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We consider the performance of periodically driven stochastic heat engines in the linear response regime.

Reaching the theoretical bounds for efficiency and efficiency at maximum power typically requires full control

over the design and the driving of the system. We develop a framework which allows us to quantify the role

that limited control over the system has on the performance. Specifically, we show that optimizing the driving

entering the work extraction for a given temperature protocol leads to a universal, one-parameter dependence for

both maximum efficiency and maximum power as a function of efficiency. In particular, we show that reaching

Carnot efficiency (and, hence, Curzon-Ahlborn efficiency at maximum power) requires to have control over the

amplitude of the full Hamiltonian of the system. Since the kinetic energy cannot be controlled by an external

parameter, heat engines based on underdamped dynamics can typically not reach Carnot efficiency. We illustrate

our general theory with a paradigmatic case study of a heat engine consisting of an underdamped charged particle

in a modulated two-dimensional harmonic trap in the presence of a magnetic field.

DOI: 10.1103/PhysRevE.93.042112

I. INTRODUCTION

As a consequence of the first and second law of thermody-

namics, the efficiency of any device converting heat into work

is subject to the Carnot bound

ηC ≡ 1 − Tc/Th, (1)

where Tc and Th are the temperatures of the cold and hot bath,

respectively. This constraint holds both within macroscopic [1]

and stochastic thermodynamics [2]. In either of these realms,

it can be saturated under ideal reversible conditions, i.e., if

all crucial variables of the system can be controlled and the

driving is performed adiabatically. Under realistic conditions,

however, the Carnot bound is typically unattainable. Sources

of irreversibility are, for instance, heat leaks, friction in the

working medium, and constraints on the equation of state

in macroscopic [3,4] and microscopic engines [5–8]. The

efficiency of thermoelectric devices is typically reduced due to

heat transfer by phonons and imperfect electronic transmission

functions [9,10].

Besides efficiency, power constitutes a second crucial

measure for the performance of a heat engine. Maximizing

both of these figures simultaneously is generally expected to

be impossible, since power inevitably vanishes in the adiabatic

limit, where Carnot efficiency can be realized. However,

Benenti et al. [11] pointed out that this dilemma might, in

principle, be overcome in systems with broken time-reversal

symmetry. Furthermore, Allahverdyan et al. argued that high

efficiency at finite power is indeed feasible in a generalized

finite-time Carnot cycle under certain conditions [12]. On

the other hand, within large classes of thermoelectric and

Brownian heat engines, additional constraints have recently

been discovered, which rule out the option of Carnot efficiency

at finite power, regardless of how the system behaves under

time reversal [13–16].

A common way to avoid these intricacies is to consider

efficiency at maximum power as a benchmark parameter.

Within the endoreversible setup, which takes into account

irreversible heat exchange between the reservoirs and an

otherwise ideal Carnot engine, Curzon and Ahlborn showed

that this figure is given by [17,18]

ηCA ≡ 1 −
√

Tc/Th. (2)

Remarkably, like the Carnot bound, ηCA depends only on the

temperatures of the reservoirs but not the properties of the

engine itself. Nevertheless, it has meanwhile turned out that

efficiency at maximum power does not admit a universal bound

but rather depends crucially on the admissible space of control

parameters [19–28]. A systematic and quantitative description

of how limited control affects the performance of a heat engine

is, however, currently not available.

In stochastic thermodynamics, Brownian particles are ideal

model systems to investigate such fundamental aspects. Gener-

ally, heat engines based on Brownian dynamics can be divided

into two classes: first, systems featuring directed current of

particles in spatially periodic temperature profiles [5,29,30],

and second, Brownian particles in a periodically modulated

trapping potential [20,31–37]. Specifically, a minimal heat

engine consisting of a single particle in a harmonic trap,

which is alternately coupled to two heat baths of different

temperature, has been introduced theoretically in Ref. [20].

This setup has later been realized experimentally in two

different variants [38–40] and miniaturized even further down

to the scale of single ions [41,42].

For thermoelectric engines in the linear response regime and

without a magnetic field, the conditions to saturate the bounds

on efficiency are well understood. Specifically, the electric

and the heat current have to be tightly coupled [19,43], i.e.,

proportional to each other. This requirement can be fulfilled

if the transmission of electrons is restricted to a narrow

energy band [44,45]. A δ-shaped transmission function thus

constitutes the thermoelectric analog of quasistatic driving

protocols, which allow cyclic engines to operate reversibly.

Indeed, it has been shown that the work and the heat fluxes in a

periodically driven Brownian system satisfy the tight-coupling

criterion in the adiabatic limit [16]. An analogous result holds
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for discrete systems with periodically modulated energy levels

[46,47].

Breaking the time-reversal symmetry of thermoelectric

engines and thus seemingly improving their performance

[11,48] requires the presence of an external magnetic field. In

periodic engines, this symmetry can be broken more easily by

choosing driving protocols, which are not invariant under time

reversal [16]. Including an additional magnetic field in such

systems can still be beneficial. For example, high efficiency at

maximum power for energy transfer in magnetic field coupled

oscillator networks is found in Ref. [49]. However, in order to

describe the Lorentz force in a thermodynamically consistent

way, the momenta of the system must be fully taken into

account [5,34,50–52]. These kinetic degrees of freedom can

typically not be controlled directly but rather provide only an

additional source of dissipation. Underdamped dynamics thus

intrinsically allows only “limited control.”

In this article, using the linear response formalism devel-

oped in Ref. [16], we explore the finite-time performance

of periodically driven, stochastic heat engines under limited

control. Within a general framework, we maximize power

under well defined limitations. For systems without magnetic

field and for a large class of systems with magnetic field,

we find that detailed balance implies a certain symmetry of

the correlation functions, which simplifies the thermodynamic

analysis of the engine. In fact, we show that, under these

conditions, the benchmark parameters of a generic cyclic heat

engine can be expressed in terms of a single figure of merit.

This result is in strong analogy to the standard theory used for

thermoelectric devices [53,54].

The paper is organized as follows. In Sec. II, we present

the linear response framework and explain how the power

output of heat engines is maximized for fixed efficiency.

Section III is devoted to the concept of limited control and

the calculation of maximal power output at fixed efficiency.

In Sec. IV, this limitation is related to the figure of merit by

assuming that the control function can be expressed as a finite

sum of eigenfunctions of the adjoint Fokker-Planck operator.

We illustrate our findings with a case study in Sec. V and

conclude in Sec. VI.

II. PERIODICALLY DRIVEN, STOCHASTIC

HEAT ENGINES

A. Setup

The heat engines investigated here consist of several parts:

the working medium, the heat bath, and a component for work

exchange (see Fig. 1). The working medium is of stochastic

nature, which is, for instance, a single particle following

Langevin dynamics. The temperature of the heat bath, which

surrounds the working medium, changes periodically; thus

one heat bath is playing the role of both the hot and cold

bath. The energy of the working medium is modulated

periodically by external control parameters, allowing to extract

work. Specifically, we follow the linear response theory

for periodically driven, stochastic heat engines developed in

Ref. [16]. The system with phase space variables x undergoes

a modulation of energy H (x,t) and temperature T (t), which

FIG. 1. Scheme of a cyclic Brownian heat engine. A stochastic

working medium depicted as a colloidal particle is coupled to

a thermal reservoir with time-dependent temperature T (t). Useful

work can be extracted from the medium by varying certain external

control parameters, e.g., the position of a moving piston, according

to properly chosen protocols.

are both T -periodic in time t . The temperature

T (t) = T + �T γq(t) (3)

is varied by the temperature protocol γq(t), with 0 � γq(t) �

1, and small amplitude �T > 0. The lower and upper bound

correspond to what is usually the cold and hot bath. The

Hamiltonian

H (x,t) = H0(x) + �Hgw(x,t) (4)

is varied by the work protocol gw(x,t) and small amplitude

�H around its equilibrium value H0(x). For given temperature

protocol γq(t) and fixed system parameters, a heat engine is

realized by a suitable choice of the work protocol gw(x,t),

such that work is extracted in a cycle from the heat bath.

