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Optimal percolation on multiplex networks
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Optimal percolation is the problem of finding the minimal set of nodes whose removal from a

network fragments the system into non-extensive disconnected clusters. The solution to this

problem is important for strategies of immunization in disease spreading, and influence

maximization in opinion dynamics. Optimal percolation has received considerable attention in

the context of isolated networks. However, its generalization to multiplex networks has

not yet been considered. Here we show that approximating the solution of the optimal

percolation problem on a multiplex network with solutions valid for single-layer networks

extracted from the multiplex may have serious consequences in the characterization of the

true robustness of the system. We reach this conclusion by extending many of the methods

for finding approximate solutions of the optimal percolation problem from single-layer

to multiplex networks, and performing a systematic analysis on synthetic and real-world

multiplex networks.
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A multiplex is a network in which nodes are connected
through different types or flavors of pairwise edges1–3. A
convenient way to think of a multiplex is as a collection

of network layers, each representing a specific type of edges.
Multiplex networks are genuine representations for several real-
world systems, including social4,5, and technological systems6,7.
From a theoretical point of view, a common strategy to under-
stand the role played by the co-existence of multiple network
layers is based on a rather simple approach. Given a process and a
multiplex network, one studies the process on the multiplex and
on the single-layer projections of the multiplex (e.g., each of the
individual layers, or the network obtained from aggregation of
the layers). Recent research has demonstrated that ignoring
the effective co-existence of different types of interactions in the
study of a multiplex network may have dramatic consequences in
the ability to model and predict properties of the system.
Examples include dynamical processes, such as diffusion8,9, epi-
demic spreading10–13, synchronization14, and controllability15, as
well as structural processes such as those typically framed in
terms of percolation models16–29.

The vast majority of the work on structural processes on
multiplex networks have focused on ordinary percolation models
where nodes (or edges) are considered either in a functional or in
a non-functional state with homogenous probability30. In this
paper, we shift the focus on the optimal version of the percolation
process: we study the problem of identifying the smallest set of
nodes in a multiplex network such that, if these nodes are
removed, the network is fragmented into many disconnected
clusters with non-extensive sizes. We refer to the nodes belonging
to this minimal set as structural nodes (SNs) of the multiplex
network. The solution of the optimal percolation problem has

direct applicability in the context of robustness, representing the
cheapest way to dismantle a network31–33. The solution of the
problem of optimal percolation is, however, important in other
contexts, being equivalent to the best strategy of immunization to
a spreading process, and also to the best strategy of seeding a
network for some class of opinion dynamical models34–37.
Despite its importance, optimal percolation has been introduced
and considered in the framework of single-layer networks only
recently35,36. Optimal percolation is a NP-complete problem32.
Hence, on large networks, we can only use heuristic methods to
find approximate solutions. Most of the research activity on this
topic has indeed focused on the development of greedy
algorithms31–33,35.

Here we consider the generalization of optimal percolation to
multiplex networks. Our generalization consists in the redefini-
tion of the problem in terms of mutual connectedness16. To this
end, we reframe several algorithms for optimal percolation in
single-layer networks to obtain methods that consider the mul-
tiplex structure of networks as well. Basically all the algorithms we
use provide coherent solutions to the problem, finding sets of SNs
that are almost identical. Our main focus, however, is not on the
development of new algorithms, but on understanding the con-
sequences that arise from neglecting the multiplex nature of a
network under an optimal percolation process. We compare the
actual solution of the optimal percolation problem in a multiplex
network with the solutions to the same problem for single-layer
networks extracted from the multiplex system. We show that
“forgetting” about the presence of multiple layers can be poten-
tially dangerous, leading to the overestimation of the true
robustness of the system mostly due to the identification of a very
high number of false SNs. We reach this conclusion with a sys-
tematic analysis of both synthetic and real-world multiplex
networks.

