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Optimal Perimeter Control for Two Urban Regions
With Macroscopic Fundamental Diagrams: A

Model Predictive Approach
Nikolas Geroliminis, Jack Haddad, and Mohsen Ramezani

Abstract—Recent analysis of empirical data from cities showed
that a macroscopic fundamental diagram (MFD) of urban traf-
fic provides for homogenous network regions a unimodal low-
scatter relationship between network vehicle density and network
space-mean flow. In this paper, the optimal perimeter control for
two-region urban cities is formulated with the use of MFDs. The
controllers operate on the border between the two regions and
manipulate the percentages of flows that transfer between the two
regions such that the number of trips that reach their destinations
is maximized. The optimal perimeter control problem is solved
by model predictive control, where the prediction model and the
plant (reality) are formulated by MFDs. Examples are presented
for different levels of congestion in the regions of the city and the
robustness of the controller is tested for different sizes of error
in the MFDs and different levels of noise in the traffic demand.
Moreover, two methods for smoothing the control sequences are
presented. Comparison results show that the performances of the
model predictive control are significantly better than a “greedy”
feedback control. The results in this paper can be extended to de-
velop efficient hierarchical control strategies for heterogeneously
congested cities.

Index Terms—Macroscopic fundamental diagrams (MFDs),
model predictive control (MPC), perimeter control.

I. INTRODUCTION

E FFICIENT monitoring and traffic management of large-
scale urban networks still remain a challenge for both traf-

fic researchers and practitioners. A large urban network mainly
consists of the following two elements: 1) urban links and,
2) signalized intersections. Modeling the traffic flow dynamics
of each element in a large urban network with a large number
of links and intersections is a complex task. We have to model
the evolution of queues at each signalized intersection and
account for the queue dynamic interactions between adjacent
intersections, i.e., capturing the dynamics of propagation and
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spillback of queues because of high demand. Even if this
task is completed, a centralized control approach would be
a very challenging task, not only because of the computa-
tional complexity but also because users might change their
travel patterns (e.g., time of departure, route choice, and mode
choice). Hence, instead of this micromodeling approach, the
macroscopic fundamental diagram (MFD) aims at simplifying
the micromodeling task of the urban network, where the col-
lective traffic flow dynamics of subnetworks capture the main
characteristics of traffic congestion, such as the evolution of
space-mean flows and densities in different regions of the city.
MFD can be utilized to introduce elegant control strategies to
improve mobility and decrease delays in large urban networks,
which local strategies cannot achieve.

The MFD of urban traffic provides for different network
regions a unimodal low-scatter relationship between network
vehicle density (veh/km) and network space-mean flow or
outflow (veh/h) if congestion is roughly homogeneous in the
region. Alternatively, the MFD links accumulation, which is
defined as the number of vehicles in the region, and trip

completion flow, which is defined as the output flow of the
region. Network flow or trip completion flow increases with
density or accumulation up to a critical point, while additional
vehicles in the network cause strong reductions in the flow.
The first theoretical proposition of such a physical model was
developed in [1], while similar approaches were also initiated
in [2] and [3]. The physical model of MFD was observed with
dynamic features in congested urban networks in Yokohama,
Japan, in [4]. This paper showed the following two important
properties of MFD that can be utilized for management and
control purposes: 1) some urban regions approximately exhibit
an MFD, and 2) the shape of the MFD is not very sensitive
to different demand patterns. Property 1 is important for mon-
itoring purposes, because flow can easily be observed with
different types of sensors, whereas outflow is more difficult.
Property 2 is important for control purposes, because efficient
active traffic management schemes can be developed without
a detailed knowledge of origin–destination (OD) tables. Other
investigations of MFD using empirical or simulated data can be
found in [5]–[8] and other papers, whereas routing strategies
that are based on MFD can be found in [9].

Recent studies [8], [10], [11] have shown that networks with
heterogeneous distribution of density exhibit network flows that
are smaller than those that approximately meet homogeneity
conditions (low spatial variance of link density), particularly
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for high network densities. Moreover, networks with a small
variance of link densities have a well-defined MFD, i.e., low
scatter of flows for the same densities. One possible solution for
heterogeneous networks is that they might be partitioned into a
number of more homogeneous regions with small variances of
link densities, as each region will have a well-defined MFD. See
[12] for more information on network partitioning. In [7] and
[13], strong hysteresis phenomena in freeways that might not
disappear after partitioning is shown. Nevertheless, the work
in [12] showed that urban networks can be partitioned in a
way that decreases the degree of heterogeneity within clusters.
Partitions should not have a very small size, because the law
of large numbers will not apply, and high scatter might exist
in MFDs. In addition, a large number of partitions will not
allow the development of simple control strategies as shown
in this paper, because control might change the route choices,
and detailed ODs might be needed.

Management and control of multiregion MFDs systems can
improve urban mobility, prevent overcrowding, and relieve
congestion in cities. The optimal control policy was derived
for a single MFD system in [3]. The main logic behind this
policy is that it aims at decreasing inflows in regions with high
densities of destinations and points in the decreased part of an
MFD and manage the accumulation to maintain the flow in the
city at its maximum. However, in case of multiregion cities with
multiple centers of congestion and/or attraction, control policies
are more complicated and not well understood. For stability
analysis of controlling two urban regions, see [14].