Throughout the paper, subscript w and q refer to work and heat,

respectively. The dimensionless work protocol gw(x,t) and the

temperature protocol γq(t) are crucial for the performance

of the engine, since they contain the information on how

the energetics changes in time. In the context of stochastic

thermodynamics, work and heat are defined as [2]

Ẇ (t) ≡ −
∫

ddxḢ (x,t)p(x,t), (5)

Q̇(t) ≡
∫

ddxH (x,t)ṗ(x,t), (6)

where p(x,t) is the phase space distribution of the working

medium. In the periodic state, the entropy production reads

Ṡ = − 1

T

∫ T

0

dt
Q̇(t)

T (t)
� 0, (7)

which is positive due to the second law. In irreversible

thermodynamics the entropy production is expressed as [16]

Ṡ = JwFw + JqFq, (8)

where the fluxes are identified as

Jw = 1

T

∫ T

0

∫

ddxġw(x,t)p(x,t), (9)

Jq = 1

T

∫ T

0

∫

ddxγq(t)H (x,t)ṗ(x,t), (10)

and affinities

Fw = �H/T, Fq = �T/T 2. (11)
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B. Fokker-Planck dynamics

The dynamics of the phase space distribution of the working

medium is governed by a Fokker-Planck equation

ṗ(x,t) = L(x,t)p(x,t), (12)

where the dot denotes the derivative with respect to time. After

a transient time, the system reaches a periodic steady state

pc(x,t) = pc(x,t + T ), to which we restrict our analysis. In

equilibrium, the distribution and the dynamics are described

by the zero-order terms

pc(x,t)|�T =�H=0 = peq(x) = exp[−H0(x)/T ]/Z0, (13)

L(x,t)|�T =�H=0 = L0(x), (14)

with normalization Z0 and Boltzmann’s constant set to 1

throughout.

For systems obeying Fokker-Planck dynamics, the detailed

balance condition reads

L0(x)peq(x) = peq(x)L
†
0(εx), (15)

which constitutes an operator equation. It connects the Fokker-

Planck operator and its adjoint operator L
†
0 and includes the

behavior of variables which change their sign under time

reversal [55]. Here the transformation ε leaves positions

untouched, inverts momenta, and includes the inversion of

an external magnetic field.

C. Explicit form of the Onsager coefficients

The Onsager coefficients for work and heat connect fluxes

Jw = LwwFw + LwqFq, (16)

Jq = LqwFw + LqqFq, (17)

and affinities in the linear response regime. Then the entropy

production reads

Ṡ =
∑

α,β=w,q

LαβFαFβ . (18)

Since the form above is quadratic, positivity requires

Lqq,Lww � 0,
(Lwq + Lqw)2

4LwwLqq

� 1. (19)

Equality in the latter condition leads to the tight-coupling

regime.

For systems modulated in the way described above, the

Onsager coefficients have recently been derived in Ref. [16].

With the equilibrium average

〈A〉x ≡
∫

ddx A(x,t) peq(x) (20)

and the combined average over a period of operation and phase

space

〈〈A〉〉 ≡ 1

T

∫ T

0

dt〈A〉x, (21)

the Onsager coefficients are found to be functionals of the

gα(x,t):

Lαβ = Lad
αβ + L

dyn

αβ ,

Lad
αβ ≡ −〈〈δġα(x,t)δgβ(x,t)〉〉,

L
dyn

αβ ≡
∫ ∞

0

dτ 〈〈δġβ (x,t − τ ) exp(L
†
0τ )δġα(x,t)〉〉, (22)

with α,β = w,q, and the deviation from the average

δA ≡ A − 〈A〉x. (23)

Inside the brackets we omit the phase space variables for

simplicity. For a uniform notation we have defined

gq(x,t) ≡ −γq(t)H0(x). (24)

D. Maximal power for fixed efficiency

Optimizing the performance of the engine for given

temperature protocol γq(t) and fixed system parameters

[H0(x),T ,�T ,�H,T ,L
†
0], we search the work protocol gw =

gw(x,t) which maximizes the power output functional

P [gw] ≡ −T JwFw (25)

at fixed efficiency. By using the rescaled power

P[gw] ≡ P [gw]/TF2
q = −(χ2Lww + χLwq) (26)

and rescaled heat flux

Jq[gw] ≡ Jq[gw]/Fq = χLqw + Lqq , (27)

with χ ≡ Fw/Fq , the maximized power output at fixed

efficiency does not depend on �T and �H . In principle,

changing the work protocol changes both the power output

and the efficiency

η[gw] ≡ P [gw]/Jq[gw]. (28)

However, for a systematic investigation of the performance it

is advantageous to keep efficiency fixed. As a constraint, we

thus demand the rescaled efficiency

η̄ ≡ P[gw]/Jq[gw] = η[gw]/ηC � 1 (29)

to be constant, where we have used Carnot efficiency ηC =
�T/T = TFq and Eqs. (11), (26), and (27). We thus have to

maximize the objective functional

P[gw,
] ≡ P[gw] + 
(η̄Jq[gw] − P[gw])

= (
 − 1)χ2Lww + (
 − 1)χLwq

+
η̄χLqw + 
η̄Lqq, (30)

with respect to the time-dependent phase space function

gw(x,t). This objective functional contains the power output

(26) and the constraint for fixed efficiency (29), where 
 is

the Lagrange multiplier.

The maximization of (30) at fixed η̄ and 
 yields the optimal

work protocol g∗
w(
), and, by insertion into (29), we obtain

the corresponding Lagrange multiplier 
(η̄). Thus, at given

efficiency, we calculate the maximal power

P(η̄) ≡ P[g∗
w,
(η̄)], (31)

with g∗
w = g∗

w(
(η̄)). Then, for given system parameters

and temperature protocol we are able to investigate the

performance of a heat engine under optimal driving as a

function of efficiency. We calculate maximal efficiency η̄max

and efficiency at maximum power η̄MP with corresponding

042112-3
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η̄MP η̄max

P(η̄)

η̄

P(η̄max)

P(η̄MP)

FIG. 2. Schematic performance curve P(η̄) of a heat engine.

Symbols are explained in the main text.

power P(η̄max) and P(η̄MP), respectively. The power output

is maximal if the constraint (29) is ignored, i.e., by setting


 = 0, from which the definition

P(η̄MP) ≡ P[g∗
w(0),0] (32)

follows. These characteristic points are shown on a schematic

performance curve in Fig. 2. For realistic, macroscopic heat

engines typically loop-shaped performance curves P(η̄) are

obtained [3,4]. Likewise, they appear for a Brownian heat

engine with consideration of kinetic energy [7] and for certain

heat engines that do not fulfill the tight-coupling condition

[6,8]. We focus on the upper branch of the loop since it contains

maximum power and maximum efficiency. The lower branch

corresponds to a nonoptimal protocol, leading to lower power

output.

Furthermore, we are interested in whether or not the bound

on power found in Refs. [15,16]

P(η̄) � 4η̄(1 − η̄)P0 � P0 (33)

can be saturated. We call

P0 ≡ −1

4
〈〈δgqL

†
0δgq〉〉 (34)

the global power bound.