Results
Identifying structural nodes in multiplex networks. We con-
sider a multiplex network composed of N nodes arranged in two
layers. Each layer is an undirected and unweighted network.
Connections of the two layers are encoded in the adjacency
matrices. A and B. The generic element Aij= Aji= 1 if nodes i and
j are connected in the first layer, whereas Aij= Aji= 0, otherwise.
The same definition applies to the second layer, and thus to the
matrix B. The aggregated network obtained from the super-
position of the two layers is characterized by the adjacency matrix
C, with generic elements Cij= Aij+Bij−AijBij. We focus our
attention on clusters of mutually connected nodes16: two nodes in
a multiplex network are mutually connected, and thus part of the
same cluster of mutually connected nodes, only if they are con-
nected by at least a path, composed of nodes within the same
cluster, in every layer of the system. In particular, we focus our
attention on the largest among these cluster, usually referred to as
the giant mutually connected cluster (GMCC). Our goal is to find
the minimal set of nodes such that, if removed from the multi-
plex, no mutual cluster with a size greater than N1/2 is found in
the network. This is a common prescription, yet not the only one
possible, to ensure that all clusters have non-extensive sizes in
systems with a finite number of elements35. Whenever we con-
sider single-layer networks, the above prescription applies to the
single-layer clusters in the same exact way.

We generalize most of the algorithms devised to find
approximate solutions to the optimal percolation problem in
single-layer networks to multiplex networks31–33,35,36. Details on
the implementation of the various methods are provided in the
Supplementary Note 1. We stress that the generalization of these
methods is not trivial at all. For instance, most of the greedy
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Fig. 1 Performance of different algorithms aimed at solving the optimal
percolation problem. We consider a multiplex network with N= 10,000
nodes. The multiplex is composed of two network layers generated
independently according to the Erdös−Rényi model with average degree 〈k〉
= 5. Each curve represents the relative size of the GMCC as a function of
the relative number of nodes inserted in the set of SNs, thus removed from
the multiplex. Colored markers indicate the effective fraction of nodes left
in the set of SNs after a greedy post-processing technique is applied to the
set found by the corresponding algorithm. The purple cross identifies
instead the size of the set of SNs found through Simulated Annealing
optimization. Please note that the ordinate value of the markers has no
meaning; in all cases, the relative size of the largest cluster is smaller than
N1/2. Details on the implementation of the various algorithms are provided
in Supplementary Notes 1, 2
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methods use node degrees as crucial ingredients to calculate and
assign scores to each of the nodes, and then remove nodes with
respect to their scores. In a multiplex network, however, a node
has multiple degree values, one for every layer. In this respect, it is
not clear what is the most effective way of combining these
numbers to assign a single score to a node: they may be summed,
thus obtaining a number approximately equal to the degree of the
node in the aggregated network derived from the multiplex, but
also multiplied, or combined in more complicated ways. We find
that the results of the various algorithms are not particularly
sensitive to this choice, provided that the simple but effective post-
processing technique considered in refs. 31–33 is applied to the set
of SNs found by a given method. In Fig. 1, for example, we show
the performance of several greedy algorithms when applied to a
multiplex network composed of two layers generated indepen-
dently according to the Erdős−Rényi (ER) model. Although the
mere application of an algorithm may lead to different estimates of
the size of the set of SNs, if we greedily remove from these sets the
nodes that do not increase the size of the GMCC to the predefined
sub-linear threshold (N1/2)31–33 (Supplementary Note 2), the sets
obtained after this post-processing technique have almost identical
sizes (Supplementary Figs. 1–4).

