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Optimal Periodic Control: The 7~ Test Revisited 
DENNIS S. BERNSTEIN AM) ELMER G. GILBERT, FELLOW, IEEE 

I. INTRODUCTION 

F OR SOME dynamic  processes  which  are  normally 
operated  in  a  steady-state  mode, it may be  possible to 

improve  performance  by  time-dependent  periodic  control. 
This possibility  has  received  much attention in recent 
years and there is a well-developed  theory [I], [7], [lo], 
[13]. The application of second-order  conditions for opti- 
mality as a  test for the  possibility of improved  perfor- 
mance  was  pioneered  by  Bittanti,  Fronza, and  Guarda- 
bassi  [2],  [9]. Their  conditions  involve  a  frequency  domain 
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criterion,  called  the m test,  which has proved  valuable  in 
cases  where  first-order  conditions for optimality [l], [2], 
[7],  [13]  have  failed to give information. In this paper we 
have  three  main  objectives:  1)  to  form  a m “test”  for  a 
somewhat  more  general  problem  than  considered  in  [2];  2) 
to point  out that certain  auxiliary  conditions  must  be 
added if the  results of  [2] are to be  valid; and 3) to explore 
more  fully  the  relationships  between  second-order  condi- 
tions for steady-state  optimality and optimality  in  the 
dynamic  problem.  The  auxiliary  conditions in (2) are 
normality  conditions  which are similar to those that ap- 
pear in the  classical  calculus of variations.  They  rule  out 
pathological  cases  in  which the system is, in  a  certain 
sense,  uncontrollable  in  the  neighborhood of an optimal 
solution.  The approach to (3)  is  similar  in  spirit to the 
treatment of first-order  conditions  presented  in [q, 
although  for  reasons of brevity,  there is no attempt to 
rival  the  completeness and generality of the  discussion 
there. 

The  organization and content of this  paper may  be 
summarized  as  follows. In Section  I1 we state an optimal 
periodic  control (OPC) problem and its  corresponding 
steady-state  version (OSS), introduce notation and basic 
definitions, and comment on the  relationship  between 
conditions  for  proper  (periodic  control is better than opti- 
mal  steady-state  control) and conditions for optimality in 
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OPC. In Section I11  well-known  results from  the  mathe- 
matical  programming  literature are applied to obtain  both 
second-order  necessary  conditions and second-order 
sufficient  conditions  for  local  optimality  in OSS. To ob- 
tain  the  test  for  proper,  the  above-mentioned  normality 
condition  is  needed. This is  discussed  in  Section IV along 
with  some  properties of a  related  rank  condition.  Section 
V contains  the  test  for  proper  (Theorem 5.1). Theorem 5.1 
is  similar  to  [2,  Theorem 11 in  that  it  concerns  the  sign 
definiteness of a 7~ matrix  for  positive  frequencies.  Alter- 
natively,  as  indicated  in  Theorem 5.2, Theorem 5.1  may 
be  interpreted  as  providing necessary conditions  for 
steady-state  optimality  in  OPC. This clarifies  the  connec- 
tions  with  the  results of Section I11 and with second-order 
conditions  in  the  classical  calculus of variations.  Sufficient 
conditions  for  steady-state  optimality of OPC,  which  are  a 
strengthening of the  necessary  conditions  in  Theorem  5.2, 
are  given  in  Section VI. These  conditions do not  include 
normality and may  be  used to show that OPC is not 
proper. All of these  results  are  limited to optimality  in  the 
neighborhood of steady-state  solutions of the  constraint 
equations.  Section VI1 gives  several  simple  examples 
which  illustrate  the  need  for  some of the  conditions  stated 
in  Sections V and VI. Since  the  proofs of the  main 
theorems  are  quite  lengthy,  they are relegated to Appen- 
dices  A and B. 

11. PROBLEM FORMULATION AND BASIC 
DEFINITIONS 

In this section we formulate  the  periodic  control  prob- 
lem and its steady-state  specialization.  For  motivation and 
additional  detail, see [2], [q, [9], [lo], [13]. 

The optimal  periodic  control  problem  OPC  is:  minimize 

4 x 9  u, .) = go(Y) (2.1) 

subject to 

g j (y )  GO, i =  - j ;  9-19 

g,(y)=O, i =  1; - , k,  

Y = / T j ( x ( o ) , u ( o ) )  do, 
7 0  

i ( t ) = f ( x ( t ) , u ( t ) ) ,  a.a. ~ E [ O , T ] , X ( O ) = X ( T ) ,  

7 E (0, T] (2.2) 

where 0<T<+00 ,y€R' ,   x ( t )ER",   u ( t )ER".  The con- 
vention j = 0 means  there are no inequality  constraints on 
y ;  the  convention k = 0 means  there are no equality  con- 
straints on y ;  the  functions g,: R'+ R for i = - j ,  - - - , k,  f: 
R"xR"+R", and $ R"XRm+R' are  twice  continu- 
ously  differentiable. This formulation of OPC is a  speciali- 
zation of the  one  considered  in [7] and includes  the 
formulation  considered  in [2] as a  special  case. In [2], 
7 E(0, + 00) and gj(y) = component  of y ;  also  the  func- 
tional  notation  for f'is different and a  maximum  is  sought 
(this changes  the  definition of 7~ and the  sign  convention 
in  the IT test). For simplicity, it is not  assumed, as in [7], 

that u(t)E U, where U is  a proper  subset of R". If u(t), 
t E(0, TI, belongs to the  interior of U, the  subsequent 
analysis  is  applicable  because it focuses on local, "weak" 
variations  in u(t). 

By assuming x and u are  constant  (then T has no effect), 
the  optimal  steady-state  problem OSS is obtained: mini- 
mize 

J A X Y  u )  = go(Y 1 (2.3) 

subject  to 

g i ( y )  < 0, i =  - j ;  - . , - 1, 

gj(y)=O, i =  1,. * , k ,  

Y =f'(x, u), 

0 = f ( x ,  u) ,  (2.4) 

where y E R I ,  x E R", u E R ". There  is  a  chance that the 
cost  in  OPC  may  be  made  strictly  less  than  the  minimal 
cost  in OSS. To make  the  discussion of this  situation 
precise, we introduce  some  additional  notation and 
terminology. 

For z E RP define I t 1  = , z : ) ' /~ ,  where zi is  the  ith 
component of z. Let LP, be  the  Banach  space of all 
functions  from [0, TI  into RP which  are  measurable and 
essentially  bounded  with norm 

I I Z I L  = SUP I4t)l .  
f E[@ TI 

Define % = L," and !X = { x :  x E L z ,  x is  absolutely 
continuous on [0, TI}. By using x(t)  =x and u( t )  =u, it  is 
possible  to  interpret ( x , # ) €  R" x R"' as (x ,# )  €'X x %. 
This  notational  convenience will be exploited  without 
further comment in what  follows. 

