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AbStraCt Conventional Mask Phase Shifting Mask
We describe new, efficient algorithms for layout modification and phase Glass

assignment for dark field alternating-type phase-shifting masks in tiSes— . s - chome - _— . ——

single-exposure regime. We make the following contributions. First, M e
the problem of minimizing the number of phase conflicts that must be Apertires Phase Shifter
removed to ensure 2-colorability of the conflict graph is transformed to

theT-join problem. Second, we give new exact and approximate algo- 0 Eatmask 0

rithms for the resulting -join problem. The exact algorithm is linear in
space and substantially faster for sparse graphs than previously known

algorithms. The output of the approximate algorithm is much closer

to the optimum than the algorithm suggested in [9]. These algorithms W

are applied within a “one-shot” phase assignment method suggeste(yn\/ \/\
[9] for co-optimization of layout and phase assignment for alternating —
phase-shifting masks. Preliminary computational experience is promis- W
ing.

1 Introduction C/JW&\

Phase-shifting mask (PSM) technology enables the clear regions of&a I ot wafer 0O i
mask to transmit light with prescribed phase shift. Consider two adja-
cent clear regions with small separation, and respective phase shifts of @ (o)
0 and 180 degrees. Light diffracted into the nominally dark region be-
tween the clear regions will interfere destructively; the improved ima%_e _ . ) . _
contrast leads to better resolution and depth of focus. All PSM vakilgure 1: Comparison of diffraction optics of conventional and phase-
ants employ this basic concept, which was proposed by Levenso$féfting masks.E denotes electric field aniddenotes intensity. With
al. [10] in 1982 (see Figure 1). Along with optical proximity correcthe conventional mask (a) light diffracted by two adjacent apertures
tion, PSM is enabling to the subwavelength optical lithography upGﬁnstructlvely interferes, increasing the_ light intensity in the dark area
which the next several process generations depend. Our work, like @fdfe wafer between the apertures. With the phase-shifting mask (b),
of Moniwa et al. [12, 13] and Ooi et al. [15, 16], pertains to tek _the phase Shlft_EI_’ reverses th_e sign of the electric _fleld, and destructive
field, alternating (or Levenson-typephase-shifting mask technomgymterference minimizes light intensity at the wafer in the dark area be-
with negative photoresist. In particular, we seek methods compatiBieen apertures.
with single-exposuralternating PSM.

As in previous work [15], we use the positive constats B to
define a simplified relationship between printability and the distantat the values ob andB are layer-dependent. We also Vet b de-
between two clear regions. The distance between any two features 8@t the minimum allowed width of any feature on the layer of interest.
not be smaller thai without violating the minimum spacing designFinally, we assume that all features are rectilinearly oriented (all edges
rule. If the distance between two features is at |edsit smaller than axis-parallel) polygons.
B, the features are iphase conflict Phase conflict can be resolved b
assigning opposite phases to the conflicting features. In other wor
B defines the minimum spacing rule when two features have the s
phase. If the distance between two features is greateBfere is no
phase conflict and the features can be assigned arbitrary phases. Elot
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e Phase Assignment Problem: Given a layout, assign phases to
éeatures such that no two conflicting features are assigned the same
phase.

€ . . .
Constructing and Planar Embedding of the Conflict
*This work was supported by a grant from Cadence Design Systems, Inc. Graph

IMore precisely, two features are in phase conflict if (i) there is no pair of points, one

from each feature, whose separat!on ?s less thamd (i) there is some pair of points, one\we now show how to construct @onflict graphcorresponding to a

from each feature, whose separation is less han . X
given layout, such that the assignment of phases to features corresponds
to the coloring of vertices of the conflict graph. We also describe a
planar embedding of the conflict graph. For a given layout of polygo-
nal features, theonflict graph G= (V,E) is constructed by defining a
vertex for each feature, and introducing an edge between two vertices
exactly when the corresponding features are in phase conflict. The con-
flict graph can be constructed ®(nlogn) time, wheren is the total
number of segments in all polygon boundaries. We implement the fol-
lowing construction.




e Slice each feature (polygon) into rectangles by vertical cuts thraugich contradicts the definition of the outside segment as a closest pair.
all polygon vertices, maintaining a pointer from each rectangle tioall four points belong to different features, then it can be shown that
its containing polygon. three pairwise distances other thanb) and(c,d) between these four