As Fig. 1 clearly shows, the best results, in the sense that the size
of the set of SNs is minimal, is found with a simulated annealing
(SA) optimization strategy32 (see details in the Supplementary
Note 1). The fact that the SA method is outperforming score-
based algorithms is not surprising. SA actually represents one of
the best strategies that one can apply in hard-optimization tasks.
In our case, it provides us with a reasonable upper bound on the
size of the set of SNs that can be identified in a multiplex network.
The second advantage of SA in our context is that it does not rely
on ambiguous definitions of ingredients (e.g., node degree).
Despite its better performance, SA has a serious drawback in
terms of computational speed. As a matter of fact, the algorithm
can be applied only to multiplex networks with moderate sizes. As
here we are interested in understanding properties of the optimal
percolation problem in multiplex networks, the analysis presented
in the main text of the paper is entirely based on results obtained
through SA optimization. This provides us with a solid ground to
support our statements. Extending the analysis of score-based
algorithms to larger multiplex networks leads to qualitatively
similar results (Supplementary Note 3, Supplementary Figs. 5–8).

The size of the set of structural nodes. We consider the relative
size of the set of SNs, denoted by q, for a multiplex composed of
two independently fabricated ER network layers as a function of
their average degree 〈k〉. We compare the results obtained
applying the SA algorithm to the multiplex, namely qM, with
those obtained using SA on the individual layers, i.e., qA and qB,
or the aggregated network generated from the superposition of
the two layers, i.e., qS. By definition, we expect that
qM � qA ’ qB � qS. What we do not know, however, is how bad/
good are the measures qA, qB and qS in the prediction of the
effective robustness of the multiplex qM. For ordinary random
percolation on ER multiplex networks with negligible
overlap, we know that qM ’ 1� 2:4554=hki16,
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Fig. 2 Optimal percolation problem on synthetic multiplex networks. aWe consider multiplex networks with N= 1,000 and layers generated independently
according to the Erdös−Rényi model with average degree 〈k〉. We estimate the relative size of the set of SNs on the multiplex as a function of 〈k〉 (turquoise
circles), and compare it with the same quantity but estimated on the individual layers (black squares and purple triangles) or the aggregated (orange
triangles). b The relative errors of single-layer estimates of the size of the structural set with respect to the ground-truth value provided by the multiplex
estimate. Colors and symbols are the same as those used in a. The blue curves with no markers represent instead the theoretically expected behavior for
an ordinary percolation process16
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Fig. 3 Dependence of the size of the structural set on edge overlap and
interlayer degree–degree correlation. We consider multiplex networks, in
which, initially, both layers are a copy of a random network generated
according to the Erdős−Rényi model with N= 1,000 nodes and average
degree 〈k〉= 5. Then, in one of the layers, each node is selected to switch its
label with another randomly chosen node with a certain probability α. We
determine, as a function of α, the mean value of the relative size of the set
of SNs over 100 realizations of the SA algorithm on the multiplex network
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qA ’ qB ’ 1� 1=hki, and qS ’ 1� 1=ð2hkiÞ38. Relative errors
are therefore εA ’ εB ’ ð2:4554� 1Þ=ðhki � 2:4554Þ, and
εS ’ ð2:4554� 1=2Þ=ðhki � 2:4554Þ. We find that the relative
error for optimal percolation behaves more or less in the same
way as that of ordinary percolation (Fig. 2b), noting that, as 〈k〉 is
increased, the decrease in the relative error associated with the
individual layers is slightly faster than what expected for ordinary
percolation. The relative error associated with the aggregated
network is larger than the one expected from the theory of
ordinary percolation. As shown in Fig. 2a, for sufficiently large
〈k〉, dismantling an ER multiplex network is almost as hard as
dismantling any of its constituent layers.

