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Control
This paper addresses control of structural vibrations using semi-active actuators that are
capable of manipulating stiffness and/or producing variable stiffness. Usually vibration
suppression is achieved using damping devices rather than stiffness ones. However, stiff-
ness devices can produce large forces and have significant advantages for shock isolation
purposes. In this work we use a passivity approach to establish the requirements for the
control law for a structure equipped with semi-active stiffness devices. We also solve an
optimal control problem that demonstrates that our passive, resetting feedback control
law approximates the optimal control. Simulation and experimental results are presented
in support of the proposed approach. �DOI: 10.1115/1.2432360�

1 Introduction
Recently, there has been a great deal of interest in actuation

mechanisms that require low to negligible levels of power for
operation. Although the applications can be varied, here we focus
our discussion on structural control, where traditional control ap-
proaches often dictate actuator forces that do not meet typical cost
or reliability requirements. This has lead to mechanisms that pro-
duce sizable forces through manipulating structural characteristics
�e.g., damping and stiffness�, based on relatively simple control
logic. Often, with a slight abuse of notation, these are called semi-
active devices due to their very low power consumption, often
provided by compact batteries. Generically, the term semi-active
often is used for devices that cannot add energy to the system.

By now, there is extensive literature showing the benefits of the
semi-active control approach. Although a comprehensive survey is
not feasible here, applications to structures and aerospace can be
found in �1,2�, respectively, and applications to bridges and shock
absorbers are presented in �3,4�. Typical early devices were hy-
draulic, but recent progress in electrorheological and magne-
torheological material has lead to a variety of new semi-active
devices based on these materials, which essentially manipulate the
damping characteristics �see �5–8�, and the references within for a
representative sample�. Approaches that manipulate stiffness go
back to variable stiffness models used in �9�, in the context of
variable structure control and quadratic stability, respectively, al-
though the concept of semi-active �or low energy� was not present
in such early work. The concept of semi-active stiffness devices
was discussed in �8,10� and later in the work of �4,11–13� ��13�
uses piezomaterial to develop variable stiffness devices that have
a great deal in common, conceptually, with devices discussed
here�.

Roughly speaking, these devices act as additional stiffness ele-
ments that store energy during compression or elongation. By re-
ducing the stiffness �e.g., opening a valve or releasing a locking
mechanism�, the stiffness is reduced suddenly, resulting a rapid
loss of stored energy. The control logic is often aimed at finding
suitable points for reducing the stiffness and then increasing it
back to the high value. If the stiffness can be increased without
energy input, the resulting device will meet the semi-active char-
acterization.

Here, we focus on a new class of semi-active devices, intro-
duced in �11�. These stiffness devices are capable of producing
large resisting forces. The basic design is feasible for both pneu-
matic and hydraulic implementation, thus offering a great deal of
reliability due to its dependence on standard hydraulic or pneu-
matic concepts, particularly when compared to devices employing
novel materials. Naturally, it possesses the low power, semi-
active, and decentralized properties that many of these devices
share. More importantly, in addition to the traditional variable
stiffness implementation, it can be used in a “resetting” arrange-
ment that has many additional advantages �see �14� for some of
the benefits and advantages of the resetting devices, as compared
to other semi-active approaches�.

Concepts similar to our resetting �originally developed in �11��
have been proposed by others. In �15�, a version of this approach
�though not necessarily the semi-active form� was studied, includ-
ing the homogeneity property, in which the nonlinear system re-
tains the same eigenvalues and eigenvectors. Similarly �2� consid-
ers an approach quite similar to our resetting approaches, but the
logic is not decentralized and often depends on the large dimen-
sional modal representations. Here, we discuss the resetting de-
vices and techniques of �11�. Basic properties, particularly for
structural applications, were reported in �16�. Recently, a bench-
mark problem was used for evaluation and comparison for differ-
ent semi-active approaches �see �17� and references therein�.
More recently, large capacity devices have been developed �see
�18��, whose effectiveness and reliability have been verified
through full-scale testing �19�. While we review these results,
briefly, our main focus in this paper is to present analytical results
regarding the motivation �from optimal control� as well as stabil-
ity and performance measured �based on passivity arguments�. We
thus avoid the often ad hoc �or strictly device based� approaches
used in much of the semi-active field. For example, our results can
easily accommodate the inevitable delays that are faced when the
stiffness is to be increased.