Because of the scatter in the MFD, mainly in the congested
regime, errors are expected between the MFD model and the
plant (reality). Therefore, an optimal open-loop control for
the multiregion MFDs system would be a suboptimal solution
compared with the optimal closed-loop control. The closed-
loop control takes into account errors between the model
and the plant by utilizing feedback-monitored information.
Furthermore, the closed-loop control can tackle disturbances
for which the model was not designed, e.g., noise in the
traffic demand. The optimal closed-loop control is obtained by
implementing the model predictive control (MPC) framework.
A historical survey for industrial applications of MPC can be
found in [15], while theoretical issues of MPC can be found
in [16]–[20].

MPC is a receding horizon scheme, where, at each time
step, an optimal open-loop of the problem with finite hori-
zon is optimized; then, only the first controller is applied to
the plant, and the procedure is again carried out. A receding
horizon framework has been used for optimization in different
traffic control problems, for example, ramp metering of freeway
networks in [21] and [22], variable speed limits and route
guidance for freeway networks in [23] and [24], signal control
for large-scale urban networks in [25]–[27], and mixed urban
and freeway networks in [28]. The open-loop optimization in
the traffic MPC models, for example, in [23] and [24], uses
a direct simultaneous method to transcript it into a finite-
dimensional nonlinear programming through the discretization
of both control and state variables, whereas in [22] and [26], a
feasible direction algorithm is utilized to solve the open-loop
optimization problem. Overviews of different control applica-

Fig. 1. Two-region MFDs system. Two regions R1 and R2 with four traffic
demands q11(t), q12(t), q21(t), and q22(t) and two perimeter controllers
u12(t) and u21(t).

tions in transportation problems can be found, e.g., in [29]
and [30].

In this paper, the optimal perimeter control problem for two-
region urban cities is formulated, where the dynamic equations
are modeled according to their MFDs. Moreover, the optimal
control solution is obtained by applying the MPC framework.
The open-loop optimal control problem is solved using a direct

sequential method that discretizes only the control variables
with piecewise constant controls, whereas the state variables are
continuous and integrated using the state-of-the-art methods for
ordinary differential equation (ODE) solvers.

This paper is organized as follows. The control problem for
a two-region MFDs system is presented in Section II. Then,
in Section III, MPC is formulated, the parameters are tuned,
and the control laws of a greedy controller (GC) are presented.
Comparison results of case study examples are presented in
Section IV, showing the performance differences between MPC
and the GC. Finally, two different methods are introduced in
Section V to smooth the control sequences.

II. TWO-REGION MACROSCOPIC FUNDAMENTAL

DIAGRAMS SYSTEM

In this paper, a heterogeneous traffic network that can be
partitioned into two homogeneous regions is considered. A
traffic network for a two-region system is schematically shown
in Fig. 1. Two regions Ri, i = 1, 2, where each region has a
well-defined MFD are given as follows: 1) the periphery of the
center R1, and 2) the city center R2. Note that the geographical
relative position of these regions does not affect the dynamics
of the problem; for example, it can be two regions next to each
other. An endogenous traffic demand is defined as a flow in
which its origin and destination are the same region, whereas
the origin and destination of an exogenous traffic demand
are not the same. For the two-region system, there are two
endogenous traffic demands in R1, denoted by q11(t) (veh/s),
and in R2, denoted by q22(t) (veh/s), and two exogenous traffic
demands generated in R1 and R2 with destination to R2 and R1,
denoted by q12(t) and q21(t) (veh/s), respectively. Correspond-
ing to the endogenous and exogenous traffic demands, four
accumulation states are used to model the dynamic equations,
nij(t) (veh), i, j = 1, 2, where nij(t) is the total number of
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vehicles in Ri with destination to Rj at time t. Let us denote
ni(t) (veh) as the accumulation or the total number of vehicles
in Ri at time t, i.e., ni(t) =

∑

j nij(t).
MFD is defined by Gi(ni(t)) (veh/s), which is the trip

completion flow for region i at ni(t). The trip completion flow
for region i is the sum of transfer flows, i.e., trips from i with
destination j, i �= j, plus the internal flow, i.e., trips from i
with destination i. The transfer flow from i with destination
to j is calculated corresponding to the ratio between accumu-
lations, i.e., Mij(t) = nij(t)/ni(t) ·Gi(ni(t)), i �= j, whereas
the internal flow from i with destination to i is calculated by
Mii(t) = nii(t)/ni(t) ·Gi(ni(t)). These relationships assume
that the trip lengths for all trips within a region (internal or
external) are similar, i.e., the distance traveled per vehicle inside
a region is independent of the origin and destination of the
trip. For a description of different cases, refer to [31], which
will not alter the methodology. Simulation and empirical results
[4] show that the shape of MFD can be approximated by a
nonsymmetric unimodal curve skewed to the right, i.e., the
critical density, which maximizes the network flow, is smaller
than half the jammed density. Thus, we utilize a third-order
function of ni(t), e.g., Gi(ni(t)) = ai · ni(t)