. oints are smaller thaB, which contradicts assumption (iii). a
¢ Bloat each rectangle by distanBg¢2. P P (i)

« Using sweepline and interval trees, detect conflicts between poly- Let K4 andK; respectively denote an instance of four pairwise ad-
gons by finding overlapping pairs of rectangles that belong &Fent rectangles and an instance of four pairwise adjacent rectangles
different polygons. with one omitted boundary edge (see Figure 2(a)).Each intersecting pair

of bloated rectangles should be connected by an edge, except when the

Alternatively, one may detect intersectionsbwfunding boxesf poly-  edge corresponds to a diagonal of an instanc0br K}. There are
gons, then check whether the corresponding polygons actually intgfo reasons why we omit these diagonals. (1) Any valid phase assign-
sect. ment to vertices of the conflict graph is a valid phase assignment for

In alternating PSM, we can remove all phase conflicts by assignih@ conflict graph without such diagonals, and vice vér&2). By The-
opposite phases to each pair of adjacent vertices in the conflict grapém 2.1, the conflict graph becomes planar after removal of diagonals
G. This is equivalent to 2-coloring the vertices@fwith phase 0 and in K, andK}, and phases for planar graphs can be assigned efficiently
phase 180. For this to be possibemust be bipartite, i.e., have noin contrast to the case of arbitrary graphs (see Section 4).
odd cycles. Hence, if the conflict grahis not bipartite, our goal is
to deleteenough edges such that no odd cycles exist in the remaining
modified conflict graph. Edge deletion in the conflict graph is achiev
by changing the placement of layout featuss that they no longer
conflict. Thus, with alternating PSM technology we see that manufac-
turability creates highly non-obvious, non-local constraints on the lay-
out. Efficient algorithms that we give below for removing odd cycles
depend orplanarity of G, an assumption that was justified in [9]. Fo ﬁ\

the sake of completeness, we sketch the proof of the following theor
below.

~ connections - ~ - outside
- \ segments
\

Figure 3: Obtaining a cyclic order on edges incident to a given vertex.
(a) The order induced by the segments connecting the centers of adja-
@ ® © cent rectangles is incompatible with a planar embedding. (b) The order
which induces a correct planar embedding.

Figure 2: (a) We assume that there are no conflicts between diago-To fully exploit the planarity of the conflict graph once diagonals
nal pairs (dashed edges) in a set of four features if at least three oftaue been removed, the conflict graph shouldeb®eddednto the
conflicts exist. (b) The subdivision of edges of the conflict graph. (p)ane. Embedding is fully determined by the cyclic order of edges in-
There is no conflict between the left feature and the right feature loident to each vertex (see [18]), i.e., by the cyclic order of vertices
causeB < 2b. adjacent to a given vertex. Note that the order induced by segments

connecting the centers of adjacent rectangles may be incompatible with

a planar embedding, e.g., if rectangles have large aspect ratio (see Fig-
Theorem 2.1 Assume that (i) the minimum feature size w satisfigs wure 3(a)). We use the following cyclic order of adjacent rectangles (see
b, (i) 2b > B and (iii) four rectangles which are pairwise (with theFigure 3(b)). All rectangles adjacent to a given rectarigjlre parti-
possible exception of one pair) in conflict do not have diagonal confligisned into four groups consisting of: (i) rectangles positioned to the
(see Figure 2(a)). Then, the conflict graph G is planar. right of R (i.e., having left side to the right of the right side R¥; (ii)

. ectangles positioned belol® which do not belong to group (i); (iii)

Sketch of proof. For each feature, locate a representative node arRleiangles positioned to the left Bfwhich do not belong to group (ii);
trarily within t_he feature._ For any two features in conflict, choose a P&Rd (iv) rectangles positioned aboRavhich do not belong to groups
of closest points on their boundaries and connect each of these pQitgng (ii). In the ordering, rectangles from group (i) precede those
to the other and to the representative node of its own respective #ga, group (ii), which in turn precede those from group (jii), which in
ture (see Figure 2(b)). In other words, each conflict edge is subdiviggfi hrecede those from group (iv). Inside their respective groups, the
into two connectionsnside features and asutside segmertietween o tangles are sorted (i) in decreasing order of theioordinates, (ii)
features. This subdivision does not affect planarity. For each featyfeyecreasing order of theiecoordinates, (i) in increasing order of
the connections between its representative node and all points Ontﬁé‘ﬁ'y-coordinates, and (iv) in increasing order of theicoordinates.
boundary can be routed without intersections. Any outside segmenkigr the correct planar embedding is established, all instancég of

shorter tharB, therefore, no outside segment can go into a feature K} which cause edge intersections can be detected, and their edge

then leave it because it would then have length at léast B (see Fig- jyiersections removed, in a straightforward way.

