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Abst ract
 

This paper formulates a stochastic and a multidimensional oplimal path problem, 
each as an extension of the shortest path problem. Conditions when existing shortest path 
methods apply are noted. In each problem instance, a utility function defines preference 
among candidate paths. 

The major result of each formulation is the ability to state explicit conditions for 
exact solutions using standard methods, and the applicability of well-understood 
approximation techniques. 

In the non-deterministic problem there is a dynamic programming solution when 
utility functions have constant Arrow-Pratt risk aversion, and an equivalence to the 
multidimensional problem when utility functions are quadratic, or when they are polynomial 
and edge weights have Gaussian or Gamma distributions. For Ihe multidimensional problem 
we modify Dijkstra's 1959 algorithm, and employ dominance in a partial ordering. 

Key Ph rases: shortest path, stochastic, multidimensional, discrete, 
combinatorial optimization, operations research, algorithms. 



1. Introduction. 

The classic problem of the shortest path has never been successfully extended to 

graphs with non-deterministic or multidimensional weighls. When the weights on edges 

become random variables or vectors, the dynamic programming principle no longer holds for 

general criteria of optimality; it is no longer generally true that the optimal path consists of 

optimal subpaths. Since the dynamic programming principle has been the basis for almost all 

work on optimal path problems, treatments of the extended problems have been unable to 

exploit previous results. 

The major result for the shortest path problem is the so-caned "triple operalion," 1 (he 

implementation of the dynamic programming principle that allows combinatorial reductions in 

the search space. In fact, the reason to study the problem is precisely for its elegant avoidance 

of combinatorial explosion. In a graph of V vertices, there could be as many as L(V - 2)!eJ 

paths2 connecting any two vertices. Yet an algorilhm by Dijkstra[9] runs in O(V2) time and olher 

algorithms have even faster expected behavior (e.g., Spira[29], Bloniarz[6]). Herein lies the 

essential value of the shortest path problem. An extended study of optimal path problems 

following the spirit of the shortest path paradigm should not only provide a problem formulation 

that is consistent, but also describe solutions addressing the combinatorially unwieldy size of 

the search. 

The extended problems deserve study. Applications of the stochastic and 

multidimensional path problems abound; the model applies to any route-selection problem 

wherein uncertainty or multiple factors bear on preference. Currently, transshipment and 

routing problems require tailoring to fit the traditional shortest path model. The assignment of 

single, constant costs to edges has been necessary, whether it permits an adequate 

representation or not. This paper explores alternatives to the traditional representation. 

Furthermore, given the central role the shortest path has played, it seems that its stochaslic and 
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multidimensional variants would aptly serve as examples for other stochastic or 

multidimensional combinatorial optimization problems. 
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2.1. Int roduction to the Stochastic Problem. 

With the notion of preference yet to be determined, the stochastic problem can be 

stated as: 

Given a weighted digraph G = (V={vi}' E={eij}' W=lw(eij)])' 

of IVI = V vertices and lEI edges, where weights on edges w(eij) 

are independent, real-valued random variables with values in [0,00) 

and with known distributions Fij , 

identify the most preferred path A1 V·, in the set of all the paths 

from vertex v1 to vertex vv, Ltv 

The weight of a path is also a random variable, w(A1 V) = L w(eij) ,the sum of the weights on 

eijEAW 

the edges that compose the path. 

This problem is identical to the unit demand, unit capacity flow problem with uncertain 

costs. It is similar to the unsolved probabilistic PERT (longest path) problem. However, unlike 

the PERT problem where bounds on the weight of the optimal path are sufficient, it is a search 

problem; the applications of the model require the determinalion of an actual path in L1V· 

Though techniques developed for probabilistic PERT (e.g., Shogan[27], Nadas[24]) can be 

extended to bound the distibution of the least weight of all paths in L1V, these 1echniques do 

not solve the selection problem. Moreover, the bounded distribution would not refer 10 w(Al V) 

for any A1V E L1V; rather, it would describe the behavior of w== min(w(A1 v)).3 

AwEL1V 

Standard works that have encountered the stochastic shortest path problem have 

avoided it by taking expectations of edge weights and solving the ensuing deterministic problem 



4 

(e.g. Dantzig[8], Howardltb], Kleinrock[18]): 

A1 v' == argmin E{W(AW)} (PIa) 

A1 vELw· 

However, the identified path can be potentially "risky;" it may have a high probability of realizing 

a much larger weight than expected. If there were a path of slightly larger expected weight with 

little probability of realizing very large weights, it might conceivably be preferable. In short, the 

solution ignores higher moments; it makes no account of "risk." 