In Sec. 2, we provide a preliminary discussion on the basic
design. Section 3 deals with motivation from an optimal control
viewpoint. Next, for feedback operation in response to general
disturbances, we examine the properties of the device through a
passivity framework which naturally leads to a semi-active vari-
able stiffness switching logic as well as a semi-active resetting
logic. Both of these are then generalized for a generic
multidegree-of-freedom �MDOF� structural model, preserving
their main properties, including the decentralized nature of the
overall approach. In Sec. 4, we show a set of representative ex-
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perimental results regarding their characteristics, whereas in Sec.
5 we show some simulation results about their feasibility in struc-
tural applications.

2 Description of Hardware and Model
The main idea is to find a control law for a device that acts like

a spring, whose stiffness can be manipulated in real time, without
adding significant amounts of energy. As discussed throughout
this paper, we are interested in two forms of control logic: �i�
when the stiffness of the device can be switched between zero and
the maximum value at appropriate times �i.e., variable stiffness
form� or �ii� when the stiffness can be changed from the maximum
value to zero and immediately increased back to the maximum
value �i.e, resetable from�.

The basic concept can be demonstrated in the schematic shown
in Fig. 1, where we show a simple mass-spring system connected
to the proposed device, which is depicted as a double-acting cyl-
inder with an external line that connects the chambers on sides 1
and 2 of the cylinder through an on/off, or a proportional valve.
When this valve is closed, motion of the piston compresses the
gas, and as shown in �16�, the force produced by the gas can be
closely approximated by a linear spring with stiffness k1
=2A2�po /vo, where A is the piston area, po is initial pressure, vo
is the initial volume, and � is the ratio of constant pressure spe-
cific heat of the gas to constant volume specific heat �cp /cv� of the
gas. It was assumed for this derivation that po and vo are equal on
both sides of the piston. The linear spring approximation is rep-
resented in the Fig. 1 below the cylinder as spring of stiffness k1
connected to ground through a collar. When the valve is open, no
force is produced by motion of the piston because the gas flows
easily between the two sides of the cylinder. This corresponds to
the collar being unlocked and sliding freely. Otherwise, closing
the valve is analogous to locking the collar with zero force from
the spring k1 at some position x=xs.

Our hardware implementation of this device is shown in Fig. 2.
The cylinder is a standard Parker hydraulic cylinder capable of a
peak pressure of 5000 psi �34.4 MPa� with a 4 in. �10.16 cm�
bore and a 3 in. �7.62 cm� stroke. The valve connecting the two
sides of the cylinder is a Moog direct-drive proportional valve
capable of �5 ms response times with the orifice area propor-

tional to the control voltage. We filled both sides of the hydraulic
cylinder with nitrogen gas up to about po=800 lb/ in.2 �55 atm�.
Note that standard hydraulic cylinders can handle up to
5000 lb/ in.2, so that peak force level of about 30,000 lb can be
achieved with this actuator. In Sec. 4, we present preliminary
experimental results obtained from several high-capacity devices.

Next, we study ways to control this stiffness value, first for a
simple one-degree-of-freedom system, taking the flow dynamics
into account, and then in Sec. 3, by using the linear stiffness
approximation.

2.1 Optimal Control of a Gas-Filled Actuator. Given the
ability to create a variable valve orifice area as the control uv�t�
for this system, we first consider solving the following problem:
“Which control extracts energy from the structure most quickly?”
Given an initial condition, and/or assuming that a disturbance is
known in advance, we can obtain a solution to this problem using
tools from optimal control theory. Although it is generally not
possible to know what the disturbance or the initial conditions are
going to be ahead of time, knowing the optimal solution to this
problem sheds light on the form of the feedback control law ac-
tually used.

In order to solve the optimal control problem, we first obtain
the equations for motion for the structure and gas-filled actuator.
For a single degree of freedom system like the one shown in Fig.
1, the equations of motion are

mẍ = − kox + �p2 − p1�A �1�

where ko is the structural stiffness, A is the area of the piston in
the actuator, p1 and p2 are the fluid pressures in chambers 1 and 2,
and we have neglected viscous damping.