Next,  consider  some  terminology  concerning OPC and 
OSS. The  triple ( x ,  u, 7) is admissible if ( x ,  u, 7) E 'X X % X 

(0, TI and x(t),u(t), T satisfy (2.2). The triple ( x ,  u , ~ )  solves 
OPC if (x,u,T) minimizes J(x ,  u , ~ )  over  the  class of admis- 
sible  triples.  The  pair ( x , # )  is steady-state admissible if 
( x ,  u )  E R " X R" and x,u  satisfy (2.4). The  pair (x ,u)  
solves OSS if ( x , # )  minimizes J,(x, u) over  the class of 
steady-state  admissible  pairs.  Assume OSS has a solution, 
say (a,$). OPC is proper if for some  admissible  triple 
( x , u , T ) ,   J ( ~ , u , ~ ) < J , ( i , i i ) .  Because (a,$,?) is an admissi- 
ble  triple  for  all .i E(0, TI  it  is  known  that  there  exists an 
admissible  triple ( x ,  u, T) = (2, ti, 'i) such that J ( x ,  u , ~ )  = 
J,(a,C). Thus, if OPC  is  not  proper ( i , C , + )  solves  OPC. 
Our subsequent  theory  centers on "local  optimality"  in 
OPC and OSS. This prompts  the  following  definitions. 

Definition 2.1: The  pair (X,ii) is  a local  minimum of 
OSS if: i) (X,@ is  steady-state  admissible and ii)  there 
exists an E > O  such  that  for  all  steady-state  admissible 
pairs ( x , # )  satisfying Ix - XI + Iu - El <E, it  follows that 
J,(x, u )  >J,(Z,G). If in ii), J,(x,u) =J,(X, Li) only  for 
(x ,# )=  (X,E), (X,ii) is an isolated local  minimum of OSS. *. 

Definition 2.2: The  pair (X,ii) is  a local steady-state 
minimum of OPC if: i) (X, i i) is  steady-state  admissible and 
ii)  there  exists an e>O such that for  all  admissible  triples 
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(x ,u,T)  satisfying Ilx-Xllm+ Ilu-illm<e, it  follows that 
J(x,u,~)>J,(X, i i ) .  If in ii), J(x,u,~)=J,(X, i i )  only for 
(x,u) = (X,ii), ( X , i i )  is an isolated local  steady-state mini- 
mum  of  OPC. 

Definition 2.3: OPC is locally  proper at (X,@ if: i) 
(X, ii) is  a  local  minimum of OSS and ii) for all E > 0 there 
exists an admissible  triple (x, u, 7) such that I I x - XI1 + I I u 
- Ell < E  and J(x ,  u, 7 )  <Jss(X, ii). 

Remark 2.4: If (X,@ is  a  local  steady-state  minimum of 
OPC,  then (E,@ is a  local  minimum of OSS. 

Remark 2.5: If (X,@ solves OSS and OPC is locally 
proper at ( 5 @ ,  then  OPC is proper.  Thus, if OSS can  be 
solved, a test  for  locally  proper  becomes a test for proper. 

Remark 2.6: Definition 2.3 differs  from  the one given 
in [2] in that (X,@ does not necessarily  solve OSS. Defini- 
tion 2.3 is  consistent  with  the  emphasis on local  optimality 
and, because of the  preceding  remark,  represents no loss 
in  the  practical  application of the theory. 

Remark 2.7: The pair (2,ii) is a local  steady-state 
minimum of OPC if and only if: i) (Z,zi) is a  local 
minimum of OSS and ii) OPC is not locally  proper at 
(X,@. This  equivalence is important because  it  shows that 
necessary  (sufficient)  conditions for OPC to be  locally 
proper at (X,@ are related to sufficient  (necessary)  condi- 
tions for (X,@ being  a  local  steady-state  minimum of 
OPC. 

111. CONDITIONS FOR 0- IN OSS 

Since OSS is a  finite  dimensional  minimization  problem 
with equality and inequality  constraints,  necessary and 
sufficient  conditions for (local) minimality can be ob- 
tained by applying known results  such as those found in 
[5] ,  [ 141. The details  involve notational issues  only and are 
therefore  omitted  from  what  follows. 

The conditions are stated most  conveniently in terms of 
a  function H ,  which  also  appears in the  theorems of the 
following  sections. For A €  R", p E R', a E Rk+j+' define 
H :  R " x R m X R I X R " X R I X R k + i + ' ~ R  by 

where the prime denotes transpose and g ( y )  = 
( g-i(y)y,  - ,gk(y))'. Partial  derivatives are indicated by 
subscripts, e.g., 

~ x ( ~ y ~ y ~ y ~ y ~ y ~ ) = ~ % ( ~ y ~ ) - ~ L % ( ~ y ~ )  (3.2) 

where f, and  are the Jacobian matrices off and f with 
respect to x. Similarly, Hxx is  the  Hessian  matrix of H 
with  respect to x. When  the  various  functions and their 
partial derivatives are evaluated at X, E,J=f(X,  ii),i, F, ti 
they will be denoted by an overbar. For instance, E= 

Theorem 3.1: Let (X, ii) be a local  minimum of OSS. 
ThenthereexistX€R",E.IER',cY=(cY_j,...y E k )  ~ R j + k + l  
such that the  following  conditions  hold: 

H(x ,  U,J, r;, F, q. 

- - -  
H,, H,, Hy = 0 

Zi>O, i =  -J,. - .  ? O  

q.,.=O, i= - j , .  - - Y - 1  

(Xyp,(Y)#O. (3.3) 

From gy = 0 it is seen that E= - g;E. Thus, ii can be 
eliminated  from the statement of the  theorem (and many 
of the  following  theorems). To circumvent  notational 
complexity, it is convenient to avoid  the  elimination. 
Usually, but not  always, Eo> 0. This can be  assured by 
introducing  a  constraint  qualification [5], [ 141. If Go > 0, it 
can  be  assumed  without  loss of generality that E,-,= 1. 

Theorem 3.1 gives  the  "first-order"  necessary  conditions 
[14, Theorem 11. To introduce  the  "second-order"  neces- 
sary  conditions [14, Theorem 41, some  additional notation 
is required: 

A = f,, B =  f,, C=L, D = L ,  

M U ) = [  gi,Y J. 
(3.4) 

Here, I is an index  set { i1,i2, - - ,is}, where for definite- 
ness, i, < iz < - - - < is. 

Theorem 3.2: Let (?,E) be a local  minimum of OSS 
and suppose OSS satisfies  first- and second-order con- 
straint qualifications [14] at (X,ii). Then (3.3) holds for 
some &,G,Z with iio=l. Moreover, for all xER",  u E R m ,  
y E R' which  satisfy 

Ax+Bu=O, 
C x + D u = y ,  

%(fly = 0, 
- -  
M ( I - i ) y < O  (3.5) 

where 

and 

f = { i :   i < O , ( u i > O } u { l ; . . , k } ,  (3.7) 

it follows that 

x'Hxxx +2x'Fmu + u 'gwu + y'Hwy 2 0. (3.8) 

Finally,  sufficient  conditions  for  a  local  minimum of 
OSS are  obtained  from [14, Theorem 61. 