But it's not clear how best to account for risk. Frankl 12]proposes the following 

condition of path optimality: For a specified k, consider the path that maximizes the probability 

of realizing a weight less than k as the optimal path:" i.e.. 

A1 v' == argmax I Prob{w(A1 y) <k} ] (Plb) 

AwELw 

Sigal, Pritsker, and Solberg[28] suggest a different condition: optirnaluy entailing the greatest 

probability of realizing the least weight. 

AW· == argmax( n [Prob{W(Awx) ~ W(A 1/ )} ] ) (PIC) 

AWxELw AWYELw 

They offer a cutset approach to reducing the number of arguments requisite in the continuous 

product. However, no solution addressing the combinatorially large size of L 1Y is known to 

either problem; both appear to require exhaustive search. 

2.2. Other Approaches. 

There do exist reasonable criteria of optimality that admit dynamic programming 

solutions. Given a constant a E [0,1]. for instance, the Hurwicz principle prefers the path that 

minimizes aWL + (1- a)w ' where wl and W are, respectively, the lower and upper bounds on u u
 

the values realizable by each path's weight.
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A1V· == argmin[ aWL(A1V) + (1 - a)W (A1V) ]	 (Pld)u

A1VEL1V 

where wl (A1 V) ~ W(A1 V) ~ Wu(A1V), 

For a = 1, this criterion expresses complete optimism, and for a = 0, the criterion is completely 

pessimistic. A1V· is obtained by solving the deterministic shortest path problem in the graph 

G' = (V,E,W') ,where, in the matrix of weights, each element w(eij) has been replaced by 

Of course, the Hurwicz principle is not widely used. And it does not produce well 

defined problems when each edge has a finite probability of realizing an infinite weight (l.e., a 

chance of "failing"), as in the class of problems studied by Mirchandani[23]. 

Alternately, there is a linear program that corresponds to the stochastic shortest path 

problem: 
V 

maximize ( ~ u,
I
 

i=2
 

s.1.	 u1 = 0 

Uj - ui ~ w(eij) for i =1,...V; j =2,..,V; i~j .5 

The standard programming approach would be to convert each of the (V- 1)2 uncertain 

constraints into chance constraints, requiring compliance with probability at least 1 - P. For 

each edge, eij' define 

Now the constraints have the form 

oOu. -	 u. < wp(e )J	 I - IJ 

The solution to this new program determines the path 

== argmin [ ~ wp(eij) ] , (P1 e)A1V•
 
A1VEL1V eijEAW
 

and this path is just the shortest path in the graph with new weights wp(eij). 

In practical instances of the stochastic problem, this approach may suffice. But paths 

of differing cardinality are being compared at differenllevels of compliance. The weight 01 a 
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path composed of n edges is correctly bounded by its new weight with probability (1 - fJ)n; the 

probability of compliance decreases with n. In this sense, the solution is biased toward paths 

with many edges. 

2.3. The Decision Analytic Formulation. 

The expected utility criterion of Bernoulli, von Neumann, and Morgenstern is the 

prevalent and most comprehensive for preference under uncertainty. The results of this paper 

suggest that it is also the most useful. 

In addition to the weigted digraph, G. 

define a utility function u(x), u:1R 1..... 1R 1, monotonically decreasing in x. 

The utility of a random variable x is defined to be its expected utility, u(x) == Exu(x). Now 

formulate the stochastic problem as above with preference implied by utility; 

A1VX > A1VY ~ U(W(All») u(w(A1VY)) 

A1V* == argmax[ u(w(A1V»] (Pl ) 

A1VEL1V 

Note that if all edqe- weight densities were to have point support, (Pl) with any strictly monotone 

u(x) would define the traditional shortest path problem. 

For general u(x) and general Fij, the dynamic programming principle is violated. 