The dynamics of the gas flow and the chamber pressure are
found by considering a power balance of the system �20�.

cpTṁ − pv̇ + Q̇ =
cv

R

d

dt
�pv� �2�

where p is the pressure inside the chamber, v is the chamber
volume, ṁ is the gas mass flow rate into the chamber, T is the gas

temperature, R is the universal gas constant, Q̇ is the heat transfer
rate through the cylinder wall, and cp ,cv are the gas constant
pressure and constant volume specific heats, respectively. In �2�,
cpTṁ is the internal energy of the air flowing into the chamber, pv̇
is the power output by the moving piston, and �cv /R��d /dt��pv� is
the time derivative of the total internal energy of the air in the

chamber. We assume Q̇=0 because the heat transfer process has a
much slower time constant than the air flow dynamics. We rewrite
�2� by using cp /cv�� and the fact R=cp−cv, to obtain to a dif-
ferential equation for gas flow into chambers 1 and 2

ṗ1 =
�

v1
�RTṁ1 − p1v̇1� �3�

ṗ2 =
�

v2
�RTṁ2 − p2v̇2� �4�

The mass flow rates ṁ1 , ṁ2 are controlled by the proportional
valve. As shown experimentally in �20�, the flow rates can be
approximated reasonably well by

ṁ1 = − ṁ2 = cuv�p2 − p1� �5�

where c is a constant that depends on the valve orifice area, and uv
is the valve control voltage, which can vary from zero �value
closed� to one �valve completely open�.

Equations �1�–�5� define the dynamics of the system, and given
an initial condition for example, the control uv�t� that minimizes
the mechanical energy can be found. To accomplish this, we
solved the following nonlinear optimal control problem:

Fig. 1 Schematic representing the variable stiffness device.

Fig. 2 Variable stiffness device capable of 30,000 lb output
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Min

uv�t�
J�uv�t�� =

1

2�kx�tf�2 + mẋ�tf�2 +�
0

tf

�uv�t�2dt� �6�

subject to �1�–�5� and uv�t�� �0,1�. With tf fixed and � a small
positive constant, we are minimizing the energy in the structure at
the final time. The nonzero weighting on the uv

2 term in �6� was
needed for the numerical algorithm used to solve the problem.
This term allows the nonlinear problem to be solved via a se-
quence of manageable linear quadratic subproblems �21�. For �
small, the solution has little sensitivity to this parameter. For large
tf, the energy terms outside the integral are easily driven to zero
since a small uv�t� produces a dampinglike effect. As tf is de-
creased, at some point the energy terms can no longer be driven to
zero for any control uv�t�� �0,1�. The least time for which the
energy terms can be driven to zero is denoted as the minimum
time tf

*. To render the energy minimization reasonable, we are
interested in finding solutions for relatively small final times tf

� tf
*.
Figure 3 shows one sample solution to the control problem in

which tf � tf
*. Note that the optimal uv�t� is usually zero, which

means that the valve is usually closed so that no gas flows be-
tween the two chambers. But at instants when x�t� is maximum or
minimum, the optimal uv�t� pulses to one for a short time. The
fact that the control is bang-bang in this manner is also a neces-
sary condition for the optimal control. This is a standard result for
minimum time problems for systems that are affine to the control
�see, e.g., �22��. Physically, this solution corresponds to keeping
the valve closed until the gas in the actuator is most compressed,
and opening the valve for a brief time so that the pressure equal-
izes between the two sides of the cylinder. In doing so, the maxi-
mum amount of energy is transformed from the vibrating structure
into heat in the cylinder.

Inspection of the time-optimal control and comparison to the
idealization as a simple controllable spring element suggests that
to maximize the energy transfer, the value is opened �spring is set
to zero� at the peak displacement, before some of the stored strain
energy is returned to the structure. In Fig. 1, this related to set
k1=0 at peak x to remove the energy stored in the spring �when
�1/2�k1x2 is maximum�. Similar results �qualitatively� are ob-

tained for different initial conditions or disturbances. As Sec. 3
shows, a passivity approach can be used to obtain similar results,
for all possible initial conditions and disturbances, in a feedback
form.

