
Optimal Phase Conflict Removal
for Layout of Dark Field Alternating Phase Shifting Masks�

Piotr Berman†, Andrew B. Kahng, Devendra Vidhani, Huijuan Wang and Alex Zelikovsky‡

UCLA Dept. of Computer Science, Los Angeles, CA 90095-1596,fabk, vidhani, huijuang @cs.ucla.edu
†Dept. of Computer Science and Engineering, Pennsylvania State University, University Park, PA 16802-6106, berman@cse.psu.edu

‡Dept. of Computer Science, Georgia State University, University Plaza, Atlanta, GA 30303, alexz@cs.gsu.edu

Abstract
We describe new, efficient algorithms for layout modification and phase
assignment for dark field alternating-type phase-shifting masks in the
single-exposure regime. We make the following contributions. First,
the problem of minimizing the number of phase conflicts that must be
removed to ensure 2-colorability of the conflict graph is transformed to
theT-join problem. Second, we give new exact and approximate algo-
rithms for the resultingT-join problem. The exact algorithm is linear in
space and substantially faster for sparse graphs than previously known
algorithms. The output of the approximate algorithm is much closer
to the optimum than the algorithm suggested in [9]. These algorithms
are applied within a “one-shot” phase assignment method suggested in
[9] for co-optimization of layout and phase assignment for alternating
phase-shifting masks. Preliminary computational experience is promis-
ing.

1 Introduction
Phase-shifting mask (PSM) technology enables the clear regions of a
mask to transmit light with prescribed phase shift. Consider two adja-
cent clear regions with small separation, and respective phase shifts of
0 and 180 degrees. Light diffracted into the nominally dark region be-
tween the clear regions will interfere destructively; the improved image
contrast leads to better resolution and depth of focus. All PSM vari-
ants employ this basic concept, which was proposed by Levenson et
al. [10] in 1982 (see Figure 1). Along with optical proximity correc-
tion, PSM is enabling to the subwavelength optical lithography upon
which the next several process generations depend. Our work, like that
of Moniwa et al. [12, 13] and Ooi et al. [15, 16], pertains to thedark
field, alternating (or Levenson-type) phase-shifting mask technology
with negative photoresist. In particular, we seek methods compatible
with single-exposurealternating PSM.

As in previous work [15], we use the positive constantsb < B to
define a simplified relationship between printability and the distance
between two clear regions. The distance between any two features can-
not be smaller thanb without violating the minimum spacing design
rule. If the distance between two features is at leastb but smaller than
B, the features are inphase conflict.1 Phase conflict can be resolved by
assigning opposite phases to the conflicting features. In other words,
B defines the minimum spacing rule when two features have the same
phase. If the distance between two features is greater thanB, there is no
phase conflict and the features can be assigned arbitrary phases. Note

�This work was supported by a grant from Cadence Design Systems, Inc.
1More precisely, two features are in phase conflict if (i) there is no pair of points, one

from each feature, whose separation is less thanb; and (ii) there is some pair of points, one
from each feature, whose separation is less thanB.

(a) (b)

Chrome

Glass

Phase Shifter

0 E at mask 0

Conventional Mask Phase Shifting Mask

 E at wafer 0

 I at wafer 0

Apertures

Figure 1: Comparison of diffraction optics of conventional and phase-
shifting masks.E denotes electric field andI denotes intensity. With
the conventional mask (a) light diffracted by two adjacent apertures
constructively interferes, increasing the light intensity in the dark area
of the wafer between the apertures. With the phase-shifting mask (b),
the phase shifter reverses the sign of the electric field, and destructive
interference minimizes light intensity at the wafer in the dark area be-
tween apertures.

that the values ofb andB are layer-dependent. We also letw� b de-
note the minimum allowed width of any feature on the layer of interest.
Finally, we assume that all features are rectilinearly oriented (all edges
axis-parallel) polygons.

The Phase Assignment Problem: Given a layout, assign phases to
all features such that no two conflicting features are assigned the same
phase.

2 Constructing and Planar Embedding of the Conflict
Graph

We now show how to construct aconflict graphcorresponding to a
given layout, such that the assignment of phases to features corresponds
to the coloring of vertices of the conflict graph. We also describe a
planar embedding of the conflict graph. For a given layout of polygo-
nal features, theconflict graph G= (V;E) is constructed by defining a
vertex for each feature, and introducing an edge between two vertices
exactly when the corresponding features are in phase conflict. The con-
flict graph can be constructed inO(nlogn) time, wheren is the total
number of segments in all polygon boundaries. We implement the fol-
lowing construction.