Theorem 3.3: Let (X,% be a steady-state  admissible 
pair and suppose that (3.3) holds  for (x, ji, E) E R " X R X 
Rj+k+ 1 with E,-,= 1 .  If 

x'Hxxx + 2x'Hmu + u'Euu + y'Ewy > 0 (3.9) 

for all nonzero (x, u,y) which  satisfy (3.5), then (X, i i) is an 
isolated  local  minimum of OSS. 
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The  conditions  in this theorem are a  strengthening of 
the  conditions  in  Theorem 3.2 in that (3.9) is a  strict 

Remark 3.4: There are a  number of  ways in  which  the 
constraint  qualifications  mentioned  in  Theorem 3.2 can be 
assured.  The  most common condition  involves linear inde- 
pendence of the  gradients of the  “active”  constraint  func- 
tions.  See [5, Corollary 3, Section 2.1 and Theorem 3, 
Section 2.21. In the  present  context this condition is satis- 
fied if and only if 

inequality. 

rank[ <- : - ] = n + s  (3.10) 
- 

M C  M D  

where M =  M ( I )  and s = number of elements  in i= 
number of “active”  constraints onr .  

- - -  

IV. THE NORMALITY CONDITION 

Before  stating  the  theorems  which  have to do  with OPC 
being  locally  proper at (X, ii), we  need to discuss a normal- 
ity  condition. This is  not  surprising in view  of Remark 2.7. 
Normality  conditions  appear in the  development of sec- 
ond-order  necessary  conditions  in  the  classical  calculus of 
variations. 

Let (X, @ be a  steady-state  admissible  pair. We  say OPC 
satisfies  a  full  rank  condition at (X,@ and T if 

two  possibilities:  i) $(T)=O on [O, TI and ii) $(T) = 0 for  a 
finite  number of values of T in [0, TI. Thus, if the rank 
condition is satisfied  for  some T in [O, TI, it is satisfied for 
all but  a  finite  number of values of T in [0, TI. This 
motivates  the  following. 

Definition 4.1: Let (X,ii) be  a  steady-state  admissible 
pair. OPC is normal at (X, E )  if the rank condition (4.1) is 
satisfied  for  some T E[O, TI. 

Remark 4.2: Suppose OPC is normal at (X,@. Then 
the rank condition is satisfied  for  all  but  a  finite  number 
of values of T in [0, TI. 

It turns  out that normality is equivalent  to  the con- 
straint qualification  condition  mentioned  in  Remark 3.4. 
Thus  it is easily verified  by a  simple  algebraic  test. 

Theorem 4.3: OPC is normal at (X, ii) if and only if 
(3.10) is satisfied. 

Prooj In (4.1) replace exT - I, with LGei0du and 
note that det J~exadu#O for T >O, T sufficiently  small. For 
this value of T the  span of the first n columns of the 
matrix  in (4.1) contains  the  span of the  last (n -  1)m 
columns. Thus, (4.1) reduces to 

A i T e x e d u  B - 
rank[ M C i T e x o d u  a5]=n+i (4*3) 

which is equivalent to (3.10). 

where I,, = n X n identity  matrix, and the  remaining nota- 
tion is given in Remark 3.4. It is clear  that (4.1) is a 
controllability  condition.  Appendix A shows that it 
guarantees  the  existence of a one-parameter family of 
solutions of (2.2): x ( t , ~ ) , u ( t , ~ ) , y ( ~ ) .  This family can  be 
chosen so that x(t,O)=X, u(t,O)=iS, y(O)=j(X,@ and 
x,(t,O)=J(t), u,(t,O)=ti(t), y,(O)=y^ where ?,Gyp are a 
solution of a  linearized  version of (2.2). Specifically, 

~ 2 ~ 0 ,  i € f ,  i < O ,  

E ~ = O ,  iEf ,  i >O,  

y = - l  (ca(u)+Dl;(u))du, 1 T -  

7 0  

i(t)=Z?(t)+Bti(t), a(O)=i(~). (4.2) 

Let  the (n + s) X (n + nm) matrix in (4.1) be  denoted by 
*(T). The rank  condition is satisfied if and only if the 
rows  of *(T) are linearly  independent. This holds if and 
only if the  Gramian  matrix \k(~)\k1(~) is nonsingular,  i.e., 
#(T)  = det \k(~)*‘(~)#o. Because $(T) is analytic  there  are 

V. THE CONDITION FOR LOCALLY PROPER 

Before  stating  the  main  theorem we  need  some further 
notation. Let Q(A)  be  the  set of nonnegative  real  numbers 
such  that w EQ(A) if and only if j w  is an eigenvalue of A .  
Define 

- - 1 -  
G ( S )  =  SI^ - A )  B (5.1)  

and for w > 0, w Q(2) let 

T(W) = G’( - j w ) E = ~ ( j w )  + E=G(~u) 
+ G’( - j w ) H ,  + H,. (5.2) 

Clearly, ~ ( w )  is a  complex-valued m X m matrix  which is 
Hermitian and depends on X, Gyj7 x, ji, E. Let 6‘ be the  set 
of complex  numbers and * denote  complex  conjugate 
transpose. 

Theorem 5.1: Assume (X, @ is a  local minimum of OSS 
and OPC is  normal at (X,@. Then (3.3) is satisfied  with 
E,-, = 1 and for Z,,= 1, & ji, E and ~((w) are  unique. Further, 
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suppose  there  exists q E em and w 2 2s /  T, w GS@) such 
that 

q*s(w)q < O .  (5.3) 

Then OPC is  locally proper at (X,$. 
When  Theorem 5.1  is specialized to the  problem  consid- 

ered in [2], it  corresponds to the first part of  [2, Theorem 
11. Apart from notation, it differs in three fundamental 
respects:  it guarantees the existence of Zo= 1 -and the 
uniqueness of ~ ( w ) ,  it places no restriction on O(A)  (in [2], a(x) is empty), and it  requires the normality condition. It 
will be  seen  in  Section VI1 that [2, Theorem 11 may  fail 

@(j)(  CG(0) + D ) u  = 0, 

M ( I -  .f)( CG(0) + D)u  < 0. (3.5)’ 

Even for q , = O  (this happens  for the problem statement 
in [2] where g(y) is  affine) the presence of (3.5)’ com- 
plicates the issue of relating (3.8)’ to (5.4). For example, 
suppose (3.8)‘ is satisfied  for all u E R m  satisfying (3.5)’ 
but u’s(O)u<O for some u E Rm which  does not satisfy 
(3.5)’. Then (5.3) will hold if T is  sufficiently  large (2 
nonsingular  implies s(w) is continuous at w= 0). Thus, 
very  low  frequency  forcing can improve  performance. 
This is the content of [2, Remark 11. 

because it does not include a normality  condition.. For- 
tunately,  the  normality condition is  satisfied in many VI. LOCAL STEADY-STATE 0- IN OPC 
problems,  including  most  which  have  been treated in the 
literature. one of interest is k=j=O and 2 If the conditions in Theorem 5.2 are suitably 

mdty condition. A version of th is  was local  steady-state  minimum of OPC. This requires  much 
treated correctly  in [9]. weaker  hypotheses than a strengthening  based on first- 