Edge overlap and degree correlations. Next, we test the role
played by edge overlap and layer-to-layer degree correlation in
the optimal percolation problem. These are the ingredients that
dramatically change the nature of the ordinary percolation
transition in multiplex networks26,39–43. In Fig. 3, we report the
results of a simple analysis. We take advantage of the model
introduced in ref. 44. This is one of the simplest models able to
tune a system from a multiplex to a simplex topology. The system
is composed of two identical network layers. Nodes in one of the
two layers are relabeled with a certain probability α. For α= 0,
multiplex, aggregated network and single-layer graphs are all
identical. For α= 1, the networks are analogous to those con-
sidered in the previous section. We note that this model does not
allow to disentangle the role played by edge overlap among layers
and the one played by the correlation of node degrees. For α= 0,
edge overlap amounts to 100%, and there is a one-to-one match
between the degree of a node in one layer and its degree in the
other layer. As α increases, both edge overlap and degree corre-
lation decrease simultaneously. As it is apparent from the results
of Fig. 3, the system reaches the multiplex regime for very small
values of α, in the sense that the relative size of the set of SNs

deviates instantly from its value for α= 0. This is in line with
what already found in the context of ordinary percolation pro-
cesses in multiplex networks: as soon as there is a finite fraction of
edges that are not shared by the two layers, the system behaves
exactly as a multiplex26,39–43.

Accuracy and sensitivity. So far, we focused our attention only
on the size of the set of SNs. We neglected, however, any analysis
regarding the identity of the nodes that actually compose this set.
To proceed with such an analysis, we note that different runs of
the SA algorithm (or any algorithm with stochastic features)
generally produce slightly different sets of SNs, even if they all
have almost identical sizes. The issue is not related to the opti-
mization technique, rather to the existence of degenerate solu-
tions to the problem. In this respect, we work with the quantities
pi, each of which describes the probability that a node i appears in
the set of SNs in a realization of the detection method (here, the
SA algorithm). This treatment takes into account the fact that a
node may belong to the set of SNs in a number of realizations of
the detection method and may be absent from this set in some
other realizations.

We define self-consistency of a SN-detection method as
S ¼ P

i p
2
i

� �
=
P

i pi
� �

, which describes the ratio of the expected
overlap between two SNs obtained from two independent
realizations of the detection method to the expected size of the
SN. If the set of SNs is identical across different runs, then S= 1.
The minimal value we can observe is S=Q/N, assuming that the
size of the structural set is equal to Q in all runs, but nodes
belonging to this set are changing all the times, so that for every
node i we have pi=Q/N. As reported in Fig. 4a, self-consistency S
assumes high values for single-layer representations of the
network, even for syntethic multiplex networks. On the other
hand, S decreases significantly as the overlap and interlayer
degree correlations decrease (Fig. 4a). Low S values for
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multiplexes with small overlap and correlation together with the
small sizes of their set of SNs (Fig. 2) suggest that in such
networks many slightly different SN sets may exist.

Next, we turn our attention on quantifying how the sets of SNs
identified in single-layer or aggregated networks are

representative of the ground-truth sets found on multiplex
networks. We denote by pi and wi the probability that node i is
found within the set of SNs of, respectively, a multiplex network
(ground truth) and a specific single-layer representation of that
multiplex. To compare the sets represented by wi with the
ground-truth sets, we adopt three standard metrics in informa-
tion retrieval45,46, namely precision, recall and the Van Rijsber-
gen’s F1 score. Precision is defined as P= [∑ipiwi]/[∑iwi], i.e., the
ratio of the expected number of correctly detected SNs to the
expected total number of detected SNs. Recall is defined as R=
[∑ipiwi]/[∑ipi], i.e., the ratio of the expected number of correctly
detected SNs to the expected number of actual SNs of the
multiplex. We note that the self-consistency we previously
defined corresponds to precision and recall of the ground-truth
set with respect to itself, thus providing a base line for the
interpretation of the results. The F1 score defined as F1= (2)/(1/P
+ 1/R) provides a balanced measure in terms of P and R. As
Fig. 4b shows, P deteriorates as the edge overlap and interlayer
degree correlation decrease. In particular, when overlap and
correlation between the layers of the multiplex network are not
large, precision values for the sets of SNs identified in single layers
or in the superposition of the layers are quite small (P ’ 0:3),
even smaller than the ratio of the qM of the multiplex to the q of
any of these sets (Fig. 3). This means that, when the multiplex
nature of the system is neglected, two systematic errors are
committed. First, the number of SNs is greatly overestimated;
second, a significant number of the true SNs of the multiplex are
not identified. The quantity R, on the other hand, behaves
differently for single-layer and aggregated networks (Fig. 4c). In
single layers, we see that R systematically decreases as the
relabeling probability increases. The structural set of nodes
obtained on the superposition of the layers instead provides large
values of R. This is not due to a good performance rather to the
fact that the set of SNs identified on the aggregated network is