III. THERMODYNAMICS OF LIMITED CONTROL UNDER

OPTIMAL DRIVING

A. Definition of limited control and Fourier representation of

the Onsager coefficients

Having set the preliminaries for the maximization of the

power output at given efficiency in the previous section, we

now define limited control in our setup. The work protocol

defined in (4) is assumed to consist of n contributing terms

gw(x,t) =
n

∑

i=1

γwi
(t)gwi

(x), (35)

where the control functions gwi
(x) are fixed and the γwi

(t) are

the control parameters, which are varied externally. Then, the

Hamiltonian can be divided into two contributions

H0(x) = H c
0 (x) + H r

0 (x), H c
0 (x) =

n
∑

i=1

(H0)igwi
(x). (36)

The first term is spanned by the control functions, where (H0)i
are the respective coefficients. The remaining second term is

not influenced by the control functions. Only if H r
0 (x) = 0,

we speak of “full control.” If, for example, the strength k(t)

of a harmonic trap can be modulated, we have n = 1 and

gw(x,t) = k(t)x2/2, where x is the position of the particle.

If this system is underdamped, we also consider the kinetic

energy H r
0 (x) = mv2/2, which is not controlled by the trap.

Here m is the particle mass and v its velocity.

Since the control parameters γwi
(t) and the temperature

protocol γq(t) are T -periodic, they can be written in terms of

their Fourier components

c
wi

k ≡ 1

T

∫ T

0

γwi
(t)e−ik�tdt, (37)

c
q

k ≡ 1

T

∫ T

0

γq(t)e−ik�tdt, (38)

γwi
(t) =

∞
∑

k=−∞
c
wi

k eik�t , (39)

γq(t) =
∞

∑

k=−∞
c
q

k e
ik�t , (40)

with � ≡ 2π/T . Using (35) the Onsager coefficients (22) take

the form

Lqq =
∞

∑

k=1

k2�2c
q

−kĈ[δH0,δH0,k]c
q

k ,

Lww =
n

∑

i,j=1

∞
∑

k=1

k2�2c
wi

−kĈ[δgwi
,δgwj

,k]c
wj

k ,

Lwq = −
n

∑

i=1

∞
∑

k=−∞
k2�2c

wi

−kC̃[δgwi
,δH0,k]c

q

k ,

Lqw = −
n

∑

i=1

∞
∑

k=−∞
k2�2c

q

−kC̃[δH0,δgwi
,k]c

wi

k , (41)

where we have defined

Ĉ[R,S,k] ≡
∫ ∞

−∞
e−ik�tC[R,S,t]dt, (42)

C̃[R,S,k] ≡ i〈RS〉x/k� +
∫ ∞

0

e−ik�tC[R,S,t]dt, (43)

with the correlation function [55]

C[R,S,t > 0] ≡ 〈SeL
†
0tR〉x,

(44)
C[R,S,t < 0] ≡ C[S,R, − t].

From these definitions, two useful properties follow

Ĉ[R,S,k] = Ĉ[S,R, − k],
(45)

Ĉ[R,S,k] = C̃[R,S,k] + C̃[S,R, − k],

where we need to change the variable of integration t → −t

to show the latter equality.
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B. Optimal protocol for maximum power for given efficiency

We now maximize the objective functional (30) with respect

to the Fourier coefficients c
wj

k . We use the Onsager coefficients

in the form (41), and split sums with k = ±1, ± 2, . . . into two

parts with k = 1,2, . . . , which takes into account the complex

nature of the c
wj

k . This procedure yields the optimal protocol

g∗
w(
) in terms of the Fourier coefficients of the γwj

(t):

(

c
wj

k

)∗
(
) = c

q

k

χ

n
∑

i=1

Ĉ−1
ji (k)

[

C̃[δgwi
,δH0,k]

− η̄


1 − 

C̃[δH0,δgwi

, − k]
]

, (46)

where the Lagrange multiplier 
 is still to be determined. Here,

Ĉ−1
ji (k) is the inverse matrix of Ĉ[δgwi

,δgwj
,k] with Ĉ−1

ij (k) =
Ĉ−1

ji (−k). Using the optimal protocol, the heat current (27)

and the objective functional (30) become

Jq[g∗
w(
)] = 2P(η̄MP) + J idle

q + 2η̄


1 − 

D,

P[g∗
w(
),
] = (1 − 
 + 2
η̄)P(η̄MP) + 
η̄J idle

q

+ η̄2
2

1 − 

D. (47)

The crucial point is that the quantities on the left-hand side

depend on three terms P(η̄MP), J idle
q , and D, which we

introduce now.

First, P(η̄MP) is the maximum power defined in (32), which

is found to be

P(η̄MP) =
∞

∑

k=1

k2�2
∣

∣c
q

k

∣

∣

2

×
n

∑

i,j=1

C̃[δgwi
,δH0, − k]Ĉ−1

ij (k)C̃[δgwj
,δH0,k],

(48)

with |cq

k |2 = c
q

k c
q

−k . Alternatively, the maximum power can be

written as P(η̄MP) = χ2L∗
ww|
=0 � 0, which is positive due

to the second law (19), where L∗
ww is the Onsager coefficient

evaluated with the optimal protocol.

Second, the corresponding heat current at maximum power

can be written from (27) as

Jq[g∗
w(0)] = 2P(η̄MP) + J idle

q , (49)

with

J idle
q ≡ Lqq −

∞
∑

k=−∞
k2�2|cq

k |2

×
n

∑

i,j=1

Ĉ[δgwi
,δH0, − k]Ĉ−1

ij (k)C̃[δgwj
,δH0,k]. (50)

A first hint on the physical meaning of J idle
q follows by using

(29), (48), and (49). We then find the efficiency at maximum

power

η̄MP = P(η̄MP)

2P(η̄MP) + J idle
q

. (51)

Obviously, this result coincides with the Curzon-Ahlborn value

ηCA = ηC/2 only for J idle
q = 0.

Third, in the general case with a constraint on efficiency

(29), i.e., 
 �= 0, we additionally need

D ≡
∞

∑

k=1

k2�2|cq

k |2

×
n

∑

i,j=1

C̃[δH0,δgwi
,k]Ĉ−1

ij (k)C̃[δH0,δgwj
, − k], (52)

to describe the maximal power and heat current (47). This term

is similar to the maximum power (48).

The maximal power output for periodically driven heat

engines (47) is thus expressed by these three terms. The

Lagrange multiplier has to be determined by considering

the constraint (29). In the following section, we show that

the characteristics of the efficiency-power curves can be

derived without explicitly making use of the rather involved

expressions above.

C. Performance in terms of one figure of merit

1. Single-parameter description

In this subsection, it is assumed that all correlation functions

are symmetric,

C[R,S,t] = C[S,R,t], (53)

with R(x),S(x) = δH0(x),δgwi
(x), leading to D = P(η̄MP) in

(47). In Appendix A, we derive that this symmetry indeed

follows from detailed balance (15) for over- and underdamped

systems without magnetic field and for a large class of systems

with magnetic field. We now show that this symmetry allows

us to express both maximum efficiency and efficiency at

maximum power, in terms of the dimensionless figure of merit

ZT ≡ 4P(η̄MP)

J idle
q

. (54)

With this definition, (51) can be rewritten as

η̄MP = ZT

2ZT + 4
. (55)

Maximum power for arbitrary but fixed η̄ follows by taking

into account the constraint for fixed efficiency (29) with (47),

which yields a quadratic equation for the Lagrange multiplier


:

0 = η̄Jq[g∗
w(
)] − P[g∗

w(
)] (56)

= P(η̄MP)

[

η̄2

(
 − 1)2
− (1 − η̄)2

]

+ η̄J idle
q . (57)

Its solution


±(η̄) = 1 ∓ η̄
√

(1 − η̄)2 − 4
η̄

ZT

(58)

is real only if efficiency is below the maximal efficiency

η̄max =
√
ZT + 1 − 1√
ZT + 1 + 1

, (59)
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at which the Lagrange multiplier diverges, |
±(η̄max)| → ∞.