3 + bi · ni(t)
2 +

ci · ni(t), where ai, bi, and ci are the estimated parameters.
In our formulated problem, the perimeter controllers, de-

noted by u12(t) and u21(t) (−), are introduced on the border
between the two regions, as shown in Fig. 1, where the purpose
is to control the transfer flows between the two regions such that
the total number of vehicles that complete their trips and reach
their destinations in the two-region MFDs system is maximized.
Because the perimeter controllers exist only on the border
between the two regions, the internal flows cannot be controlled
or restricted, whereas the transfer flows are controlled by the
controllers such that only a ratio transfers at time t. The
perimeter controllers u12(t) and u21(t), where 0 ≤ u12(t) ≤ 1
and 0 ≤ u21(t) ≤ 1, are, respectively, the ratio of the transfer
flow that transfers from R1 to R2 and from R2 to R1 at time
t. It is also assumed that these controllers will not change the
shape of the MFDs. Implementations of the controllers in real
networks are discussed in the Conclusion of this paper.

The criterion is to maximize the output of the traffic network,
i.e., the number of vehicles that complete their trips and reach
their destinations. Therefore, the two-region MFDs control
problem with four state variables is formulated as follows
(similar to [32]):

J = max
u12(t),u21(t)

∫ tf

t0

[M11(t) +M22(t)] dt (1)

subject to

dn11(t)

dt
= q11(t) + u21(t) ·M21(t)−M11(t) (2)

dn12(t)

dt
= q12(t)− u12(t) ·M12(t) (3)

dn21(t)

dt
= q21(t)− u21(t) ·M21(t) (4)

dn22(t)

dt
= q22(t) + u12(t) ·M12(t)−M22(t) (5)

0 ≤n11(t) + n12(t) (6)

0 ≤n21(t) + n22(t) (7)

n11(t)+n12(t) ≤ n1,jam (8)

n21(t)+n22(t) ≤ n2,jam (9)

umin ≤u12(t) ≤ umax (10)

umin ≤ u21(t) ≤ umax (11)

n11(t0) =n11,0 ; n12(t0) = n12,0 (12)
n21(t0) =n21,0 ; n22(t0) = n22,0

where tf (s) is the final time, nij,0, i, j = 1, 2, are the initial
accumulations at t0, n1,jam and n2,jam (veh) are the accumula-
tions at the jammed density in R1 and R2, respectively, and
umin and umax are the lower and upper bounds for u12(t)
and u21(t), respectively. Recall that Mij(t) = nij(t)/ni(t) ·
Gi(ni(t)), i, j = 1, 2. Equations (2)–(5) are the conservation
of mass equations for nij(t), whereas (6)–(9) are the lower and
upper bound constraints on accumulations in R1 and R2.

III. MODEL PREDICTIVE CONTROL FOR THE TWO-REGION

MACROSCOPIC FUNDAMENTAL DIAGRAMS PROBLEM

The two-region MFDs problem (1)–(12) aims at finding the
perimeter control inputs, i.e., ratios of transfer flows of R1

and R2, that maximize the number of vehicles that complete
their trips (reach their destinations). This problem is an optimal
control problem with a nonlinear objective function (1) and
dynamic equations (2)–(5), inequality state constraints (6)–(9),
control constraints (10) and (11), and initial states (12). More-
over, errors are expected in the modeling because of the scatter
in the MFDs, mainly in the congested regime and of the de-
mand profile. Therefore, the optimal control problem is solved
by applying the MPC approach, which can handle the state
and control constraints and the errors in the MFDs modeling.
Furthermore, MPC is a real-time implementable solution that
can be utilized for real-time urban traffic applications.

MPC is a form of rolling horizon control in which the current
control inputs are obtained by solving a finite-horizon open-
loop optimal control problem at each time step, with a current
state feedback from the plant being the initial state of the
model, see Fig. 2. The open-loop optimization problem yields
a sequence of optimal control inputs after several iterations
of solving nonlinear programming, and the first control action
in this sequence is applied to the plant, then the procedure is
carried out again.

This scheme of feedback control, i.e., the feedback loop
of states from the plant to the model as initial states for the
optimization, can handle errors between the prediction model
and the plant.

A. Two-Region MFDs Prediction Model

and Optimization Problem

The MPC controller obtains the optimal control sequence
for the current horizon by solving an optimization problem
formulated with the prediction model; see the bottom of Fig. 2.

The prediction model used in the MPC scheme is formulated
with (2)–(5). The dynamic equations predict the evolution of
accumulations for the two regions with MFDs, given the initial
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Fig. 2. MPC scheme for the two-region MFDs system.

accumulations and future values of perimeter control inputs and
demand.

In this paper, we follow the direct methods for solving the
optimization problem (other solution methods include dynamic
programming and indirect methods). The direct methods are
most commonly used because of their applicability and robust-
ness, where their basic principle is “first discretize and then
optimize”. These methods can handle inequality constraints and
use state-of-the-art methods for nonlinear problem solvers.