� Slice each feature (polygon) into rectangles by vertical cuts through
all polygon vertices, maintaining a pointer from each rectangle to
its containing polygon.

� Bloat each rectangle by distanceB=2.

� Using sweepline and interval trees, detect conflicts between poly-
gons by finding overlapping pairs of rectangles that belong to
different polygons.

Alternatively, one may detect intersections ofbounding boxesof poly-
gons, then check whether the corresponding polygons actually inter-
sect.

In alternating PSM, we can remove all phase conflicts by assigning
opposite phases to each pair of adjacent vertices in the conflict graph
G. This is equivalent to 2-coloring the vertices ofG with phase 0 and
phase 180. For this to be possible,G must be bipartite, i.e., have no
odd cycles. Hence, if the conflict graphG is not bipartite, our goal is
to deleteenough edges such that no odd cycles exist in the remaining
modified conflict graph. Edge deletion in the conflict graph is achieved
by changing the placement of layout featuresso that they no longer
conflict. Thus, with alternating PSM technology we see that manufac-
turability creates highly non-obvious, non-local constraints on the lay-
out. Efficient algorithms that we give below for removing odd cycles
depend onplanarity of G, an assumption that was justified in [9]. For
the sake of completeness, we sketch the proof of the following theorem
below.

w

>B

bb

����
����
����

����
����
����

��
��
��
��

����
����
����

����
����
����

��
��
��
��
��

��
��
��
��
��

���
���
���

���
���
���

(c)(b)(a)

���
���
���
���

outside
segments

connections

Figure 2: (a) We assume that there are no conflicts between diago-
nal pairs (dashed edges) in a set of four features if at least three other
conflicts exist. (b) The subdivision of edges of the conflict graph. (c)
There is no conflict between the left feature and the right feature be-
causeB� 2b.

Theorem 2.1 Assume that (i) the minimum feature size w satisfies w�
b, (ii) 2b � B and (iii) four rectangles which are pairwise (with the
possible exception of one pair) in conflict do not have diagonal conflicts
(see Figure 2(a)). Then, the conflict graph G is planar.

Sketch of proof. For each feature, locate a representative node arbi-
trarily within the feature. For any two features in conflict, choose a pair
of closest points on their boundaries and connect each of these points
to the other and to the representative node of its own respective fea-
ture (see Figure 2(b)). In other words, each conflict edge is subdivided
into two connectionsinside features and anoutside segmentbetween
features. This subdivision does not affect planarity. For each feature,
the connections between its representative node and all points on the
boundary can be routed without intersections. Any outside segment is
shorter thanB, therefore, no outside segment can go into a feature and
then leave it because it would then have length at least 2b� B (see Fig-
ure 2(c)). Thus if two conflict edges intersect, their outside segments
intersect outside of features.

Suppose that(a;b) and(c;d) are two intersecting outside segments.
Assume first that two points, saya andb, belong to the same feature.
Because(a;b) and(c;d) intersect,ja;bj+ jc;dj > ja;dj+ jb;cj. There-
fore, either(a;b) is longer than(a;d) or (c;d) is longer than(c;b),

which contradicts the definition of the outside segment as a closest pair.
If all four points belong to different features, then it can be shown that
three pairwise distances other than(a;b) and(c;d) between these four
points are smaller thanB, which contradicts assumption (iii). ❑

Let K4 andK0

4 respectively denote an instance of four pairwise ad-
jacent rectangles and an instance of four pairwise adjacent rectangles
with one omitted boundary edge (see Figure 2(a)).Each intersecting pair
of bloated rectangles should be connected by an edge, except when the
edge corresponds to a diagonal of an instance ofK4 or K0

4. There are
two reasons why we omit these diagonals. (1) Any valid phase assign-
ment to vertices of the conflict graph is a valid phase assignment for
the conflict graph without such diagonals, and vice versa.2 (2) By The-
orem 2.1, the conflict graph becomes planar after removal of diagonals
in K4 andK0

4, and phases for planar graphs can be assigned efficiently
in contrast to the case of arbitrary graphs (see Section 4).