Consider the two paths that access vertex v4 from v1 in the graph in figure 1., Al/ = e12e24' 

and A14Y = e13e34. Random variable W(A14x) has marginal density f12*f24, and W(A14 Y) 

has density f13*f34 ,as shown in figure 3. Suppose the ulility function behaves linearly until 

just beyond the support of each density function, at which point it turns down sharply (fig. 2.). 

W(A 14x) has a broader density than W(A14Y) •but the former has a smaller mean. For a 
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combinatorially reductive search algorithm to reduce the number of candidate paths Ihrough v4 

without elaborate knowledge of the graph, 

A1/ >A14Y must imply A1/e45 >A14Ye45 ' 

for all admissible densities f45 of the weight w(e45) on edge e45. I.e., if path Ax is better than 

path)"Y at v4' one may discard AY as a candidate subpath of the optimal path in deference to 

)"x under the condition that extensions of AY never become better than the same extensions of 

)"x. In partlcular. AY cannot be preferred to Ax at v5' 

But if f45 has point support, f45 = eSc (fig. 4.), then the wider spread of f12·f24·f45 

would cause its expected-utility integral to be smaller than the expected-utility integral of 

figu re 1. A simple graph. 
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figu re 2. A utility function that does not allow a dynamic programming 
solution for general Fij. 

.... .... 

+c x 

figu re 3.	 Probability densities for the weights of two paths that 
access v4' . 

+	 xo	 K x o 

-
figu re 4. Probability density functions for the paths that are extensions 

of the paths discussed above. Compare these graphs with 
the utilily function in figure 2. 

K+Co x	 o + +c x 
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2.4 Necessary Conditions on u(x). 

The class of utility functions that permits dynamic-programming -directed search is 

quite restricted. For general Fij• the dynamic programming principle is satisfied if and only if u(x) 

is affine linear or exponential. 

This restriction is easily shown. In fact, it was essentially shown by Howard and 

Matheson in a slightly different context [16]. Dynamic programming requires. for all density 

functions f. g, and h, consisting of convolutions of the density functions Ioredqe weights in the 

graph, 

[Ju(x)f(x)d x >fu(x)g(x)dx 1... [Ju(x)l·h(x)dx >fu(x)g· h(xldx I (1) 

(integrals taken over all space). If we can invoke Fubini's theorem (e.g., all integrals exist and 

are finite), then (1) is the same as 

[Ju(x)l(x)dx >Ju(x)g(x)dx I"" [JhmJ u(x)l(x - ndx dl) JhmJu(x)g(x -lldx dl J. (2) 

With a change of variables. the latter predicate is equivalent to 

For this to imply and be implied by [ Ju(x)f(x)dx >Ju(x)g(X)dx] • u's behavior under 

translation is restricted to u(x + n = Y(nu(x) + cp(n. So if u has its first two derivatives, they 

have the forms: 

u'(x) = k 1u(x) + k2; 

u'{x) = k 1u'(x) . 
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Hence, u(x) will have to be affine linear or exponential.
 

In utility theory, this restriction on u(x) is exactly the restriction to constant Arrow-Pratt
 

absolute risk aversion: 

- u"(x)/u'(x) constant. 

This exact correspondence of restrictions is fortunate for subtle reasons. "Constant aversion to 

risk," as an unquantified description of an agent's propensity to gamble. is exaclly the intuitive 

constraint on the kind of separability required to implement dynamic programming. The Arrow· 

Pratt measure just happens to be the correct quanlification of risk in this application. One can 

certainly imagine another measure of risk aversion, the constancy of which does not correctly 

capture the required separability aspect [2]. So previous work on this particular measure of risk 

aversion (see [26]) can be brought to bear on problems formulated with the Bernoutli-von 

Neumann-Morgenstern criterion. 

Some stochastic problems can be restated as multidimensional problems. These 

problems will be discussed later in this paper. 
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3.1. Introduction to the Multidimensional Problem. 

Although work has been done on multi- commodity flow with linear objectives and on 

the multidimensional knapsack, the literature on graphs with multiple edqe-weights is 

impoverished. The only original result in multidimensional path problems is an iterative 

procedure of Christofides[7] that reduces the problem: 

find A1V· == argmax cp( max O(eij), 1/(A1V)) (P2a) 

A1VEL1V eij EA1V 

into the problem of finding 

argmax 1/(A1V) , 

A1VEL1V 

when cp is monotonic. He applies his procedure to the "greatest expected capacity" problem in 

O(V4), where each edge eij has a capacity c(eij) and a reliability p(eij), and one seeks 

argmax [ min (c(eij)) . n p(eij) ] 

A1VEL1V ~ijEA1V eijEA1V 

Because the result applies only to problems with extremizalions over edges in paths, the 

procedure does not enjoy wide use. 

