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Optimal Periodic Control: The = Test Revisited

DENNIS S. BERNSTEIN anp ELMER G. GILBERT, FELLOW, 1EEE

Abstract—The paper examines second-order conditions for both
steady-state and dynamic optimality in a periodic control problem. It
centers on the « condition of Bittanti, Fronza, and Guardabassi 2] and has
three main objectives: 1) to form a = “test” for a somewhat more general
problem than considered in [2]; 2) to point out that certain auxiliary
conditions most be added if the results of [2] are to be valid; and 3) to
explore more fully the relationships between second-order conditions for
steady-state optimality and second-order conditions for optimality in the
dynamic problem,

I. INTRODUCTION

OR SOME dynamic processes which are normally

operated in a steady-state mode, it may be possible to
improve performance by time-dependent periodic control.
This possibility has received much attention in recent
years and there is a well-developed theory [1], [7], [10],
[13]. The application of second-order conditions for opti-
mality as a test for the possibility of improved perfor-
mance was pioneered by Bittanti, Fronza, and Guarda-
bassi [2], [9]. Their conditions involve a frequency domain
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criterion, called the = test, which has proved valuable in
cases where first-order conditions for optimality [1], [2],
[7], [13] have failed to give information. In this paper we
have three main objectives: 1) to form a 7 “test” for a
somewhat more general problem than considered in [2]; 2)
to point out that certain auxiliary conditions must be
added if the results of [2] are to be valid; and 3) to explore
more fully the relationships between second-order condi-
tions for steady-state optimality and optimality in the
dynamic problem. The auxiliary conditions in (2) are
normality conditions which are similar to those that ap-
pear in the classical calculus of variations. They rule out
pathological cases in which the system is, in a certain
sense, uncontrollable in the neighborhood of an optimal
solution. The approach to (3) is similar in spirit to the
treatment of first-order conditions presented in [7],
although for reasons of brevity, there is no attempt to
rival the completeness and generality of the discussion
there.

The organization and content of this paper may be
summarized as follows. In Section II we state an optimal
periodic control (OPC) problem and its corresponding
steady-state version (OSS), introduce notation and basic
definitions, and comment on the relationship between
conditions for proper (periodic control is better than opti-
mal steady-state control) and conditions for optimality in

0018-9286/80,/0800-0673500.75 ©1980 IEEE
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OPC. In Section III well-known results from the mathe-
matical programming literature are applied to obtain both
second-order necessary conditions and second-order
sufficient conditions for local optimality in OSS. To ob-
tain the test for proper, the above-mentioned normality
condition is needed. This is discussed in Section IV along
with some properties of a related rank condition. Section
V contains the test for proper (Theorem 5.1). Theorem 5.1
is similar to {2, Theorem 1] in that it concerns the sign
definiteness of a # matrix for positive frequencies. Alter-
natively, as indicated in Theorem 5.2, Theorem 5.1 may
be interpreted as providing necessary conditions for
steady-state optimality in OPC. This clarifies the connec-
tions with the results of Section III and with second-order
conditions in the classical calculus of variations. Sufficient
conditions for steady-state optimality of OPC, which are a
strengthening of the necessary conditions in Theorem 5.2,
are given in Section V1. These conditions do not include
normality and may be used to show that OPC is not
proper. All of these results are limited to optimality in the
neighborhood of steady-state solutions of the constraint
equations. Section VII gives several simple examples
which illustrate the need for some of the conditions stated
in Sections V and VI. Since the proofs of the main
theorems are quite lengthy, they are relegated to Appen-
dices A and B.

II. ProBLEM FORMULATION AND BaAsiC
DEFINITIONS

In this section we formulate the periodic control prob-
lem and its steady-state specialization. For motivation and
additional detail, see [2], [7], [9], [10}, [13].

The optimal periodic control problem OPC is: minimize

J(x,u"")=go()') (21)

subject to
gl(y)QO, i=—j,"',—1,
&(»)=0, i=1,-- .k,

y=1 [ Fosto)u(o)) s

) =f(x(1)u(D),  aa.1€[0,T], x(0)=x(r),

1€(0,T] (22)

where 0<T< +c0, y ER', x(t) ER", u(f)€ R™. The con-
vention j =0 means there are no inequality constraints on
y; the convention k=0 means there are no equality con-
straints on y; the functions g;: R'>R for i=—j,---,k, f:
R"XR™>R", and f: R"XR™—>R' are twice continu-
ously differentiable. This formulation of OPC is a speciali-
zation of the one considered in [7] and includes the
formulation considered in [2] as a special case. In [2],
7E€(0, + o) and g(y)=component of y; also the func-
tional notation for f is different and a maximum is sought
(this changes the definition of # and the sign convention
in the 7 test). For simplicity, it is not assumed, as in [7],

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-25, NO. 4, AUGUST 1980

that u(r)€ U, where U is a proper subset of R™. If u(s),
t€(0,T], belongs to the interior of U, the subsequent
analysis is applicable because it focuses on local, “weak™
variations in ().

By assuming x and  are constant (then 7 has no effect),
the optimal steady-state problem OSS is obtained: mini-
mize

Jss(x’ u) = go(y) (2.3)
subject to
gx(y)<07 ’=_js' 5_1’
gz(y)=0’ l=l’ ,k,
y=Ff(x,u),
0=f(x,u), (24)

where yER', xER”, u€ R™. There is a chance that the
cost in OPC may be made strictly less than the minimal
cost in OSS. To make the discussion of this situation
precise, we introduce some additional notation and
terminology.

For z € R? define |z|=(2%_,z})'/?, where z; is the ith
component of z. Let L? be the Banach space of all
functions from [0, 7] into R? which are measurable and
essentially bounded with norm

2]l = ess sup|z(?)|.
t€[0,T]

Define A =L7 and X ={x: x€L2, x is absolutely
continuous on [0, T]}. By using x(¢)=x and u(f)=u, it is
possible to interpret (x,#)&ER"X R™ as (x,u)EX XU.
This notational convenience will be exploited without
further comment in what follows.