Table 1 Optimal percolation on real multiplex networks

Network Layers N Multiplex Single layers Aggregate

qM S qA PA RA FðAÞ1 qB PB RB FðBÞ1 qS PS RS FðSÞ1

Air
transportation26

American Air.—Delta 84 0.12 0.85 0.14 0.58 0.70 0.63 0.32 0.29 0.79 0.42 0.35 0.32 0.92 0.47

American Air.—United 73 0.10 0.99 0.16 0.32 0.52 0.40 0.14 0.68 1.00 0.81 0.25 0.39 1.00 0.56
United—Delta 82 0.10 1.00 0.27 0.23 0.62 0.34 0.12 0.80 1.00 0.89 0.33 0.30 1.00 0.46

C. Elegance47,48 Electric—Chem. Mon. 238 0.09 0.69 0.16 0.41 0.71 0.52 0.26 0.22 0.60 0.32 0.35 0.21 0.79 0.33
Electric—Chem. Pol. 252 0.12 0.79 0.15 0.50 0.63 0.56 0.39 0.24 0.78 0.37 0.45 0.22 0.82 0.35
Chem. Mon—Chem. Pol. 259 0.25 0.82 0.28 0.69 0.77 0.73 0.39 0.51 0.79 0.62 0.42 0.48 0.80 0.60

Arxiv49 physics.data-an—cond-
mat.dis-nn

1400 0.05 0.78 0.10 0.38 0.77 0.51 0.07 0.55 0.75 0.63 0.13 0.31 0.81 0.45

physics.data-an—cond-
mat.stat-mech

709 0.03 0.73 0.08 0.23 0.67 0.34 0.03 0.64 0.72 0.68 0.09 0.22 0.74 0.34

cond-mat.dis-nn—cond-
mat.stat-mech

499 0.02 0.50 0.06 0.13 0.46 0.20 0.04 0.23 0.51 0.32 0.09 0.13 0.65 0.22

Drosophila
M.50,51

Direct—Supp. Gen. 676 0.01 0.62 0.07 0.12 0.60 0.20 0.11 0.09 0.64 0.16 0.19 0.07 0.87 0.13

Direct—Add. Gen. 626 0.01 0.81 0.07 0.06 0.64 0.11 0.09 0.05 0.59 0.09 0.16 0.04 0.87 0.08
Supp. Gen.—Add. Gen. 557 0.09 0.82 0.14 0.44 0.74 0.55 0.12 0.50 0.70 0.58 0.20 0.35 0.80 0.49

Homo S.48,50 Direct—Supp. Gen. 4465 0.05 0.72 0.16 0.20 0.73 0.31 0.13 0.23 0.64 0.34 0.27 0.15 0.89 0.26
Physical—Supp. Gen. 5202 0.05 0.75 0.15 0.23 0.77 0.35 0.13 0.22 0.63 0.33 0.26 0.16 0.90 0.27

From left to right we report the following information. The first three columns contain the name of the system, the identity of the layers, and the number of nodes of the network. The fourth and fifth
columns are results obtained from the optimal percolation problem studied on the multiplex network, and contain information about the relative size qM, and self-consistency metric S of the set of SNs.
Then, we report results obtained for the first single-layer network of the multiplex, namely the fraction qA of nodes in the structural set, the precision PA, the recall RA, and the F1 score of the set of SNs of
the first layer. The next four columns are identical to those, but refer to the second layer. Finally, the four rightmost columns contain information about the fraction qS of nodes in the structural set, PS
precision, RS recall, and the F1 score of the set of SNs for the aggregated network obtained from the superposition of the two layers. All results have been obtained with 100 independent instances of the
SA optimization algorithm