3 Design of the Switching Law
As seen in Fig. 3, the optimal approach often results in a

switching law that maintains the valve closed most of the time and
occasionally opens the valve for short periods of time. In the
linear spring analogy, this corresponds to keeping the stiffness at
high values most of the time, while occasionally �e.g., at peak
displacements� reducing the stiffness to drain energy and restoring
or resetting the stiffness to the high value rapidly. In this section,
we derive a feedback switching law, based on the linear spring
approximation for the actuator, that can be applied to general dis-
turbances, multidegree-of-freedom systems, etc.

At any given time t, we use xs to denote the position of the
piston at the last resetting of the device to its “high” stiffness
value; i.e., xs is a piecewise constant function, whose values are
changed due to resetting. For a spring, this corresponds to the
setting the unstretched position of the spring to xs. As a result, the
energy stored in the actuator is �1/2�k1�x−xs�2; i.e., the energy
stored is determined by the compression or extension of the spring
is determined from the last resetting time. Adding this to the po-
tential energy of the system �i.e., the structure plus the actuator�,
and application of Lagrange’s equations, leads to the equation of
motion

mẍ + �ko + ��x�k1�x + coẋ = u�t� + ��x�k1xs �7�

where ��x� is either zero �low stiffness� or one �high stiffness�,
and thus xs is the value of x�t� the last time � was set to 1 �or
“reset”�. Here, u denotes additional inputs due to disturbances.

We note here that the model for any passive variable stiffness
device must take into account the position xs for which the change
in stiffness occurs. The reasoning for this statement is as follows.
Assume the device has two stiffness values, khigh and klow. A
switch in stiffness from low to high at x�0 would require an
addition of energy equal to �1/2��khigh−klow�x2, if xs is not taken
into account. Thus, an injection of energy is needed, and this

Fig. 3 uv pulses for a short time while the actuator resets.
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contradicts the assumption that the device is passive. Some re-
searchers do not include xs in their models, which will lead to
erroneous results. This statement applies to alternative variable
stiffness mechanisms such as passive piezoelectric devices.

As with most of the semi-active devices, the resulting system is
nonlinear due to the state dependent stiffness. As a result, analyti-
cal results in study of stability and performance �e.g, L2 or energy
gain� have been rare. Here, we rely on standard passivity results
�see �23��. We use the mechanical energy in the nominal system
�i.e., structure without the device� as the storage function

V = 1
2mẋ2 + 1

2kox2

with the nominal output y= ẋ, to get

V̇ = − coy2 + yu + ��x�k1ẋ�xs − x� �8�

where the first two terms on the right-hand side are from the
nominal system. Without the last term, following standard steps as
in �23�, these terms would ensure that the nominal system is
strictly output passive �lossless if co=0�; i.e., the rate of energy
storage in the system is less than �or for co=0 equal to� the energy
injected by the input u. The last term in �8� is due to the actuator.
It is clear that to preserve the passivity of the system �i.e., to avoid
increasing the stored energy by this device at any time—i.e., keep-
ing the device semiactive�, we need

��x�ẋ�xs − x� � 0, ∀ t �9�

Once the passivity is preserved, given that the storage function is
positive definite, without external disturbances �i.e., u=0� the sys-
tem is asymptotically stable �for co=0, a simple application of
LaSalles’ invariance principle will be needed�.

Note that �9� concerns the rate of energy flow into the rest of
the system �i.e., the structure� from the actuator, thus a positive
sign implies an undesirable direction for energy flow. The fail-safe
mechanism here is to ensure that � is set to zero �i.e., stiffness is
lowered or valve is opened� if �xs−x�ẋ�0.

We now introduce the basic switching logic used. From now
on, by setting � to zero, we mean setting the stiffness to its lower
value �e.g., the valve is opened�. A “reset” of the device means �
is set to one by increasing the stiffness to its high value �e.g.,
closing the device�. Suppose the device is reset at t= t1. At this
time, by definition, xs=x�t1�. Because of the continuity of ẋ, there
exists a t2� t1 such that for t� �t1 , t2� the sign of ẋ does not
change. During this period, we can write x�t�−xs=	t1

t ẋdt and thus
sign�x�t�−xs�=sign�ẋ�. Therefore, during the time interval after
reset that ẋ does not change sign, we have ��xs−x�t��ẋ�0, �recall
� is either zero or one� and the semiactive property �i.e., �9��
holds.