ure 2(c)). Thus if two conflict edges intersect, their outside segments

intersect outside of features. 2In the conflict graph with diagonals removed from any instanc&pfrespectively
Suppose thafa, b) and(c,d) are two intersecting outside segments.). any valid phase assignment will assign different phases to endpoints of each of the four

Assume first that two points. savandb. belong to the same feature (respectively three) edges left after removal of diagonals. Therefore, the two endpoints of
p ) S&Y ! g ‘each diagonal are assigned the same phase, and endpoints of different intersecting diagonals

Because(a, b) and_(c,d) interse0t1|a: b| + \C,d\ >_ |a:d| + \b,C\. There- are assigned opposite phases. Our understanding is that for such configurations, this phase
fore, either(a,b) is longer than(a,d) or (c,d) is longer than(c,b), assignmentyields acceptable feature resolution.




3 Removing Odd Cycles From the Conflict Graph The Minimum Distortion Problem

In this section we address the question of removing odd cycles fr general, when an optimal phase assignment IS found, each con-
the conflict graph. We discuss several known methods suggested' sy €9€ that separates two same-phase features induces a minimum
Moniwa et al. and Ooi et al. as well as methods recently suggeste& cing requirement CB between the feature_s. Such a requirement is
[9] ' ' passed to compaction in the form of a spacing constraint. To fully ex-

. . ) . ploit compaction technology and achieve optimal algorithms for phase
Moniwa et al. [12] and Ooi et al. [15] first pos_ed the phase assmﬁgsi nment witminimum layout distortionwe may assign different

ment problem and _suggesteql methods of detect_lng cases When thefgd hts to different conflict edges. With the methods for optimal odd
no YalldsprLase ass;(i:]nr&ent_, |.e.,tw|he23the (éogﬂ'.Ct tgrzliprié:ontalns %£Ie removal that we develop below, even if the conflict edges have
;:yc ?St- u tsequenthy,d Onr']v.vief ﬁ' [ ]I a.';. f0| € t‘f’" [. ]tﬁugges erent weights it is still possible to find the minimum-weight set of
Wo interactive methods which Tully exploit information in the mMasg ;. edges whose deletion makes the conflict graph bipartite. Dur-
layout. The heuristic of Monlwa et al. [13] first constructs the confllq g compaction we may detect spacing constraints (between feature
grath, then creates a .“S.t of all Qdd c_ycles_@husmg an enumera- airs) that are orritical paths i.e., constraints that when increased
tive ?PPfoaCh- The heuristic then |.te'rat|vely finds and deletes the e.aﬁﬁ’ directly increase the size of the layout. It is reasonable to assign
_that IS in trll.e Ergages_t numb_er otfhmlrlmurrg)-leng(;jth odd cycle;_s. Dbelﬁz%ﬂ er weight to conflict edges corresponding to such constraints; lesser
IS accomplished by Increasing the lower bound on separation be ight should be assigned to conflict edges that do not lie on critical
the corresponding features, and then applying a compactor to per
the sha_pe or position of these fegt_ures. This enumerative approach Kte edges and eliminate odd cycles are combined, the weight of a
be feasw_)le for the c_eII layout editing context, but likely does not sc fven conflict edge should reflect the minimum possible cost of break-
to large instances since the number of odd cycles can be exponek |§ hat edge using any of the available methods
in the size of the layout. Moreover, the heuristic does not necessar- ’
ily delete the minimum number of edges, nor will it necessarily select
edges whose deletion will have minimum impact on the layout.