2

3

6

7

1

8

45

9 10

I

II

III

IV

(a) (b)

Figure 3: Obtaining a cyclic order on edges incident to a given vertex.
(a) The order induced by the segments connecting the centers of adja-
cent rectangles is incompatible with a planar embedding. (b) The order
which induces a correct planar embedding.

To fully exploit the planarity of the conflict graph once diagonals
have been removed, the conflict graph should beembeddedinto the
plane. Embedding is fully determined by the cyclic order of edges in-
cident to each vertex (see [18]), i.e., by the cyclic order of vertices
adjacent to a given vertex. Note that the order induced by segments
connecting the centers of adjacent rectangles may be incompatible with
a planar embedding, e.g., if rectangles have large aspect ratio (see Fig-
ure 3(a)). We use the following cyclic order of adjacent rectangles (see
Figure 3(b)). All rectangles adjacent to a given rectangleR are parti-
tioned into four groups consisting of: (i) rectangles positioned to the
right of R (i.e., having left side to the right of the right side ofR); (ii)
rectangles positioned belowR which do not belong to group (i); (iii)
rectangles positioned to the left ofRwhich do not belong to group (ii);
and (iv) rectangles positioned aboveR which do not belong to groups
(i) and (iii). In the ordering, rectangles from group (i) precede those
from group (ii), which in turn precede those from group (iii), which in
turn precede those from group (iv). Inside their respective groups, the
rectangles are sorted (i) in decreasing order of theiry-coordinates, (ii)
in decreasing order of theirx-coordinates, (iii) in increasing order of
their y-coordinates, and (iv) in increasing order of theirx-coordinates.
After the correct planar embedding is established, all instances ofK4
andK0

4 which cause edge intersections can be detected, and their edge
intersections removed, in a straightforward way.

2In the conflict graph with diagonals removed from any instance ofK4 (respectively
K 0

4), any valid phase assignment will assign different phases to endpoints of each of the four
(respectively three) edges left after removal of diagonals. Therefore, the two endpoints of
each diagonal are assigned the same phase, and endpoints of different intersecting diagonals
are assigned opposite phases. Our understanding is that for such configurations, this phase
assignment yields acceptable feature resolution.

3 Removing Odd Cycles From the Conflict Graph

In this section we address the question of removing odd cycles from
the conflict graph. We discuss several known methods suggested by
Moniwa et al. and Ooi et al. as well as methods recently suggested in
[9].

Moniwa et al. [12] and Ooi et al. [15] first posed the phase assign-
ment problem and suggested methods of detecting cases when there is
no valid phase assignment, i.e., when the conflict graph contains odd
cycles. Subsequently, Moniwa et al. [13] and Ooi et al. [16] suggested
two interactive methods which fully exploit information in the mask
layout. The heuristic of Moniwa et al. [13] first constructs the conflict
graphG, then creates a list of all odd cycles inG using an enumera-
tive approach. The heuristic then iteratively finds and deletes the edge
that is in the greatest number of minimum-length odd cycles. Deletion
is accomplished by increasing the lower bound on separation between
the corresponding features, and then applying a compactor to perturb
the shape or position of these features. This enumerative approach may
be feasible for the cell layout editing context, but likely does not scale
to large instances since the number of odd cycles can be exponential
in the size of the layout. Moreover, the heuristic does not necessar-
ily delete the minimum number of edges, nor will it necessarily select
edges whose deletion will have minimum impact on the layout.

Ooi et al. [16] also suggested a compaction-based method which (i)
produces a symbolic layout from the mask layout; (ii) performs phase
assignment in the symbolic layout; and (iii) compacts the symbolic lay-
out using minimum spacing design rules consistent with the phase as-
signment. The advantage of the compaction-based method is that it is
fully automated and guarantees to remove all odd cycles from the con-
flict graph. On the other hand, the phase assignment step is relatively
oblivious to details of the mask layout; the ensuing compaction step
may not minimize distortion of the original layout.

Recently, the following approaches to layout modification and phase
assignment for alternating PSM were proposed in [9].
Iterative coloring and compaction. This approach generalizes the ap-
proaches of Ooi et al. [16] and Moniwa et al. [13]. Initially, the layout
is constrained only by the minimum-spacing design rule, i.e., no two
features can be less than distanceb apart. Then the following three
steps are iteratively applied until the conflict graphG becomes bipar-
tite:

(i) compact the layout and find the conflict graphG;

(ii) find a (minimum) set of edges whose deletion makes the conflict
graphG 2-colorable; and

(iii) add a new spacing constraint (to be enforced by the compactor)
for each edge in this (minimum) set, such that the pair of features
connected by this edge must be separated by distance at leastB.

