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ABSTRACT
Previous work on Stackelberg Security Games for scheduling se-
curity resources has mostly assumed that the targets are stationary
relative to the defender and the attacker, leading to discrete game
models with finite numbers of pure strategies. This paper in con-
trast focuses on protecting mobile targets that lead to a continuous
set of strategies for the players. The problem is motivated by sever-
al real-world domains including protecting ferries with escorts and
protecting refugee supply lines. Our contributions include: (i) a
new game model for multiple mobile defender resources and mov-
ing targets with a discretized strategy space for the defender and a
continuous strategy space for the attacker; (ii) an efficient linear-
program-based solution that uses a compact representation for the
defender’s mixed strategy, while accurately modeling the attacker’s
continuous strategy using a novel sub-interval analysis method; (iii)
a heuristic method of equilibrium refinement for improved robust-
ness and (iv) detailed experimental analysis in the ferry protection
domain.

Categories and Subject Descriptors
I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Artificial
Intelligence—Intelligent agents, Multiagent systems

General Terms
Security, Algorithms

Keywords
Continuous Strategy Set, Equilibrium Refinement, Moving Targets

1. INTRODUCTION
Stackelberg security games have been successfully deployed in

a number of infrastructure security applications [12], most recently
in the TRUSTS system in use by the Los Angeles Sheriff’s de-
partment [13]. In these games, the leader (defender) commits to a
randomized schedule – a probability distribution over deterministic
schedules – and the follower (attacker) then surveils the distribution
and then plays a best response.

This paper focuses on modeling patrolling domains with a mo-
bile set of targets. The attacker can attack these targets at any time
during their movement, leading to a continuous set of strategies in
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the resulting game. The defender has a set of mobile patroller(s)
to protect these targets. As opposed to previous work [1, 5, 4], our
contributions include computing optimal strategies for the defender
while reasoning about the attacker’s continuous strategy set without
discretization. This work further models target values that vary de-
pending on location and time and assumes a zero-sum game. The
defender’s objective is to schedule the mobile patrol resources to
minimize attacker’s maximum expected utility.

The first contribution of this paper is a novel game model called
MRMTsg for this problem of multiple Mobile Resources protect-
ing Moving Targets. MRMTsg is an attacker-defender Stackelberg
game model with a continuous set of strategies for the players, par-
ticularly for the attacker. More specifically, while the defender’s
strategy space is also continuous, we discretize it for three reason-
s. Firstly, the space of mixed strategies for the defender would
then have infinite dimensions, which makes exact computation in-
feasible. Secondly, in practice, the patrollers are not able to have
such fine-grained control over their vehicles, which makes the actu-
al defender’s strategy space effectively a discrete one. Finally, the
discretized defender strategy is still valid in the original game with
continuous strategy space for the defender, so the solution calcu-
lated under our formulation gives a guarantee in terms of expected
utility for the original continuous game. On the other hand, dis-
cretizing the attacker’s strategy space can be highly problematic: if
we assume the attacker could only attack at certain descretized time
points, the actual attacker could attack at some other time point,
leading to a possibly worse outcome for the defender.

Our second contribution is CASS (Solver for Continuous Attack-
er Strategies), an efficient linear program to exactly solve MRMTsg.
Despite discretization, the defender strategy space still has an ex-
ponential number of pure strategies. We overcome this shortcom-
ing by compactly representing the defender’s mixed strategies as
marginal probability variables. On the attacker side, CASS exactly
and efficiently models the attacker’s continuous strategy space us-
ing sub-interval analysis, exploiting the piecewise linear nature of
the attacker’s expected utility function. Our third contribution is fo-
cused on equilibrium refinement. Our game has multiple equilibria,
and the defender strategy found by CASS can be suboptimal with
respect to uncertainties in the attacker’s model, e.g., if the attacker
can only attack during certain time intervals. We present a heuristic
equilibrium refinement approach for the game. CASS is currently
being considered for deployment by the US Coast Guard.

2. RELATED WORK
As mentioned before, Stackelberg games have been widely ap-

plied to security domains [13]. However, most of this work has con-
sidered static targets [12]. Even when the players are mobile, e.g. in
hider-seeker games [8], infiltration games [2] or search games [7],
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the models have considered static targets if any. Additionally, even
when the targets were mobile, e.g., trains [13], the players were
restricted to move along the targets to protect or attack them (the
targets there are in essence stationary).

With respect to related work computing defender strategies for
patrolling domains, Noah et al. [1] compute strategies for setting
up a perimeter patrol in adversarial settings with mobile patrollers.
Similarly, Basilico et al. [4] compute the leader-follower equilibri-
um for robotic patrolling in environments with arbitrary topologies.
In the same way, Johnson et al. [9] propose a continuous game mod-
el for protecting forests from illegal logging. However, in contrast
to our problem, the targets are stationary in all this related work.

Bosansky et al. have studied the problem of protecting moving
targets [5], similar to our domain. However, they considered a mod-
el in which the defender, the attacker and targets have discretized
movements on a directed graph. We, in our work, generalize the
strategy space of the attacker to the continuous realm and compute
optimal strategies even in such a setting. Furthermore, while we
provide an efficient and scalable linear formulation, Bosanky et al.
presented a formulation with non-linear constraints that faced scal-
ing problems even with a single defender resource.

3. PROBLEM STATEMENT
One major example of the practical domains motivating this pa-

per is the problem of protecting ferries that carry passengers in
many waterside cities. Packed with hundreds of passengers, these
may present attractive targets to attack (e.g., with a small boat
packed with explosives that may be only detected once it gets close
to the ferry). Small, fast patrol boats can provide protection to such
ferries (Figure 1(a)), but there are often limited numbers of patrol
boats, i.e., they cannot protect the ferries at all times at all loca-
tions. Other examples include protecting refugee aid convoys with
overhead UAVs.