Next, consider some terminology concerning OPC and
OSS. The triple (x,u,7) is admissible if (x,u,7)€ %X X X
(0, 7] and x(), u(¢), 7 satisfy (2.2). The triple (x,%,7) solves
OPC if (x,u,7) minimizes J(x,u,7) over the class of admis-
sible triples. The pair (x,u) is steady-state admissible if
(x,y) ER"XR™ and x,u satisfy (2.4). The pair (x,u)
solves OSS if (x,u) minimizes J (x,u) over the class of
steady-state admissible pairs. Assume OSS has a solution,
say (x,4#). OPC is proper if for some admissible triple
(x,u,7), J(x,u,7)<J (%,1). Because (X,#,7) is an admissi-
ble triple for all F€(0,7] it is known that there exists an
admissible triple (x,u,7)=(%,4,7) such that J(x,u,7)=
J.(%,%). Thus, if OPC is not proper (x,#,7) solves OPC.
Our subsequent theory centers on “local optimality” in
OPC and OSS. This prompts the following definitions.

Definition 2.1: The pair (X,u) is a local minimum of
0SS if: i) (x,%) is steady-state admissible and ii) there
exists an €¢>0 such that for all steady-state admissible
pairs (x,u) satisfying |x —Xx|+|u—#| <e, it follows that
J(x,w)>J (x,i). If in i), J(x,u)=J(X,u) only for
(x,u)=(x,u), (x,u) is an isolated local mmimum of OSS. -

Definition 2.2: The pair (x,u) is a local steady-state
minimum of OPC if: i) (x, %) is steady-state admissible and
ii) there exists an € >0 such that for all admissible triples
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(x,u,7) satisfying ||x —X||, + ||u— ||, <e, it follows that
J(x,u,t) 2 I (X,u). If in i), J(x,u,7)=J(X,u) only for
(x,u)=(x,%), (x,u) is an isolated local steady-state mini-
mum of OPC,

Definition 2.3: OPC is locally proper at (x,ir) if: i)
(x, ) is a local minimum of OSS and ii) for all € >0 there
exists an admissible triple (x,,7) such that | x—X]| ,+]||u
— )], <e and J(x,u, 1) <J (X, ).

Remark 2.4: If (x,u) is a local steady-state minimum of
OPC, then (x,u) is a local minimum of OSS.

Remark 2.5: If (x,#) solves OSS and OPC is locally
proper at (x,#), then OPC is proper. Thus, if OSS can be
solved, a test for locally proper becomes a test for proper.

Remark 2.6: Definition 2.3 differs from the one given
in [2] in that (X,#) does not necessarily solve OSS. Defini-
tion 2.3 is consistent with the emphasis on local optimality
and, because of the preceding remark, represents no loss
in the practical application of the theory.

Remark 2.7: The pair (x,u#) is a local steady-state
minimum of OPC if and onmly if: i) (X,%) is a local
minimum of OSS and ii) OPC is not locally proper at
(x,4). This equivalence is important because it shows that
necessary (sufficient) conditions for OPC to be locally
proper at (x,u) are related to sufficient (necessary) condi-
tions for (x,i) being a local steady-state minimum of
OPC.

III. ConpiTIONS FOR OPTIMALITY IN OSS

Since OSS is a finite dimensional minimization problem
with equality and inequality constraints, necessary and
sufficient conditions for (local) minimality can be ob-
tained by applying known results such as those found in
[5], [14]. The details involve notational issues only and are
therefore omitted from what follows.

The conditions are stated most conveniently in terms of
a function H, which also appears in the theorems of the
following sections. For AER”, pER’, a € R¥*/*! define
H: R*XR™"XR'XR"XR'XR¥**15R by

H(x,u,y,\,p.a)=a'g(y) + Nf(x,u) + p'(y — f(x,u))
G.1)

where the prime denotes transpose and g(y)=
(8- --.&(»)). Partial derivatives are indicated by
subscripts, e.g.,

Hx(x’ u’y’A’ [ a) =}\’f;(x, u) - }L'f;‘(x, u) (32)
where f, and f, are the Jacobian matrices of f and f with
respect to x. Similarly, H,, is the Hessian matrix of H
with respect to x. When the various functions and_their
partial derivatives are evaluated at X,#,7=f(X,i),Aji,&
they will be denoted by an overbar. For instance, H=
H(x,u,7,\, s, &).

Theorem 3.1: Let (x,i) be a local minimum of OSS.
Then there exist A€ R”, LE R, a=(a_;" -, &) E R/T¥*!
such that the following conditions hold:
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B,H,7,=0
a, >0, j=—j,-+,0
Eigi-__o’ i=_j’”"—l
(A ma)#0 (3.3)

From 17),=0 it is seen that g= —ga. Thus, g can be
eliminated from the statement of the theorem (and many
of the following theorems). To circumvent notational
complexity, it is convenient to avoid the elimination.
Usually, but not always, a,>0. This can be assured by
introducing a constraint qualification [5], [14]. If &,>0, it
can be assumed without loss of generality that a,=1.

Theorem 3.1 gives the “first-order” necessary conditions
[14, Theorem 1]. To introduce the “second-order” neces-
sary conditions [14, Theorem 4], some additional notation
is required:

A=f, B=f, C=f, D=§,
gily
M(I)= (3.4)

&y

Here, I is an index set {7,,i,,- - -,i}, where for definite-
ness, | <i,<:-- <i.

Theorem 3.2: Let (X,u#) be a local minimum of OSS
and suppose OSS satisfies first- and second-order con-
straint qualifications [14] at (X,#). Then (3.3) holds for
some X,E,&' with ap=1. Moreover, for all xER", uER™,
» € R! which satisfy

Ax+ Bu=0,
Ex+5u=y,
M(f)y =0,
M({I-1y<0 (3.5)
where
I={i:i<0,g=0}u{l, - ,k} (3.6)
and
I={i:i<0,&>0}u{l,---,k}, (3.7
it follows that
X' H x+2x'H u+u H,u +y'H, y>0. (3.8)

Finally, sufficient conditions for a local minimum of
OSS are obtained from [14, Theorem 6].

Theorem 3.3: Let (x,u) be a steady-state admissible
pair and suppose that (3.3) holds for (\,ji,@) ER" X R™ X
RI*TE*D with &y=1. If

X Hox+2x'Hou+uw H,u+y H,y>0  (3.9)
for all nonzero (x,u,y) which satisfy (3.5), then (X, #) is an
isolated local minimum of OSS.
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The conditions in this theorem are a strengthening of
the conditions in Theorem 3.2 in that (3.9) is a strict
inequality.

Remark 3.4: There are a number of ways in which the
constraint qualifications mentioned in Theorem 3.2 can be
assured. The most common condition involves linear inde-
pendence of the gradients of the “active” constraint func-
tions. See [5, Corollary 3, Section 2.1 and Theorem 3,
Section 2.2]. In the present context this condition is satis-
fied if and only if

rank[A__ B _|=n+s

B (3.10)
MC MD

where M=M(I) and s=number of elements in /=
number of “active” constraints on y.