“One-shot” phase assignment.This is an improvement over the method
in Ooi et al. [16]. It consists of the following steps:

(i) find the conflict graphG;

(ii) find a (minimum) set of edges whose deletion makes the conflict
graphG 2-colorable;

(iii) assign phases such that only the conflict edges in this (minimum)
set connect features of the same phase; and

(iv) compact the layout with “PSM design rules”, i.e., minimum sep-
arationB between features that are assigned the same phase, and
minimum separationb between features that are assigned differ-
ent phases.

The Minimum Distortion Problem
In general, when an optimal phase assignment is found, each con-
flict edge that separates two same-phase features induces a minimum
spacing requirement ofB between the features. Such a requirement is
passed to compaction in the form of a spacing constraint. To fully ex-
ploit compaction technology and achieve optimal algorithms for phase
assignment withminimum layout distortion, we may assign different
weights to different conflict edges. With the methods for optimal odd
cycle removal that we develop below, even if the conflict edges have
different weights it is still possible to find the minimum-weight set of
conflict edges whose deletion makes the conflict graph bipartite. Dur-
ing compaction we may detect spacing constraints (between feature
pairs) that are oncritical paths, i.e., constraints that when increased
will directly increase the size of the layout. It is reasonable to assign
larger weight to conflict edges corresponding to such constraints; lesser
weight should be assigned to conflict edges that do not lie on critical
paths (see Figure 4). Finally, we observe that if several methods to
delete edges and eliminate odd cycles are combined, the weight of a
given conflict edge should reflect the minimum possible cost of break-
ing that edge using any of the available methods.

��������
��������
��������

��������
��������
��������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

Figure 4: Critical path between leftmost and rightmost features consists
of thick edges. Thin edges on non-critical paths may be broken for free.

Optimal phase assignment can be found by solving the following
problem.

The Minimum Distortion Problem: Given a planar graphG=(V;E)
with weighted (multiple) edges, find the minimum-weight edge setM
such that the graph(V;E�M) contains no odd cycles.

After the Minimum Distortion Problem is solved, i.e., the set of
edgesM is determined and deleted, the valid assignment of phases can
be found using breadth-first search. For each connected component of
the conflict graph (with each edge weight set to 1), breadth-first search
starting from arbitrary vertexv determines the distance fromv to each
other vertexu. If the distance fromv to u is even, thenu is assigned
the same phase asv; otherwise,v is assigned opposite phase. Such
breadth-first search can be performed in linear time.

4 Exact and Approximate Algorithms for the
Minimum Distortion Problem

We now present exact and approximate algorithms for finding the mini-
mum-cost set of conflict edges whose deletion eliminates all odd cy-
cles, i.e., solving the Minimum Distortion Problem. Hadlock [5] and
Orlova et al. [17] proposed the first exact algorithm, which we describe
in Section 4.1. Unfortunately their method cannot be use in practice
because it relies on finding all shortest paths between vertices of the
dual graph of the conflict graph. This implies using quadratic mem-
ory as well as cubic runtime. In Section 4.2 we present a new fast
exact algorithm with linear memory and subquadratic runtime. Sec-
tion 4.3 discusses approximate algorithms for the Minimum Distortion
Problem. TheVoronoi Algorithmdescribed in [9] is based on Voronoi

graphs and is very fast, but does not always find the optimal matching.
The algorithm suggested by Ooi et al. [16] may be viewed as an even
faster greedy approximation, but has very poor performance (see Sec-
tion 5.1). Section 4.3 describes these two algorithms as well as a new
iterated Voronoi algorithm.

4.1 Exact Algorithm
We use the following definitions. Ageometric dualof an embedded
planar graphG=<V;E > is a multigraphD=< F;E> in which nodes
are the faces ofG. If f ;g are two faces ofG, i.e. two nodes ofD, then
an edgee2 E of G connectsf with g if e belongs to the both facesf
andg. A reduced dualof G is a graphD̄ =< F; Ē > obtained fromD
by deleting all but one of the edges that connect a given pair of nodes.
The undeleted edge must be the one of minimal weight.