(a)
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(b)

Figure 1: (a) Protecting ferries with patrol boats; (b) Exam-
ple with three targets (triangles) and two patrollers (squares).
Patroller P1 is protecting F2 and P2 is protecting F3.

Domain description. In this problem, there are L moving tar-
gets, F1, F2, ..., FL

1. We assume that these targets move along a
one-dimensional domain, specifically a straight line segment link-
ing two terminal points which we will name A and B (an illustra-
tive instance is shown in Figure 1(b)). This is sufficient to capture
real-world domains such as ferries moving back-and-forth in a s-
traight line between two terminals as they do in many ports around
the world. The targets have fixed daily schedules. The schedule of
each target can be described as a continuous function Sq : T → D
where q = 1, ..., L is the index of the target, T = [0, 1] repre-
sents the continuous time interval of a typical day (normalized)
and D = [0, 1] is the continuous space of possible locations (nor-
malized) with 0 corresponding to terminal A and 1 terminal B. So
Sq(t) denotes the position of the target Fq at a specified time t. We
assume Sq is piecewise linear.
1A table of all notations can be found in the online appendix
(http://mrmt.webs.com/ ).

The defender has W mobile patrollers that can move along D
to protect the targets, denoted as P1, P2, ..., PW . Although faster
than the targets, they have a maximum speed vm (range of velocity
is [−vm, vm]). The attacker will choose a certain time and a cer-
tain target to attack. The probability of attack success depends on
the positions of the patrollers at that time. Specifically, each pa-
troller can detect and try to intercept anything within the protection
radius re but cannot detect the attacker prior to that radius. Thus,
a patroller protects all targets within her protective circle of radius
re (centered at her current position), as in Figure 1(b)). Symmetri-
cally, a target is protected by all patrollers whose protective circles
can cover it. If the attacker attacks a protected target, then the prob-
ability of successful attack is a decreasing function of the number
of patrollers that are protecting the target. Formally, we use a set of
coefficients {CG} to describe the strength of the protection.

DEFINITION 1. Let G ∈ {1, ...,W } be the total number of pa-
trollers protecting a target Fq , i.e., there are G patrollers such that
Fq is within radius re of each of the G patrollers. Then CG ∈ [0, 1]
specifies the probability that the patrollers can successfully stop the
attacker. We require that CG1 ≤ CG2 if G1 ≤ G2, i.e., more pa-
trollers offer stronger protection.

As with previous work in security games [12, 13], we model the
game as a Stackelberg game, where the defender commits to a ran-
domized strategy first, and then the attacker can respond to such a
strategy. The patrol schedules in these domains are currently creat-
ed by hand; and hence suffer the drawbacks of hand-drawn patrols,
including lack of randomness (in particular, informed randomness)
and reliance on simple patrol patterns [12], which we remedy in
this paper. (In the rest of the paper, we denote the defender with
“she” and the attacker with “he”).

Defender strategy. A pure strategy of defender is to designate
a moving schedule for each patroller. Analogous to the target’s
schedule, a patroller’s schedule can be written as a continuous func-
tion Ru : T → D where u = 1, ..., W is the index the patroller.
Ru must be compatible with the patroller’s velocity range.

Attacker strategy. The attacker conducts surveillance of the
defender’s mixed strategy and the targets’ schedules; he may then
execute a pure strategy response to attack a certain target at a certain
time. The attacker’s pure strategy can be denoted as (Fq, t) where
Fq is the target to attack and t is the time to attack.

Utilities. We assume the game is zero-sum. If the attacker per-
formed a successful attack on target Fq at location x at time t, he
gets a positive reward Uq(x, t) and the defender gets −Uq(x, t),
otherwise both players get utility zero. The positive reward Uq(x, t)
is a known function which accounts for many factors in practice.
For example, an attacker may be more effective in his attack when
the target is stationary (such as at a terminal point) than when the
target is in motion. As the target’s position is decided by the sched-
ule, the utility function can be written as Uq(t) ≡ Uq(Sq(t), t).
We assume Uq(t) can be represented as a piecewise linear function
of t for each target Fq (we will show an example in Section 6).

4. MODELS
In this section, we introduce our MRMTsg model that uses a dis-

cretized strategy space for the defender and a continuous strategy
space for the attacker. For clarity of exposition, we then introduce
DASS approach to compute a minimax solution for discretized at-
tacker strategy space (Section 4.2), followed by CASS for the at-
tacker’s continuous strategy space (Section 4.3). We first assume
a single patroller and then generalize to multiple patrollers in Sec-
tion 4.4. Since our game is zero-sum, we use minimax (minimizing
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the maximum attacker utility) which returns the same solution as
Strong Stackelberg Equilibrium [6, 10] for MRMTsg.

4.1 Representing Defender’s Strategies
Since the defender’s strategy space is discretized, we assume that

each patroller only makes changes at a finite set of time points T =
{t1, t2, ..., tM}, evenly spaced across the original continuous time
interval. t1 = 0 is the starting time and tM = 1 is the normalized
ending time. We denote by δt the distance between two adjacent
time points: δt = tk+1 − tk = 1

M−1
. We require δt to be small

enough such that for each target Fq , the utility function Uq(t) and
the moving schedule Sq(t) are linear within each interval [tk, tk+1]
for k = 1, . . . ,M−1, i.e., the target is moving with uniform speed
and linearly changing utility during each of these intervals.