Furthermore, we are interested in the power at maximum

efficiency

P(η̄max) ≡ P[g∗
w(
±(η̄max)),
±(η̄max)]. (60)

Using (47), (58), and (59), we obtain our first main result

P(η̄max)

P(η̄MP)
= 1 − η̄2

max. (61)

Finite power at maximum efficiency is thus only possible if

the maximum efficiency is below the Carnot value η̄ = 1.

Combining (55) and (59) leads to a relation between the

efficiency at maximum power and maximum efficiency

η̄MP = η̄max

1 + η̄2
max

, (62)

which constitutes our second main result. From Ref. [11] it is

known that for steady state devices with broken time-reversal

symmetry two parameters are needed to express maximum

efficiency and efficiency at maximum power. In contrast,

here these quantities are described by only one parameter,

eventually leading to (62). We recall that in the framework

from Sec. II, time-reversal symmetry is easily broken by the

protocols, whereas in Ref. [11] there is no protocol and instead

time-reversal symmetry is broken by a magnetic field.

Now we show that the figure of merit ZT is also suitable to

describe the maximal power output for given efficiency. The

two solutions of the Lagrange multiplier (58) result in two

branches of the performance curve (31)

P±(η̄) ≡ P[g∗
w(
±(η̄)),
±(η̄)], (63)

from which we choose the upper branch P(η̄) = P+(η̄), since

P+(η̄) − P−(η̄)

P(η̄MP)
= 4η̄

√

(1 − η̄)2 − 4
η̄

ZT
� 0. (64)

Collecting the results of this subsection, we rewrite (47) for

the maximal power at fixed efficiency of periodically driven,

stochastic heat engines as

P(η̄)

P(η̄MP)
= 2η̄

(

1 − η̄ +
√

(1 − η̄)2 − 4
η̄

ZT
+ 2

ZT

)

, (65)

where the right-hand side depends only on the efficiency

η̄ and the figure of merit ZT . This universal expression

constitutes our third main result. It is shown color-coded in

Fig. 3 as a function of the (inverse) figure of merit, together

with maximum efficiency (59) and efficiency at maximum

power (55). Alternatively, the maximal power of the engine

for given efficiency is shown in Fig. 4 for different values

of ZT . Loop-shaped performance curves similar to those of

macroscopic real heat engines [3,4] are thus obtained. The

power at maximum efficiency (61) is also shown.

The result (65) contains all the information of the optimal

performance of the engine at maximum power for given

efficiency. From the definition (54) with (48) and (50) it can

be seen that the figure of merit is fixed by the temperature

protocol and the system parameters. Then P(η̄) gives the

output delivered by the engine for a fixed efficiency η̄ if the

system is driven by the optimal protocol g∗
w(
(η̄)).

η̄

1/ZT

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P(η̄)/P(η̄MP)

FIG. 3. Maximal power of periodically driven, stochastic heat

engines P(η̄) (65) normalized by its maximum P(η̄MP) as a function

of efficiency η̄ and inverse figure of merit 1/ZT . The solid black line

at the top is the maximal efficiency η̄max (59), above which the engine

cannot operate. Efficiency at maximum power η̄MP (55) is marked with

a dashed line. When the figure of merit becomes small, maximum

efficiency and efficiency at maximum power both vanish. When the

figure of merit becomes large, maximal efficiency is Carnot efficiency

and efficiency at maximum power is half the Carnot efficiency. Along

the dotted lines power is constant.

2. Carnot efficiency and the tight-coupling regime

An interesting limiting case is ZT → ∞, or equivalently

J idle
q = 0, where maximal efficiency (59) is the Carnot effi-

ciency and efficiency at maximum power (55) is the Curzon-

Ahlborn value. This limit corresponds to the endoreversible

case in the context of macroscopic heat engines [3], and to

the overdamped case of Brownian heat engines [16]. Then the

P
(η̄

)/
P

(η̄
M

P
)

η̄

ZT → ∞

ZT = 500
ZT = 50
ZT = 10
ZT = 5
ZT = 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

FIG. 4. Maximal power P(η̄)/P(η̄MP) (65) as a function of

efficiency η̄, for different values of the figure of merit ZT . This

figure shows a set of cuts through Fig. 3 for fixed ZT . The power

at maximal efficiency (61) is given by the solid black line, which

vanishes at Carnot efficiency.
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Lagrange multiplier (58) reads

lim
ZT →∞


+(η̄) = 1 − 2η̄

1 − η̄
, (66)

leading to maximum power output

lim
ZT →∞

P(η̄)

P(η̄MP)
= 4η̄(1 − η̄), (67)

from (65). In this limiting case the efficiency-power diagram

is no longer loop-shaped, but a parabola (see Fig. 4).

If all functions contained in H0(x) can be controlled by the

work protocol (35), i.e., H r
0 (x) = 0 in (36), it follows by using

(45) that the idle heat flux J idle
q (50) vanishes. Then, for η̄ = 1

and using (45), the optimal protocol (46) reads

(

c
wj

k

)∗
(
) = c

q

k /χ

n
∑

i=1

Ĉ−1
ji (k)Ĉ[δgwi

,δH0,k], (68)

= c
q

k (H0)j/χ, (69)

which is equivalent to

g∗
w(x,t) = γq(t)H0(x)/χ. (70)

Therefore the engine operates at Carnot efficiency if the full

amplitude of the Hamiltonian (4) is modulated according to

(70).

If control is limited, i.e., H r
0 (x) �= 0, the expression for the

idle heat flux J idle
q (50) is rather involved, but typically non-

vanishing. Therefore, we conclude that if the full Hamiltonian

cannot be controlled, Carnot efficiency (and Curzon-Ahlborn

efficiency at maximum power) cannot be achieved, which is,

for instance, the case in underdamped systems. Apparently

in contrast, Curzon-Ahlborn efficiency has been found at

maximum power for a Brownian heat engine considering

effects of inertia in Ref. [34]. This result is obtained by using

“shortcuts to adiabaticity,” which requires to decouple the

system from the heat bath and a control function that includes

the momentum of the particle. However, in our framework it

is required that the system always stay coupled to the bath and

momenta cannot be controlled.

The statements developed in this subsection hold for all

periodically driven, stochastic heat engines introduced in

Sec. II, and constitute our fourth main result. We note that

if (70) is valid, the tight-coupling condition follows, since

directly from (22) we find Lwq = Lqw = −χLww = −Lqq/χ ,

which leads to equality in the second expression in (19). In

this case the Onsager matrix is found to be symmetric (see

“reciprocity relations” in Ref. [16]).

3. Remarks on the figure of merit

In this subsection we mention several important points

regarding the figure of merit. First, in our analysis, we have

imposed ZT � 0, or equivalently J idle
q � 0. A negative figure

of merit yields unphysical results, e.g., power larger than in the

case of full control (67). Second, there is a freedom of choice in

the definition of the figure of merit, which we have fixed in (54)

such that maximum efficiency (59) and efficiency at maximum

power (55) take the same form as for thermoelectric devices

[11,13]. Additionally, adapting the results from Ref. [56] to

our notation, we find that the thermoelectric figure of merit

ZT = 4P (ηMP)/Fqκ (71)

has a similar form to that of (54). The thermal conductivity

κ is responsible for an inevitable heat current Fqκ through

the thermoelectric device similar to J idle
q . Third, we note

that for given efficiency at maximum power, it is always

possible to define a figure of merit through (55). However,

it is then not guaranteed that this choice is also suitable to

express the maximum efficiency in the form (59). Indeed we

have found a structure in analogy to thermoelectric devices,

where typically the power is maximized with respect to one

thermodynamic affinity. In contrast, we maximize the power

output with respect to the full work protocol. These facts hint

that the concept of a figure of merit of the form (54) might be

universal for optimal processes in the linear response regime.

IV. LIMITED CONTROL OVER EIGENFUNCTIONS OF

THE ADJOINT FOKKER-PLANCK OPERATOR

A. Expansion of the Onsager coefficients

In the previous section we have found bounds on efficiency

smaller than the Carnot value in terms of the figure of merit.