The above discussion implies that the stiffness ideally should be
reduced �i.e., �=0� when ẋ changes its sign, though it can be
reduced at other times as well. Once this is accomplished, the
stiffness can be reset to the high value �i.e., �=1�, i.e., it can be
reset, at any time that is physically possible; e.g., as soon as the
valve can be closed. Finally, note that as long as �=1, and �xs

−x�ẋ�0, the actuators are draining energy from the structure and
storing it in form of potential energy �to be drained again when
�=0�. Thus, it is desirable to avoid resetting for as long as pos-
sible, since energy stored is proportional to the square of the
stretched length �i.e., �1/2�k1�x1+x2�2� �1/2�k1x1

2+ 1 � 2k1x2
2�. As

a result, lowering the stiffness with �=0 while �9� holds is not
desirable, while resetting � to one as soon as possible is desirable.

This leads to the following ideal resetting rule, which is a
modified form of the switching logic proposed in �16�

� = 0 when ẋ changes sign

� = 1 otherwise �10�

The ideal case above assumes that the energy in the actuator
can be drained instantaneously. In most practical situations, how-
ever, removing energy takes some nonzero duration of time �for
example, the plot in Fig. 5 discussed in the next section for the
prototypes discussed in this paper�. In such cases, we modify �10�
to the following:

� = 0 when ẋ changes sign

� = 1 as soon as possible �11�

by which we mean that as soon as the energy in the device is
drained, set �=1. The above development is summarized by the
following key technical results:

i. For the system �7�, mechanical energy is drained from the
system as long as �9� holds.

ii. After any reset, or switch from �=0 to �=1, there is a
time interval for which �9� holds.

iii. Both the ideal �10� and the practical �11� switching rules
ensure that �9� holds.

3.1 Control of Multiple Degree-of-Freedom Structures.
Next, we generalize this approach to a multidegree-of-freedom
systems, in which a number of these devices are installed. For
small motion, xi, the displacement along the length of the ith
device can be represented by

xi = Ti
Tz

for some transformation Ti, where z is the vector of generalized
coordinates and xi is the motion along the main axis of the device.
The energy stored in the ith device is thus

Ui =
1

2
�i�z�ki�xi − xs,i�2 =

1

2
�z − zs,i�TTi�ki�i�z��Ti

T�z − zs,i�

=
1

2
�i�z��z − zs,i�TKi�z − zs,i�

where Ki is the contribution of the ith device to the overall stiff-
ness �i.e., Ki=kiTiTi

T�, with ki the stiffness of the element and �i�·�
is the switching law. Here, zs,i is the state vector at the last time
the ith actuator was reset �i.e., the last time when �i became 1�.
Ideally, we seek a decentralized switching law, i.e., �i�xi�, which
is possible as shown below.

After using the above expression for the potential energy in the
actuators and applying Lagrange’s equations, the equations of mo-
tion for the m-degree-of-freedom structure become

Mz̈ + �Ko + 
 �i�z�Ki�z + Coż = Bu�t� + 
 �i�z�Kizs,i

where B is the influence vector associated with disturbances �or
other inputs�, while M and Ko are the nominal mass and stiffness
matrices. Next, we define outputs y=BTż, and apply the same
approach as before by using the positive definite storage function
to be the mechanical energy of the system �without the energy
stored in the actuators�

V = 1
2 żTMż + 1

2zTKoz

which yields

V̇ = − żTCoż + yTu + 
 �i�z�żTKi�zs,i − z�

Recalling that Ki=kiTiTi
T and xi=Tiz, we get

V̇ = − żTCoż + yTu + 
 �i�z�kiẋi�xs,i − xi�

Similar to the one-degree-of-freedom system, we seek to design �i
such that the actuators do not increase the rate energy storage in
the rest of the system �i.e., the structure�. Thus, to preserve the
semi-active property, we obtain the same switching logic for each
�i which is the same as �9� for the ith device,
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�i�xi, ẋi�ẋi�xs,i − xi� � 0, ∀ t, i = 1,2, . . . ,l �12�

which is decentralized and depends only on local coordinates �i.e.,
motion along the length of the device�, and independent of nomi-
nal mass and stiffness properties.