The Optimal T-join Problem [2] : Given a graphG with weighted
edges, and a subset of nodesT, find a minimum weight edge setA such
that a nodeu is incident to an odd number of edges ofA iff u2 T.

Lemma 4.1 The Minimum Distortion Problem for a planar graph G is
equivalent to the Optimal T-join problem in the reduced dual graph of
G.

Proof. To eliminate all odd cycles it is sufficient to eliminate odd faces
of the planar graphG (see Figure 5). The odd faces ofG correspond
to odd-degree vertices ofD. Any edge elimination inG corresponds
to edge contraction inD, i.e. two faces which share the deleted edge
collapse into a single face. In particular, if we eliminate a set of edges
A in G, then the resulting nodes of the modifiedD0 =< F 0;E nA >
will correspond to connected components of< F;A>, a subgraph of
the originalD =< F;E > induced by edges fromA� E. Given such
a component with sum of node degreesd andk edges, the correspond-
ing node has degreed�2k (each edge is counted twice in sum of all
degrees). ThusA is a feasible solution if and only if each connected
component of< F;A > contains an even number of odd nodes (odd
faces ofG). Moreover, for each feasible solutionA� E there exists a
feasible solution̄A� Ē with weight that is not larger; we obtain̄A from
A by replacing multiple edges connecting a pair of nodes/facesf andg
with a single edge of minimum weight.

If we defineT to be the set of odd faces ofG, then finding the min-
imum cost feasible solution is the same as solving the OptimumT-join
Problem forD̄. ❑

One can find a discussion of theT-join Problem in Cook et al. [2],
pp. 166-181. Hadlock [5] and Orlova et al. [17] solved this problem
using the following reduction.

Lemma 4.2 The Optimal T-join problem for a graph with n nodes can
be reduced to Minimum-Weight Perfect Matching problem in a com-
plete graph withjTj nodes.

Proof. Every minimalT-join is the union of edge sets of edge disjoint
paths that, viewed as edges connecting their endpoints, provide a per-
fect matching of setT (see [2], p. 168). Thus we can find an optimal
T-join by finding the minimum weight perfect matching in the graph
having node setT and edge weights being the shortest path lengths in
the original graph. ❑

4.2 Speeding-Up the Exact Algorithm
The second reduction that defines the algorithm of Hadlock and Orlova
et al. has two drawbacks. First, the reduction itself can be slow, be-
cause finding all pairwise distances between vertices ofT is too time-
and memory-consuming. Additionally, the resulting instance of the
Minimum-Weight Perfect Matching Problem may have many more edges
than necessary, and thus itself has too high complexity to be used in

(f) (e)

(b) (c)

(d)

(a)

��

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�� ����

�
�
�
� ����

��

����

��
��
��
��
���
���
���
���

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�

�
�
�

����

��
��
��
��

����

���� ��

�
�
�
�

Figure 5: From the conflicts between features (a), the conflict graph
is derived (b). The dual graph (c) is constructed. The vertices of odd
degree are matched using paths in the dual graph (d), and the corre-
sponding conflict edges are determined (e). Finally, the minimum set
of conflicts to be deleted is determined (f).

practice. We now provide an approach that is much more efficient in
the case of sparse graphs (note that planar graphs are always sparse, be-
cause the number of edges is less than six times larger than the number
of nodes).

Lemma 4.3 The Optimal T-join problem for a graph with n nodes (and
T with t nodes) and m edges can be reduced to the Minimum-Weight
Perfect Matching problem in a graph with4m�2n� t nodes and7m�
5n� t edges.

Proof. We can eliminate from consideration nodes of degree 0 and
1. Other nodes will be replaced withgadgets. Suppose a nodev has
neighborsu1; : : : ;ud. Then the gadgetΓv that replaces the original node
v will contain nodes(v;u1); : : : ;(v;uk) and some other nodes. An origi-
nal edgefu;vg will be replaced withf(u;v);(v;u)g, with the same cost.
We will also add a number of 0-cost edges to connect each gadget.
This translation will be valid because it will satisfy: (i) ifM is a per-
fect matching in the new graph, then the set of all original edges with
replacements inM forms aT-join; and (ii) if A is aT-join in the origi-
nal graph, then the set of replacements of the edges ofA, together with
some 0-cost edges, forms a perfect matching.