Ooi et al. [16] also suggested a compaction-based method which (i)

produces a symbolic layout from the mask layout; (ii) performs phase Ij-—b
assignment in the symbolic layout; and (iii) compacts the symbolic lay-

s (see Figure 4). Finally, we observe that if several methods to

out using minimum spacing design rules consistent with the phase as-

signment. The advantage of the compaction-based method is that it is

fully automated and guarantees to remove all odd cycles from the con-

flict graph. On the other hand, the phase assignment step is relatively 7

oblivious to details of the mask layout; the ensuing compaction step ///%

may not minimize distortion of the original layout. )
Recently, the following approaches to layout modification and phase

assignment for alternating PSM were proposed in [9]. Figure 4: Critical path between leftmost and rightmost features consists
Iterative coloring and compaction. This approach generalizes the apof thick edges. Thin edges on non-critical paths may be broken for free.
proaches of Ooi et al. [16] and Moniwa et al. [13]. Initially, the layout

is constrained only by the minimum-spacing design rule, i.e., N0 tWo QOptimal phase assignment can be found by solving the following

features can be less than distaficapart. Then the following three proplem.

steps are iteratively applied until the conflict graprbecomes bipar-

\

tite: The Minimum Distortion Problem:  Given a planar grap8 = (V,E)
. ) . with weighted (multiple) edges, find the minimum-weight edgeMet
(i) compact the layout and find the conflict grah such that the grapfV/, E — M) contains no odd cycles.

(ii) find a (minimum) set of edges whose deletion makes the conflict After the Minimum Distortion Problem is solved, i.e., the set of
graphG 2-colorable; and edgeM is determined and deleted, the valid assignment of phases can
be found using breadth-first search. For each connected component of
(iif) add a new spacing constraint (to be enforced by the compactei conflict graph (with each edge weight set to 1), breadth-first search
for each edge in this (minimum) set, such that the pair of featurstarting from arbitrary vertex determines the distance fronto each
connected by this edge must be separated by distance aBleaspther vertexu. If the distance fronv to u is even, thenu is assigned
the same phase as otherwise,v is assigned opposite phase. Such
“One-shot” phase assignmentThis is an improvement over the methdateadth-first search can be performed in linear time.
in Ooi et al. [16]. It consists of the following steps:
4  Exact and Approximate Algorithms for the

(i) find the conflict graptG; Minimum Distortion Problem

I\é{e now present exact and approximate algorithms for finding the mini-
mum-cost set of conflict edges whose deletion eliminates all odd cy-
cles, i.e., solving the Minimum Distortion Problem. Hadlock [5] and
. . o .. Orlova et al. [17] proposed the first exact algorithm, which we describe
(iif) assign phases such that only the conflict edges in this (m'n'mumgsection 4.1. Unfortunately their method cannot be use in practice
set connect features of the same phase; and because it relies on finding all shortest paths between vertices of the
) ) ) ] o dual graph of the conflict graph. This implies using quadratic mem-
(iv) compact the layout with “PSM design rules”, i.e., minimum sefyry as well as cubic runtime. In Section 4.2 we present a new fast
arationB between features that are assigned the same phase, @@t algorithm with linear memory and subquadratic runtime. Sec-
minimum separatiob between features that are assigned diffefon 4.3 discusses approximate algorithms for the Minimum Distortion
ent phases. Problem. Thevoronoi Algorithmdescribed in [9] is based on Voronoi

(ii) find a (minimum) set of edges whose deletion makes the confl
graphG 2-colorable;



graphs and is very fast, but does not always find the optimal matching.
The algorithm suggested by Ooi et al. [16] may be viewed as an e
faster greedy approximation, but has very poor performance (see S
tion 5.1). Section 4.3 describes these two algorithms as well as a
iterated Voronoi algorithm

4.1 Exact Algorithm Z

We use the following definitions. Aeometric dualbf an embedded
planar graplc =< V, E > is a multigrapiD =< F, E > in which nodes
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are the faces oB. If f,g are two faces 06, i.e. two nodes oD, then
an edgee € E of G connectsf with g if e belongs to the both faceis
andg. A reduced duabf G is a graphD =< F,E > obtained fronD

by deleting all but one of the edges that connect a given pair of nod{s

The undeleted edge must be the one of minimal weight.

The Optimal T-join Problem [2]: Given a graphG with weighted
edges, and a subset of nodedind a minimum weight edge sétsuch
that a nodeu is incident to an odd number of edgesfiff ue T.

Lemma 4.1 The Minimum Distortion Problem for a planar graph G i s
equivalent to the Optimal T -join problem in the reduced dual graph 8?