3.2 and 5.1 can be viewed as necessary conditions for Theorem 6.1: Let (x,@ be a steady-state  admissible 
optimality. In particular, they  yield the following. pair and suppose  the following  conditions are satisfied:  i) 

minimum of OPC and  that OPC is normal at (x,@. Then iii) there exist x, F,Z with a,, = 1  such that (3.3) holds, iv) 
there  exist X E R ” ,  PER‘, EERi+k+’ with Eo= 1 such for f and f defined  by (3.6) and (3.7), 
that: i) (3.3) is satisfied, ii) (3.8) holds  for  all x ,  u,y which u, + C G  + tH, C G  + 

satisfy (3.5), and iii) [ ( ) ( -  ( 1 -) - ( -  (0) 5 ) ] u > o  (6.1) 

nonsingular. men  OPC automatically satisfie the nor-  strengthened,  they  become sufficient for to be a 

indicated in  Remark 2.7 &e conditions  in Theorem order necessary  conditions. See, for example, P I .  

Theorem 5.2: Assume (X, @ is a local  steady-state  is nonsindar (O @52(2)), ii) ea(4  for dl > 2s/ T, 

q * ~ ( w ) q  > o for all q E em, w 2 -, w ~ ~ ( 2 ) .  
2 s  is satisfied  for all u E R m  such that u#O and 
T 

(5.4) @(j) (CG(O)+D)u=O,  
@(I- II)( CG(0) + D)u  < 0, 

Conditions i) and ii) follow from Theorems 3.2 and 4.3 
and Remark 3.4. Condition iii), which  follows from Theo- and v) there exists > 0 such that 
rem 5.1,  is analogous  to the Jacobi condition in calculus 
of variations.  Because of limm+,,,s(w)=Hm and condition q*n(w)q > ~ * q  for all q €ern, w >  - 2 s  . (6.3) 
iii), q*H,q > 0. This is the “Legendre condition.’’ 

The idea  behind the proof of Theorem 5.1 is  simple. Then (x, a is an isolated steady-state of 
Using the normality  condition, a one-parameter  family of opt. 
the type  described in Section  IV is generated,  where  in The proof of this theorem appears in Appendix B. The 

(6.2) 

- 
T 

(ja2) it is assumed that fi(t)=Reqdmt* Then J(x,u,7)= general  idea  is to  that  there exists a sequence of 
J ( E )  is in terms Of and if admissible  triples {(x,., ui, T~)} with (x,., ui)# (X, @ and llxj - 
the conditions Of the are satisfied* Because Of Xlloo+ llui-Cllm-$O such that J(xi,ui,7i)<Jss(X,@ and 

possible to avoid  special conditions having to do with 7 consider a subsequence which is directionally convergent 
values for which (4.1) fails. The first variation (J,(O)) is in a certain sense. The arguments are similar  to those used 

(J=(O)). For the  details  see  Appendix A. setting (see [12] indirect sufficiency  proofs). It is also 

Remark 4*2 and the Of s(w), it is show that this  leads  to a contradiction. It is necessary to 

zero and ’(€1 <J is Obtained from the second variation in [5] ,  but more complex  because of fie function space 

Since  Theorem 3.2 involves steady-state variations,  it possible to derive a sufficiency theorem without i) and 
might be conjectured that it could be stated in Of but then the are not so simply stated and the 

This is true if is nonsin@ar* Then the condition proof is difficult. An entirely different approach  to 
corresponding to (3.8) can be restated as follows: the proof of the theorem  exploits a Riccati equation. This 

path has  been  followed in [3] for the  case of no constraints 
u’[ ‘do) +(CG(O) + D)’gw( CG(O) + E)] u 2 0 (3-8)’ on y ( j  = k = 0). Its use  here  seems to offer no advantages. 

Since  by  Theorem 3.3, conditions i), iii), and iv)  imply 
holds for all u E R m  such that (?,a is a local steady-state minimum of OSS, it is  of 
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interest to ask if iv) can be  replaced  by  the  hypothesis  that 
(X,@ is a local  minimum of OSS. It seems that the answer 
is no, although an example  which flustrates the  need  for 
iv)  has not been  found. 

Remark 6.2: Because G(jo)+O as w+m, condition v) 
implies E, > O .  This corresponds to the  strengthened 
Legendre  condition in the  calculus of variations.  Using 
the  properties of G(jw), it is  easy  to  show that the  uniform 
bound (6.3) may be  replaced  by Hm > 0 and 

q*a(w)q>O, forallqEC?m, y#O, 02 -. (6.4) 

Remark 6.3: For #, > 0, qy = 0 (true if g ( y )  is affine), 
and Q(A> empty,  hypotheses  iv) and v)  may  be  replaced 
by  the  (stronger)  hypothesis: 

2 a  
T 

q*a(o)q>O, forallq€Em, q # O ,  o>O. (6.5) 

This follows  from (5.2), the  continuity of G(s) at s=O 
when 2 is  nonsingular, and Remark 6.2. 

Using this Remark,  together  with  Remark 2.7, proves 
the  following. 

Corofluly 6.4: Assume  OPC is locally  proper at (X,@, 
g,>O, # =O, Q(2) is  empty, and (3.3) is  satisfied  for 
~~, lywith~=l .Thenthereexis tqEC?",qfO,andw>O 
such  that 

q*s(w)q Q 0. (6.6) 

This corollary  is  equivalent to [2, Theorem 1, part 21 
except  there  the  condition H, > o is  omitted. ~n example 
(see the  next  section)  shows that the  conclusion (6.6) may 
be  false if Hm > 0 does not hold. 

VII. EXAMPLES 

The  first  example  illustrates that Theorem 5.1 fails if the 
normality  assumption is omitted. The problem data are: 

j = O  (no inequality  constraints ony), k= 1, n = l ,  m = l ,  

2x  +4u,  f2(x,u)=(u-2)2, T= any positive  number. The 
only  steady-state  admissible  pair is X=O, U=2. Thus, 
(X,@ is both a minimum and local minimum of OSS. By 
Theorem 3.1 conditions (3.3) must  be  satisfied. In fact, 
E, ,=l ,&=- l ,Ex,=-&~=- l ,whereE, i sarbi trary , i s  
a solution. This gives 

1=2, g,(Y_)=y,, g,(y)=y, ,  f(x,u)=u2+Xu-4Y fl<xyu)= 

a ( w ) = 1 6 ( ~ 0 ~ + 4 ) - ' - 2 + 2 E ~ .  (7.1) 

Since MC= MD=O the rank condition (3.10) is not satis- 
fied.  Thus,  OPC  is  not normal at (X,@. This accounts  for 
the fact that ~ ( w )  is not uniquely  determined. For GI = O  it 
follows that v*m(w)q <O when q Z 0 ,  w>2, w > 2 a / T .  
However,  OPC  is not locally  proper at (X,@. This is  clear 
because (2.2) implies u( r) 2 and x(  t )  0. 