If all modes are damped �i.e.,Co�0�, we can write

V̇ � − 	yTy + yTu + 
 �i�xi�kiẋi�xs,i − xi�

where 	=
min�Co� /
max�BTB�. Then standard passivity results
show that the decentralized switching logic above preserves the
estimate for the L2 or energy gain from u to y �i.e., 1 /	� and
asymptotic stability of the system �in the absence of external dis-
turbances�, under mild controllability or observability conditions.

As discussed in �16�, when damping matrix is not positive defi-
nite, asymptotic stability is not necessarily guaranteed and the
state vector converges to the intersection of sets or manifolds
żTCoż=0 and żTKiż=0. In such cases, zero-state observability with
Ki or similar concepts may be used to establish asymptotic stabil-
ity, though depending on Co and location of the devices �i.e.,
structure of Ki� the system may be stable only.

Remark. The switching law above was developed by defining
y=BTż, to exploit the passivity framework and to establish the
semiactive nature of the switching law. In practice, other �addi-
tional or different� outputs may be used for different purposes,
without compromising the semi-active property as long as the
variables needed for the switching law are measured. For ex-
ample, implementing the switching law in �12� requires, at a mini-
mum, ẋi. Also note that we have assumed continuity of the differ-
ential equations for the structural motion. This is a relatively mild
assumption and is met in all realistic cases �to ensure chattering is
avoided, one can introduce a small threshold in the control logic�.

3.2 Variable Stiffness Feedback Control. Let us now review
and compare the resetting approached discussed above with a
simple variable stiffness technique where it is assumed that the
actuator can operate at two distinct stiffness values. In general,
this leads to a system for which a variety of results from variable
structure or switched systems can used.

In this case, the equations of motion for the one-degree-of-
freedom system is

mẍ + �ko + ��x�k1�x + coẋ = u�t� �13�

where co, u�t�, k1 are as in �7�, and ��x� is the switching law that
controls the stiffness of the device. Note that here the device alters
the stiffness only �ie., no xs�. We also assume that it is possible to
develop devices that allow all stiffness values between zero and k1
�i.e., 1���x��0�.

At a given deformation, increasing the stiffness of a spring
requires the input of energy unless it is done at its unstretched
position. Since we are interested in developing a low-power or
semiactive device, this issue plays an important role in developing
control logic for this device. As before, we start with a storage
function

V = 1
2mẋ2 + 1

2kox2

i.e., the mechanical energy in the nominal system. It is easy to see
that with velocity measurement, i.e., y= ẋ, we have

V̇ = − coy2 + yu − ��x�k1ẋx

The first two terms on the right-hand side are from the nominal
system and establish passivity and stability of the nominal system
�similar to the resetting case�. It is clear that in order not to alter
the passivity of the system �e.g., to avoid increasing the stored
energy at any time�, thus satisfying the basic property of the semi-
active approach, we need ��x�k1ẋx�0. Given the range of values
for ��x�, the resulting semi-active switching law becomes

��x, ẋ� = 1 if ẋx � 0

��x, ẋ� = 0 if ẋx � 0 �14�
that is, given the desire to remove as much energy as possible
yields an “on-off” or two-state logic even if intermediate values of
� were feasible. Also, passivity properties of the nominal system
is preserved and following standard steps, we can show that sta-
bility and L2 gain of the nominal system is preserved, as well. The
generalization to multidegree-of-freedom system follows exactly
as before, leading to a decentralized control law of �14�. For brev-
ity, the details are omitted.

3.3 Comparison and Discussion. The switching law �14� and
approaches similar to it, have been used before. For example, �9�
used a similar logic for a single degree of freedom system to
demonstrate a simple variable structure system, whereas �1,2,10�
had used variable stiffness devices to move energy to different
modes, depending the excitation. In particular, �10� included a
discussion on changing the stiffness to high values at zero deflec-
tions. More recently, the variable stiffness approach has been used
by by Patten and co-workers �e.g., �3�� and Dawson and co-
workers �e.g., �13�, when the stiffness is altered with piezoactua-
tors�. Typically, the stiffness is increased to the higher value ac-
cording to a logic similar to �14�.