IV. THE NorMALITY CONDITION

Before stating the theorems which have to do with OPC
being locally proper at (¥, i), we need to discuss a normal-
ity condition. This is not surprising in view of Remark 2.7.
Normality conditions appear in the development of sec-
ond-order necessary conditions in the classical calculus of
variations.

Let (X, #) be a steady-state admissible pair. We say OPC
satisfies a full rank condition at (X,#) and 7 if

A_T_In E
| ()

where I, = nXn identity matrix, and the remaining nota-
tion is given in Remark 3.4. It is clear that (4.1) is a
controllability condition. Appendix A shows that it
guarantees the existence of a one-parameter family of
solutions of (2.2): x(t,€),u(2,¢€),y(e). This family can be
chosen so that x(z,0)=Xx, u(t,0)=#, y(0)=f(% @) and
x(1,0)=%(2), u(2,0)=14(¢), y(0)=y where %,4,y are a
solution of a linearized version of (2.2). Specifically,

gr<0, i€l i<,

gy=0, i€l i>0,
L1 =
y= 'r./(; (C%(0)+ Dii(a))do,

=A%)+ Ba(t), x(0)=%(r). 4.2)

Let the (n+ 5) X (n+ nm) matrix in (4.1) be denoted by
(7). The rank condition is satisfied if and only if the
rows of ¥(7) are linearly independent. This holds if and
only if the Gramian matrix ¥(7)¥’'(r) is nonsingular, i.e.,
Y(7)=det ¥(7)¥'(7)50. Because J(7) is analytic there are

iB
(HE f "e%do) MD MC
0
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two possibilities: i) Y(7)=0 on [0, T] and ii) Y(7)=0 for a
finite number of values of t in [0,7]. Thus, if the rank
condition is satisfied for some t in [0, T, it is satisfied for
all but a finite number of values of r in [0,7]. This
motivates the following.

Definition 4.1: Let (x,u) be a steady-state admissible
pair. OPC is normal at (X,#) if the rank condition (4.1) is
satisfied for some r€[0, T).

Remark 4.2: Suppose OPC is normal at (X,#). Then
the rank condition is satisfied for all but a finite number
of values of 7 in [0, T].

It turns out that normality is equivalent to the con-
straint qualification condition mentioned in Remark 3.4.
Thus it is easily verified by a simple algebraic test.

Theorem 4.3: OPC is normal at (X,#) if and only if
(3.10) is satisfied. _ o

Proof: In (4.1) replace e?"—1I, with A fje?°do and
note that det [ {,e“"daa&o for r >0,  sufficiently small. For
this value of 7 the span of the first n columns of the
matrix in (4.1) contains the span of the last (n—1)m
columns, Thus, (4.1) reduces to

Xf;e”_“ do B

rank| "~ . _ __|=n+s (4.3)
MC [ e®ds MD
o
which is equivalent to (3.10).
A™'B
— e . |=n+s 4.1
MCA" B

V. THE CONDITION FOR LOCALLY PROPER

Before stating the main theorem we need some further
notation. Let £2(4) be the set of nonnegative real numbers
such that w €Q(A) if and only if jw is an eigenvalue of 4.
Define

G(s)=(s1,-4)"'B (5.1)

and for w> 0, w @A) let

7(w)=G'(—jw)H,,G(jw)+ H,,G(jw)
+G'(~jw)H _ +H,. (52)

Clearly, m(w) is a complex-valued m X m matrix which is
Hermitian and depends on X,i,7,A, i, & Let € be the set
of complex numbers and * denote complex conjugate
transpose.

Theorem 5.1: Assume (X,#) is a local minimum of OSS
and OPC is normal at (x,#). Then (3.3) is satisfied with
&,=1 and for &,=1, A, i, & and =(w) are unique. Further,
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suppose there exists 7€ C™ and w> 27/ T, w&Q(A) such
that

n*m(w)n <0. (5.3)
Then OPC is locally proper at (X, ).

When Theorem 5.1 is specialized to the problem consid-
ered in [2], it corresponds to the first part of [2, Theorem
1]. Apart from notation, it differs in three fundamental
respects: it guarantees the existence of a,=1 and the
uniqueness of 7(w), it places no restriction on 2(4) (in [2],
Q(A) is empty), and it requires the normality condition. It
will be seen in Section VII that [2, Theorem 1] may fail
because it does not include a normality condition. For-
tunately, the normality condition is satisfied in many
problems, including most which have been treated in the

literature. One case of practical interest is k=;j=0 and 4

nonsingular, Then OPC automatically satisfies the nor-
mality condition. A special version of this case was
treated correctly in [9].

As indicated in Remark 2.7 the conditions in Theorems
3.2 and 5.1 can be viewed as necessary conditions for
optimality. In particular, they yield the following,

Theorem 5.2: Assume (x,u) is a local steady-state
minimum of OPC and that OPC is normal at (x,#). Then
there exist AER", gER’, a€R/***! with @,=1 such
that: i) (3.3) is satisfied, ii) (3.8) holds for all x,u,y which
satisfy (3.5), and iii)

forallneC™, w> 2—77, w@&Q(A4).

*
n*a(w)n>0 T
(54)

Conditions i) and ii) follow from Theorems 3.2 and 4.3
and Remark 3.4. Condition iii), which follows from Theo-
rem 5.1, is analogous to the Jacobi condition in calculus
of vanat:lons Because of lim,_,_ w(w)=H,, and condition
iii), n* H,,,m > 0. This is the “Legendre condmon »

The idea behind the proof of Theorem 5.1 is simple.
Using the normality condition, a one-parameter family of
the type described in Section IV is generated, where in
(4.2) it is assumed that 4(¢)=Rene’’. Then J(x,u,7)=
J(€) is evaluated in terms of H and J(€) <J (¢>0, small) if
the conditions of the theorems are satisfied. Because of
Remark 4.2 and the continuity of 7(w), w@QA), it is
possible to avoid special conditions having to do with
values for which (4.1) fails. The first variation (J(0)) is
zero and J(e) <J is obtained from the second variation
(/. (). For the details see Appendix A.