The open-loop optimal control problem is solved using the
direct sequential method, also referred to as single shooting or
control vector parameterization in the literature, e.g., [33] and
[34]. The direct sequential method transcripts the open-loop
optimal control problem into a finite-dimensional nonlinear
problem through the discretization of the control variables
only with piecewise constant controls, whereas the ODEs are
embedded in the nonlinear problem, i.e., numerical integration
is used between the time steps. A schematic description of the
direct sequential method is shown in Fig. 3. Note the continuous
dynamics of the state variables nij(t), i, j = 1, 2. Let Np (−)
be the finite-dimensional horizon, which starts from the current
control step kc. At each discrete time step k, kc ≤ k ≤ kc +
Np − 1, there are two perimeter control inputs, u12(k) and
u21(k), which are assumed to be constant during the time
period tk−1 ≤ t ≤ tk. For online computational complexity, the
number of control inputs that should be optimized are reduced
to a horizon that is smaller than Np, called the control horizon
Nc, where Nc ≤ Np. The rest of the control variables, u12(k)
and u21(k) for kc +Nc ≤ k ≤ kc +Np − 1, are assumed to be
equal to the control inputs at the end of the control horizon.

Following the direct sequential method, the control vector is
discretized, and the two-region MFDs optimal control problem
(1)–(12) is approximated by a finite-dimensional nonlinear
programming problem in the piecewise constant control inputs.
First, the equations of the prediction model (2)–(5) are rewritten

Fig. 3. Direct sequential method for solving the open-loop optimization
problem.

in a compact form with discrete control variables at time step
kc with finite-dimensional Np as follows:

dn(t)

dt
= f (n(t),u(k),q(t))

tk−1 ≤ t ≤ tk k = kc, kc + 1, . . . , kc +Np − 1 (13)

where n(t) = [n11(t), n12(t), n21(t), n22(t)]
T, q(t) = [q11(t),

q12(t), q21(t), q22(t)]
T, and u(k) = [u12(k), u21(k)]

T. Then,
the Lagrange form (1) is transferred into the Mayer form by
introducing an additional state variable z(t) and an additional
differential equation dz(t)/dt. Moreover, the path constraints
(6)–(9) must hold for all t (continuous variable), where t0 ≤
t ≤ tf ; hence, the number of constraints would be infinite.
However, several methods are efficient in dealing with path
constraints in the sequential method, e.g., transcription as in-
tegral constraints. The optimization problem is now formulated
as follows:

min
u(kc),u(kc+1),...,u(kc+Np−1)

−z(tkc+Np−1) (14)

subject to

dn(t)

dt
= f(n(t),u(k),q(t)) (15)

dz(t)

dt
= M11(t) +M22(t) (16)

umin ≤ u(k) ≤ umax (17)

where tk−1≤ t≤ tk k=kc, kc+1, . . . , kc+Np−1

u(k)=u(kc+Nc−1) k=kc+Nc, . . . , kc+Np−1 (18)
kc+Np−1
∑

k=kc

tk
∫

tk−1

max {0;−n11(t)− n12(t)}
2 dt ≤ ǫ (19)

kc+Np−1
∑

k=kc

tk
∫

tk−1

max {0;−n21(t)− n22(t)}
2 dt ≤ ǫ (20)

kc+Np−1
∑

k=kc

tk
∫

tk−1

max{0;n11(t)+n12(t)−n1,jam}
2dt≤ǫ (21)

kc+Np−1
∑

k=kc

tk
∫

tk−1

max{0;n21(t)+n22(t)−n2,jam}
2dt≤ǫ (22)
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where umin = [umin, umin]
T, and umax = [umax, umax]

T.
Note that the path constraints (6)–(9) are reformulated as inte-
gral constraints (19)–(22), respectively, with relaxation, where
ǫ > 0 is a small nonnegative constant.

B. Two-Region MFDs Plant

The dynamic equations of the two-region MFDs plant differ
from the prediction model (2)–(5), because they include errors

in the MFDs for both regions and noise in the traffic demand,
see the top of Fig. 2 for an illustration. Hence, the evolutions of
the accumulations over time are not the same for the prediction
model and the plant, which are considered to have different
magnitudes and profile (biased and unbiased). Thus, the plant
and the model accumulation, MFD, and demand can signifi-
cantly differ.

1) Errors in MFDs: Let us denote the MFDs with errors
for R1 and R2, by G̃1 and G̃2, respectively. The errors in the
MFDs result in errors in accumulations of the plant, which
are denoted by ñij(t), i, j = 1, 2, to distinguish them from
the accumulations of the prediction model nij(t). Note that
ñi(t) =

∑

j ñij(t). The variance of the MFD increases with the
accumulations in the region, as described in [10]; see the top of
Fig. 2. Reasons for this variance are asymmetric OD and route
choices, which increase the heterogeneity in the distribution of
congestion within a region. It is assumed that the variance of
the MFD is uniformly distributed, where the error at step k is
calculated at the time instant tk−1 as

ε (ñ1(tk−1)) ∼ U (−α1 · ñ1(tk−1), α1 · ñ1(tk−1)) (23)

ε (ñ2(tk−1)) ∼ U (−α2 · ñ2(tk−1), α2 · ñ2(tk−1)) (24)

where α1 and α2 (1/s) are given parameters. It is assumed that
the errors ε(ñ1(tk−1)) and ε(ñ2(tk−1)) (veh/s) are constant
during the time step tk−1 ≤ t ≤ tk; therefore, the MFDs of the
plant G̃1 and G̃2 for tk−1 ≤ t ≤ tk are