The resetting method coincides with the variable stiffness ap-
proach if we wait and reset �i.e, setting the stiffness to high� only
when x�t�=0, which results in xs=0. In such a case, the device is
not in operation, and thus is not collecting energy, during the
period of time from reset and when x�t� crosses zero. This implies
that the resetting approach is often more effective than variable
stiffness since it is collecting energy, to be drained at peak storage,
at all times, whereas the variable stiffness device is “off” roughly
half the time. For results regarding rate decay �in simple first-
order systems�, or placement of devices �in MDOF structures�,
one can consult Ref. �11,16�, respectively.

Remark. In �24�, the term “reset control” is used to address a
generalization of the Clegg integral from the 1950s, which has
shown benefits in improving overshoot properties of linear con-
trollers. There are similarities between these approaches, in the
sense the equations of motion here can be presented as a special
case of the model used there, and the devices discussed here have
shown strong overshoot suppression properties �see �12��. The re-
set control of �24�, however, is a modification to a traditional
�active� compensator, whereas the reset logic discussed here is
vibration suppression device that is added to the structure or can
be combined with a variety of other actuators, if desired �in which
case the switched or hybrid systems approach might be an appro-
priate framework�. Also, the passivity approach has led to stability
and performance guarantees in relatively simple steps, consistent
with the suggested future work in �24�.

4 Preliminary Experimental Results
Figure 4 shows the behavior of a prototype, obtained from

shaking table testing at the National Center for Research on Earth-
quake Engineering in Taiwan �see �19� for a more comprehensive
description and additional results�. Here, the device is subjected to
sinusoidal motion with peak to peak distance of 20 mm, with a
peak resisting force of 30 kN. The sudden drop in Fig. 4�b� cor-
responds to resetting of the actuator, when the valve is opened at
the extreme end of the motion to drain energy and reset the effec-
tive stiffness to zero. This is more pronounced in the hysteresis
plot in Fig. 4�c�, where at each extreme end of the motion, reset-
ting reduces the stiffness and thus the energy stored in the device.
Also, note that Fig. 4�c� shows that the effective stiffness is quite
close to a linear spring �as used in the development of Sec. 3�
throughout the range of motion.

Given the scale used in Fig. 4, it is difficult to estimate the
amount of time it takes to drain the energy and reset the actuator.
Figure 5 gives a more detailed look at the response of the resetting
controller, operating in an experimental single-degree-of-freedom
test apparatus, subjected to initial displacement, in a setup quite
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similar to the schematic in Fig. 1. The plot shows the time it takes
for the actuator force to reach equilibrium �i.e., all stored energy is
drained� after the valve is opened fully. The signal labeled net
force on piston is the net force exerted by the gas on the piston.
Within the three narrow bands seen in Fig. 5, the valve is com-
manded to fully open, while outside these bands the valve is com-
manded to fully close. Note that within these bands, the force
exerted by the gas on the piston decays to zero, taking 30–40 ms.
Also note that the controller detects peaks in the position of the
piston, and initiates the resetting �i.e., closing the valve�. As dis-
cussed earlier, from an energy standpoint, we would like to open
the valve when the force reaches a peak. The shape of the plot
reflects the fast decay in motion in the free response case. Further
experimental results are presented in �18,19�.

The results here support the main characteristics used in devel-
oping the results of Sec. 3: the validity of using a linear spring to
approximate the behavior of a closed cylinder over a wide range
of peak forces �at least up to 30,000 kN�, the existence of modest
delays in closing the valve, consistent with the control logic dis-
cussed earlier, and the feasibility of the concept for large-scale
devices.

