P3 in Fig. 5 are data upload locations
(light shaded in Fig. 6) and parking spots P1, P4, and P5 are
data gather locations (dark shaded in Fig. 6). The optimizing
proposition is π := P2 ∨ P3, i.e. we want to minimize the
time between data uploads. Both upload locations provide
the same service. In contrast, each data gather location
provides the robot with a different kind of data. The motion
requirements can be specified as LTL formulas, where atomic
propositions are simply names of the parking spots. In
the formula ϕ of the LTL formula (1), we demand the
conjunction of the following: (i) The robot keeps visiting
each data gather location: GFP1 ∧GFP4 ∧GFP5. (ii)
Whenever the robot gathers data, it uploads it before doing
another data gather: G ((P1∨P4∨P5)⇒ X (¬(P1∨P4∨
P5)U (P2∨P3))). (iii) Whenever the robot uploads data, it
does not visit an upload location again before gathering new
data: G ((P2 ∨ P3)⇒ X (¬(P2 ∨ P3)U (P1 ∨ P4 ∨ P5))).

Note that the above specifications implicitly enforce
G F π. Running the OPTIMAL-RUN algorithm, we obtain
the solution as illustrated in the top three environment shots
in Fig. 6. The transition system has 26 states, and the
Büchi automaton has 16 states, giving a product automaton
with 416 states. In the product automaton, FP contained 52
states, and SP,π contained 32 states. The OPTIMAL-RUN
algorithm ran in approximately 6 seconds on a standard
laptop. The value of the cost function was 9.13 meters, which
corresponds to a robot travel time of 3.6 minutes (i.e., the
maximum travel time between uploads was 3.6 minutes). Our
video submission displays the robot trajectory for this run.

The bottom three shots in Fig. 6 illustrate the situation
with the same motion requirements and a further restriction
saying that the robot cannot upload data in P2 after data is
gathered in location P5: G (P5⇒ (¬P2U P3)). In this case
the Büchi automaton contained 29 states, the algorithm ran
in 22 seconds, and the value of the cost function was 9.50
meters with a travel time of 3.77 minutes.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we presented a method for planning the
optimal motion of a robot subject to temporal logic con-
straints. We considered temporal logic specifications which
contain a single optimizing proposition that must be re-
peatedly satisfied. We provided a method for computing a
robot trajectory that minimizes the maximum time between
satisfying instances of the optimizing proposition. For future
work we are looking at ways to extend the cost functions
that can be optimized. In particular, we are looking at
extensions to more general types of patrolling problems.
Another interesting direction is the extension to multiple
robots and to non-deterministic transition systems.

Acknowledgements: We thank Y. Chen and S. Birch at
Boston University for their work on the road network.

REFERENCES

[1] M. Antoniotti and B. Mishra, “Discrete event models + temporal
logic = supervisory controller: Automatic synthesis of locomotion
controllers,” in Proc ICRA, Nagoya, Japan, 1995, pp. 1441–1446.

Fig. 6. The robot trajectories (blue arrows) for the data gathering mission.
Green (dark shaded) areas are data-gathering locations, and yellow (light
shaded) areas are upload locations. The bottom three figures show the new
robot trajectory when we restrict data upload to location P3 (the bottom
yellow location) after each data-gather at P5 (the rightmost green location).

[2] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of
multiagent motion tasks based on LTL specifications,” in Proc CDC,
Paradise Island, Bahamas, 2004, pp. 153–158.

[3] M. M. Quottrup, T. Bak, and R. Izadi-Zamanabadi, “Multi-robot
motion planning: A timed automata approach,” in Proc ICRA, New
Orleans, LA, 2004, pp. 4417–4422.

[4] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot
motion planning and control in polygonal environment,” IEEE Trans
Robotics, vol. 21, no. 5, pp. 864–875, 2005.

[5] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Temporal logic
motion planning for mobile robots,” in Proc ICRA, Barcelona, Spain,
Apr. 2005, pp. 2032–2037.

[6] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning for dynamical systems,” in Proc CDC, Shang-
hai, China, 2009, pp. 5997–6004.

[7] M. Y. Vardi and P. Wolper, “An automata-theoretic approach to
automatic program verification,” in Logic in Computer Science, 1986,
pp. 322–331.

[8] G. Holzmann, “The model checker SPIN,” IEEE Transactions on
Software Engineering, vol. 25, no. 5, pp. 279–295, 1997.

[9] J. Barnat, L. Brim, and P. Ročkai, “DiVinE 2.0: High-performance
model checking,” in High Performance Computational Systems Biol-
ogy. IEEE Computer Society Press, 2009, pp. 31–32.

[10] P. Toth and D. Vigo, Eds., The Vehicle Routing Problem, ser. Mono-
graphs on Discrete Mathematics and Applications. SIAM, 2001.

[11] S. Karaman and E. Frazzoli, “Vehicle routing problem with metric
temporal logic specifications,” in Proc CDC, Cancún, México, 2008,
pp. 3953–3958.

[12] L. C. G. J. M. Habets and J. H. van Schuppen, “A control problem for
affine dynamical systems on a full-dimensional polytope,” Automatica,
vol. 40, pp. 21–35, 2004.

[13] C. Belta and L. Habets, “Control of a class of nonlinear systems on
rectangles,” IEEE Trans Automatic Ctrl, vol. 51, no. 11, pp. 1749–
1759, 2006.

[14] S. L. Smith, J. Tůmová, C. Belta, and D. Rus, “Optimal path planning
under temporal constraints,” July 2010, available at http://arxiv.org/abs/
1007.2212.

[15] R. Gerth, D. Peled, M. Vardi, and P. Wolper, “Simple on-the-fly auto-
matic verification of linear temporal logic,” in Protocol Specification,
Testing and Verification. Chapman & Hall, 1995, pp. 3–18.

[16] P. Gastin and D. Oddoux, “Fast LTL to Büchi automata translation,” in
Conf. on Computer Aided Verification, ser. Lect. Notes Comp. Science,
no. 2102. Springer Verlag, 2001, pp. 53–65.

[17] B. Korte and J. Vygen, Combinatorial Optimization: Theory and
Algorithms, 4th ed., ser. Algorithmics and Combinatorics. Springer
Verlag, 2007, vol. 21.