The  second  example  shows  that (6.3) cannot be  re- 
placed  by (6.4) unless gm > O  (see Remark 6.2). Let j = k 
= O  (no constraints ony), n =  1, m= 1, I =  1, T =  1, go(y)= 

y , f (x ,u)=  - x + u y f ( ~ , u ) = 2 u x - x 2 - G ( u - x )  where 

-- __ 

G(q)  =O, q < 0 

=m3, 17 20. (7.2) 

It is easy  to  see  the  pair (Z,@ is  steady-state  admissible if 
and only if X =  U. Substituting this into Jss = y  =f' shows 
OSS has a unique  local minimum at X = U = 0 and Jss(O, 0) 
=O. Conditions (3.3) hold at Z= 1, ,!i= - 1, i = O .  More- 
over, Ern = 0 and 

Ir(w)=2(1+w2)-'>0, w>o.  (7.3) 

0 (7.4) 

Now  let 

u( t )=qs inwt ,  I-=-. 2 a  

A simple  calculation shows (2.2) has a unique  solution 
and 

u ( t ) - x ( t ) = w ( t )  

=qw( l+w*) - ' (ws inwf+coswt ) .  (7.5) 

This gives 

J(x,u,I-)=#(1+w2)-1- -I 1 7  G(w(t))dt 
7 0  

= q2( 1 + a2)- - v p q 3 w 3 m  -3  (7.6) 

where v is a positive  constant.  Setting 

gives  (for 'all q > 0) 

Since J(x,u,I-)<0 and I lx-xll,+IIu-Ullm=q(1+q1/2), 
it is clear  that (X, @ is not a local  steady-state  minimum of 
OPC. 

VIII. CONCLUSIONS 

A variety of second-order  conditions for optimality  in 
OSS and OPC  have  been  presented  and  their  interrela- 
tionship  has  been  examined.  The a test of Bittanti, 
Fronza, and Guardabassi [2] has  been  extended to a more 
general  class of periodic  control  problems and the  impor- 
tance of normality  in tests for proper and the 
strengthened  Legendre  condition  in  tests  for not proper 
has  been  stressed.  Although  the  applicability of the ~r test 
is more. restricted than indicated in [2], the additional 
requirements  (3.10)  or guu > 0) are  easily  evaluated. 

Just  before  going  to  press  the  authors  became  aware of 
[15]. This reference  treats  the original problem of [3] and 
under a different  normality  condition,  which  is  both 
stronger and more  difficult  to  verify  than  Definition 4.1, 
proves that the a test  is a condition for proper.  Under  the 
normality  condition  it also gives a sequence  condition 
which  implies ~ ( w )  is not positive  definite  for all w> 0. 
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From  the  last  example  in  Section VI1 it can be  seen that 
the  sequence  condition is stronger than "proper." y=   -J . l j (x ( t ) , # ( t ) )d t .  1 ( A 4  

7 0  

APPENDX A 
PROOFS OF NECESSARY  CONDITIONS 

We begin by  verifying  some  simple  lemmas. 
Lemma A.1: Let V be  a  Banach  space and consider Q: R(r) - 2(0) 

Lemma A.2: Let F(t)=jr, E(t)=E where X E R "  and 
i i ~  R" satisfy f(X, 8 =O. Then for U= (X,E), Q satisfies 
conditions (2) and (3) of Lemma A.l. Moreover, Q '(5) is 
characterized by Q '(Z)(Z, a) = v^ where 

%+Rq where % is a  neighborhood of U E V. Assume i= [  M$. ] (A.9) 
i) Q(5) = 0, ii) Q has  a  Frechet  derivative Q ' (5) :  V+RQ at 
cy iii> for 01,' ' ' ,Uq+ 1 E V the fUnCti0n g determined by and a(t), are defined by 

is C 2  in  a  neighborhood of (/3,,... ,pq+l)=O, and iv) 
Range Q 1 ( $  = Rq. Let h E Rq.  Then there  exists eo>O 
and u: (- eo,  eo)+ V such that u(0) = 5, u is C2 and 

Q(u(e) )+eh=O,  lel<q,. ( A 4  

Furthermore, if 6 E V satisfies 

Q 1 ( Z ) 6 + h = 0 ,  64.3) 

then U ( E )  can  be  chosen so that 

(0) = 6.  du 

Prooj By assumption  there  exist uly* ,uq€ V such 
that { Q '(Z)ui}4= is a  linearly  independent  set.  Consider 

I/. Clearly, f is C 2  and the Jacobian of f with  respect to 
ply. . - ,Pq at (&. - - , P q , ~ ) = O ,  which  has  rows (Q1(Z)ui)', 
is  nonsingular.  Thus, the implicit  function  theorem, [4, p. 
2021, guarantees  the  existence  of EO> 0 and C2 func- 
tions pi: (- eo, eo) + R such  that Pj(0) = 0 and 
f( &(e),- . ,P,(c),c)-O. Setting 

f (P1 , . . . ,Pq ,e )=g(P l  , . . . , P q , E ) + E h  for arbitrary Uq+IE 

i( t)=Z2(t)+Bli(t) ,  R(O)=& (A.10) 

$ . = - J ~ ( ~ R ( t ) + D a ( t ) ) d t .  1 
7 0  

(A. 1 1) 

Proof: Following  arguments  almost  identical to those 
in [6], it  can  be  seen that Q and its  first  variation are 
defined  in  a  neighborhood of U. Also, the  first  variation at 
U is characterized  by (A.9)-(A.11). Since it is linear and 
bounded,  it is the  Frechet  derivative of Q.  Condition (3) 
follows  from  the  assumptions off  and f (they are C2) and 
the  resulting  differentiability of solutions of differential 
equations with  respect to parameters. 

Lemma A.3: If (4.1) is  satisfied,  Range Q'(Z)= R"+'. 
Prooj Using the variation of parameters formula, it 

follows  from (A.9)-(A. 1 1) that 

where y*(r) is  given  by 

k*(t>=A*x*(t)+B*Ei(t) ,  x*(O)=O 

y*( t )=  C * x * ( t )  (A. 13) 

4 where x* ( t )E  R"+' and 
u(e) = u+ 2 + 'Uq+ ' (A.5) 

i= 1 A * = [  A - ;], B * = [  -1, c*=[ I, "I. 
gives (A.2). Next,  take  the  derivative of (A.2) with  respect r-'C r - 'D O M  
to e at e =O and substitute dy/de(O) as obtained from 
(AS). Choosing uq+ = 6 and using (A.3) shows 

(A.14) 

From  the  theory of linear  systems, y *(r) can be  generated 
z(0)=O, dPi i = l , . . - , q .  by Ei if and only if 

y*(r)ERange C*[B* A*B* (A*)"+'-' B*]  
This proves (A.4). 

Define Q: R" X Lz+RS+" in  the  following  way: Q(u) =Range c*[B* A*B* (A*)"-' B * ] .  