In addition to discretization in time, we also discretize the line
segment AB2 that the targets move along a set of points D =
{d1, d2, ..., dN} and restrict each patroller to be located at one of
the discretized points di at any discretized time point tk. During
each time interval [tk, tk+1], each patroller moves with constan-
t speed from her location di at time tk to her location dj at time
tk+1. The points d1, d2, ..., dN are ordered by their distance to ter-
minal A, and d1 refers to A and dN refers to B. Since the time
interval is discretized into M points, a patroller’s route Ru (Ru is,
in essence, a mapping of T → D) can be represented as a vec-
tor Ru = (dRu(1), dRu(2), ..., dRu(M)). Ru(k) is the index of the
discretized distance point where the patroller is located at time tk.

For a single defender resource in the full representation, the de-
fender’s mixed strategy assigns a probability to each of the patrol
routes that can be executed. If vm is large enough, there are in
total NM patrol routes, which makes the full representation in-
tractable. Therefore, we use a compact representation of the de-
fender’s mixed strategy where we represent the defender’s strategy
with flow distribution variables {f(i, j, k)}. f(i, j, k) is the prob-
ability of the patroller moving from di at time tk to dj at time tk+1.
The complexity of the compact representation is O(MN2), much
more efficient compared to the full representation. Figure 2 shows
a simple example illustrating the compact representation. Number-
s on the edges indicate the value of f(i, j, k). We use Ei,j,k to
denote the directed edge linking nodes (tk, di) and (tk+1, dj). For
example, f(2, 1, 1), the probability of the patroller moving from d2
to d1 during time t1 to t2, is shown on the edge E2,1,1 from node
(t1, d2) to node (t2, d1). While a similar compact representation
was used earlier in Yin et al. [13], we use it in a continuous setting.
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Figure 2: Compact representation: x-axis shows time interval-
s; y-axis the discretized distance-points in the one-dimensional
movement space.

Any strategy in full representation can be mapped into a compact
representation. If there are H possible patrol routes R1, R2, ..., RH ,
a strategy in full representation can be denoted as a probability
vector (p(R1), ...p(RH)) where p(Ru) is the probability of taking
route Ru. Taking route Ru means the patroller moves from dRu(k)

2It is possible to have additional points where targets may stop
(e.g., to load and unload passengers).

to dRu(k+1) during time [tk, tk+1], so the edge ERu(k),Ru(k+1),k

is taken when route Ru is chosen. Then the total probability of
taking edge Ei,j,k is the sum of probabilities of all the routes Ru

where Ru(k) = i and Ru(k + 1) = j. Formally,

f(i, j, k) =
∑

Ru:Ru(k)=i and Ru(k+1)=j

p(Ru). (1)

Different mixed strategies in full representation can be mapped
to the same compact representation. Table 1 shows a simple exam-
ple. Rows 1 and 2 show full representation for two mixed strategies.
The probability of a route is labeled on all edges in the route in full
representation. Adding up the numbers of a particular edge Ei,j,k

in all routes of a full representation together, we can get f(i, j, k)
for the compact representation (shown in Figure 2).

Full Representation 1

��� ��� � �

Full Representation 2

��� ��� ��� ���

Table 1: Two full representations that can be mapped into the
same compact representation shown in Figure 2.

This compact representation does not lead to any loss in solution
quality. Recall our goal is to find an optimal defender strategy that
minimizes maximum attacker utility. The attacker expected utility
of attacking target Fq at time t given defender strategy f can be
expressed as

AttEUf (Fq, t) = (1−C1ω(Fq, t))Uq(t), (2)

where Uq(t) is the reward for a successful attack, ω(Fq, t) is the
probability that the patroller is protecting target Fq at time t and
C1 is the protection coefficient of single patroller. We drop the
subscript if f is obvious from the context. As C1 and Uq(t) are
constants for a given attacker’s pure strategy (Fq, t), AttEU(Fq, t)
is purely decided by ω(Fq, t). As we will show in the next subsec-
tion, ω(Fq, t) can be calculated from the compact representation
{f(i, j, k)}. If two defender strategies under the full representa-
tion are mapped to the same compact representation {f(i, j, k)},
they will have the same ω function and AttEU for any attacker’s
pure strategy (Fq , t). We exploit the following properties of the
compact representation.

PROPERTY 1. For any time interval [tk, tk+1], the sum of all
flow distribution variables equals to 1:

∑N
i=1

∑N
j=1 f(i, j, k) = 1.

PROPERTY 2. The sum of flows that go into a particular node
equals the sum of flows that go out of the node. Denote the sum as
p(i, k), then p(i, k) =

∑N
j=1 f(j, i, k − 1) =

∑N
j=1 f(i, j, k).

PROPERTY 3. Combining Property 1 and 2,
∑N

i=1 p(i, k) = 1.

4.2 DASS: Discretized Attacker Strategies
DASS (Solver for Discretized Attacker Strategies) efficiently find-

s minimax solutions for MRMT-based games while constraining
the attacker to attack at discretized time points tk. That is, we need
to minimize v where v is the maximum of attacker’s expected util-
ity. Here, v is the maximum of AttEU(Fq, t) for any target Fq at
any discretized time point tk.
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From Equation (2), we know that AttEU(Fq, t) is decided by
ω(Fq, t), the probability that the patroller is protecting target Fq

at time t. Given the position of the target Sq(t), we define the
protection range β(Fq, t) = [max{Sq(t)− re, d1},min{Sq(t) +
re, dN}]. If the patroller is located within the range β(Fq, t), the
distance between the target and the patroller is no more than re and
thus the patroller is protecting Fq at time t. So ω(Fq, t) is the prob-
ability that the patroller is located within range β(Fq, t) at time t.
For the discretized time points tk, the patroller can only be located
at a discretized distance point di, so we define the following.

DEFINITION 2. I(i, q, k) is a function of two values. I(i, q, k) =
1 if di ∈ β(Fq, tk), and otherwise I(i, q, k) = 0.