Since Theorem 3.2 involves steady-state variations, it
might be conjectured that it could be stated in terms of
7(0). This is true if A is nonsingular. Then the condition
corresponding to (3.8) can be restated as follows:

u[7(0)+(CG(0)+ DY H,(CGO)+D)]|u>0 (38)

holds for all € R™ such that
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M(D)(CG(0)+D )u=0,

M(I-1)(CG(0)+D)u<o. 3.5y

Even for 17»,=0 (this happens for the problem statement
in [2] where g(y) is affine) the presence of (3.5) com-
plicates the issue of relating (3.8)" to (5.4). For example,
suppose (3.8) is satisfied for all u€ R™ satisfying (3.5)
but w'7(0)u<0 for some #€ R™ which does not satisfy
(3.5). Then (5.3) will hold if T is sufficiently large (4
nonsingular implies #(w) is continuous at w=0). Thus,
very low frequency forcing can improve performance.
This is the content of [2, Remark 1].

V1. LocAaL STEADY-STATE OpTiMALITY IN OPC

If the conditions in Theorem 5.2 are suitably
strengthened, they become sufficient for (x,i) to be a
local steady-state minimum of QPC. This requires much
weaker hypotheses than a strengthening based on first-
order necessary conditions. See, for example, [8].

Theorem 6.1: Let (X,u) be a steady-state admissible
pair and suppose the following conditions are satisfied: i)
A is nonsingular (0 EQ(A)), i) wEQ(A) for all w>27/T,
iii) there exist MR B, with ag=1 such that (3.3) holds, iv)
for I and I defined by (3.6) and (3.7),

u’[w(0)+(EG(0)+D)’HW(CG(O)+5)]u>O (6.1)
is satisfied for all # € R™ such that #70 and
Jl7(f)(5G(0)+D—)u=O,
M(I-1)(CG0)+D)u<o, (6.2)
and v) there exists y >0 such that
n*7(w)n >vn*n forallnel™, w> 27'” . (6.3)

Then (X,#) is an isolated local steady-state minimum of
OPC.

The proof of this theorem appears in Appendix B. The
general idea is to assume that there exists a sequence of
admissible triples {(x;,#;,7)} with (x;,%,)7(X,#) and || x,—
X|loo* ll#;— #t]| o—>0 such that J(x,u,7)<J, (X,#) and
show that this leads to a contradiction. It is necessary to
consider a subsequence which is directionally convergent
in a certain sense. The arguments are similar to those used
in [5], but more complex because of the function space
setting (see [12] indirect sufficiency proofs). It is also
possible to derive a sufficiency theorem without i) and ii)
but then the conditions are not so simply stated and the
proof is more difficult. An entirely different approach to
the proof of the theorem exploits a Riccati equation. This
path has been followed in [3] for the case of no constraints
on y(j=k=0). Its use here seems to offer no advantages.

Since by Theorem 3.3, conditions i), iii), and iv) imply
(X,u) is a local steady-state minimum of OSS, it is of
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interest to ask if iv) can be replaced by the hypothesis that
(x,u) is a local minimum of OSS. It seems that the answer
is no, although an example which illustrates the need for
iv) has not been found.

Remark 6.2: Because G(jw)—0 as w— o0, condition v)
implies H,, >0. This corresponds to the strengthened
Legendre condltlon in the calculus of variations. Using
the properties of G(jw), it is easy to show that the uniform
bound (6.3) may be replaced by H,_,>0 and

n*7(w)n>0, for allne ™, 0, w>— (6.4)

Remark 6.3: For H,>0, H =0 (true if g(y) is affine),
and Q(A4) empty, hypotheses 1v) and v) may be replaced
by the (stronger) hypothesis:

"*7(w)n>0, forallnel™, n#0, w>0. (6.5)
This follows from (5.2), the continuity of G(s) at s=0
when A4 is nonsingular, and Remark 6.2.

Using this Remark, together with Remark 2.7, proves
the following.

__Corollary 6.4: Assume OPC is locally proper at (x,u),
H >0, H,, =0, Q(A) is empty, and (3.3) is satisfied for
A,;L,a wuh &, = 1. Then there exist nEC™, n%0, and w>0
such that

1*m{(w)n <0 (6.6)

This corollary is equivalent to [2, Theorem 1, part 2]
except there the condition H,, >0 is omitted. An example
(see the next section) shows that the conclusion (6.6) may
be false if H,,>0 does not hold.

VII. ExAMPLES

The first example illustrates that Theorem 5.1 fails if the
normality assumption is omitted. The problem data are:
Jj=0 (no inequality constraints on y) k=1, n=1, m=1,
1=2, gy(¥)=y1, 81(¥)=yy fx,u)=1*+xu—4, fi(x,u)=
2x+4u, fz(x, u)=(u—2)’, T=any positive number. The
only steady-state admissible pair is ¥x=0, #=2. Thus,
(x,1) is both a minimum and local minimum of OSS. By
Theorem 3.1 conditions (3.3) must be satisfied. In fact,
a=1, p;=—1, a;= — i, A= —1, where «, is arbitrary, is
a solution. This gives

7(w)=16(w?+4) "'~ 2+24&,. (7.1)
Since MC =MD =0 the rank condition (3.10) is not satis-
fied. Thus, OPC is not normal at (X,#). This accounts for
the fact that #(w) is not uniquely determined. For &, =0 it
follows that n*w(w)n <0 when 1+#0, 0w>2, w>27/T.
However, OPC is not locally proper at (X,#). This is clear
because (2.2) implies #(£)=2 and x(¥)=0.

The second example shows that (6.3) cannot be re-
placed by (6.4) unless H, >0 (see Remark 6.2). Let j=k
=( (no constraints ony) n=1, m— LI=1,T=1, go(y)=
¥, J(x, )= — x+ u, f(x,u) =2ux — x*— G(u — x) where
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G(n)=0,
=pn’, (72)

It is easy to see the pair (x, ) is steady-state admissible if
and only if x=#. Substituting this into J, =y =f shows
OSS has a unique local minimum at X= =0 and J_(0,0)
=0. Conditions (3.3) hold at @a=1, g=—1, A=0. More-
over, H,,=0 and

<0
n2>0.

m(w)=2(1+w?)"'>0, >0 (7.3)

Now let
27

u(t)=gsinwt, T=— (7.4)

A simple calculation shows (2.2) has a unique solution
and

u(t)—x(1)=w(?)

= gw(1 +w?) ~ Y(wsinwr +coswt).  (7.5)
This gives
n-1_17¢7
J(xur)=g(1+wd) ' — = [ G(w(t))dt
TJ0
=g’ (1+0®) '~ 1pg*w’ V1+w? (7.6)
where » is a positive constant. Setting
1'—2——27rq1/2(l—q)'1/2 p=%, (7.7
gives (for all ¢ >0)
3
J(xur)=-g(2V1-¢ —1). (7.8)

Since J(x,u,7)<0 and ||x—X||+ |l —#],=g(1+ q'/?,
it is clear that (X,#) is not a local steady-state minimum of
OPC.