Lawler[19] obtained a result for doubly-weiqhted cycles. He uses existing shortest 

path methods to devise an s-approximate algorithm to determine the palh with weights of 

maximal ratio. However, his result generalizes neither to problems of simple paths, nor to 

problems with different objectives. 

We pose a general multidimensional optimal path problem in the same decision-

analytic form used above for the stochastic problem (P1). The use of ulility functions to define 

preference has a natural multidimensional generalization. In fact, Ihe modern interest in utilily 

functions has been primarily for their ability to make explicit the trade-ens between various 

factors in determining preference. 
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Given a weighted digraph G = (V, E, W) , where weights on edges 

w(eij) are d-dimenstonal vectors with each element real non-negative, 

and a preference function u(x):lRd-.1R1, monotonically decreasing in each 

Xi for fixed x _ i' 

the weight of which, W(A W)=:Lw(eij), 

eijEAW 

maximizes u; 

AWe =: argmax [ U(W(AW)) ] (P2) 

AWELW 

Note that when d = 1, the problem is idenlicalto the shortest path problem for strictly 

monotonic u. 

3.2. Induction via Dynamic Programming and via Dominance. 

For affine linear u, u(x) = ~. xt + k, and lexicographic u, there exists a dynamic 

programming solution to the problem. However, the problem does not admit such a solution in 

general. For instance, let u(x) = - x1x2; w(A1/) = (1,10) ; W(A1/) = (3,4) ; 

and w(e45) = (5,5) . At v4' A1/ is preferred to A1/; u(1,10) ) u(3,4) . But its extension to Vs 

is inferior, u(6,15) <u(8,9) . 

Nevertheless, the search for A1v' need not require the consideration of all paths; one 

may perform a limited induction via dominance. The paths that access a vertex are in general 

partially ordered. In the problem (P2), 

if (W(A1nx))j :$ (w (A1nY))i' 'ii, and (W(A1nx))j <(W(~1 nY))j for at least one j, 

then Ax dominates AY, Ax ) AY .6 
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This relation is asymmetric and incomplete, so some paths remain incomparable: 

(Ax I AY and >..y j >.x) => >..X - >..y. 

For those paths that are comparable, >..X >>..y guarantees thai u(w(>..x>..z)) >u(w(>"Y>"z)) for all 

>..Z, since u is monotonic. 

Dynamic programming works when paths can be wen-ordered. At each vertex, all but 

the unique 7 maximal element are discarded, and only extensions of this "optimal subpath" 

need subsequently be considered. When the paths are partially ordered, only dominated paths 

can be discarded; the remaining paths, the maxima, must all be considered for extension. The 

search for A1v· reduces not to finding optimal subpaths, bulto finding all maxima that could be 

subpaths. 

One could determine these maxima, these sets of undominated paths associated with 

each vertex, by successive approximation (the original Ford·Moore·Beliman idea for shortest 

paths). For at most V - 1 iterations, current members of the sets are extended, possibly causing 

modifications in the sets at other vertices. Such a strategy could be efficient in acyclic graphs. 

But in cyclic graphs, some paths that have been extended will later be dominated. A properly 

designed algorithm can avoid this unnecessary work, and the sorting and iterating associated 

with it, at the cost of maintaining a much larger sorting structure. 

Dijkstra's fundamental contribution[8] to the shortest path problem was a rule that 

properly ordered the construction of optimal subpaths. The optimal subpaths, >"1 n·' n = 1, ... , V 

(one for each vertex in the graph), shall be constructed in order of increasing weight. If this rule 

is obeyed, then (i) no optimal subpath to any vertex need be reconsidered once constructed, 

and (ii) the construction of each such path need only consider the extensions of optimal 

subpaths already constructed. 

The multidimensional analogue of this rule serves as a basis for an algorithm solving 

(P2). 
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V sets, one for each vertex, contain the maxima that have been discovered. Once a 

path is entered into a vertex-maxima set, it cannot be removed; entry into the set is permanent. 