In other words, I(i, q, k) = 1 means that a patroller located at di
at time tk is protecting target Fq . The probability that the patroller
is at di at time tk is p(i, k). So we have

ω(Fq, tk) =
∑

i:I(i,q,k)=1
p(i, k), (3)

AttEU(Fq, tk) =

(
1− C1

∑
i:I(i,q,k)=1

p(i, k)

)
Uq(t). (4)

Equation (4) follows from Equations (2) and (3).Finally, we must
address speed restrictions on the patroller. We can set all flows that
are not achievable to zero, that is f(i, j, k) = 0 if |dj−di| > vmδt.
Thus, DASS can be formulated as a linear program:

min
f(i,j,k),p(i,k)

v (5)

f(i, j, k) ∈ [0, 1], ∀i, j, k (6)
f(i, j, k) = 0,∀i, j, k such that |dj − di| > vmδt (7)

p(i, k) =
N∑

j=1

f(j, i, k − 1),∀i,∀k > 1 (8)

p(i, k) =

N∑
j=1

f(i, j, k),∀i,∀k < M (9)

N∑
i=1

p(i, k) = 1,∀k (10)

v ≥ AttEU(Fq, tk),∀q,∀k (11)

Constraint 7 describes the speed limit. Constraint 6 describes the
probability range. Constraints 8–9 describes Property 2. Constraint
10 is exactly Property 3. Property 1 can be derived from the 2
and 3, so it is not listed as a constraint. Equation (11) shows the
attacker chooses the strategy that gives him the maximal expected
utility among all possible attacks at discretized time points; where
AttEU(·) is described by Equation (4).

4.3 CASS: Continuous Attacker Strategies
Unfortunately, DASS’s solution quality guarantee may fail: if

the attacker chooses to attack between tk and tk+1, he may get a
higher expected reward than attacking at tk or tk+1. Consider the
following example: Figure 3 shows the defender’s compact strate-
gy between tk and tk+1. Here the defender’s marginal strategy has
only three non-zero variables f(3, 4, k) = 0.3, f(3, 1, k) = 0.2,
and f(1, 3, k) = 0.5, indicated by the set of three edges E+ =
{E3,4,k, E3,1,k, E1,3,k}. There is only one target, which moves
from d3 to d2 at constant speed during [tk, tk+1]. Its schedule is
depicted by the straight line segment S1. The dark lines L1

1 and
L2

1 are parallel to S1 with distance re. The area between them in-
dicates the protection range β(Fq, t) for any time t ∈ (tk, tk+1).

Consider the time points at which an edge from E+ intersects one
of L1

1, L2
1 (labeled as θrk, r = 1 . . . 4 in Figure 3). Intuitively, these

are all the time points at which a defender patrol could potentially
enter or leave the protection range of the target. To simplify the no-
tation, we denote tk as θ0k and tk+1 as θ5k. For example, a patroller
moving from d3 to d4 (or equivalently, taking the edge E3,4,k) pro-
tects the target from θ0k to θ1k because E3,4,k is between L1

1 and
L2

1 in [θ0k, θ
1
k], during which the distance to the target is less or e-

qual than protection radius re. Consider the sub-intervals between
each θjk and θj+1

k , for j = 0 . . . 4. Since within each of these five
sub-intervals, no patroller enters or leaves the protection range, the
probability that the target is being protected is a constant in each
sub-interval, as shown in Figure 4(a).
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Figure 3: Changes of AttEU in (tk, tk+1).

Suppose U(Fq , t) decreases linearly from 2 to 1 during [tk, tk+1]
and C1 = 0.8. We can then calculate the attacker’s expected util-
ity function AttEU(Fq, t) for (tk, tk+1), as plotted in Figure 4(b).
AttEU(Fq, t) is linear in each sub-interval but the function is dis-
continuous at the intersection points θ1k, . . . , θ

4
k because of the dis-

continuity of ω(Fq, t). We denote:

lim
t→θr−

k

AttEU(Fq , t) = AttEU(Fq, θ
r−
k )

lim
t→θr+

k

AttEU(Fq, t) = AttEU(Fq , θ
r+
k )

An attacker can choose to attack at a time immediately after θ2k,
getting an expected utility that is arbitrarily close to 1.70. Ac-
cording to Equation (4), we can get AttEU(Fq, tk) = 1.20 and
AttEU(Fq, tk+1) = 1.00, both lower than AttEU(Fq, θ

2+
k ).

�

����

0.20

��
�

��

��
�

��
�

��
�

��
�

����

��
	

0.00

0.50

(a) Probability that the target is
protected in (tk, tk+1).
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1.43

1.00

(b) The attacker’s expected
utility in (tk, tk+1).

Figure 4: Sub-interval analysis

Thus, the attacker can get a higher expected reward by attack-
ing between tk and tk+1. However, because of discontinuities in
the attacker’s expected utility function, a maximum might not ex-
ist. This implies that the minimax solution concept might not be
well-defined for our game. We thus define our solution concept to
be minimizing the supremum of AttEU(Fq, t). Supremum is de-
fined to be the smallest real number that is greater than or equal
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to any AttEU(Fq, t), i.e., it is the least upper bound. In the above
example, the supremum of attacker’s expected utility in (tk, tk+1)
is AttEU(Fq, θ

1+
k ) = 1.70. Formally, a defender strategy f is min-

imax if f ∈ argminf ′ supAttEUf ′(Fq, t).
How can we deal with the possible attacks between the discretized

points and find an optimal defender strategy? We generalize the
process above (called sub-interval analysis) to all possible edges
Ei,j,k. We then make use of the piecewise linearity of AttEU(Fq, t)
and the fact that the potential discontinuity points are fixed, which
allows us to construct a linear program that solves the problem to
optimality. We name the approach CASS (Solver for Continuous
Attacker Strategies).