5 Performance Comparison and Benchmark Simula-
tions

To evaluate the effects of resetting devices, the following com-
parison is made. In a one-degree-of-freedom system, similar to the
schematic of Fig. 1, we introduce a base motion in the form of a
simple sine-wave and obtain the magnitude of the resulting mo-
tion �similar to moving one of the side walls in Fig. 1 and mea-
suring the displacement of the mass�. By sweeping through fre-

quencies, we can obtain a form of frequency response for the
device. Note that in general, semi-active devices are nonlinear �in
this case, stiffness is state dependent� and notions of frequency
response should be used carefully. The resetting technique, as dis-
cussed in �25�, has the homogeneity property that results in
magnitude-independent frequency response, unlike many other
semi-active techniques �assuming no physical limits on the stroke
of the device�.

The results are presented in Fig. 6, where the dashed-dotted line
�“always on”� is the frequency response of the system if the stiff-
ness of device is simply added to the overall stiffness by prevent-
ing any resetting. The other plots correspond to the cases where
the stiffness of the resetting element �which is turned on� is 25%
or 50% of the total stiffness available. The 25% level might be
more practical, and provides significant attenuation. The 50% case
shows a drastic reduction in response consistent with the results
forming suppressing vibration due to initial conditions, discussed
in �11�. Overall, it shows the main benefit to be precisely in the
critical frequency ranges.

Among the advantages of a variable stiffness device for extract-
ing energy from the structure, as opposed to damping devices, is
that in cases of shock loading, large forces are not transmitted to
the structure. This is because high velocities create large forces in
traditional dampers, but create no force in the variable stiffness
device �see �12� for an example application to an automotive sus-
pension where the force transmitted through a conventional
damper is more than an order of magnitude higher than the force
transmitted through the resetting device�. Here, we compare the
performance of the resetting approach to that of an MR damper
using the model developed in �8�, where the NS component of the
1940 El Centro earthquake was the input to a three-story structure.
For the same structure, we simulate the results of placing a single
resetable device between the first and second floors. The device
has an effective stiffness of about 9 kN/cm. In Table 1, we show
the peak displacement �xi� of each story relative to ground, the
peak interstory drifts �di�, the peak absolute acceleration of each
story �aia�, and the peak force �f� for the uncontrolled systems as
well as those obtained with either an MR damper or a resetable
device. The controller used for the MR device is the so-called
clipped optimal control �i.e., an optimal control law, such as LQR
or H2, which is clipped if the device cannot provide the maximum
forces needed by the controller�. As discussed in �8�, this rather
complex and centralized approach often results in the best perfor-
mance in ER- and MR-based approaches.

As Table 1 shows, the performance of the two devices are quite

Fig. 4 „a… Piston displacement versus time, „b… net actuator
force versus time, and „c… force versus diplacement

Fig. 5 Resetting response of a single actuator

Fig. 6 Response of a single actuator to sine-wave base
motion
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similar, and both deliver significant improvements from the open-
loop or uncontrolled case. This is not unexpected, since several
studies �see �8� and references therein� have shown similar pat-
terns; a relatively large number of devices with roughly equal
capacity �e.g., maximum resistive force� showing more or less
similar results. Generally, the resetable devices perform better for
higher-frequency disturbances �recall the discussions on their ben-
efits in shock-type disturbances�. Overall, these devices offer
similar performance at far lower complexity �e.g., decentralized
logic� with standard and reliable hydraulic technologies. More
extensive comparisons can be found in �17�, in which a variety of
semi-active devices are compared on this benchmark.

6 Conclusions
We have shown, using an optimal control approach, that the

resetting techniques is the fastest method for removing energy
from a vibrating structure, using variable stiffness actuators. We
developed a feedback control law, based on passivity arguments,
that implements the optimal control and extends previous results
to account for switching delays in practical hardware. Finally, we
have presented experimental and simulation results that demon-
strate that resetting is a viable method for applications in full scale
structures.
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Table 1 Effects on a three-story building

Uncontr.
Clipped opt.

�MR� Resetting

x1 �cm� 0.20 0.04 0.04
x2 �cm� 0.31 0.07 0.08
x3 �cm� 0.36 0.10 0.12

a1 �cm/s2� 421 341 363
a1 �cm/s2� 430 363 318
a1 �cm/s2� 571 341 340

f �N� 0 492 470
d1 �cm� 0.20 0.04 0.04
d2 �cm� 0.11 0.04 0.03
d3 �cm� 0.05 0.03 0.03
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