A heap is maintained, containing some of the extensions of all the discovered maxima. A given 

path can be found in this heap if (i) it is an extension of a discovered maximum, (ii) the set of 

maxima at the vertex it accesses did not contain a maximum that dominated it at the time it was 

placed in the heap, and (iii) it has not yet been removed from the heap. 

When a path is to be selected from the heap, an arbitrary choice is made between 

those paths that are not dominated by any other path in the heap. There are several ways to 

structure the heap such that the root is guaranteed not to be so dominated: e.g., 

lexicographically and decreasing in each of the d elements of path weight, or decreasing in the 

sum of the elements. 

The selected path is compared with the maxima already discovered for the vertex it 

accesses. If it is dominated by one of these maxima, it is discarded. Otherwise, it must be a 

maximum, so it is entered into the vertex's set of maxima, and its extensions are considered for 

entry into the heap. Paths are selected and processed in this way unlilthe heap empties. 

When no paths remain in the heap, the set of maxima for »v is searched for the path 

with weights that maximize u(x). 
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Alga rithm (following Dij kst ra). 

1. H is a heap of paths structured on the weights of these paths, either 

a.	 lexicographically and decreasing in each element, or
 
d
 

b.	 on - ~ (W(A)) i ' the negative sum of all the elements in the vector. 

i = 1 

Initially, H contains only A11' the weight of which is O. 

2.	 S1' ' . " Sv are sets associated with vertices '11' .. ,,'IV respectively. These sets contain the 

maximal paths to each vertex, as they are discovered. Initially, all sets are empty. 

3. a. While (H is not empty) do begin 

b. remove the root of H, A1n; / / note that H is structured to guarantee / / 

// 

/ / If this path is not yet dominated at the / / 

d. / / vertex it accesses, it must be a maximum.! / 

e, if (n ~ V) then begin 

f.	 for each (m)((m~2)&(enmEE))do begin / / Now consider ils extensions // 

g.	 if ( ~ AESm)(A >A1nenm) then begin / / ifany extension is not yet dominated / / 

h.	 / / at the vertex it accesses, then enter it / / 

end / / for later consideration. // 

end
 

end
 

end	 '. 
end 

4.	 Determine the path in Sv with the largest utility. / / A1Vo is now argmax [U(W(A))] . / / .• 

AESV 
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3.3. Correctness and Analysis of the Algorithm. 

We establish the correctness of the algorithm informally, as a consequence of some 

observations. The goal is to show that 8 v contains all the maxima in L1V. and contains only 

those maxima. 

1. When a path is removed from the heap, no path still in the heap dominates it. Paths 

subsequently added to the heap are either extensions of this removed path, or extensions of 

paths still in the heap. Therefore, if the removed path is not dominated by existing maxima allhe 

vertex it accesses, then it will never be dominated, so it is also a maximum. This path is added to 

the proper vertex's set of discovered maxima. Vertex sets are augmented only in this way, so 

sets Si contain no paths that are not maxima. 

2. All extensions of all maxima are added to the heap unless (i) the extension is from 

vv- or (ii) the extension is into v1 (in which case it is always dominated by A11). or (iii) the 

extension is dominated by one of the maxima already discovered at the vertex into which it is 

incident at the time it is considered. Since all maxima in the graph are extensions of other 

maxima in the graph, and no maximum at "v is an extension of a path through Vv (non-negativity 

precludes possible benefits from cycling), all maxima in L1V enter the heap. Step (3) runs until 

H is exhausted, so all maxima in L1V must be in 8 v at step (4). 

Let U be an upper bound on the number of maxima in a vertex set, 

U ~ max [18il] 
i= 1, ... V 

Let H be an upper bound on the largest size of the heap. H <v2U, because even if all V 

extensions of all VU maxima were in the heap aI once, clearly 1811 <U, and »v contributes no 

extensions. But H is O(V2U) . Steps (3d) and (3g) in the algorithm are dominant; total heaping 

time will be only O(HlogH) comparisons of O(d). If the 8 sets are maintained as range trees, 

following Bentley and Friedman[4] and Lueker[20j, (3d) requires O(U logd.1 U) simple 
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comparisons for each heap element, and (3g) takes O(V 10gdU) simple comparisons per heap 

element. So the worst-case behavior is O(V2U210gd. 1U + V3UlogdU). This is a pessimistic 

bound; reductions from omitted edges are combinatorial. 