VIII. CoONCLUSIONS

A variety of second-order conditions for optimality in
OSS and OPC have been presented and their interrela-
tionship has been examined. The « test of Bittanti,
Fronza, and Guardabassi [2] has been extended to a more
general class of periodic control problems and the impor-
tance of normality in tests for proper and the
strengthened Legendre condition in tests for not proper
has been stressed. Although the applicability of the « test
is more restricted than indicated in [2], the additional
requirements (3.10) or H,,>0) are easily evaluated.

Just before going to press the authors became aware of
[15]. This reference treats the original problem of [3] and
under a different normality condition, which is both
stronger and more difficult to verify than Definition 4.1,
proves that the « test is a condition for proper. Under the
normality condition it also gives a sequence condition
which implies 7(w) is not positive definite for all w>0.
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From the last example in Section VII it can be seen that
the sequence condition is stronger than “proper.”

APPENDIX A
PROOFS OF NECESSARY CONDITIONS

We begin by verifying some simple lemmas.

Lemma A.1: Let V be a Banach space and consider Q:
91— R? where 9N is a neighborhood of € V. Assume
i) Q(9)=0, ii) Q has a Frechet derivative Q'(¥): V—R? at
o, iii) for vy, -, 0, EV the function g determined by

g+1
g(ﬁl" °c ’Bq+l)= Q( 21 Biui"'i;) (A'l)
is C? in a neighborhood of (Bys** +sB,+1)=0, and iv)
Range Q!(p)=R? Let h&R?. Then there exists ¢,>0
and v: (— €y €)— V such that v(0)=15, v is C? and

O(v(e)) +eh=0, le] <& (A2)
Furthermore, if 4 € V satisfies
QY D)6+h=0, (A3)
then v(€) can be chosen so that
® = (A4)
Proof: By assumption there exist v, - -,0, EV such

that {Q'(¥)v,}9, is a linearly independent set. Consider
A B+ Bpe)=8(B - .Bpe)+eh for arbitrary v, E
V. Clearly, f is C? and the Jacobian of f with respect to
By ,B, at (By,- -+, B,,€)=0, which has rows (Q'(D)v)),
is nonsingular. Thus, the implicit function theorem, [4, p.
202], guarantees the existence of ¢,>0 and C? func-
tions B¢ (—e€pe€)—>R such that B(0)=0 and
A By, - ’ﬂq(€)9€)50' Setting

q
v(e)=0+ 2} Be)v,tev, (A.5)

gives (A.2). Next, take the derivative of (A.2) with respect
to € at €=0 and substitute dy/de(0) as obtained from
(A.5). Choosing v, ;=0 and using (A.3) shows

dp;
de

This proves (A.4).
Define Q: R*"X L7—R**" in the following way: Q(v)
=p where v=(§,u) and the components of » are given by

(0)=0, i=1,---,q.

1&'_‘-7‘1'(7)_)9'(0)’ j=1,--.n
lf1+n=g,l(y)9 j=1,"',s- (A6)
Here x(7) is determined by the solution of
HO)=fx(0),u(r)), x(0)=§ (A7)

{i 55, }=1, and
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y= % fo "Foe(), u(D)) . (A8)

Lemma A.2: Let X()=X, u(t)=u where XER" and
#ER™ satisfy f(x,u)=0. Then for o=(x,%), Q satisfies

conditions (2) and (3) of Lemma A.1. Moreover, QY (v) is
characterized by Q '(0)(§,#)=# where

£(r)— %(0
ﬁ=[ ()m()} (A9)
and £(?), y are defined by
#H)=A%()+Bu(), *(0)=¢, (A.10)
y= % fo "(C#(2)+ Da(s))dt. (A.11)

Proof: Following arguments almost identical to those
in [6], it can be seen that Q and its first variation are
defined in a neighborhood of ©. Also, the first variation at
© is characterized by (A.9)-(A.11). Since it is linear and
bounded, it is the Frechet derivative of Q. Condition (3)
follows from the assumptions of f and f (they are C?) and
the resulting differentiability of solutions of differential
equations with respect to parameters.

Lemma A.3: If (4.1) is satisfied, Range Q!(#7)=R"™".

Proof: Using the variation of parameters formula, it
follows from (A.9)-(A.11) that

(-1)

P=| __ . = |E+y*(s A.12
MCf o gy y*(7) ( )
i
where y*(7) is given by
() =A*x*(1)+ B*i(1), x*(0)=0
yH(H)= C*x*(2) (A.13)
where x*(f)ER"*! and
A*= 14_ _ 0 , B*= E 1, C*:[In g].
~C 0 7D 0 M
(A.14)

From the theory of linear systems, y*(r) can be generated
by 4 if and only if

y*(r)ERange C*[ B* A*B* --
=Range C*[ B* A*B* --

. (A*)n+l—1 B*]
. (A*)"_l B*].
(A.15)

The equality of the ranges follows because rank 4* <n.
Using (A.14) in (A.15) it is seen that (A.12) has a solution
for all € R"** if (4.1) holds.

From the lemmas it is clear that (4.1) implies the
existence of ;>0 and u(z,¢€), x(¢,€), y(€) such that

X(t,e)=f(x(t,€),u(t,€)),  x(7,€)=x(0,¢€),

(A.16)
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y(e)= %fo(x(t,e), u(t,e)dr, (A1)

0
g((e)=0 i€l i>0, (A.18)
g(r())+eh,=0, i€l i<0 (A.19)

are satisfied for all €, |¢|<e¢, where the #,ER may be
chosen arbitrarily. Hereafter, assume #,> 0 for i€/, i<0,
and € >0. Then (A.19) can be replaced by

&(r(€) <0, (A20)

Finally, from Lemmas A.l and A.2 it follows that u(t,¢),
x(t,¢€), y(e) may be chosen so that u (¢,0)=4(¢), x(7,0)=
(1), y(0)=y where (1), %(?), y satisfy (4.2).

Now consider the proof of Theorem 5.1. Because of
Theorem 4.3, OSS satisfies the linear independence condi-
tion of Remark 3.4. Thus, by Theorem 3.2, ay=1 is
possible. For this choice of aj, it is easily verified from
H,, H,H, =0and (3.10) that A, fi, & are unique. Thus, H,,,
H,, H, H,, and m(w) are unique.