We first introduce the general sub-interval analysis. For any tar-
get Fq and any time interval (tk, tk+1), we calculate the intersec-
tion points of edges Ei,j,k and L1

q , L2
q . We sort the intersection

points in increasing order, denoted as θrk, r = 1 . . .Mqk, where
Mqk is the total number of intersection points. Set θ0k = tk and
θ
Mqk+1

k = tk+1. Thus (tk, tk+1) is divided into sub-intervals
(θrk, θ

r+1
k ), r = 0, ...,Mqk.

LEMMA 1. AttEU(Fq, t) is piecewise linear in t with the same
set of potential discontinuous points independent of the defender
strategy.

The proof is in the online appendix(http://mrmt.webs.com/ ) and
follows from the fact that in each sub-interval, Ei,j,k is either to-
tally above or below L1

q , and similarly for L2
q . Define coefficient

Ar
qk(i, j) to beC1 if edge Ei,j,k is between L1

q and L2
q in (θrk, θ

r+1
k ),

and 0 otherwise. According to Equation (2) and the fact that ω(Fq, t)
is the sum of f(i, j, k) whose corresponding coefficient Ar

qk(i, j) =

C1, we have the following equation for t ∈ (θrk, θ
r+1
k ).

AttEU(Fq , t) =

(
1−

N∑
i=1

N∑
j=1

Ar
qk(i, j)f(i, j, k)

)
· Uq(t) (12)

Piecewise linearity of AttEU(Fq, t) means the function is mono-
tonous in each sub-interval and the supremum can be found at the
intersection points. Because of linearity, the supremum of AttEU in
(θrk, θ

r+1
k ) can only be chosen from the one-sided limits of the end-

points, AttEU(Fq, θ
r+
k ) and AttEU(Fq, θ

(r+1)−
k ). Furthermore, if

U(Fq , t) is decreasing in [tk, tk+1], the supremum is
AttEU(Fq , θ

r+
k ) and otherwise it is AttEU(Fq, θ

(r+1)−
k ). In other

words, all other attacker’s strategies in (θrk, θ
r+1
k ) are dominated

by attacking at time close to θrk or θr+1
k . Thus, CASS adds new

constraints to Constraints 6–11 which consider attacks to occur at
t ∈ (tk, tk+1). We add one constraint for each sub-interval with
respect to the possible supremum value in this sub-interval:

min
f(i,j,k),p(i,k)

v (13)

subject to constraints(6..11)

v ≥ max{AttEU(Fq, θ
r+
k ),AttEU(Fq, θ

(r+1)−
k )} (14)

∀k = 1..M, q = 1..L, r = 0..Mqk

This linear program stands at the core of CASSȦll the linear con-
straints included by Constraint 14 can be added to CASS using Al-
gorithm 1. The input of the algorithm include targets’ schedules
Sq , the protection radius re, the speed limit vm, the set of dis-
cretized time points {tk} and the set of discretized distance points
{di}. Function CalInt(L1

q , L
2
q , vm) in Line 5 returns the list of

all intersection time points between all possible edges Ei,j,k and
the parallel lines L1

q , L2
q , with additional points tk as θ0k and tk+1

as θMqk+1

k . Function CalCoef(L1
q, L

2
q, vm, θrk, θ

r+1
k ) in Line 7 re-

turns the coefficient matrix Ar
qk. Lines 8–11 add a constraint with

respect to the larger value of AttEU(Fq, θ
r+
k ) and AttEU(Fq , θ

(r+1)−
k )

to CASS for this sub-interval (θrk, θ
r+1
k ).

THEOREM 1. CASS computes (in polynomial time) the exact
solution (minimax) of the game with discretized defender strategies
and continuous attacker strategies.

Proof: According to Lemma 1, AttEU(Fq, t) is piecewise lin-
ear and discontinuity can only occur at the intersection points θrk.
These intersection points divide the time space into sub-intervals.
Because of piecewise linearity, the supremum of AttEU(Fq, t) e-
quals to the limit of an endpoint of at least one sub-interval. For
any defender’s strategy f that is feasible, v is no less than any of
the limit values at the intersection points according to Constraint
14, and thus v can be any upper bound of AttEU(Fq, t) for f . As
v is minimized in the objective function, v is no greater than the
supremum of AttEU(Fq, t) given any defender strategy f , and fur-
ther v will be the infimum of the set of supremum corresponding to
all defender strategies. Thus we get the optimal defender strategy.

The total number of variables in the linear program is O(MN2)
(including f(i, j, k) and p(i, k)). The number of constraints rep-
resented in Algorithm 1 is O(MN2) as the number of intersection
points is at most 2(M − 1)N2. The number of constraints rep-
resented in Constraints 6–11 is also O(MN2). Thus, the linear
program computes the solution in polynomial time.

COROLLARY 1. The solution of CASS provides a feasible de-
fender strategy of the original continuous game and gives exact
expected value of that strategy.

Algorithm 1: Add constraints described in Constraint 14

1 Input: Sq , re, vm, {tk}, {di};
2 for k ← 1, . . . ,M − 1 do
3 for q ← 1, . . . , L do
4 L1

q ← Sq + re, L2
q ← Sq − re;

5 θ0k, . . . , θ
Mqk+1

k ← CalInt(L1
q , L

2
q , vm);

6 for r ← 0, . . . ,Mqk do
7 Ar

qk ← CalCoef(L1
q, L

2
q , vm, θrk, θ

r+1
k );

8 if U(Fq , t) is decreasing in [tk, tk+1] then
9 add constraint v ≥ AttEU(Fq, θ

r+
k );

10 else
11 add constraint v ≥ AttEU(Fq, θ

(r+1)−
k )