To gain a deeper insight into the connection between limited

control and the figure of merit, we assume that in the control

function (35) and the Hamiltonian (36) the functions gwi
(x) =

ϕ
†
i (x) are eigenfunctions of the adjoint Fokker-Planck operator

L
†
0, which simplifies the evaluation of the Onsager coefficients

(22). The phase space variables are allowed to be even or odd

with respect to the transformation ε. For simplicity, in this

section, we assume that no external magnetic field is present.

Note that the eigenfunctions are usually not symmetric in ε,

in contrast to the control functions gwi
(x). How this apparent

paradox is resolved is shown in Appendix A. Useful properties

of the eigenfunctions of the adjoint Fokker-Planck operator are

shown in Appendix B.

We assume that in total N eigenfunction are needed, from

which we can control n, whereas N − n are used to span the

part of the Hamiltonian which cannot be controlled:

H r
0 (x) =

N
∑

i=n+1

(H0)iϕ
†
i (x). (72)

The components of H0(x) in the basis of eigenfunctions are

given by

(H0)i =
∫

ddxϕi(x)H0(x), (73)

where ϕi(x) are the corresponding eigenfunctions of the (reg-

ular) Fokker-Planck operator. They have eigenvalues −λi with

i = 0,1,2, . . . . For example, ϕ0(x) = peq(x) is the equilibrium

distribution with eigenvalue λ0 = 0.

A suitable example for the present scheme is a three-

dimensional, anisotropic, overdamped Brownian heat engine,

which is an extension of the example given in Ref. [16].

From the results found therein, it can easily be deduced

that the required eigenfunctions for i = 1,2,3 have the form

x2 − T/mω2
x , y2 − T/mω2

y , and z2 − T/mω2
z , where x,y,z

are directions in space and ωx,ωy,ωz are the frequencies

of the harmonic trap in the respective direction. These

042112-7



MICHAEL BAUER, KAY BRANDNER, AND UDO SEIFERT PHYSICAL REVIEW E 93, 042112 (2016)

three eigenfunctions are needed to express H0(x), since all

coordinates appear in the Hamiltonian and, hence, N = 3.

If, for instance, ωz cannot be controlled, but ωx,y can, the z

coordinate is not contained in gw(x,t) and thus n = 2.

With the eigenfunction expansion and the abbreviation

c
qi

k ≡ −c
q

k (H0)i, (74)

the Onsager coefficients (22) take the form

Lαβ =
∞

∑

k=−∞

N
∑

i=1

−ik�λi

λi − ik�
c
αi

k c
βi

−k, (75)

for α,β = w,q and c
wi

k = 0 for n < i � N . The details of the

calculation are shown in Appendix B. The global power bound

(34) becomes

P0 = 1

4

∞
∑

k=−∞

∣

∣c
q

k

∣

∣

2
N

∑

i=1

λi(H0)2
i , (76)

which will be used later.

B. Optimal protocol and maximal power

Now, in analogy to Sec. III B, we maximize the power

output of the heat engine. Defining

(uαβ) ≡
(

(
 − 1)χ2 (
 − 1)χ


χη̄ 
η̄

)

(77)

leads to a compact expression for the objective functional (30)

P[gw,
] =
∑

α,β

uαβ

∞
∑

k=−∞

N
∑

i=1

−ik�λi

λi − ik�
c
αi

k c
βi

−k, (78)

where the 
 dependence is through uαβ . Its maximization

yields the optimal protocol g∗
w(
) in terms of the coefficients

(

c
wi

k

)∗
(
) = c

q

k (H0)i

2uww

[

uwq + uqw + iλi

k�
(uwq − uqw)

]

, (79)

for i � n. The Lagrange multiplier, implicitly contained in

uαβ , is still to be determined. This result is in analogy to the

example of an overdamped Brownian particle in [16].

Then, with the optimal protocol and 
 = 0, the maximum

power is found to be

P(η̄MP) = 1

2

∞
∑

k=1

∣

∣c
q

k

∣

∣

2
n

∑

i=1

λi(H0)2
i , (80)

with (78) and the definition (32). Similarly we obtain

J idle
q =

N
∑

i=n+1

Lqq,i, (81)

with Lqq = ∑N
i=1 Lqq,i and

Lqq,i ≡ 2

∞
∑

k=1

∣

∣c
q

k

∣

∣

2
λi

k2�2

λ2
i + k2�2

(H0)2
i . (82)

Note that whereas the sum in the maximal power (80) ends

at n, the sum in the idle heat flux starts at n + 1. This shows

that J idle
q is the contribution of the eigenfunctions that cannot

be controlled to the heat flux. The maximal power is large if

many eigenfunctions can be controlled. Finally, these results

can be inserted in Sec. III C to calculate the figure of merit,

the maximum efficiency, etc. The result for the figure of

merit is physically intuitive. A large figure of merit represents

a good performance of the engine, which is achieved by

large maximum power P(η̄MP) or small idle heat flux J idle
q .

Obviously this is possible if the number of eigenfunctions that

cannot be controlled N − n is small.

Furthermore, we are interested in whether or not the global

bound on power (34) can be saturated. In the best case, i.e.,

full control (n = N ), we generalize the result from Ref. [16]

as

lim
ZT →∞

P(η̄MP)

P0

= 2
∑∞

k=1

∣

∣c
q

k

∣

∣

2

(

c
q

0

)2 + 2
∑∞

k=1

∣

∣c
q

k

∣

∣

2
, (83)

where we have used (76) and (80). The global bound can

only be saturated if c
q

0 = 0. Since 0 � γq(t) � 1, a vanishing

coefficient c
q

0 leads to γq(t) = 0, which makes the engine

futile. If the control over the system is limited, the maximum

power is smaller, leading to a lower degree of saturation of the

global bound.

V. CASE STUDY: UNDERDAMPED BROWNIAN HEAT

ENGINE IN A MAGNETIC FIELD

A. Model and solution

Whereas we have excluded an external magnetic field in

Sec. IV, we now present the arguably most simple system

including a magnetic field. We focus on an engine consisting

of an underdamped charged Brownian particle with mass m in

a harmonic trap with equilibrium Hamiltonian

H0(x) = m

2

(

v2
x + v2

y

)

+ m

2
ω2

0(x2 + y2), (84)

where ω0 is the trap frequency, (x,y) is the position, and (vx ,vy)

the velocity of the particle. The particle is confined to two

dimensions. Perpendicular to this plane, there is a constant

magnetic field, which does not contribute to the energy. We

assume that the strength of the trap is controlled by ω(t) =
ω0 + γw1

(t)�ω with small �ω and time dependence γw1
(t).

This choice leads to �H = mω0l
2
0�ω and

gw(x,t) = γw1
(t)gw1

(x) = γw1
(t)(x2 + y2)/l2

0 , (85)

i.e., n = 1 in (35), where we introduced a reference length

l0 ≡
√

T/mω2
0 . It will be crucial to appreciate that we cannot

control the kinetic degrees of freedom, i.e., change the mass

of the particle. We emphasize that (85) is not an eigenfunction

of the adjoint Fokker-Planck operator and therefore the results

of Sec. IV cannot be used.

In equilibrium, the particle obeys underdamped Brownian

motion and its dynamics is described by the Fokker-Planck

operator [55]

L0 =
∑

j=x,y

−∂jvj + ∂vj

(

γ vj − Fj

m

)

+ γ T

m
∂vj

∂vj
, (86)

with friction constant γ . The external force
(

Fx/m

Fy/m

)

=
(

ωcvy − ω2
0x

−ωcvx − ω2
0y

)

(87)
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is the sum of the potential gradient and the Lorentz force. Here

we have introduced the cyclotron frequency

ωc ≡ qB/m, (88)

where B is the (signed) strength of the magnetic field in the z

direction and q the charge of the particle. In Appendix A we

show that the symmetry (53) holds in this case study despite

the presence of a magnetic field.