= v where = (5, u) &d the  components of v are given  by (A. 15) 

q=xj(r ) -x j (0) ,  j = l ; - - , n  The equality of the  ranges  follows  because  rank A * <n. 
Using (A.14) in (A.15) it is  seen that (A.12) has  a  solution 

From  the  lemmas  it  is  clear that (4.1) implies  the 
q+n=gG(r>, j =  1,. . . 9 s. (A.6) for all i E R"+' if (4.1) holds. 

Here x(r) is determined  by  the  solution of existence of q,>O and u(t,e), x(t ,e) ,y(e) such that 

i ( t )  =f(x(t), u(t)),  x(0) = E, (A.7) k ( ~ , ~ ) = f ( x ( ~ , ~ ) , ~ ( ~ , ~ ) ) ,  X(.,E)=X(O,e)Y 
- 

{ i l , - - - , i 5 } = I ,  and (A. 16) 
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gi(y(E))+di=O, i E I ,  i<o (A.19) 

are satisfied  for  all E ,  <eo, where  the hi€ R may be 
chosen  arbitrarily.  Hereafter,  assume hi 2 0 for i E I, i < 0, 
and E > 0. Then (A.19) can be  replaced by 

gi(y(E))<O, i ~ j ,  i < O .  (A.20) 

Finally,  from  Lemmas  A.l and A.2 it  follows that u(t,e), 
x ( t , e ) , y ( c )  may be chosen so that u,(t,O)=C(t), x,(t,O)= 
?(t),y,(O)=y^ where 2i(t), ?(t), satisfy  (4.2). 

Now  consider  the  proof of Theorem 5.1.  Because of 
Theorem 4.3, OSS satisfies  the  linear  independence  condi- 
tion of Remark  3.4.  Thus,  by  Theorem  3.2, %= 1  is 
possible.  For this choice of Eo, it  is  easily  verified  from 
H,, HEHY 10 and (3.10) that A, F,Z are unique. Thus, kz, 
H,, H,, H,, and n(w) are unique. 

Now let u ( t , ~ ) ,  x ( ~ , E ) ,  y ( ~ )  satisfy (A.  16)-(A.  19)  where 
in (A.  19) hi =O, i < 0, i E i. Thus, equality  holds  in (A.20) 
for i <0, i E i .  Since OPC is normal at (X,$, it can be 
assumed  without  loss of generality  that (4.1) holds at 
r =27r/w.  If  (4.1) does not hold at 7=2n/w, the  continu- 
ity of n at w and Remark 4.2 guarantee  the  existence of & 
close to w such that (5.3) is satisfied  with w replaced by Li, 
(4.1)  is  satisfied at r =2n/ij,  and ii tZSl(7). Now,  choose 
u,(t,O)=Ei(t), x,(t,O)=2(t), andy,(O)=y^  where 

- - -  

2i( t )  = 2  Re qgutY 

I ( t ) = 2 R e ( j w l - ~ - ' ~ ~ ~ u ' ,  

j = O  (A.21) 

is  a  solution of (4.2)  with the added proviso that &,ŷ  =O 
for i E f .  

Since Go= 1, gi(y(E))=gi(fi=O, i E i  and Z,.=O, i E f -  
i, it  follows  that 

--r;'f(x(t,E),u(fyE)) 

- F ( Y ( 4  - f ( X O 9 4  u ( t d ) ) .  

(A.22) 

Integrating  both  sides of  (A.22) from 0 to T ,  dividing by r 
and using  (A.16) and (A.  17)  gives 

which  because of  (3.3) and the C 2  differentiability  implies 

g0(y(E)) -go( jg= -J E2 2(t) 'H,?(t)+22(t) 'H,l i ( t )  
27 0 

+2i(t)'E,ti(t)dt+0(€2) 

= E%*n(w)q + .(E'). (A241 

By taking E > 0 sufficiently  small,  it  follows  from (5.3) that 
OPC is locally  proper at (Z,Z). 

We  begin  by stating and proving  a  series of lemmas. 
Consider 

i ( t )  = A x ( t )  + f ( t ) ,  a.a. t E [ o,r ] ,  x(0 )  = x(.) 

(B.  1) 

where x(t),f(t) E L~[O,T] ,  r > 0 and x is a  constant n X n 
matrix. 

Lemma B.1: If the  matrix Z, - eAT is nonsingular, (B.l) 
has  a  unique  solution  which is given  by 

- 

~ ( t ) = ~ ~ G ( t , o ) j ( a ) d o  (B.2) 
0 

where 

G(t ,o)=eA;(I , -eA;)- 'e-A. ,  O<o<t, 
- 

= .Zz(In - e ~ T ) - l e ~ T e - ~ o  , t < u < r .  

Pro08 Express  the  solution of (B.l) in  terms of x(0) 
andf(t) by  means of the  variation of parameters  formula. 
Set x ( r )  = x(0) and solve  for x(0). 

Our principle  concern  is  the  system 

i ( t ) = f ( x ( t ) , u ( t ) ) ,  a.a. t ~ [ O , r ] ,  x ( O ) = x ( r )  

03-31 

where  the  assumptions and notations of Sections  I1 and 
I11 apply.  Here, X E R" and i i ~  R are  assumed  only to 
satisfy f(X,E)=O. Let z ( t ) = x ( t ) - F ,  th( t )=u( t ) -C.  The 
solution of  (B.3)  is equivalent to the  solution of 

i ( t ) = f ( z ( t ) + F y 8 u ( t ) + U ) ,  a.a. t € [ O , r ] ,  

z(0) = z(r ) .  (B.4) 

Because t E[O,r] instead of [0, T], we  work  with Lz[O,r] 

L;[O,T], &"[o,r], L,"[o,r] norms are defined  in the usual 
way: IlvllI=J~Iv(t)ldt, I l ~ l l ~ = ( ~ l ~ ( t ) l ~ d t ) ~ ' ~ .  For brevity 
the  dependence of the norms on my n and r is  not 
explicitly  designated.  Since 0 <T Q T it  follows  from  the 
familiar  relationships of norms that 

and L30,71. Thus, I I~ l lm=~~~uP, , [o ,T~ l~(~) l .  The ~;"[0,71, 
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I I ~ I I ~ ~  VT IIVIIm. (B.6) 

We  now  consider  the  existence of z and bounds for I I Z ~ ~ ~ .  
Lemma B.2: Assume I,, - eAT is  nonsingular.  Then 

there  exist Kl > 0 and E > O  such that for all 6u E L z ,  
I16ullm <e, the  system  (3.4) has  a  unique  solution z E 9€ c 
L z  which  satisfies 

I Iz l lm<K1I I~~l lm~ (B.7) 