It is possible to construct complete digraphs weighted in suficient dimension in which 

no paths are dominated, U = O(VV). However, without more a priori knowledge of u, the search 

problem (P2) is itself trivially bounded by O(U) from below. 

An estimate of the expected behavior would be most useful. Bentley et. al.[5] 

determined the expected number of maxima in a set, O((logISj)d - 1), when rankings are 

independent in each dimension and set elements are independent. However, when set elements 

arise from combinations of a limited number of edges, the problem is unsolved. There is 

nevertheless computational evidence that U is usually small; the algorithm's average behavior is 

superb [21]. 

The algorithm does not at first resemble Dijkstra's algorithm. If d =1 and one 

establishes a ue-breaking rule for paths of the same weight, then the Si are restricted in 

cardinality to zero and one. These correspond to "permanent labels" in the original algorithm. 

The temporary tabels are kept, essentially sorted, in the heap. Though it is true that outdated 

"temporary labels" rise to the top of our heap, while Dijk~tra simply discards them, line (3c) is 

conceptually a test for discarding. Unfortunately, retaining these outdated labels in the heap 

hinders the remove and insert steps (3b and 3h). But any implementation of Dijkstra's algorithm 

must either do the same thing, or replace the old temporary labels with new ones repeatedly. In 

IR 1, the latter alternative's replacement operation is O(V). Dijkstra actually exploits this fact (and 

the fact that loop 3f is also O(V) ) to obtain his coveted O(V2) complexity. However in md, such a 

replacement is O(IHD. Such are the advantages of m1. 

It is not clear that this Dijkstra-based algorithm actually runs more quickly than a 

multidimensional Ford-Moore-Beuman algorithm. Some papers cast doubts on the superiority of 

Dijkstra's algorithm even in m1 (e.g., Golden[13]). In the worst case, a Ford-MooreBellrnan 
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algorithm in IR d as outilned below would have time complexity O(V3Ulogd.1 VU). 
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Algorithm (following Ford-Moore·Bellman). 

1. S1 t, .. '. Svt are sets associated with vertices v1' ..., Vv respectivety. These sets are, at any 

time, approximations to the sets that contain the maximal paths to each vertex. 

2. G 1t, ... , Gvt are intermediate, augmented sets. 

3.	 t +- 1 . 

Sj - 1 +- undefined for all i. 

4.a.	 Until (t = V - 1 ) or (Sit = Sit - 1, Vi) do begin I I until nothing changes or II 

I I theorelicallimil reached I I 

b. for each do begin 

c.	 I I augment the set wilh II 

I I extensions from each of the other sets I I 

I I keep only the maxima in this new set I I 

end 

e.	 t +- t + 1 ;
 

end
 

5. Determine the path in Svt with the largest utility. 

I I Awe is now argmax [u(w(A))] I I .• 

AESvt 

Step (4d) is O( (VU + U)logd- 1(VU +U) ) because of the insertion time for each set's range tree. 

By changing the way sets are updated, checking for and removing dominance with 

every addition to every set, one can produce an O(dV3U2) algorithm, which would match the 

Ford-Moore-Bellman performance when d = 1, U = 1. 
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4.1. Stochastic Problems Reducible to Multidimensional Problems. 

When u(x) is polynomial of degree d, the expected utility of a random variable is an 

affine linear function of the random variable's first d moments. Also, given any n independent 

random variables, wi' the first moment, m1' and the second central moment, Jl.2' of LWj are, 

respectively, the sums of the first moments and second central moments of each wi' 

Consequently, two types of stochastic problems can be exactly represented as multidimensional 

problems: 

Since u is monotonically decreasing, so must a1x + a2x2 and a2x2 also be monotonically 

decreasing. Expected utility integrals with u depend only on the random variable's first two 

moments: 

f u(x)f(x)dx = aO + a1m1 + a2ml
 
aO + a1m1 + a2m12 

+ a2J.L2'
 

Construct the function u':1R2_ m1,
 

u' is monotonically decreasing in x2 for fixed x1' and monotonically decreasing in xl for fixed 

X2' Define a multidimensional problem on u',G', where G' = (V, E,W'), and weights are now 

the means and variances of the previous w(eij)' The solution, A1v'· identifies the same path as 

the solution to the original problem. 
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type 2. All weights on edges have densities of a class that is closed under 

convolutions, and uniquely determine'! by the first two moments. 