To evaluate the Onsager coefficients (22), it is useful to find

the eigenfunctions of the adjoint Fokker-Planck operator

L
†
0 =

∑

j=x,y

vj∂j −
(

γ vj − Fj

m

)

∂vj
+ γ T

m
∂vj

∂vj
. (89)

In particular, we need to know the action of L
†
0 on H0 and x2 +

y2, since (24) and (85) involve these terms. By straightforward

calculation, we find that the adjoint Fokker-Planck operator has

the form

L
†
0 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 −ω2
0 0 0

0 −2γ 1 0 0

2 −2ω2
0 −γ −ωc 0

0 0 ωc −γ 0

0
4γ T

m
0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, (90)

on the invariant subspace B with

B = span
{

x2 + y2,v2
x + v2

y,xvx + yvy,xvy − yvx,1
}

, (91)

using this basis. Functions outside B will not be needed

in this case study. The matrix (90) can be diagonalized

(see Appendix C), which allows us to evaluate the matrix

exponential contained in the Onsager coefficients (22).

The Onsager coefficients and the optimal protocol of this

case study are shown in Appendix C. We observe that, due

to the symmetry of the system, the sign of the magnetic field

has no effect on the Onsager coefficients. Thus, time-reversal

symmetry is only broken by the protocols and not by the

magnetic field. Proceeding in analogy to Sec. III, for 
 = 0

we find the maximal power and the idle heat flux

P(η̄MP) = 4γ T 2A, (92)

J idle
q = 8γ T 2B, (93)

with abbreviations

A ≡
∞

∑

k=1

∣

∣c
q

k

∣

∣

2 1

4 + 2bk(1 + 4γ 2/k2�2)
� 0, (94)

B ≡
∞

∑

k=1

∣

∣c
q

k

∣

∣

2 bk

4 + 2bk(1 + 4γ 2/k2�2)
� 0, (95)

and

bk ≡ k2�2

2ω2
0

(

1 + ω2
c

γ 2 + k2�2

)

� 0. (96)

In particular, we obtain the figure of merit

ZT = 2A/B, (97)

which enables access to the results of Sec. III C.

Using the adjoint Fokker-Planck operator (90), and per-

forming the average, the global power bound (34) reads

P0 = γ T 2

2

∞
∑

k=−∞

∣

∣c
q

k

∣

∣

2
. (98)

B. Sinusoidal temperature protocol

In the following, we discuss the behavior of the maximum

power output for a specific temperature protocol to study the

influence of the strength of the trap ω0, the magnetic field ωc,

the inverse cycle time �, and the friction constant γ . For the

protocol of the temperature variation, we choose a sinusoidal

function

γq(t) = (1 + sin �t)/2, (99)

resulting in three nonvanishing Fourier coefficients (38)

c
q

k =

⎧

⎪

⎨

⎪

⎩

1/2 if k = 0,

−i/4 if k = +1,

+i/4 if k = −1,

0 else.

(100)

From (C17) we see that the optimal protocol γ ∗
w1

(t) is a linear

combination of sin �t and cos �t , which we do not show

explicitly. With the dimensionless parameter b1 from (96), the

figure of merit (97) becomes

ZT = 2

b1

= 4ω2
0

�2

γ 2 + �2

γ 2 + �2 + ω2
c

. (101)

Using this expression, we can qualitatively infer how the

system parameters affect the heat engine. The figure of merit

must be large for a good performance, which is achieved by

large strength of the trap ω0, small magnetic field ωc, and slow

driving, i.e., small cycle frequency �.

The power output (65) becomes

P(η̄)

P0

= 2

3
η̄

1 − η̄ + 2/ZT +
√

(1 − η̄)2 − 4η̄/ZT

1 + (1 + 4γ 2/�2)/ZT
, (102)

where we have used (92) and P0 = 3γ T 2/16 from (98).

Whereas in the previous sections we normalized power by

its maximum, here we normalize it by the global bound on

power (34) to show the degree of saturation of inequality (33).

Thus, in (102) we have expressed the maximal power for fixed

efficiency η̄, in terms of cycle frequency in units of the friction

constant �/γ and ZT . Despite the fact that �/γ and ZT
are not independent, this choice is suitable for the analysis of

the power, since even for fixed �/γ , the figure of merit (101)

can still obtain all positive values, which can, for instance,

be achieved by changing the strength of the trap ω0 and the

magnetic field ωc.

The maximum power as a function of efficiency is shown

in Fig. 5, where we set �/γ = 1 and vary ZT . The power

grows with a larger figure of merit. For finite ZT , the

maximal efficiency is below the Carnot value. A small value

for the figure of merit (101) means that kinetic effects play a

significant role for the performance of the engine. They were

introduced via the velocity-dependent term in the equilibrium

Hamiltonian (84) and influence the Fokker-Planck dynamics

(86). However, they are not affected by the modulation of
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the trap (85), and therefore the control on the system is

limited. For instance, the kinetic effects dominate if the

strength of the trap ω0 is small or the magnetic field ωc

is large. In the case ZT → ∞ (see Sec. III C 2), which

corresponds to the overdamped regime (see the example in

Ref. [16]), the kinetic effects vanish and the maximum power is

largest.

The maximum power irrespective of η̄ reads from

(92)

P(η̄MP)

P0

= 4

3

η̄MP

4η̄MP + (1 + 4γ 2/�2)(1 − 2η̄MP)
, (103)

where we have replaced ZT via the efficiency at maximum

power (55). This quantity is shown as a dotted gray line in

Fig. 5. By substituting (59) into (102), we find the power at

maximal efficiency

P(η̄max)

P0

= 4

3

η̄max

(

1 − η̄2
max

)

4η̄max + (1 + 4γ 2/�2)(1 − η̄max)2
, (104)

where we have used (59) again to replaceZT by the maximum

efficiency. This result is shown in Figs. 5 and 6. In the latter

figure, ZT = 4 is fixed and �/γ is varied, which corresponds

to changing the inverse cycle time. Quite naturally, a faster

cycle leads to higher power output. Since ZT is kept constant,

maximum efficiency (59) and efficiency at maximum power

(55) are fixed.

In our case study, we find at most the same degree

of saturation of the bound on power (33) as in Ref. [16]

[P(η̄)/P0 � 1/3] for a sinusoidal protocol. The fact that the

kinetic terms cannot be controlled in the underdamped case

leads to a degree of saturation of the bound on power even less

than 1/3.

VI. CONCLUSION

In summary, we have investigated the performance of peri-

odically driven, stochastic heat engines in the linear response

regime under optimal driving. Our results make predictions for
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FIG. 5. Maximum power of the Brownian heat engine (102) as

a function of the efficiency (solid lines) for sinusoidal driving. From

bottom to top the curves are obtained by increasing ZT and setting

�/γ = 1. The dashed line is the power at maximal efficiency (104)

for �/γ = 1, independent of ZT . The dotted line describes the

maximum of the curves (103), reaching 1/3 for ZT → ∞.
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FIG. 6. Maximum power of the Brownian heat engine (102) as

a function of the efficiency (solid lines) for sinusoidal driving. From

bottom to top the curves are obtained by increasing �/γ and setting

ZT = 4. The dashed lines are the power at maximal efficiency (104)

for different �/γ . The vertical lines mark maximum efficiency (59)

and efficiency at maximum power (55), which both only depend on

ZT .

engines, which obey Fokker-Planck dynamics and for which

the detailed balance condition leads to symmetric correlation

functions. In particular, if the control of the system is limited,

we have shown that the efficiency is bounded, where the bound

is described by a single parameter, the figure of merit. It is

intuitively clear that less control of an engine may lead to

a lower power output, but our approach treats this problem

quantitatively. The power-efficiency curves take a loop-shaped

form, in analogy to imperfect, macroscopic heat engines. The

results are in strong analogy to the linear thermodynamics

of thermoelectric steady state devices, where time-reversal

symmetry can be broken by an external magnetic field. In our

setup, time-reversal symmetry is additionally broken by the

protocols. Our findings demonstrate the consequences of the

framework from Ref. [16] on the thermodynamics of heat to

work conversion under optimal conditions.