Proof: Equation (B.4) can be  written 

i=Zz+E8u+r(z,6u), z(~)=z(T) (B.8) 

where r is C 2  and r(0,O) =O, ~,(O,O)=O, r,(O,O)=O. By 
applying  Lemma  B.l  it  follows that z is characterized by 

z ( t ) = ~ 7 G ( t , a ) [ ~ 6 u ( o ) + ~ ( z ( a ) , u ( o ) ) ] d u  0 (B.9) 

which has the  form 

z = E(6u) + q z ,  6u) (B.lO) 

where E : LG+L; is  bounded and linear  and 9 : Lz  X 
Lz+Lz .  Using  the  properties of r it is  easy to see  that 
there  exists an el >O such that 116ullm <e1, llzillm <e1 imply 

l l ~ ~ ~ l Y ~ ~ ~ I l  < 3 llZlll+ z 116ull (B.11) 

I l F~z l y~u ) -F (z2y~u) l l <~ l l z l -~211 .  (B.12) 

1  1 

1 

Choose E2>1 so that 1 1 E ( 6 ~ ) l l , < ~ ~ ~ ~ S u ~ ~ ,  and impose 
the  further  requirement that 116ullm < E =  $KT1el. Then for 
fixed 6u, ~(6u)+9F(z1,6u) is  a  contraction  in z for all 
Z € { Z : ~ ~ Z ~ ~ ~ < E ~ } .  Moreover, for fixed z, E(6u)+F(zY6u) 
is continuous  in 6u. Thus,  by [l l ,  Theorem  3.2,  p. 71, 
(B.10) has a  unique  solution.  From (B.9) it may  be  de- 
duced that z is absolutely  continuous.  From (B.10) and 
the  above  bounds, 

1 1 
I I Z I I ~ < K ~ I I ~ ~ I I ~ +  T I I ~ ~ I I ~ +  ~ I I ~ I I ~  (‘-13) 

which  proves (B.7). 

small,  there  exists K, > 0 such that 
Lemma B.3: If E in Lemma B.2 is chosen  sufficiently 

llzllm <KzII~~II I .  (B.14) 

Proofi Let alfxxct, a E R“, denote  the  vector whose 
ith component is a~,,<X,ii)a. Similarly,  define aymp, 
/3’f,p where p E R”. Then,  because of the  properties of 
r, 

EGu(o)+ -z(a)lf,z(a) 
1 
2 

(B.15) 

68 1 

where  there  exists e2 > 0 such that IzI + IuI <ez implies 

IF(z,u)l< 1Zl2+ 1uI2. (B.16) 

Thus,  there are kl,k2 such that 

Iz(t)l < JT(k,16u(o)l+ k*Iz(.>l)d. (B.17) 
0 

where,  because of  (B.7), f2 can be  made arbitrarily small 
by the  choice of e. For k27 < 1 /2, it follows that 

1 
IIzIIm <‘1II6uIIl+ IIzIIm (B.18) 

which  yields  (B.14). 

ing to (B.3), 
By Lemma B. 1 , the  “linearized  equation”  correspond- 

6 i  = ASx + B u y  6x(O) = 6X(T), (B.19) 

has  a  unique  solution 6x E L z  for all 6u E Lz. Define 

w=x-X-6x=z-6x  (B.20) 

where w is  the “error” produced by  using the linearized 
equation. - 

Lemma B.4: If I,, - eA7 is  nonsingular  there  exist K3 > 0 
and e>O such that for 116ullm <e 

IIwIIm <K~II’UII$ (B.2  1) 

Proof: From (B.3) and (B.19)  we have 

I+==f(X+6X+WyU+8u) 

-f(jT,u)-A6x-EBbu 

1 
2 = A w  + - (ax + w)’jn(6x + w) 

+(ax+ w)’f;,6u+ T 6uym6u 
1 

+ F(Sx+ w,Bu), w(0) = W(T) (B.22) 

where F has  the  property (13.16). Applying  Lemma  B.l to 
(B.22) with z = 6x + w gives 

w(r)=~7G(t,u)(~z(u)~xxz(u)+z(u)‘~m6u(u) 0 

+ - 6u(a)lfm6u(a)+ F(z(u),6u(u)) do. (B.23) 1 
2 1 

By Lemma B.2, E may be  selected so +at Iz(t)l+ ISu(t)l< 
c2. Thus, Lemma  B.3  shows there are K3 and K4 such that 

IIWIIm < ~ ~ I I s ~ I I : + ~ ~ I I s ~ I I ~ .  (B.24) 

Bound  (B.21)  follows from (B.5). 
Clearlv.  it is Dossible to write 
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y= lJ?(x (u) ,u (u) )du  7 Q  

=lJ>(Z+6x(u)+  w(u) , i i+6u(a) )du 
7 0  

=y+ 6y + a 
where 

6y= ~ p x + 8 6 u ) d u ,  

a=ljlFwdu+-Jr(fl.j,z+z~~6u 7 0  7 0  1 

1 -  
2 + - 6uym 6u + &z, 6u) 

(B.25) 

(B.26) 

and there  exists an e3 > O  such that 1.1 + 16uI < E ,  implies 
satisfies  a  condition of the  form (B.16). This is  sufficient 
to show there  exists K4 > 0 such that 

If1 ~ ~ 4 1 1 ~ ~ 1 1 2 , 1 1 ~ u l l m  (B.27) 

where E > 0 is  sufficiently  small. 
Let A J  be  defined  by 

A J =   - S ‘ H ( x ( o ) , u ( u ) , y , X , ~ , ~ )  1 

r Q  

- H(Z,i&y,X,ii,Z)d~ (B.28) 

where  (3.1) and (3.3)  apply.  Using x(t)=F+6x(t)+  w(t)  
and u( t )  = U + 6u( t )  

A J =  s 2 ~ +  I? (B.29) 

where 

+ 3 6 ~ ’ H 7 ,  6~ (B.30) 
1 

and I? can be  made  small  in  the - following  sense. 

any 9 > 0 there  exists e > 0 such  that 
Lemma B.5: Assume I, - eAT is nonsingular. Given 

1 i 1  Qll6Ull; (B.3 1) 

for  all 6 u ~ L z  such  that IlSull, <e. 
PmoJ From (B.28) and (3.3) 

+ p ( Z , S u , G y  + f)dU (B.33) 

whereforallij>OthereexistsanF>OsuchthatIzl+Iul+ 
IyI < C  implies IE(z,u,y)I <fj(]zlz+lul2+ly1’). By  (B.2), 

I l ~x l l , , l ~~ l~Ko I l~u l l l  <KOfi Il~ullm. 03-34) 

From (B.5),  (B.6),  (B.27), and (B.34) there  exists k5 such 
that 

16y+f, IGk5,116uI) ,<k5fl  116ullm. (B.35) 

Thus, it is  possible to pick e so that Iz(t)l+ lu(t)l +lay + 
< E  for  all f E[O,r]. Using (B.29, (3.33),  (B.34), and (3.35) 
it  follows  that  there are k6, k,, &, k9 such  that 

IRI ~ ~ ~ l l ~ ~ l l , l l ~ ~ l l ~ + ~ , l l ~ ~ l l ~  
+ f j ( ~ ~ l l ~ ~ I I : + ~ 9 l l ~ ~ I I ~ ) .  03.36) 

From (3.5) and (B.6) 

I k I  < ( ~ 6 1 1 6 u l l m + k ~ T l ~ 6 u ~ l m + f j ~ S T + f j k ~ ) l l s u l l :  

(B.37) 

and the  method for choosing E so  that (B.31)  holds  is 
clear. 