G̃1 (ñ1(t)) =G1 (ñ1(t)) + ε(ñ1(tk−1)) (25)

G̃2 (ñ2(t)) =G2 (ñ2(t)) + ε(ñ2(tk−1)) . (26)

2) Unbiased and Biased Noise in the Demand: The follow-
ing two different types of noise in the demand are considered:
1) unbiased noise with Gaussian distribution and 2) biased
noise with a sudden jump in the demand profile for a time
period. In both cases, let us denote the traffic demand q(t)
with noise as q̃(t) = [q̃11(t), q̃12(t), q̃21(t), q̃22(t)]

T. Unbiased
demand noise represents random and recurrent variations of the
demand from day to day because of travel patterns, whereas
biased demand noises might represent cases of nonrecurrent
events (e.g., special events or accidents).

The unbiased noise in the demand is assumed to have
Gaussian distribution as follows:

q̃ij(t) = max
(

qij(t) +N (0, σ2
ij), 0

)

(27)

where i, j = 1, 2, and σ2
ij (veh2/s2) is the variance for the

traffic demand qij(t).

Substituting the MFDs with errors (25)–(26) and the demand
with noises q̃(t) in the dynamic equations (2)–(5), we get the
two-region MFDs plant in a compact form (see also Fig. 2) as

dñ(t)

dt
= f̃ (ñ(t),u(k), q̃(t), ε(k)) (28)

where ε(k) = [ε(ñ1(tk−1)), ε(ñ2(tk−1))]
T.

C. Greedy Controller (GC)

To investigate and estimate the performance of the MPC
controller, comparison results are done with a GC for different
levels and types of errors. GC is a state feedback control in
which its policy is determined by the current accumulations
n1(t) and n2(t). Let n1,cr and n2,cr (veh) be the accumu-
lations that maximize G1 and G2, respectively. GC is de-
signed according to the following policy: if both regions are
uncongested, i.e., n1(t) ≤ n1,cr and n2(t) ≤ n2,cr, then both
controllers should maximize the transfer flows, and therefore,
[u12(t), u21(t)] = [umax, umax]. If one region is congested and
the other region is uncongested, i.e., n1(t) ≤ n1,cr and n2(t) >
n2,cr, or n1(t) > n1,cr and n2(t) ≤ n2,cr, then the controllers
should minimize the transfer flow to the congested region and
maximize the transfer flow to the uncongested region. If both
regions are congested, i.e., n1(t) > n1,cr and n2(t) > n2,cr,
then the controllers should minimize the transfer flow to the
“more congested” region and maximize the transfer flow to
the “less congested” region; for example, if n1(t)/n1,jam >
n2(t)/n2,jam, then R1 is more congested than R2, and there-
fore, [u12(t), u21(t)] = [umax, umin]. The GC law is summa-
rized in Table I.

D. Tuning the Prediction and Control Horizon Parameters

The performance of the MPC controller is affected by
the prediction horizon Np and the control horizon Nc. The
prediction horizon Np should be large enough such that the
model can accurately predict the accumulations of the plant
corresponding to the control inputs. Increasing the prediction
horizon improves the performances of the MPC controller;
however, a large Np increases the optimization computing
time, which may add some barriers for online implementation,
i.e., the control actions cannot be implemented in the current
step if the computing time that corresponds to a large Np is
larger than the time duration of the control time step. Similar
considerations with regard to the tradeoff between computation
complexity and results should accurately be done for the control
horizon Nc.

The perimeter controllers can be actuated by signalized inter-
sections that are placed in the border between the two regions of
the urban network, i.e., the perimeter control sequences can be
applied by choosing appropriate timing plans for the signalized
intersections. The effect of perimeter control to the rest of the
network and its MFDs will be discussed later. Let us assume
that the signalized intersections have a fixed common cycle
length, e.g., is equal to 60 (s). Then, the time duration of the
time step kc is set to be equal to the length of the cycle, i.e.,
tk − tk−1 = 60. This duration is much larger than the time
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TABLE I
GCS u12(t) AND u21(t) POLICY

Fig. 4. Tuning parameters Np and Nc for the MPC controller.

which is needed to solve the open-loop optimization problem
(a few seconds).

Tuning the MPC parameters Nc and Np is done for sev-
eral examples, and similar results have been obtained. In the
following discussion, the tuning analysis is presented only for
one of the case study examples, as shown in Fig. 4. More
information for the case study examples is presented in the next
section.

The MPC parameters Np and Nc are tuned according to the
relative improvement of the trip completed corresponding to
the MPC controller compared with the GC, i.e., improvement
[%] = (JMPC − JGC)/JGC , where J is computed according
to (1). As shown in Fig. 4, the improvement of the results
decreases as the prediction horizon Np increases; however, for
Np ≥ 20, only a minor improvement is achieved. The MPC
controller is less sensitive to the control horizon Nc, where
Nc ≥ 2 yields similar results for trip completion. It is shown
that Nc = 1 yields a low MPC performance, because the open-
loop optimization problem is more constrained. Therefore, the
parameters are set as Np = 20 and Nc = 2 for all subsequent
case study examples. Note that, for a small prediction horizon
Np < 6, the MPC controller does not perform well compared
with the GC.