Now let u(z,€), x(1,€), ¥(¢€) satisfy (A.16)—(A.19) where
in (A.19) £,=0, i<0, i€ 1. Thus, equality holds in (A.20)
for i<0, i€ . Since OPC is normal at (%,#), it can be
assumed without loss of generality that (4.1) holds at
r=27/w. If (4.1} does not hold at r=27/w, the continu-
ity of 7 at w and Remark 4.2 guarantee the existence of &
close to w such that (5.3) is satisfied with w replaced by &,
(4.1) is satisfied at 1=27/&, and & &8(4). Now, choose
u,(¢,0)= 4(¢), x.(¢,0)= %(¢), and y (0)=y where

i€l, i<0.

#(¢) =2 Rene’™,
#(f) =2Re(jl — A) ' Bne,
y=0 (A21)

is a solution of (4.2) with the added proviso that g,,¥=0
foralliel.

Since &= 1, g(y(€))=g(7) =0, i€l and &=0, i€/ —
I, it follows that

go(¥(€))—go(7)= H(x(t’ €),u(t, E),y(E),X, T8 a)
— H(%,#,7,\,5,a)
—Nf(x(t,€),1u(1,€))

— Z(y(e) = fx(t,€), u(1,€))).
(A22)

Integrating both sides of (A.22) from 0 to r, dividing by =
and using (A.16) and (A.17) gives

8o —8P)= 7 [ H(x(.) (1. )y K1)
- H(%,a.7,\ pa)d: (A23)

which because of (3.3) and the C? differentiability implies
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2 1 — —
87 = gu(7)= 5 [ £ Hok())+25() H, ()
+4(¢) H,, 4(t) dt + o(€?)
= eZn*m(w)n + o(€2).

By taking € >0 sufficiently small, it follows from (5.3) that
OPC is locally proper at (X, 4).

(A.24)

APPENDIX B
ProOF OF THEOREM 6.1

We begin by stating and proving a series of lemmas.
Consider

#()=Ax()+f1), aa. t€[0,7], x(0)=x(r)

(B.1)

where x(#),f(1)€ L2[0,7], 7>0 and A4 is a constant nXn
matrix. 3

Lemma B.I: If the matrix I, —e*!" is nonsingular, (B.1)
has a unique solution which is given by

x(1)= j; "G(1,0)f(e) do (B.2)

where

G(t,a)=e“—'(1"—e‘z’)_le_’?", 0<o<y,

=ez’(1"—e1’)~le‘?’e‘z", t<o <.
Proof: Express the solution of (B.1) in terms of x(0)
and f(z) by means of the variation of parameters formula.
Set x(1)=x(0) and solve for x(0).
Our principle concern is the system

#HO)=fe(Du(®),  aa.r€[0,r], x(0)=x(r)

(B3)

where the assumptions and notations of Sections II and
III apply. Here, x€R"” and # € R™ are assumed only to
satisfy f(xX,#)=0. Let z(¢)=x(?)— X, 8u(f)=u(?)—u. The
solution of (B.3) is equivalent to the solution of

Hey=fz()+ % ou(r)+7),  aat€[0r],

z(0)=2z(r). (B4)

Because ¢ €[0,7] instead of [0, 7], we work with LZ[0,7]
and L7 [0,7]. Thus, ||7||,, =esssup,co 4»(#)|- The L{[0,7],
L0,7], LF[0,7], L7[0,7] norms are defined in the usual
way: ||vll,=fel»(Dldr, [I7ll,= (5In(0 a2 For brevity
the dependence of the norms on m, n and 7 is not
explicitly designated. Since 0<r<7T it follows from the
familiar relationships of norms that

el < VT vl (B.5)
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121, < VT [|7]l- (B.6)

We now consider the existence of z and bounds for || z}|..

Lemma B.2: Assume I,—e”" is nonsingular. Then
there exist K;>0 and €>0 such that for all suEL,
|6u||, <€, the system (B.4) has a unique solution z€% C
L2 which satisfies

”z"oo<K1”8u”oo' (B‘7)

Proof: Equation (B.4) can be written

i=Az+ Bou+T(z,6u), z(0)=z(r) (B.8)

where T' is C? and T'(0,0)=0, T (0,0)=0, T',(0,0)=0. By
applying Lemma B.1 it follows that z is characterized by

z(t)= j:G(t, o)[ Béu(o) +I‘(z(o),u(o))] de (B.9)

which has the form
z=L£(8u)+ %(z,6u) (B.10)

where £:L7—L” is bounded and linear and % :L] X
L2 L%, Using the properties of I it is easy to see that
there exists an €, >0 such that ||8u]| , <e;, |||, <€; imply

Ilg(zx,ﬁu)ll< lzilf+ 5

Liul (B11)

AL (B.12)

1 (21,80) = Tz, B0)]| < 5 24—
Choose K,>1 so that ]|B(8u)||w<K2||8u||w and impose
the further requirement that ||du||, <e=3 K2 ',. Then for
fixed 8u, E(8u)+ F(z,,0u) is a contraction in z for all
z€{z:||z|l, <€ }. Moreover, for fixed z, £(8u)+ %(z,0u)
is continuous in 8u. Thus, by [11, Theorem 3.2, p. 7],
(B.10) has a unique solution. From (B.9) it may be de-
duced that z is absolutely continuous. From (B.10) and
the above bounds,

= 1 1
2]l <KRlI8ull oo + 5 N Oullo + 5 12l (B-13)
which proves (B.7).
Lemma B.3: If € in Lemma B.2 is chosen sufficiently

small, there exists K,>0 such that
2]l <Kl10u],- (B.14)

Proof: Let a f a, a€R", denote the vector whose
ith component is o'f, (%, #)a. Similarly, define o'f_B,
B’ f B where 8 € R™. Then, because of the properties of
T,

()= fo ’G(:,o)[Eau(o)+ %z(o)’f;xz(o)
+ 2(o) ., u(a) + % su(a) f., 8u(c)

+ F(z(o), au(a))] do (B.15)
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where there exists €, >0 such that |z|+|«| <e, implies

|F(z,u)| < |z +|ul. (B.16)
Thus, there are 12',,122 such that
2@)I< [ (Rilou(o)|+ Rfz(@)do  (B17)

where, because of (B.7), K2 can be made arbitrarily small
by the choice of €. For K,7<1/2, it follows that

2|l oo < Kyl 82l + (B.18)

5 Izl
which yields (B.14).

By Lemma B.1, the “linearized equation” correspond-
ing to (B.3),

8% =Ab6x+ Bdu, 68x(0)=2dx(r), (B.19)

has a unique solution 8x € L} for all due L. Define

w=x—X—08x=z—208x (B.20)
where w is the “error” produced by using the linearized
equation.