The identification of the figure of merit is only possible if

detailed balance can be exploited to show that the correlation

functions are symmetric, which directly follows for systems

without magnetic field. We have, however, identified under

which conditions this symmetry holds even in the presence

of a magnetic field. In Sec. IV, we have shown that the

figure of merit is closely related to the limitations on the

control of the system. In a case study, we have investigated a

paradigmatic underdamped example with magnetic field. Due

to the symmetry of the system, the general theory of Sec. III

applies and we find that the kinetic effects present in the system

decrease the performance of the engine.

For a divergent figure of merit, which corresponds to the

endoreversible limit of macroscopic engines, the power output

is maximal. The optimal protocol shows that full control is

needed for the engine to operate at Carnot efficiency, which

comes with vanishing power. Then the engine fulfills the

tight-coupling condition and the Onsager matrix is symmetric.

Similar results were found in Refs. [46,47], where the zero-

dissipation limit of periodically driven systems obeying a

master equation was investigated. However, therein the control
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of the system is not limited in the sense of (35) and the

optimization is not of a functional type. We expect that the

condition (70) is equivalent to the “global modulation of the

energy levels” in Ref. [46].

The one-parameter description found here differs from

the two-parameter description introduced in Ref. [11] for

steady state engines with a magnetic field. In their case the

Onsager coefficients are fixed and the optimization refers to

the affinities. In our case we optimize the protocols entering

the Onsager coefficients, which effectively implies a larger

variational space.

For future research on the theoretical side, it will be of

interest to investigate whether the simple relation between

maximum efficiency and efficiency at maximum power (62)

can be deduced directly from a hidden, underlying concept.

Second, one should investigate whether there exists an ex-

ample that violates the symmetry of the correlation function

(53). In such a case a two-parameter description similar to

Ref. [11] might be necessary. Third, our framework might be

extended to engines beyond Fokker-Planck dynamics, e.g., to

quantum systems obeying a Lindblad equation. Finally, on the

experimental side, it would be interesting to measure a bound

on efficiency if there is a constraint on the control of the engine,

which seems to be feasible with regard to recent single-particle

experiments [38–40,42].
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APPENDIX A: SYMMETRIES OF THE CORRELATION

FUNCTION IMPLIED BY DETAILED BALANCE

We investigate the implications of detailed balance (15) on

the correlation function (44), where insertion yields

C[R(x),S(x),t] = 〈R(x)eL
†
0(εx)tS(x)〉x,

= {C[S(εx),R(εx),t]}B→−B. (A1)

In the whole bracket the magnetic field is inverted. In the last

step, we have changed the sign of all odd variables, leaving the

area of integration invariant. The arguments of the correlation

functions above are R(x),S(x) = δH0(x),δgwi
(x). The energy

does not change under inversion ε,

H (εx,t) = H (x,t), (A2)

for any time t . Then, using (4), we find H0(εx) = H0(x),

gw(εx,t) = gw(x,t), and also gwi
(εx) = gwi

(x), since in (35)

the functions γwi
(t) are arbitrary. Using these symmetries, (A1)

reads

C[R(x),S(x),t] = {C[S(x),R(x),t]}B→−B. (A3)

Obviously, in systems without external magnetic field, we have

thus shown that symmetry (53) holds, leading to D = P(η̄MP).

If an external magnetic field is present, we can argue as

follows. If the relation

(L
†
0(x) − {L†

0(x)}B→−B)R(x) = 0 (A4)

holds, the required symmetry (53) follows from (A3), since

the Hamiltonian H0(x) and the control functions δgwi
(x) do

not depend on the magnetic field. In most systems friction and

diffusion constants are independent of the magnetic field. The

magnetic field only enters via the Lorentz force. For example,

for one particle in three dimensions,

L
†
0(x) − {L†

0(x)}B→−B = 2q

m

∑

j=x,y,z

(�v × �B)j∂vj
(A5)

= 2ωc

(

vy∂vx
− vx∂vy

)

. (A6)

In the last step we have assumed that the magnetic field is in the

z direction only. If the δgwi
(x) are symmetric in the components

of the velocity vx and vy , then (A4) indeed vanishes. This

reasoning is valid for the case study in Sec. V.

In Sec. IV, we have used the eigenfunctions of the adjoint

Fokker-Planck operator as control functions ϕ
†
i (x) = gwi

(x).

Above we have shown that the latter are symmetric under ε,

which is in general not the case for the eigenfunctions. In

the underdamped case, the coefficients γwi
(t) and (H0)i have

to restore the ε symmetry of H0(x) and gw(x) in (35) and

(36). When performing the optimization of the power output,

we have ignored this demand; i.e., we have assumed that the

Fourier coefficients c
wi

k are independent of each other. For

our purpose, it is sufficient to show that the optimal protocol

(79) guarantees the symmetry gw(x) = gw(εx). Due to the

summation in (35), we find that the optimal protocol has two

contributions in phase space:

n
∑

i=1

(H0)iϕ
†
i (x) = H c

0 (x), (A7)

n
∑

i=1

λi(H0)iϕ
†
i (x) = −L

†
0(x)H c

0 (x). (A8)

If n = N , the first term is ε-symmetric due to (A2). For the

second term, the adjoint Fokker-Planck operator is divided into

a reversible and an irreversible contribution (see Ref. [16]),

where the former is odd and the latter is even under ε. The

reversible contribution applied on H0(x) vanishes since it

preserves the energy. Then, the second term above is also

symmetric under ε. If n < N , it must be assumed that the

same reasoning holds for H c
0 (x).

In summary, we have thus argued that the symmetry (53)

is fulfilled for a large class of systems, which motivates us to

focus on the case D = P(η̄MP).

APPENDIX B: EIGENFUNCTION EXPANSION

In general the Fokker-Planck operator L0(x) is non-

Hermitian. We assume that a set of eigenfunctions exists

L0(x)ϕμ(x) = −λμϕμ(x), (B1)

L
†
0(x)ϕ†

μ(x) = −λμϕ†
μ(x), (B2)

with λμ,ϕμ(x),ϕ†
μ(x) ∈ C, which form an orthonormal set

∫

ddxϕμ(x)ϕ†
ν(x) = δμν , where δμν is the Kronecker delta.

For μ �= 0, we find δϕ†
μ(x) = ϕ†

μ(x) due to the orthogonality.

Since the Fokker-Planck operator is real, for real eigenvalues
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the corresponding eigenfunctions are also real. For complex

λμ, its complex conjugate is also an eigenvalue and the

corresponding eigenfunctions are conjugate. It is shown in

Ref. [55] that Reλμ > 0 (μ �= 0), and therefore each initial

distribution approaches equilibrium.