4.4 Generalized Model
To illustrate generalization to the multiple defender resources

case, we take two patrollers as an example. If there are two pa-
trollers, the patrol strategy can be represented as {f(i1, j1, i2, j2, k)}.
f(i1, j1, i2, j2, k) shows the probability of the first patroller mov-
ing from di1 to dj1 and the second patroller moving from di2 to di2
during time tk to tk+1, i.e., taking edge Ei1,j1,k and Ei2,j2,k re-
spectively. The corresponding marginal distribution variable p(i1, i2, k)
represents for the probability that the first patroller is at di1 and the
second at di2 at time tk. Protection coefficients C1 and C2 are used
when one or two patrollers are protecting the target respectively. So
the attacker’s expected utility can be written as

AttEU(Fq , t) = (1− (C1 · ω1(Fq, t) + C2 · ω2(Fq, t))) · Uq(t)

ω1(Fq , t) is the probability that only one patroller is protecting the
target Fq at time t and ω2(Fq, t) is the probability that both pa-
trollers are protecting the target. For attacks that happen at dis-
cretized points tk, we can make use of I(i, q, k) in Definition 2 and
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I(i1, q, k) + I(i2, q, k) is the total number of patrollers protecting
the ferry at time tk.

ω1(Fq, tk) =
∑

i1,i2:I(i1,q,k)+I(i2,q,k)=1
p(i1, i2, k)

ω2(Fq, tk) =
∑

i1,i2:I(i1,q,k)+I(i2,q,k)=2
p(i1, i2, k)

Constraints for attacks occurring in (tk, tk+1) can be calculated
with an algorithm similar to Algorithm 1, the main difference is to
set the values in the coefficient matrix Ar

qk(i1, j1, i2, j2) as C2 if
both edges Ei1,j1,k and Ei2,j2,k are between L1

q and L2
q .

AttEU(Fq , t) =

(1−
∑

i1,j1,i2,j2

Ar
qk(i1, j1, i2, j2)f(i1, j1, i2, j2, k)) · Uq(t)

For a general case of W defender resources, we can use
{f(i1, j1, ..., iW , jW , k)} to represent the patrol strategy and get
the following equations.

AttEU(Fq, t) =

(
1−

W∑
Q=1

CQ · ωQ(Fq, t)

)
· Uq(t)

ωQ(Fq, tk) =
∑

i1,...,iW :
W∑

u=1
I(iu,q,k)=Q

p(i1, . . . , iW , k)

Q is the number of patrollers protecting the target, and is the proba-
bility of protection for the discretized time points tk. We can mod-
ify Algorithm 1 to apply for multiple defender resource case. Set
Ar

qk(i1, j1, ..., iW , jW ) as CQ if Q of the edges {Eiu,ju,k} are
between L1

q and L2
q .

The linear program for multiple patrollers can be found in online
appendix(http://mrmt.webs.com/ ). The number of variables in the
linear program and the number of constraints are both O(MN2W ).
While the expression grows exponentially in the number of re-
sources, in real-world domains such as ferry protection, the number
of defender resources are limited. That is the main reason that op-
timization using security games becomes critical. As a result, the
above generalization of CASS is adequate. Indeed, we can easily
run CASS with 4 defender resources within 3 minutes for complex
ferry domains. Further scale-up is an issue for future work.

5. EQUILIBRIUM REFINEMENT
A game often has multiple equilibria. Since our game is zero-

sum, all equilibria achieve the same objective value. However, if
an attacker deviates from his best response, some equilibrium s-
trategies for the defender may provide better results than others.
Consider the following example game. There are two targets mov-
ing during [t1, t2] (no further discretization), one is moving from
d3 to d2 and the other is moving from d1 to d2 (See Figure 5(a)).
d3 − d2 = d2 − d1 = d and 5d/9 < re < d. There is only one
patroller available and the protection coefficient C1 = 1. Both tar-
gets’ utility functions decrease from 10 to 1 in [t1, t2] (See Figure
5(b)). In one equilibrium, f3,2,1 = f1,2,1 = 0.5, i.e., the patroller
randomly chooses one target and follows it all the way. In another
equilibrium, f3,3,1 = f1,1,1 = 0.5, i.e., the patroller either stays
at d1 or at d3. In either equilibrium, the attacker’s best response
is to attack at t1, with a maximum expected utility of 5. However,
if an attacker is physically constrained (e.g., due to launch point
locations) to only attack no earlier than tmid, he will choose to at-
tack at tmid, and his expected utility is U(Fq , tmid)/2 for the first
equilibrium and U(Fq , tmid) for the second. That is, the defender
strategy in the first equilibrium is better than the one in the second.

��

��

��

�� �� ����

�����	
�

��

��

��

��

������
�

(a)

10

1

�� �� ����

����, �	

����

����


�
�

(b)

Figure 5: An example to show different equilibria for one game

Our goal is to improve the defender strategy so that it is more
robust against constrained attackers while keeping the defender’s
expected utility against unconstrained attackers the same. This task
of selecting one from the multiple equilibria of a game is an in-
stance of the equilibrium refinement problem, which has received
extensive study in game theory [6, 11]. For finite security games An
et al [3] proposed techniques that provide refinement over Stackel-
berg equilibrium. However there has been little prior research on
the computation of equilibrium refinements for continuous games.

We introduce “route-adjust”, a heuristic method for refining the
equilibrium found by CASS. For expository simplicity, we first
consider the single resource case. We begin with defining domi-
nance of defender strategies for MRMTsg.

DEFINITION 3. Defender strategy f dominates f ′ if
DefEUf (Fq , t) ≥ DefEUf ′(Fq, t), ∀q, t, or equivalently in this
zero-sum game, AttEUf (Fq , t) ≤ AttEUf ′(Fq, t).

COROLLARY 2. Defender strategy f dominates f ′ if ∀q, t,
ω(Fq, t) ≥ ω′(Fq, t).