G.
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Figure 5: From the conflicts between features (a), the conflict graph
is derived (b). The dual graph (c) is constructed. The vertices of odd
degree are matched using paths in the dual graph (d), and the corre-
onding conflict edges are determined (e). Finally, the minimum set
conflicts to be deleted is determined (f).

Proof. To eliminate all odd cycles it is sufficient to eliminate odd faceﬁractice. We now provide an approach that is much more efficient in

of the planar grapl@ (see Figure 5). The odd faces Gfcorrespond e case of sparse graphs (note that planar graphs are always sparse, be-

to odd-degree vertices @. Any edge elimination irG corresponds ¢4yse the number of edges is less than six times larger than the number
to edge contraction i, i.e. two faces which share the deleted edg@f nodes).

collapse into a single face. In particular, if we eliminate a set of edges

A'in G, then the resulting nodes of the modified =< F',E\ A> Lemma 4.3 The Optimal T -join problem for a graph with n nodes (and
will correspond to connected components<of, A >, a subgraph of T with t nodes) and m edges can be reduced to the Minimum-Weight
the originalD =< F,E > induced by edges fromA C E. Given such Perfect Matching problem in a graph wittm— 2n—t nodes and/m—

a component with sum of node degretandk edges, the correspond-5n—t edges.

ing node has degreg— 2k (each edge is counted twice in sum of

al . . .
degrees). Thué is a feasible solution if and only if each connecteairog'h We ((j:an e|_||:nl|3nate flrom dcor_15|dderatlog nodes of deg;ehe 0 and
component of< F,A > contains an even number of odd nodes (o ther nodes will be replaced wiadgets Suppose a node has

faces ofG). Moreover, for each feasible solutienC E there exists a
feasible solutiorA C E with weight that is not larger; we obtaffrom
A by replacing multiple edges connecting a pair of nodes/facasdg
with a single edge of minimum weight.

If we defineT to be the set of odd faces & then finding the min-
imum cost feasible solution is the same as solving the Optifitjoin
Problem forD. O

One can find a discussion of tfiejoin Problem in Cook et al. [2],

pp. 166-181. Hadlock [5] and Orlova et al. [17] solved this proble

using the following reduction.

m

neighborauy, ..., uq. Then the gadgdty that replaces the original node

v will contain nodegv,u;),..., (v, ux) and some other nodes. An origi-
nal edge{u, v} will be replaced with{(u,Vv), (v,u)}, with the same cost.
We will also add a number of 0-cost edges to connect each gadget.
This translation will be valid because it will satisfy: (i)M is a per-

fect matching in the new graph, then the set of all original edges with
replacements iM forms aT-join; and (i) if Ais aT-join in the origi-

nal graph, then the set of replacements of the edgés tolgether with
some 0-cost edges, forms a perfect matching.

Property (i) will be assured in the following mannér; will have

an odd number of nodes if and only\vfe T. Thus ifve T, each
perfect matching must contain an odd number of edges with exactly

Lemma 4.2 The Optimal T -join problem for a graph with n nodes cawne endpoint iy, i.e., an odd number of replacements of edges that
be reduced to Minimum-Weight Perfect Matching problem in a comre incident tos. Similarly, if v T, the number of such edges must be

plete graph witHT| nodes.

even.
Property (ii) will be assured as follows. Consider a gadgetWe

Proof. Every minimalT-join is the union of edge sets of edge disjoinyi|| say that the nodes of the foritv,u) are thecontactsof I'y. After
paths that, viewed as edges connecting their endpoints, provide a péfroving any number of contacts frdfg, the set of remaining nodes
fect matching of seT (see [2], p. 168). Thus we can find an optimaf 1, will contain a Hamiltonian path, and thus it will contain a perfect
T-join by finding the minimum weight perfect matching in the grapatching (of 0-cost) if its size is even.

having node set and edge weights being the shortest path lengths in one can easily see in Figure 6 that our gadgets indeed satisfy the

the original graph. O

4.2 Speeding-Up the Exact Algorithm

claimed properties. The above argument does not deal with original
nodes of degree 2; this case is simple and follows from a slightly dif-
ferent argument. ad

The second reduction that defines the algorithm of Hadlock and Orlova 1o solve the problem resulting from the application of Lemma 4.3,
et al. has two drawbacks. First, the reduction itself can be slow, R@s can apply the best algorithm known to date, by Gabow and Tarjan

cause finding all pairwise distances between vertices isftoo time-

(4]

and memory-consuming. Additionally, the resulting instance of the _ ) o _
Minimum-Weight Perfect Matching Problem may have many more edffegorem 4.4 There exists an algorithm that solves the Minimum Dis-
than necessary, and thus itself has too high complexity to be usedoirion Problem in time @(nlogn)®/2)a(n), wherea is the inverse of