Applying detailed balance (15)

L0(x)peq(x)ϕ†
μ(εx) = peq(x)L

†
0(εx)ϕ†

μ(εx) (B3)

= −λB→−B
μ peq(x)ϕ†

μ(εx) (B4)

shows that

ϕμ(x) = peq(x)ϕ†
μ(εx), (B5)

where in the last step it is crucial to assume the absence

of an external magnetic field for the identification of the

eigenfunctions. Then we obtain the relation

〈ϕ†
μ(εx)(L

†
0)nϕ†

ν(x)〉x (B6)

= (−λν)n
∫

ddxϕ†
μ(εx)peq(x)ϕ†

ν(x) (B7)

= (−λν)nδμν, (B8)

for n = 0,1, . . . . This orthogonality (B8) is now used in the

calculation of the Onsager coefficients Lαβ (22), where we

insert gα(x,t) and gβ(εx,t). This procedure yields

Lad
αβ =

∞
∑

k=−∞

N
∑

i=1

−ik�c
αi

k c
βi

−k, (B9)

L
dyn

αβ =
∞

∑

k=−∞

N
∑

i=1

k2�2c
αi

k c
βi

−k

(∫ ∞

0

dτe−λμτ eik�τ

)

(B10)

=
∞

∑

k=−∞

N
∑

i=1

k2�2

λμ − ik�
c
αi

k c
βi

−k, (B11)

which is combined to the final result (75).

APPENDIX C: ONSAGER COEFFICIENTS AND OPTIMAL

PROTOCOL FOR THE CASE STUDY IN SECTION V

To calculate phase space averages appearing in the Onsager

coefficients (22), we need the equilibrium distribution

peq(x) =
√

detσ−1

2π
exp

⎛

⎝−1

2

∑

j,k

xj (σ−1)jkxk

⎞

⎠, (C1)

with j,k ∈ {1,2,3,4}, x = (x1,x2,x3,x4) = (x,y,vx,vy),

detσ−1 = (mω0/T )4, and the nonvanishing matrix elements

(σ−1)11 = (σ−1)22 = mω2
0/T , (C2)

(σ−1)33 = (σ−1)44 = m/T . (C3)

The matrix σ can easily be found by inversion, which we use

to evaluate second moments 〈xjxk〉 = σjk and fourth moments

〈xixjxkxl〉 = σijσkl + σikσj l + σilσjk [55]. Higher moments

are not needed in this case study.

The adjoint Fokker-Planck operator (90) can be diagonal-

ized, which leads to the diagonal matrix

D = E−1
L
†
0E

= γ Diag(0, − 1 − is1, − 1 + is1, − 1 − s2, − 1 + s2),

(C4)

where we have used the abbreviations

s0 ≡
√

1 + 2
(

ω̃2
c − ω̃2

)

+
(

ω̃2 + ω̃2
c

)2
, (C5)

s1 ≡
√

(

− 1 + s0 + ω̃2 + ω̃2
c

)

/2, (C6)

s2 ≡
√

(

1 + s0 − ω̃2 − ω̃2
c

)

/2, (C7)

and ω ≡ 2ω0. The tilde means division by γ , resulting in

dimensionless frequencies. For diagonalization we have used

E =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 (−1 + is1)ω2
0 (−1 − is1)ω2

0 (−1 + s2)ω2
0 (−1 − s2)ω2

0

0 (−1 − is1) (−1 + is1) (−1 − s2) (−1 + s2)

0 −s2
3γ −s2

3γ −s2
4γ −s2

4γ

0 −is2
3ωc/s1 is2

3ωc/s1 s2
4ωc/s2 −s2

4ωc/s2

1 4/mβ 4/mβ 4/mβ 4/mβ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (C8)

with s2
3 ≡ (1 + s0 + ω̃2 + ω̃2

c )/2 and s2
4 ≡ (1 − s0 + ω̃2 + ω̃2

c )/2. Then we rewrite exp(L
†
0τ ) = E exp(Dτ )E−1. The columns of

E are eigenvectors of (90) and scalar multiples of the ϕ†
μ(x) (see Appendix B). These eigenfunctions are uniquely determined by

the orthogonality relation and (B5).

With the Fourier series expansion of γq(t) and γw1
(t) and by performing the phase space average, from (22) we find

Lad
qw = −Lad

wq (C9)

= 2T 2

mω2
0l

2
0T

∫ T

0

γ̇q(t)γw1
(t)dt (C10)

= 2T 2

mω2
0l

2
0

∞
∑

k=−∞
ik�c

q

k c
w1

−k, (C11)

and Lad
qq = Lad

ww = 0, since γq(t) and γw1
(t) are T -periodic. With the diagonal form of L

†
0, the τ integration in (22) can be

performed leading to the second contribution to the Onsager coefficients
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Ldyn
qq = 2γ T 2

∞
∑

k=1

∣

∣c
q

k

∣

∣

2
k2�̃2 fk

rk

, (C12)

Ldyn
qw = 2γ T 2

mω2
0l

2
0

∞
∑

k=1

c
q

−kc
w1

k k2�̃2 −fk − (1 + ik�̃)2 − ω̃2
c

rk

, (C13)

Ldyn
ww = 4γ T 2

m2ω4
0l

4
0

∞
∑

k=1

|cw1

k |2k2�̃2 fk + ω̃2
c + (1 + ik�̃)2 − ω̃2(1 + ik�̃)/2

rk

. (C14)

Here, we have used the abbreviations

fk ≡ (1 + ik�̃)
[

ω̃2
c + ω̃2 + (1 + ik�̃)2

]

, (C15)

rk ≡ (1 + ik�̃)4 + (1 + ik�̃)2
(

ω̃2
c + ω̃2 − 1

)

− ω̃2
c . (C16)

The still missing Onsager coefficient L
dyn
wq can be obtained from L

dyn
qw by interchanging the w1 and q protocols. This fact originates

from the “additional symmetry relation” in Ref. [16], since (85) factorizes.

After a rather lengthy calculation, the conditions ∂c
w1
k
P[gw,
] = 0 with (30) yield the components of the optimal protocol

2χ

mω2
0l

2
0

(

c
w1

k

)∗
(
) = −c

q

k

a−
[

2k2�̃2ω̃2
0 − k4�̃4 + bkω̃

2
0(2 + k2�̃2)

]

+ ia+k�̃
[

(2 + bk)ω̃2
0 − 2k2�̃2

]

ω̃2
0

[

2k2�̃2 + bk(4 + k2�̃2)
] , (C17)

with a± ≡ (1 − 
 ± η̄
)/(
 − 1). An expansion of (C17) in small � is similar to the optimal protocol found in Ref. [16].
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[6] B. Jiménez de Cisneros and A. C. Hernández, Phys. Rev. E 77,

041127 (2008).

[7] Y.-P. Zhang and J.-Z. He, Chin. Phys. Lett. 27, 090502 (2010).

[8] Y. Izumida, K. Okuda, J. M. M. Roco, and A. C. Hernández,

Phys. Rev. E 91, 052140 (2015).

[9] G. D. Mahan and J. O. Sofo, Proc. Natl. Acad. Sci. USA 93,

7436 (1996).

[10] J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K.

Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder,

Science 321, 554 (2008).

[11] G. Benenti, K. Saito, and G. Casati, Phys. Rev. Lett. 106, 230602

(2011).

[12] A. E. Allahverdyan, K. V. Hovhannisyan, A. V. Melkikh, and

S. G. Gevorkian, Phys. Rev. Lett. 111, 050601 (2013).

[13] K. Brandner, K. Saito, and U. Seifert, Phys. Rev. Lett. 110,

070603 (2013).

[14] K. Brandner and U. Seifert, New J. Phys. 15, 105003 (2013).

[15] K. Brandner and U. Seifert, Phys. Rev. E 91, 012121 (2015).

[16] K. Brandner, K. Saito, and U. Seifert, Phys. Rev. X 5, 031019

(2015).

[17] F. L. Curzon and B. Ahlborn, Am. J. Phys. 43, 22 (1975).

[18] P. Salamon, J. Nulton, G. Siragusa, T. Andersen, and A. Limon,

Energy 26, 307 (2001).

[19] C. Van den Broeck, Phys. Rev. Lett. 95, 190602 (2005).

[20] T. Schmiedl and U. Seifert, Europhys. Lett. 81, 20003 (2008).

[21] Z. C. Tu, J. Phys. A: Math. Theor. 41, 312003 (2008).
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