IV. CASE STUDY EXAMPLES

In this section, results of several case study examples are
presented to explore the features of the MPC controller under
different conditions. The examples aim at examining the
efficiency of the MPC controller in congested and uncongested
regimes, which may vary with time because of variations in the
demand and the MFDs. Hence, examples with different levels
of demand and sizes of MFDs are presented. Furthermore, the
robustness of the MPC and GC are examined by introducing

different uncertainties, i.e., different levels of error in MFD,
and noises in the demand. For all examples presented in this
paper, the selected MPC parameters are Np = 20 and Nc = 2,
the lower bound umin = 0.1, and the upper bound umax = 0.9.
In examples 1–4, the MFDs for both regions are the same,
where Gi(ni(t)) = (1.4877 · 10−7 · n3

i − 2.9815 · 10−3 · n2
i +

15.0912 · ni)/3600, i = 1, 2, n1,cr = n2,cr = 3400 (veh),
G1(n1,cr)=G2(n2,cr)=6.3 (veh/s), and n1,jam= n2,jam=
10 000 (veh). This shape is consistent with the MFD observed
in Yokohama, see [4]. Note that the shape of the MFD is not
predetermined in the problem formulation. In example 5, the
MFD of R1 is increased by 25%, as shown in Fig. 8(d), to test
the control problem with two different MFDs.

In example 1, both regions R1 and R2 are initially congested,
i.e., the initial accumulations n1(t0) = 5400 and n2(t0) =
4000 are in the decreasing part of the MFD, where n2(t0)
is 18% larger than ncr,2, whereas n1(t0) is 59% larger than
ncr,1, which means that R2 operates close to capacity con-
ditions. The time-varying demands shown in Fig. 5(d) simu-
late a morning peak hour with high demand q12(t) for trips
from R1 to R2, i.e., from the periphery to the city center.
The evolution of accumulations over time nij(t), 0 ≤ t ≤
3600, corresponding to the MPC controller, are presented in
Fig. 5(a), while the evolutions presented in Fig. 5(b) corre-
spond to the GC, see Table I. Note that, at the beginning
of the control process, both the MPC controller and the GC
decrease the total accumulation in R1, n1(t), and keep the
total accumulation in R2, n2(t), unchanged. Afterward, the
MPC controller tries to decrease n2(t) by changing u21(t)
from 0.1 to 0.55 to let more vehicles enter R1. In contrast,
the GC brings the two accumulations equal, i.e., n1(590) =
n2(590) = 4125, and after that instance, both region accumu-
lations increase together, while the chattering behavior occurs
as a result of switching control between umin and umax ac-
cording to Table I; note the saw lines of accumulations after
t = 600 s.

The cumulative trip completion that corresponds to the MPC
controller and the GC are shown in Fig. 5(c), while the control
sequences u12(t) and u21(t) are shown in Fig. 5(e). The third-
order function MFDs G1(n1(t)) and G2(n2(t)) coincide, as
shown in Fig. 5(f), whereas the circle points are the calculated
G̃1 and G̃2, see (25) and (26). In Fig. 5(f), it is assumed that
there are no errors in both MFDs, where α1 = α2 = 0, see (23)
and (24).

The MPC performances for small (α1 = α2 = 0.2) and large
(α1 = α2 = 1) errors in the MFDs are shown in Fig. 6(a) and
(b), respectively. Comparison between the three levels of error,
i.e., without errors in Fig. 5(e) and small and large errors in
Fig. 6, shows that the control sequence u21(t) becomes less
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Fig. 5. Example 1. Regions R1 and R2 are initially congested (without errors
in MFDs).

smooth when the errors in the MFD of the plant (reality)
increase. Note that the performance of the MPC is not signifi-
cantly affected when large errors in the MFD occur. Even if the
macroscopic traffic congestion modeling is a rough approxima-
tion of urban networks, this methodology can still improve traf-
fic conditions. Nevertheless, nonsmooth controllers might be
difficult to apply in reality, create heterogeneities in the bound-
ary, and scatter in the MFDs. We discuss smoothing issues
in Section V.

In example 1, the demand is high such that, at the end of the
control process, both regions are congested (with GC regions
moving forward to face gridlock). The effect of demand on
the MPC controller is scrutinized by examples 2 and 3. These
examples have the same initial accumulations of example 1;
however, the demands qij(t) for examples 2 and 3 are pro-
portionally decreased by 16% and 32%, respectively, compared
with the demand for example 1 in Fig. 5(d). The performance
of GC and MPC for different errors in demand and MFDs are
summarized in Table II. The results shown in the table are an
average over ten runs for small and large errors and for low

Fig. 6. Example 1. Small (α1 = α2 = 0.2) and large (α1 = α2 = 1) errors
in MFDs.

and high noise. We show the cumulative trip completion by
the end of the simulation and the difference in the total delays
(veh · s) as this is expressed by the area between the MPC
and GC cumulative trip completion curves in the figures, e.g.,
see Fig. 5(c). In example 1, there are 22%–24% savings in total,
which represent, on the average, 5.5 savings (in minutes) per
traveler trip.