(i) each even-degree vertex belongs to the Voronoi region that

3
w0 ul u2 u g ’ w contains the closest vertex h(break ties arbitrarily).
" ;" wo us 3. Construct th&oronoi graph VofG') in which each vertex repre-
v v sents a Voronoi region, and two vertides andR, are adjacent

if a shortest path iG" between the corresponding region centers
is completely contained in the two regions.

4. Find a minimum-weight maximum matchifgin Vor(G').
5. Find the edge s&tM in G that is the union of paths i6' corre-

sponding to edges &fl, which in turn correspond to the edges of
the minimum weighted matching Wor(G').

6. Delete edge¥ M from the conflict graplG and run the Greedy
Algorithm.

(v,u0) (v,ud)

In this work, we suggest an improvétbrated Voronoi Algorithm
which is still fast, but which deletes a smaller number of edges from

Figure 6: Replacing a vertexof the dual graph with a gadget. Thethe conflict graph. _Instea(_j of running the Greedy A_Igorith_m at the final
original (thick) edges have weight 1 and the auxiliary (thin) edges hait€p of the Voronoi Algorithm, the Iterated Voronoi Algorithm deletes
weight 0. The contacts are represented by black circles. (g T, the edges of the dual gragf that correspond to the edges fran,

then it is replaced with a chain of triangles. (byl T then there is an then iteratively finds the new Voronoi graph for vertices corresponding
edge attached to the last triangle. to the new sell. This iterative application of the Voronoi Algorithm

is continued untilT is empty, i.e., until the critical graph is bipartite.
Our experimental results in Section 5 show that the Iterated Voronoi

Ackerman function. Algorithm remains sufficiently fast, and deletes fewer conflict edges, in
comparison to the Voronoi Algorithm of [9].

The oldest polynomial time algorithm for Minimum-Weight Perfect

Matching, invented by Edmonds, establishes a running tin@(of). 5 Implementation Experience

Nevertheless, in practice, the latter algorithm behaves much better Wn . ; " . .
the proven worst case and is the basis for almost all implementati have implemented the “one-shot” method from Section 3;other meth-

that solve the Perfect Matching problem. In our code, we integrate ﬁ'% including several proposed in [9] are also currently under investi-
implementation of Cook and Rohe [3]. gation.

4.3 Fast Approximation Algorithms 5.1 Software Implementation

The exact algorithm from the previous subsection may still be too sIG System has been implemented in C++ on the Solaris 2.6, Sun CC

for processing very large layouts. A naive method, used by Ooi et &2 pl_atform. _Input is (hierarchical) GDSlI that is converted to CIF, then
[16], is to color the conflict graph in a breadth-first manner. In oth&gad into an internal polygon database. There are two major software

words, assign the first color to an arbitrarily chosen feature from edtgMents. _ . )

connected component of the conflict graph. Then, using breadth-first Thephase generataiinds a minimum-cost set of conflict edges for

search, visit all features and assign opposite color to all features @@letion, induces a phase assignment, and generates compaction con-

jacent to already visited features. In case of a non-bipartite conffiéfaints such that the layout remains consistent with the phase assign-

graph, some conflict edges will have the same color assigned to diff8ent. The cod@lossom-IVfor the Minimum-Weight Perfect Match-

ent endpoints. The number of such edges equals the number of edgddy W. Cook and A. Rohe (1998) [3], was obtained from http://www.

that should be deleted in order to make the conflict graph bipartite. TAlsUni-bonn.de/home/rohe/matching.html. _

approach, which we call th@reedy Algorithmis very fast but can give ~ In the one-shot flow, the phase generator creates compaction con-

very large error, i.e., the number of conflict edges with the same pha¥@&ints as follows: if two features are assigned different phases, they

assigned to both ends can be several times larger than for the exadi@f€ minimum separatidn otherwise, they have minimum separation

gorithm (see Section 5.1). B. _(By contrast, in the iterative flow, constraints are specified only for
In [9] a fast algorithm based on the Voronoi graph paradigm of [1Ppirs of features corresponding to broken conflict edges.)