Lemma B.4: 1f 1, — ™" is nonsingular there exist K, >0
and € >0 such that for ||8u|| . <€

Wl < K31 8413 (B.21)
Proof: From (B.3) and (B.19) we have
w=f(X+ 8x+ w,u + du)
—f(%,i#)—A8x— Béu
=Aw+ —;—(Sx +w)f (8x+w)
+(8x+w)f, du+ % du'f, ou
+ F(8x + w,8u), w(0)=w(7) (B.22)

where F has the property (B.16). Applying Lemma B.1 to
(B.22) with z =4x+ w gives

w()= [ 6(1,0)( 5 20 fuur(0) + 20 Bu(0)

+ % su(a) ., bu(o)+ F(z(a),Su(o))) do. (B23)

By Lemma B.2, € may be selected so that |z(#)| +|8u(s)| <
&, Thus, Lemma B.3 shows there are K and X, such that
11l < K182l + K| 8] (B.24)

Bound (B.21) follows from (B.5).
Clearly, it is possible to write
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1
y=- fo f(x(0), u(o)) do
- % fo A(Z+8x(0)+ w(o), i+ 8u(0)) do
byt (B.25)
where
&y = -’l;fr(58x+D_8u)da,
0
W= lf Cwdo+ — ! fT(‘l‘Z'J% z+z'j; du
T o\2 ¥ B
+ % 6u’f:w Su+ F(Z,Su)) do (B.26)

and there exists an €; >0 such that |z|+|8u| <e, implies F
satisfies a condition of the form (B.16). This is sufficient
to show there exists K, >0 such that

W] < Kyl 8ul13, 1 82| <€ (B.27)

where € >0 is sufficiently small.
Let AJ be defined by

AT = % [ H(x(@),u(0).y, R, )
0

— H(%,@,7,),,&)ds  (B.28)

where (3.1) and (3.3) apply. Using x(¢)= X+ 8x(£)+ w(?)
and u(#)=u+du(r)

AJ=8%Y+R (B.29)
where
1 rToxY H H S
25 X xx xu X
& 27-.];[811] H 7 [Bu]do

1. ,=
+ 3 &'H, 38 (B.30)

and R can be made small in the following sense.
Lemma B.5: Assume I,—e® is nonsingular. Given
any n >0 there exists ¢ >0 such that
|R| <alloul} (B31)

for all 8u e L7, such that ||6u||, <e.
Proof: From (B.28) and (3.3)

R\——l-fﬁr(b‘x’ﬁ w+-1—w’l7 w+8uw' H w)do
- o xx 2 xx x
+8y’ﬁwﬁ+%ﬁz’§yyﬁ

+/ "R(z,6u,8 +W)do (B.33)
0

where for all 7> 0 there exists an €> 0 such that |z|+|u|+
|y| <€ implies |R(z,u.p)| <@i(|zf+|«*+|y[). By (B.2),
(B.19), (B.26), and (B.6) there exists K,>0 such that
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(18| oo |8V} < Koll8ul|, <K VT ||Bull.  (B.34)

From (B.5), (B.6), (B.27), and (B.34) there exists K, such
that

|8y + W| < K| 8ull, <R VT |8, (B.35)

Thus, it is possible to pick € so that |z(£)| + |u(2)| + |8y + W]
<¢ for all #€[0,7]. Using (B.27), (B.33), (B.34), and (B.35)
it follows that there are K, K, Kg, Ky such that

| R| < K| 8ol o | 0213+ K| 8113

+7( Kqll 8ull? + Rl 6ul3).  (B.36)

From (B.5) and (B.6)

|R| < (Ryl|82t]| o, + B, T10u]] o + TR T+ 7R, 6u] 2
(B.37)

and the method for choosing € so that (B.31) holds is
clear.

Note that i) and ii) of the theorem statement imply
I,—e”" is nonsingular for all 7 €(0, T]. From this and the
proofs of the lemmas it can be seen that the determination
of X, K,, K, and the choice of ¢ in Lemma B.5 can be
made independently of 7.

We introduce a special notation for the average values
of du and 8x:

U=1 f Su(f)dr, X=1 [Tox(yar.  (B38)
T
Define
SU(ry=6u(r)— U, 8X(1)=6x(1)—X. (B39)
Then
[ "sU(1)dt =0, [ "8X (1) di = (B.40)
0 L1}

Because of this
fo |6u()Pdz = fo |URd+ fo "|SU(1)2dt > | UP
(B.41)
and
|U1< (7)™ 2| 8ul. (B.42)
Finally, from (B.19), (B.26) and the nonsingularity of 4
X=4"'BU,
dy=(—CA™'B+D)U.

(B.43)
(B.44)

Suppose the conclusion of Theorem 6.1 does not follow
from the hypotheses. Then there exists a sequence of
triples, {(x;,u;,7,)};=,, that satisfy (2.2),

11 = %lloo + 1|4, = dller > 0, (B.45)
Bm (|l = Elloo + 1= @l0)=0,  (BA6)
.€(0,T], (B.47)
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go(¥) —8o(7) <0. (B.48)

Here y; is given by y in (2.2) with x=x; and u=u,. We
complete the proof of the theorem by showing this must
lead to a contradiction. Subscripts i/ denote obvious
changes of previous notation when u=u,, x=x;, and r=1,.
Without loss of generality

re [% 7, T]. (B.49)
To see this let 1, be the integer satisfying T(n,+ 1)~ <1, <
Tn;~! where 7,€(0, T]. By replacing 7, with 7,=n,7; and u;
by its periodic extension #,%(fir,+ ) =u, 1), t€[0,1], fi=
0,---,n,— 1, we see y, is unchanged. Also note that ||du,||
>0. Otherwise, Lemma B.1 shows (B.45) is not satisfied.
This implies ||8u{l,>0 and by (B.42)

18wl | U < (n) ™2 <(T)”2V2 .  (B.SO0)
Thus, there is a subsequence of {};2; such that
18215 U~ T (B.51)

Hereafter, without introducing new notation, we limit our
attention to this subsequence.
From hypothesis iii) and (B.28)

go(r)—g(7)=0J;~ X Fg(»)

jer

(B.52)

where I*={j:j<0, &>0}. By Lemma B.5, ||6u,); 'AJ,—
0. Thus, (B.48), (B.44), and (B.51) imply

tim 0w~ 3 Gg(n)=- T 35,(7)
i—o0 jEI* jEI"
-(~CA7'B+D)U<0. (B.S53)

From g(y,)<0, JEI, j<0, it follows by an identical
argument that

JjEI, j<O.
(B.54)

Combining (B.53) and (B.54) and recalling that & >0,
JEI*, we see that

0>g,(7)(—-CA~'B+D)U,

g,(FN(—CA'B+D)U=0 (B.55)
for jerI*. From g(y)=0, j=1,---,k (B.55) holds for
JEL

All of this may be summarized by saying U= u satisfies
(6.2). Thus, by hypothesis iv), U=u satisfies (6.1).