Comparing examples 1, 2, and 3 (see Fig. 5(c) and Table II),
we notice the advantage of the MPC controller compared to
the GC according to the total delay (veh · s) that would be
obtained if the GC is used instead of the MPC controller. The
differences between the total delays are proportional to the
congestion level, i.e., in an uncongested situation (the current
accumulations are below the jammed accumulations, and the
future demand is not going to change them), the performance
of the GC is almost the same as the MPC controller, and the
total delay difference is almost zero.

In example 4, in contrast to other examples, both regions R1

and R2 are initially uncongested, i.e., the initial accumulations
are in the increasing part of the MFDs, whereas at the end of
the control process, both regions are congested, as shown in
Fig. 7, because of the high level of time-varying demand. The
accumulation profiles for both the MPC controller and the GC
show the same trend in the uncongested regime, whereas once
the system reaches the critical accumulation point, a significant
difference is shown between the MPC controller and the GC. It
can be inferred that, when the regions become more congested,
the difference between the MPC controller and the GC is more
apparent.

In example 5, the region R1 MFD and its corresponding
internal demand q11(t), as shown in Fig. 5(d), are increased
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TABLE II
TRIP COMPLETION THAT CORRESPONDS TO THE MPC CONTROLLER AND THE GC, AND THE TOTAL DELAY DIFFERENCE

Fig. 7. Example 4. Regions R1 and R2 are initially uncongested and finally
congested.

Fig. 8. MFDs for both regions without errors in the MFDs or noises in the
demands for (a) example 2, (b) example 3, (c) example 4, and (d) example 5.

by 25%. The MFDs for this example are depicted in Fig. 8(d),
whereas the MFDs for examples 2, 3, and 4 are shown in
Fig. 8(a)–(c), respectively.

Fig. 9. Example 1. High unbiased noise in the demand.

In addition, the performance of the MPC controller that
encounters unbiased and biased noise in the demand is inves-
tigated. Example 1 with high unbiased noise in the demand
(σij = 0.5, i, j = 1, 2), see (27), is illustrated in Fig. 9. The
overall results of MPC remain similar; however, the corre-
sponding applied MPC shows more fluctuations than the base
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Fig. 10. Example 1. Biased noise in the demand.

example 1. The differences between the trip completion that
corresponds to MPC and GC without errors, with small (α1 =
α2 = 0.2) and large (α1 = α2 = 1) errors in the plant MFDs
and without noise, and low (σij = 0.25, i, j = 1, 2) and high
(σij = 0.5, i, j = 1, 2) unbiased noise in the demand profile
are also summarized in Table II.

In Fig. 10, biased noise in the demand, which occurs at
time instant 1200 (s) for a duration of 600 (s) is added to
the base setup of example 1, see Fig. 10(b). The MPC con-
troller does not receive the information of the sharp change
in demand. As Fig. 2 shows, the input to the MPC controller
is the demand without any noise, which can be estimated
with traditional methods. Nevertheless, it results in a similar
performance, whereas the GC makes both regions face gridlock
(it can be inferred from the almost-horizontal ending part of
the GC trip completion profile), see Fig. 10(c). Note that
the MPC profile in Fig. 10(d) is identical to Fig. 5(e) for
times before 1200 (s), and after that, with decreasing u12(t)
from umax, the MPC can handle the unbiased sudden aug-
mentation in the demand, which has a great impact on n2(t)
accumulation, see Fig. 10(a). The results also show that the
trip completion that corresponds to MPC are similar, compar-
ing between unbiased noise [23.49 (veh · 103)] and without
noise in the demand (23.55 (veh · 103), see Table II) for no
errors in the MFDs case. However, large differences are ob-
tained for GC as the trip completion decreased from 17.07 to
13.97 (veh · 103), and the total delay difference increased
from 7791.6 (veh · s · 103) (22.5%) to 10684.3 (veh · s · 103)
(33.2%).

The results shown in this section imply that the MPC con-
troller is superior for all examples with different levels of error
in MFD and noise in the demand, biased or unbiased.

V. SMOOTHING CONTROL

In the previous section, the results of various examples have
shown that the control values of two successive steps may
significantly vary [e.g., see Fig. 9(d)], particularly in cases of
demand variations that are more realistic. These large jumps
make the implementation of control policies difficult for real
cases, and they might jeopardize safety and increase the het-
erogeneity of congestion distribution, which can also result
in highly scattered MFDs. Thus, we would like to limit the
change (jump) in the control inputs and smooth the control
sequences over the control process. In this section, the fol-
lowing two different methods are introduced to smooth the
control sequences: 1) imposing the control constraints, and
2) modifying the objective function.

A. Constraints for Smoothing Control

One method for smoothing the control sequences that result
from MPC is to impose smoothing control constraints to the
optimal open-loop problem (14)–(22) over the control horizon
Nc. The imposed smoothing control constraints that limit jumps
in the control sequence up to ujump (−) are given as follows:

|u12(k)− u12(k − 1)| ≤ ujump (29)

|u21(k)− u21(k − 1)| ≤ ujump (30)

for k = kc, kc + 1, . . . , kc +Nc − 1, where ujump is a given
parameter, and u12(kc − 1) and u21(kc − 1) are the applied
control inputs in the previous horizon.