Corollary 2 follows from Equation (2). Starting with a defender
strategy f0 calculated by CASS, route-adjust provides final routes
using these steps: (i) decompose flow distribution f0 into compo-
nent routes; (ii) for each route, greedily find a route which provides
better protection to targets; (iii) combine the resulting routes into
a new flow distribution, f1, which dominates f0. To accomplish
step (i), we decompose the flow distribution by iteratively finding a
route that contains the edge with minimum probability. As shown
in Figure 6, we first randomly choose a route that contains edge
E1,2,2, as f(1, 2, 2) = 0.4 is the minimum among all flow vari-
ables. We choose R2 = (d1, d1, d2), and set p(R2) = f(1, 2, 2) =
0.4. Then we subtract the route from the original flow distribution
to get a residual graph. We continue to extract routes from the
residual graph until there is no route left. Assume in the flow dis-
tribution graph, the number of non-zero terms is Z, Z is decreased
by at least 1 after each iteration. So the algorithm will terminate in
at most Z steps and at most Z routes are found.
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Figure 6: An example of decomposition.

For step (ii), we adjust each of the routes greedily. To that end,
we first introduce the (weak) dominance relation of edges and routes,
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using the intersection points θrk and the coefficient matrix Ar
qk(i, j)

defined in Section 4.3.

DEFINITION 4. Edge Ei,j,k dominates edge Ei′,j′,k in [tk, tk+1]
if Ar

qk(i, j) ≥ Ar
qk(i

′, j′), ∀q = 1..L, ∀r = 1..Mqk , i.e., edge
Ei,j,k protects target Fq in [θrk, θ

r+1
k ] if edge Ei′,j′,k protects it.

DEFINITION 5. RouteRu = (dRu(1), . . . , dRu(M)) dominates
Ru′ = (dRu′ (1), . . . , dRu′ (M)) ifERu(k),Ru(k+1),k dominates edge
ERu′ (k),Ru′ (k+1),k, ∀k = 1 . . .M − 1, i.e., route Ru dominates
Ru′ if each edge of Ru dominates the corresponding edge in Ru′ .

Denote the original route to be adjusted as Ru and the new route
as Ru1 . A greedy way to improve the route is to replace on-
ly one node in the route, i.e., Ru1(k) = Ru(k), ∀k 
= k∗ and
dRu(k∗) in the original route is replaced with dRu1 (k

∗). So the
patroller’s route changes only in [tk∗−1, tk∗+1]. To simplify the
notation, we denote the edge ERu(k∗),Ru(k∗+1),k∗ as E(u, k∗).
Thus, only edges E(u, k∗ − 1) and E(u, k∗) in the original route
are replaced by E(u1, k

∗ − 1) and E(u1, k
∗) in the new route.

We want Ru1 to provide more protection to the targets, so the new
route should dominate the original one. So for a specified k∗, we
are looking for a position dRu1 (k∗) such that: 1) E(u1, k

∗ − 1)

and E(u1, k
∗) meet the speed constraint; 2) E(u1, k

∗ − 1) and
E(u1, k

∗) dominates E(u, k∗ − 1) and E(u, k∗) respectively; 3)
edge E(u1, k

∗ − 1) and E(u1, k
∗) are not dominated by the cor-

responding edges for any other choice of dRu1 (k
∗). The second

requirement ensures the changed edges in the new route dominates
the corresponding edges in the original route. Thus the new route
Ru1 dominates Ru. The third requirement attains a local maxima.
We iterate this process, converging to a final route denoted Ru′ .

For the example above, assume the target’s moving schedule is
d1 → d1 → d2, d3 − d2 = d2 − d1 = δd, re = 0.1δd and utility
function is constant. We improve each route by changing the pa-
troller’s position at time t3, i.e., Ru(3). As t3 is the last discretized
time point, only edge Ei,j,2 may be changed. The adjustment is
shown in Table 2.

Original Adjusted p(Ru) Composed
(d1, d1, d1) (d1, d1, d2) 0.2

�	 �


��

�	
���

��

(d1, d1, d2) (d1, d1, d2) 0.4
(d2, d1, d1) (d2, d1, d2) 0.4
(d2, d1, d2) - 0

Table 2: An example to show how the routes are adjusted

For step (iii), we reconstruct a new compact representation as in
Equation 1. For the example above, the result is shown in Table 2.

THEOREM 2. After steps (i)–(iii), we get a new defender strat-
egy f1 that dominates the original one f0.

While step (iii) allows us to prove Theorem 2, notice that at the
end of step (ii), we have a probability distribution over a set of
routes from which we can sample actual patrol routes. For two
or more defender resources, we define the dominance relation on
the edge tuple (Ei1,j1,k, ..., EiW ,jW ,k) with coefficient matrix for
multiple patrollers Ar

qk(i1, j1, ..., iW , jW ).

6. EVALUATION
We use an example set in the ferry protection domain and com-

pare the performance in terms of the attacker’s expected utility
AttEU(Fq , t). As it is a zero-sum game, a lower value of AttEU
indicates a higher value of defender’s expected utility.

We used the following setting for the experiments, illustrating
that this is a complex spatio-temporal game; rather than a discrete
security game as in most previous work. There are three ferries
moving between terminals A and B and the total distance AB = 1.
The simulation time is 30 minutes. The schedules of the ferries
are shown in Figure 7(a), where the x-axis indicates the time and
the y-axis is the distance from terminal A. Ferry 1 and Ferry 3 are
moving from A to B while Ferry 2 is moving from B to A. We first
show results with 2 patrollers (where C1 = 0.8, and C2 = 1.0),
and with more patrollers later.