Since a;g(y)<0 for jEI* it follows from (B.52),
(B.48), (B.29), and (B.31) that

821, +7||8u,))3< 0. (B.56)

Because }|8u,||,,—~0 Lemma B.5 implies (B.56) holds for
any n>0 provided i/ is sufficiently large. If (B.39) is
substituted into (B.30), X and dy are given by (B.43) and
(B.44), and (B.40) is observed,
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1 pu[ 68X, V| H., HI|[8X,
2y — i xx xu i
T | ]

+3UWU, (BST)

where
W=u(0)+(CG(0)+D ) H,(CG0)+D). (B58)
Since U, € L[0, 1]

2 gikej(brk/f,-)t

k=-o

8U(1)— =0 (B.59)

2

where £¥€C™ and the k=0 term is missing because of
(B.40). Furthermore, from (B.19) 8X, and 8U, satisfy

8X,=A8X,+ B8U, 8X,(0)=8X/(r). (B.60)

Using (B.59) and (B.60), 6X, can be expressed in a Fourier
series in terms of the £. By the L, convergence of these
series it follows that

1 o[ 8X, ]| H, H, 8X,]
2 ), su |l g 7 |lsul|”
- 3 ere et o)
k=—oo 7
k70

From (B.51) we can write

U,=||8u,]|,( T+ 0(i)) (B.62)
where
lim Q(i)=0. (B.63)

Using (B.62) and assumption v) of Theorem 6.1, (B.56)
implies
03> yp, + 18|30 WU+ U'WQ(i)

+ Q@Y WQ(i)+m) (B.64)
where

oo

o= 2

k=—co

1= 18U113. (B.65)

First suppose U+0. Then it is possible to choose € >0
such that (B.64) gives
0> 0" WU ||6u,|2 (B.66)
which by (6.1) is impossiblg.
Next consider the case U/=0. Then (B.64) becomes

2
0> Y||8Ui||2

(B.67)
Il 82113

+ Q) WQ(i)+n.

From (B.41) and (B.62) we have
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Haui”§= ”8U;“§+ 7| Uzlz

= (| 8U|[3+ 7118w 13| Q)% (B.68)
which for 7 sufficiently large gives
l|8 112 < 218U 3. (B.69)
Combining (B.67) and (B.69) yields
0> % + Q3 WO(i) +1 (B.70)

which for i sufficiently large gives yv/4 <0. Thus, (B.48) is
false and the theorem is proved.

(1
{21

131

[4]
{31

7
(8]

1%
{10

[11]
[12}

REFERENCES

J. E. Bailey, “Periodic operation of chemical reactors: A review,”
Chem. Eng. Commun., vol. 1, pp. 111-124, 1973,

S. Bittanti, G. Fronza, and G. Guardabassi, “Periodic control: A
frequency domain approach,” JEEE Trans. Automat. Contr., vol.
AC-18, pp. 33-38, 1973.

S. Bittanti, A. Locatelli, and C. Maffezzoni, “Second-variation
methods in periodic optimization,” J. Opt. Theory Appl., vol. 14,
pp. 31-49, 1974.

C. H. Edwards, Advanced Calculus of Several Variables. New
York: Academic, 1973.

A. Fiacco and G. McCormick, Nonlinear Programming. New
York: Wiley, 1968.

E. G. Gilbert, “Functional expansions for the response of nonlin-
ear differential systems,” IEEE Trans. Automat. Contr., vol. AC-
22, pp. 909-921, 1977.

——, “Optimal periodic contfrol: A general theory of necessary
conditions,” SIAM J. Contr. Opt., vol. 15, pp. 717-746, 1977.
——, “Optimal periodic control: A solution set theory of neces-
sary and sufficient conditions,” Preprint, IFAC, 7th Triennial
World Congr., Helsinki, 1978.

G. Guardabassi, “Optimal steady state versus periodic control,”
Richerche Di Automatica, vol. 2, pp. 240-252, 1971.

G. Guardabassi, A. Locatelli, and S. Rinaldi, “Status of periodic
optimization of dynamical systems,” J. Opt. Theory. Appl., vol. 12,
pp. 1-20, 1974,

J. K. Hale, Ordinary Differential Equations. New York: Wiley,
1969.

M. R. Hestenes, Calculus of Variations and Optimal Control The-
ory. New York: Wiley, 1966.

(13]
[14]
{15]

R. Marzollo, Periodic Optimization, vols. 1, 2. New York:

Springer-Verlag, 1972.

G. P. McCormick, “Optimality criteria in nonlinear program-

ming,” in SIAM-AMS Proc., vol. 9, 1976, pp. 27-38.

S. K. Ng and W. L. Chan, “Normality and proper performance

izmprg\zrgmen;gin periodic control,” J. Opt. Theory Appl., vol. 29, pp.
15-229, 1979.

Dennis S. Bernstein was born in Springfield,
MA, on December 3, 1954. He received the B.S.
degree in applied mathematics from Brown Uni-
versity, Providence, RI, in 1977, and the M.S.
degree in computer, information, and control
engineering from the University of Michigan,
Ann Arbor, in 1979,

He is currently working toward the Ph.D.
degree at the University of Michigan. Since 1978
he has been a Research Engineer with Applied
Dynamics International in Ann Arbor, Michi-

gan. His research interests include numerical analysis and control theory.

Elmer G. Gilbert (S’51-A’52-M’57,
SM*78-F’79) was born in Joliet, IL. He received
the Ph.D. degree from the University of Michi-
gan, Ann Arbor, in 1957.

Since 1957 he has been on the faculty of the
College of Engineering, University of Michigan,
and is now a Professor in the Department of
Acrospace Engineering. Most of his teaching
and research activities are in the Computer, In-
formation, and Control Engineering Program at
Michigan, His most recent leave, 1974-1976,

was as a Visiting Professor in the Department of Electrical Engineering,
The Johns Hopkins University, Baltimore, MD. His current research
interests are focused in two main areas: optimal periodic control and the
theory of nonlinear dynamical systems.