In Section IV, we note that MPC for example 1 with high
noise in the demand profile is very jumpy. To smooth the control
sequences of MPC, we utilize the MPC formulation with the
confining constraints on control inputs (29) and (30). The
results of two values ujump = 0.1 and ujump = 0.2 are shown
in Fig. 11(a) and (b), respectively. Both of them yield similar
results to the unsmoothed example 1, see Fig. 9(a). However,
the control sequences are smoother and show an identical trend.
This test also reveals that the MPC formulation is robust to the
selection of the ujump value. It is not only a theoretical tool but
it can also have direct applications in the field.

B. Modified Objective Function

The second method for smoothing the control sequences is
done by introducing a tradeoff between the objective function,
i.e., the maximum number of vehicles that complete their
trips, and the sum of the square absolute difference between
each two control sequences, for example, see [35]. Therefore,
the objective function (14) in the optimal open-loop problem
(14)–(22) is modified as follows:

min
u(kc),...,u(kc+Np−1)

{

−z(tkc+Np−1) + β

kc+Nc−1
∑

k=kc

(

|u12(k)−u12(k−1)|2+|u21(k)−u21(k−1)|2
)

}

(31)

where β is the weight on control sequence changes.
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Fig. 11. Smoothing control by imposing constraints with (a) ujump = 0.1
and (b) ujump = 0.2.

The role of β in (31) and ujump in (29) and (30) are similar in
terms of making a balance between the desired smoothness and
trip completion. Nevertheless, the calibration of ujump is easier
than β, because it represents a physical measure.

Similarly, the same example is chosen for smoothing by
modifying the objective function. Fig. 12 shows the results,
where each column corresponds to β = 1, 10, 50, and 200. It
is apparent that the higher the β is, the smoother the control
sequences become, and the lower the objective value becomes.
For this specific example, β = 10 produces the best tradeoff
between smoothness and optimality. Nevertheless, the value of
β does not have a direct physical meaning (as ujump does), and
it might require additional calibration in the field. We tried to
apply this approach in the other examples, and the appropriate
value of β to obtain smooth control and efficient condition was
varying. The first approach gave more robust results.

VI. DISCUSSION

The optimal perimeter control for two urban regions with
MFD representation has been formulated and solved by im-

plementing the MPC scheme. Comparison results between
MPC and GC show that MPC is superior for all numerical
examples presented. These results can be of great importance
to practitioners and city managers to unveil simple and robust
signal timing planning that maximizes the network capac-
ity and serves the maximum number of people under high-
demand conditions. The results in this paper can be utilized
to develop efficient hierarchical control strategies for hetero-
geneously congested cities. A network can be partitioned into
homogeneous regions, and optimal control methodologies can
identify the intertransfers between regions of a city to maximize
the system output by utilizing the MPC developed in this
paper.

A network with multiple homogenous regions (more than
two regions) requires not only more state variables to model
the dynamics but also a route choice model to be integrated
in the model, because vehicles can travel from one region to
another with different routes. When the number of homoge-
neous regions in the network becomes larger, the computa-
tional complexity and the time for solving the MPC problem
increase, which might affect the real-time implementation of
the proposed methodology. Improving the real-time implemen-
tation feasibility for networks with multiple regions should
be a research priority. Note that the real-time implementation
feasibility is not an issue for the two regions problem presented
in this paper, because the computational time was significantly
smaller than real time.

These policies can change the spatial distribution of con-
gestion such that the network outflow increases. Given the
estimated values in this paper, further analysis is needed to
identify signal parameters in the individual regions of a city to
smoothly move traffic at the desired flows without concentrat-
ing a large number of vehicles at the boundaries of the regions.
This is a challenging task that requires knowledge on how the
network flow for a region of a city changes as a function of
topology, control, and level of congestion. By restricting access
to congested cities, a city manager can significantly improve
the system output, highlighting the importance of a reliable
estimator of subnetwork/route capacity. Toward this direction,
the work in [36] investigates the effect in the MFD, different
degrees of variability in link lengths, and signal characteristics
for different city topologies and signal structures. Nevertheless,
the effect of perimeter control in the heterogeneity of density
in each region (and the boundaries) cannot be investigated
with the macroscopic plant of the specific paper. An appli-
cation of these strategies in the field or in a microsimulation
environment can shed more light toward this direction and
identify the necessary local control schemes needed to success-
fully smooth boundary conditions. This should be a research
priority.

Although there are vast contributions in traffic control prob-
lems for freeways through ramp metering, the area of control
for large urban regions or mixed networks still remains a chal-
lenge. Recent findings ([7] and [13]) have shown that MFDs
might not be a realistic representation for freeway systems;
therefore, in case of mixed arterial–freeway networks, an MFD
formulation for the arterial can be combined with a mesoscopic
model for the freeway (e.g., a first- or second-order traffic flow
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Fig. 12. Smoothing control by the modified objective function (31) with (a) β = 1, (b) β = 10, (c) β = 50, and (d) β = 200.

model) to describe the dynamics of the system and propose
coordinated optimization schemes with ramp metering and
perimeter control. Our research provides tools for shedding
some light toward this direction.
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