was suggested. Thigoronoi Algorithmis much faster than the exact  Thegraph-based compactdi) generates constraints between fea-

algorithm but may leave some odd cycles. ture edges according to standard design rules and an efficient sweepline
) ) approach, (ii) adds constraints produced by the phase generator, and
Voronoi Algorithm: (iii) stores all constraints as edges of a constraint graph. The com-

. S . pactor then applies the Bellman-Ford algorithm to solve the constraint

L .B“'Ic,j a graphG' which is the geometric dual @&. Each vertex g.an e obtain optimat-coordinates of all edges of all features.
in G' corresponds to a face 1. Each edgee’ between two o implementation generally follows the description of leaf-cell com-
vertices Of(.; corresp_onds to th_e edgethat sepgrat}a_s the t""c’paction given by Bamji and Varadarajan [1]. We consider three types
corresponding faces i@. The weight of an edge! in G'is equal  4f constraints: (ishapeconstraints fix the shape of features which can-
to the weight of the corresponding edgin G. not be changed according to design rules; diierlap constraints en-

2. LetT to denote this set of vertices @& corresponding to odd SUré that features_ will remain elec_trically connected a]_‘@_er _compaction,
faces of the grapls. Partition all vertices irG' into theVoronoi and/or properly aligned between different layers; andgpacingcon-
regionsof the vertices il [11] such that; straints enforce separation design rules (including P_SM-specmc sepa-

ration rules between features of the same or of the different phase).

(i) each Voronoi region contains exactly one vertex from Note that we perforny-compaction the same way that we go
which is thecenterof the Voronoi region, and compaction (after temporarily swappingandy coordinates). In the



Testcases Layoutl Layout2 Layout3
#polygons/#edgeg 3769 | 12442 9775 | 26520] 18249 | 51402
[ Algorithms ] #conflicts | runtime || #conflicts| runtime ]| #conflicts | runtime |
Greedy 2654 .56 2690 3.66 6168 5.38
\Voronoi 2340 2.20 2064 4.69 5050 11.07
Iterated Voronoi 1828 2.35 1554 5.46 3494 13.51
Exact 1468 19.88 1346 16.67 2958 74.33

Table 1: Computational results for phase assignment of layouts with various sizes. The top row gives the number of polygons and the number ¢
conflict edges for each testcase. The bottom four rows contain the numbers of unresolved conflict edges (i.e., the numbers of pairs of polygot
within distanceB with the same phase, which must be resolved by perturbing the layout with a compactor) and runtimes for four phase assignmen
algorithms. All runtimes are in seconds for a 300 MHz Sun Ultra-10 workstation with 128MB RAM.

one-shot flow, we output the new positions of all features after con{5] F. O. Hadlock, “Finding a Maximum Cut of a Planar Graph in

pacting inx andy directions. (By contrast, in the iterative flow, we
return control to the phase generator and continue the iteration until V[’@]
obtain a valid phase assignment for all features.)

5.2 Computational Experience 7
Table 1 summarizes our computational experience with three layouts
of different sizes and densities. All layouts were derived from industry
standard-cell layouts. All runtimes are CPU seconds on a 300 MHz
Sun Ultra-10 workstation with 128MB RAM. We see that our code carg]
handle very large flat designs in reasonable time, and is a promising
basis for phase assignment in alternating PSM at the block level, if nﬁs]
the full-chip level. Table 1 also confirms that the four algorithms stud
ied exhibit a clear trade-off between runtime and the number of unre-
solved conflicts in the resulting valid phase assignment. Moreover, our
new exact method significantly improves over the previous methods of
[16] [9]: it reduces by 40% the number of unresolved conflicts, whidA0]
correspondingly reduces the amount of layout modification needed in
compaction.

In conclusion, we have suggested new optimal and approximate E
ficient algorithms for minimum-cost layout perturbation and confli(ft-:‘l ]
elimination in the dark field (negative photoresist, single exposure) al-
ternating PSM context. Our approach has been integrated with a GDSI|
reader, polygon database and layout compactor. Our preliminary cd##]

putational tests show that our code can assign phases to comparatively

large designs in reasonable time. Other, potentially more powerful ap-
proaches to layout modification and phase assignment for alternafirg)
PSM are currently under investigation. We are also pursuing unified
solutions to the dark-field and bright-field alternating PSM contexts.
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