Note - that i) and ii) of the  theorem  statement  imply 
I, - eAT is  nonsingular  for  all 7 E(0, TI. From  this and the 
proofs of the  lemmas it can be  seen that the  determination 
of K,, K2, K3 and the  choice of e in  Lemma B.5 can be 
made  independently of r.  

We introduce  a  special  notation  for  the  average  values 
of 6u and 6x:  

U =  -j 6u(t)dr, X =  -JT6x( t )d t .  (B.38) 
1 7  1 
7 0  7 0  

Define 

6 U ( f ) = 6 u ( t ) -  U, 6 X ( t ) = 6 x ( t ) - X X .  (B.39) 

Then 

i T 6 U ( t ) d t  =0, J‘SX(f)dt  =O. (B.40) 
0 

Because of this 

(B.41) 

and 

I U I  < ( r ) - 1 ’ 2 ~ ~ ~ u ~ ~ 2 .  (B.42) 

Finally,  from (B.19), (B.26) and the  nonsingularity of 2 
x=A-’Bu, (B.43) 

Sy = (- FX-’B+ 0)  U. (B.44) 

Suppose  the  conclusion of Theorem 6.1 does not follow 
from  the  hypotheses.  Then  there  exists  a  sequence of 
triples, {(x;, uj , r i ) } z  ,, that satisfy  (2.2), 

I IXj-~l lm+II~;-~l l ,>O, (B.45) 

lim ( I I ~ i - ~ l l m + I I ~ i - ~ l l ~ o ) = ~ ,  (B.46) 
i+ m 

(B.19),  (B.26), and (B.6) there  exists Ko>O such that T ~ E ( O , T ] ,  (B.47) 
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- gdY) < 0. (B.48) 

Here yi is  given  by y in (2.2) with x = x i  and u- ui. We 
complete  the  proof of the  theorem  by  showing  this  must 
lead to a  contradiction.  Subscripts i denote  obvious 
changes of previous notation when u = ui, x = xi and T = T~. 

Without  loss of generality 

(B.49) 

To see this let ni be  the  integer  satisfying T(ni + 1)- ' < T ~  < 
Tn; where T~ E (0, TI. By replacing T~ with +i = niri and ui 
by its  periodic  extension Gi, Gi(firi + t )  = ui(t), t €[O,T~], f i  = 
0, - - , ni - 1, we see yi is unchanged. Also note that 11 Sui 11 
> 0. Otherwise, Lemma B.l shows (345) is not satisfied. 
This implies and by (B.42) 

I l S u i l 1 2 ' J U i l < ( , i ) - 1 / 2 < ( T ) - 1 / 2 ~ .  (B.50) 

Thus, there is a  subsequence of { u i } E l  such that 

lpuil1;~q+fi. (B.5 1) 

Hereafter,  without  introducing new notation, we limit our 
attention to this subsequence. 

From hypothesis iii) and (B.28) 

go(Yi)-go(Y)=AJi- 2 %G(Yi) ('-52) 
j €  I* 

where I * = { j : j < O ,  ( y j > O } .  By  Lemma B.5, IISuill;'AJi+ 
0. Thus, (B.48), (B.44), and (€3.51) imply 

* (  - CT-'B+ E )  fi< 0. (B.53) 

From gj(yi) < 0, j € E  j < O ,  it follows  by an identical 
argument  that 

o > g a ( y ) ( - C Z - 1 E + 5 ) f i y  j € j , j < O .  

(B.54) 

Combining (B.53) and (B.54) and recalling that 3 >o, 
j E I*, we  see that 

g,(y)(-  CZ-'X+E)O=o (B.55) 

for j € I * .  From gj(yi)=O, j =  l , . . .  ,k (B.55) holds for 
j€i. 

(6.2). Thus,  by  hypothesis iv), fi= u satisfies (6.1). 

(B.48),  (B.29), and (B.31) that 

AU of this may be summarized  by  saying fi= u satisfies 

Since 3gj(yi) < 0 for j € I * ,  it  follows from (B.52), 

S 2 J j + ~ ) ) S u & < 0 .  (B.56) 

Because IISuilloo+O Lemma B.5 implies (B.56) holds for 
any T > O  provided i is  sufficiently  large. If (B.39) is 
substituted  into (B.30), X and Sy are given  by (B.43) and 
(B.44), and (B.40) is  observed, 

+ - VU, (B.57) 1 
2 

where 

W =  ~(0) + (CG(0) + E)'%,( CG(0) + E).  (B.58) 

Since SU,. E L:[O,T~] 

where (F E ern and the k = 0 term is missing  because of 
(B.40). Furthermore,  from (B.19) SXi and S q .  satisfy 

S.k, = ZSXi + &Sui, SXi(0) = axi(.,). (B.60) 

Using (3.59) and (B.60), SXi can be  expressed in a  Fourier 
series  in  terms of the &.k. By the L, convergence of these 
series  it  follows that 

k #0 

From (B.51) we can write 

u,. = II ~ui112( e+ (B.62) 

where 

lim Q ( i ) = O .  (B.63) 

Using (B.62) and assumption v)  of Theorem 6.1, (B.56) 
implies 

O>ypi+I18uill~(fi 'Wfi+ &WQ(i) 

i+m 

+ Q( i)' WQ(i) + v) (B.64) 

where 
m 

Pi' 2 l g 1 2 =  Ilsv,ll:. (B.65) 
k = - m  
k#0 

First  suppose i?#O. Then it is  possible to choose e > O  
such that (B.64) gives 

o >  olWfiIISuill; (B.66) 

which  by  (6.1) is impossible. 
Next  consider  the  case f i = O .  Then (B.64) becomes 

From (B.41) and (B.62) we have 
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IIau;IIZ=IIav,II~+TiIUII’ [I31 R Marzollo, Periodic  Optimizufion, vols.  1,  2.  New  York: 

[I41 G. P. McCormick, “Optimality criteria in nonlinear program- 

[15] S. K. Ng and W. L. Chan, ‘Wormality and proper  performance 
improvement in periodic control,” J .  Opt. Theoy Appl., vol.  29, pp. 

Springer-Verlag,  1972. 

= I l ~ ~ ~ l l Z + ~ ~ l l ~ ~ ~ l l ~ I Q ( ~ ) 1 2 ,  (B.68) &%’’ in SAM-AMS Proc., VOI. 9,  1976,  pp.  27-38. 

which for i sufficiently  large  gives 
215-229,  1979. 

IIS~~IIZ<~IISV,II;* (B.69) 

Combining (B.67) and (B.69) yields 

O> $ + Q(i)’WQ(i)+q (B .70) 

which for i sufficiently large gives y/4 < 0. Thus, (B.48) is 
false and the  theorem  is  proved. 
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