Performance of CASS. We compare the strategies calculated by
CASS with DASS and a baseline strategy. In the baseline strategy,
the two patrollers choose a ferry with a probability of 1/3 (uniform-
ly random) and move alongside it to offer it full protection, leaving
the other two unprotected (strategy observed in practice). First we
wished to stress test CASS by using more complex utility functions
than in the realistic case that follows. Therefore, we tested under
4 different discretization levels (e.g., at level 1, M = 4, N = 3,
and at level 4, M = 16, and N = 11) with random utilities, and
at each discretization level, we created 20 problem instances. Each
instance has utilities uniformly randomly chosen between [0, 10] at
discretized points; an example is shown in dashed lines of Figure
7(b). The x-axis indicates the distance d from terminal A, the y-axis
indicates the utility of a successful attack if the ferry is located at
distance d. In Figure 7(c), x-axis plots the four discretization level-
s. y-axis plots the average attacker utility over the 20 instances for
baseline, DASS and CASS. CASS is shown to outperform DASS
and baseline (p<0.01).

Next we turn to more realistic utility function in this ferry do-
main, which is of U -shape or inverse U -shape. The solid line in
Figure 7(b) shows a sample utility curve where the attacker gains
higher utility closer to the shore. In Figure 7(d), we fix the util-
ity at the shore as 10, vary the utility in the middle (the floor of
the U -shape or the top of the inverse U -shape), shown on x-axis
and compare performance of the strategies in terms of attacker u-
tility on the y-axis. We conclude that 1) The strategy calculated
by CASS outperforms the baseline and DASS. 2) DASS may ac-
tually achieve worse results than the baseline. Figure 7(e) gives
a more detailed analysis for the one instance (shown in Figure
7(b) with solid line). The x-axis indicates the time t, and the y-
axis indicates the attacker’s expected utility if he attacks Ferry 1
at time t. For the strategy calculated by DASS the worst perfor-
mance at discretized time points is 3.50(AttEU(F1, 20)), howev-
er, the supremum of AttEU(F1, t), t ∈ [0, 30] can be as high as
4.99 (AttEU(F1, 4

+)), which experimentally shows that taking in-
to consideration the attacks between the discretized time points is
necessary. For the strategy calculated by CASS the supremum of
AttEU(F1, t) is reduced to 3.82.

Number of Patrollers. Figure 8(a) shows the improvement in
performance of CASS with increasing number of patrollers. The
x-axis shows the number of patrollers and the y-axis indicates the
average of supremum of attacker’s expected utility. The results are
averaged over the 20 random utility settings for discretization lev-
el 1 from Figure 7(c) (only 1 level is shown due to space limit).
With less patrollers, the performance of the defender varies a lot de-
pending on the randomized utility function (higher variance). But
the variance gets much smaller with more patrollers, which means
the defender has sufficient resources for different instances. Figure
8(b) shows the run-time for CASS.

Improvement Using Refinement Methods. In Figure 7(f), we
compare the AttEU(Fq, t) function of the defender strategy given
by CASS and the defender strategy after equilibrium refinement for
Ferry 1 for just one instance described in Figure 7(b)(solid line). In
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0

2

4

6

A
ve

(S
up

(A
ttE

U
))

 

 

1 patroller
2 patrollers
3 patrollers
4 patrollers

(a) Solution quality

0

1

2

3

R
un

tim
e 

(m
in

ut
es

)

 

 

1 patroller
2 patrollers
3 patrollers
4 patrollers

(b) Runtime

Figure 8: Performance with varying number of patrollers.

route-adjust, we replace every node of the route one-by-one and
repeat the process five times. The figure shows for an attack aim-
ing at any target at any time, the defender strategy after refinement
is equally good or better than the one in the original equilibrium.
Figure 7(g) shows the maximum and the average improvement of
refinement over 15 randomized instances for Figure 7(c), which
confirms the refinement eliminates the weakly dominated defender
strategy calculated by CASS and provides a better defender strate-
gy in terms of possible constrained attackers.

Sampled Routes. We now give a pair of sampled routes for two
patrollers for the defender strategy after route-adjust step (ii)(See
Figure 7(h)). The x-axis indicates the time and the y-axis is the dis-
tance to terminal A. The solid lines show the escorts’ patrol routes
and the dashed lines show the ferries’ schedules.

7. SUMMARY
This paper makes several contributions in computing optimal s-

trategies given moving targets and mobile patrollers: (i) MRMTsg,
a game model with continuous attacker strategy set; (ii) a fast so-
lution approach, CASS, based on compact representation and sub-
interval analysis; and (iii) a heuristic method for equilibrium refine-
ment for CASS’s solutions; and (iv) detailed experimental analysis
in the ferry protection domain. CASS is currently being considered
for deployment by the US Coast Guard.

8. ACKNOWLEDGEMENTS
We thank the USCG officers, and particularly Craig Baldwin,

Joe Direnzo and Francis Varrichio at sector New York, for their
exceptional collaboration. This research is supported by US Coast
Guard grant HSHQDC-10-D-00019 and MURI grant W911NF-11-
1-0332.

9. REFERENCES
[1] N. Agmon, S. Kraus, and G. A. Kaminka. Multi-robot

perimeter patrol in adversarial settings. In ICRA, 2008.
[2] S. Alpern. Infiltration Games on Arbitrary Graphs. Journal

of Mathematical Analysis and Applications, 163:286–288,
1992.

[3] B. An, M. Tambe, F. Ordóñez, E. Shieh, and C. Kiekintveld.
Refinement of strong stackelberg equilibria in security
games. In AAAI, 2011.

[4] N. Basilico, N. Gatti, and F. Amigoni. Leader-follower
strategies for robotic patrolling in environments with
arbitrary topologies. In AAMAS, 2009.

[5] B. Bošanský, V. Lisý, M. Jakob, and M. Pěchouček.
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