Fig. 5 Optimal percolation on multiplex transportation networks. We
consider the multiplex network of US domestic flights operated in
January 2014 by American Airlines and Delta. Red circles represent
nodes that were identified as members of the set of structural nodes in
different realizations of the optimal percolation on the multiplex
representation of the network. The size of each circle is proportional to the
probability of finding that node in the set of SNs. All other airports in the
multiplex are represented as black squares. Interestingly, not all the
14 structural nodes match the top 14 busiest “hubs” (https://en.wikipedia.
org/wiki/List_of_the_busiest_airports_in_the_United_States), nor the
probabilities follow the same order as the flight traffic of these airports. The
results have been obtained with 100 independent instances of the SA
optimization algorithm
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very large (Fig. 3), and it is further supported by the results of
Fig. 4c, d, where large R values do not correspond to high F1
scores.

Real-world multiplex networks. In Table 1, we present summary
statistics of the solution of the optimal percolation problem stu-
died on several real-world multiplex networks generated from
empirical data. For most of these networks, we find high values of
self-consistency among solutions. This implies that there is a
certain small group of nodes that have a major importance in the
robustness of such real-world networks to the optimal percolation
process. For most of the networks, the F1 scores are low, indi-
cating that on real-world networks we loose essential information
about the optimal percolation problem if the multiplex structure
is not taken into account.

To provide a practical case study with an intuitive interpreta-
tion, we depict in Fig. 5 the solution of the optimal percolation
problem on a multiplex network describing air transportation in
the United States. SA identifies always 10 airports in the set of
SNs of this network. There is a slight variability among different
instances of the SA optimization, with a total of 14 distinct
airports appearing in the structural set at least once over 100 SA
instances. However, changes in the SN set from run to run mostly
regard airports in the same geographical region. Overall, airports
in the structural set are scattered homogeneously across the
country, suggesting that the GMCC of the network mostly relies
on hubs serving specific geographical regions, rather than global
hubs in the entire transportation system. For instance, the
probabilities that describe the membership of the airports to
the set of SNs do not strictly follow the same order as that of the
recorded flight traffics; nor merely the number of connections of
the airports (not shown) is sufficient to determine the SNs.

Discussion
In this paper, we studied the optimal percolation problem on
multiplex networks. The problem regards the detection of the
minimal set of nodes (i.e., the set of structural nodes, SNs) such
that, if its members are removed from the network, the network is
dismantled. The solution to the problem provides important
information on the microscopic parts that should be maintained
in a functional state to keep the overall system functioning, in a
scenario of maximal stress. Our study focused mostly on the
characterization of the SN sets of a given multiplex network in
comparison with those found on the single-layer projections of
the same multiplex, i.e., in a scenario where one “forgets” about
the multiplex nature of the system. Our results demonstrate that,
generally, multiplex networks have considerably smaller sets of
SNs compared to the SN sets of their single-layer based network
representations. The error committed when relying on single-
layer representations of the multiplex does not regard only the
size of the SN sets, but also the identity of the SNs. Both issues
emerge in the analysis of synthetic network models, where edge
overlap and/or interlayer degree–degree correlations seem to fully
explain the amount of discrepancy between the SN set of a
multiplex and the SN sets of its single-layer based representations.
These issues are apparent also in many of the real-world multi-
plex networks we analyzed. Overall, we conclude that neglecting
the multiplex structure of a network system subjected to maximal
structural stress may result in significant inaccuracies about its
robustness.

Data availability. Real multiplex networks analyzed in the paper
have been constructed using data publicly available on the Web
(see references in Table 1). The source code of the

implementation of the various algorithms used in the paper is
available from the authors upon request.
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