Examples include the Poisson, Binomial, Gaussian, and Gamma classes. Since all higher 

moments are calculable from m1 and m2 (or m1 and JL2)' and the distributions of weights on 

paths all belong to the same class, a polynomial utility function in the stochastic problem can be 

transformed into a function of two variables, m1 and m2' If this new function u':1R 2-+1R 1is 

monotonically decreasing, one can define an equivalent multidimensional problem on u',G', 

where weights in G' are as above, 

w '(eij) == (E[w(eij)] ,E[(W(ejj))2]). 

The ensuing multidimensional problem can be solved using the techniques of the 

previous section. 

This reducibility of some stochastic problems significantly increases the usefulness of 

the Bernoulli-von Neumann-Morqenstern formulation of the problem. The two most important 

distributions in applications are potentIally exactly soluble: Gamma class which models output 

from a queue (communications networks, shortest time through queueing networks), and the 

Gaussian class, which models the introduction of noise (measurement error or unexplained 

variation). 

4.2. Heuristics. 

An additional virtue of the decision-analyuc formulations (P1) and (P2) is that both 

allow heuristics that are welt-understood in operations research. Approximation strategies and 

heuristics have been studied more closely in [21]; an attempt is made only to suggest the 

possibilities here. 

In the stochastic problem, one can often appeal to central limit effects, even when 
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distributions are from various classes. When routing through networks with uniform delays 

(e.g., a pedeslrian choosing between paths containing traffic lights), the distributions of weights 

on paths in L1V can reasonably be modeled as Gaussian. Also, when there is a strong 

correlation between path cardinality and path weight, or between expected path weight and 

utility of path weight, the next-best path algorithm of Dreytus-Hottman-Pavteyl lO] can be 

employed to obtain results of high confidence (probability of having located A1V·) quickly. This 

is useful when edge-weight distributions are similar in support and mean. 

In the multidimensional problem, several different gradient·dependent approximations 

produce polynomial-time approximation algorithms. For instance, given an estimate of 

W{AW·). u{x) can be locally linearized. An iterative algorithm based on this linearization can 

thus perform dynamic programming at each step. Rounding the weights or discarding maxima 

that are numerically very similar are other effective ways to reduce the solution time of the 

dominance algorithm. 

4.3. Perspectives. 

In 1964, Klee described a delightful soluton to the shortest path problem. Construct a 

physical model of the graph with pieces of string having lengths proportional 10 edqeweiqhts. 

Then pull tightly on the origin and destination vertices. The shortest path will appear tense: the 

chain that limits further pulling. Alas, there appear to be no such physical models with higher or 

stochastic dimensions. 
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Notes. 

1 Perhaps introduced by Christofides. It refers to the assignment step in all Ford/Dijkstra 

like algorithms where label(vj) .. min[wjj + label(vj)] .
 
Iii
 

Discussed in [1], [7], [10], [19], and [22]. 

2 The e here is the base of the natural logarithm. Brackets indicate the greatest inleger 

function. From the identity: 

l(V-2)!eJ. 

3 Shogan's bounding technique[27] has time complexity greater than O(c v) for some fixed c, 

and Nadas[24] requires more than 0(1L1vi). 

4 Note that if this condition is required to hold for all k, the graph requires the unlikely 

existence of a least element under stochastic inequality (see Nadas[24]) to give 

a well-defined solution for any given problem. 

S Readers familiar with labeling algorithms for the shortest path problem will recognize the 
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Ui'Sas labels. 

6 Here, one could define a complete tie·breaking rule lexicographic with the ordering on 

weights to select a unique maximum from each subset of paths with exactly 

equivalent weight. All such selections produce combinatorial improvement, and this 

improvement can be significant in heuristics that force such equivalence Ihrough 

approximalion. 

7 When several paths of identical weight access the same vertex, dynamic programming 

solutions choose the "best" using alternate criteria. 
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