Property (i) will be assured in the following manner:Γv will have
an odd number of nodes if and only ifv 2 T. Thus if v 2 T, each
perfect matching must contain an odd number of edges with exactly
one endpoint inΓv, i.e., an odd number of replacements of edges that
are incident tov. Similarly, if v 62 T, the number of such edges must be
even.

Property (ii) will be assured as follows. Consider a gadgetΓv. We
will say that the nodes of the form(v;u) are thecontactsof Γv. After
removing any number of contacts fromΓv, the set of remaining nodes
of Γv will contain a Hamiltonian path, and thus it will contain a perfect
matching (of 0-cost) if its size is even.

One can easily see in Figure 6 that our gadgets indeed satisfy the
claimed properties. The above argument does not deal with original
nodes of degree 2; this case is simple and follows from a slightly dif-
ferent argument. ❑

To solve the problem resulting from the application of Lemma 4.3,
we can apply the best algorithm known to date, by Gabow and Tarjan
[4]

Theorem 4.4 There exists an algorithm that solves the Minimum Dis-
tortion Problem in time O((nlogn)3=2)α(n), whereα is the inverse of

v

u4 u3

u2u1
u0

u5

(v,u5)

(b)(a)

u0

u1 u2

u3

u4

(v,u0)

(v,u1)

(v,u4)

(v,u2) (v,u3)

v

u2 u3

u4

u5u0

u1

u2 u3

u4(v,u2) (v,u3)
(v,u4)

u0

u1

(v,u0)

(v,u1)

Figure 6: Replacing a vertexv of the dual graph with a gadget. The
original (thick) edges have weight 1 and the auxiliary (thin) edges have
weight 0. The contacts are represented by black circles. (a) Ifv2 T,
then it is replaced with a chain of triangles. (b) Ifv 62 T then there is an
edge attached to the last triangle.

Ackerman function.

The oldest polynomial time algorithm for Minimum-Weight Perfect
Matching, invented by Edmonds, establishes a running time ofO(n4).
Nevertheless, in practice, the latter algorithm behaves much better than
the proven worst case and is the basis for almost all implementations
that solve the Perfect Matching problem. In our code, we integrate the
implementation of Cook and Rohe [3].

4.3 Fast Approximation Algorithms
The exact algorithm from the previous subsection may still be too slow
for processing very large layouts. A naive method, used by Ooi et al.
[16], is to color the conflict graph in a breadth-first manner. In other
words, assign the first color to an arbitrarily chosen feature from each
connected component of the conflict graph. Then, using breadth-first
search, visit all features and assign opposite color to all features ad-
jacent to already visited features. In case of a non-bipartite conflict
graph, some conflict edges will have the same color assigned to differ-
ent endpoints. The number of such edges equals the number of edges
that should be deleted in order to make the conflict graph bipartite. This
approach, which we call theGreedy Algorithm, is very fast but can give
very large error, i.e., the number of conflict edges with the same phase
assigned to both ends can be several times larger than for the exact al-
gorithm (see Section 5.1).

In [9] a fast algorithm based on the Voronoi graph paradigm of [11]
was suggested. ThisVoronoi Algorithmis much faster than the exact
algorithm but may leave some odd cycles.

Voronoi Algorithm:

1. Build a graphG0 which is the geometric dual ofG. Each vertex
in G0 corresponds to a face inG. Each edgee0 between two
vertices ofG0 corresponds to the edgee that separates the two
corresponding faces inG. The weight of an edgee0 in G0 is equal
to the weight of the corresponding edgee in G.

2. Let T to denote this set of vertices inG0 corresponding to odd
faces of the graphG. Partition all vertices inG0 into theVoronoi
regionsof the vertices inT [11] such that:

(i) each Voronoi region contains exactly one vertex fromT,
which is thecenterof the Voronoi region, and

(ii) each even-degree vertex belongs to the Voronoi region that
contains the closest vertex inT (break ties arbitrarily).

3. Construct theVoronoi graph Vor(G0) in which each vertex repre-
sents a Voronoi region, and two verticesR1 andR2 are adjacent
if a shortest path inG0 between the corresponding region centers
is completely contained in the two regions.

4. Find a minimum-weight maximum matchingM in Vor(G0).

5. Find the edge setVM in G that is the union of paths inG0 corre-
sponding to edges ofM, which in turn correspond to the edges of
the minimum weighted matching inVor(G0).

6. Delete edgesVM from the conflict graphG and run the Greedy
Algorithm.

In this work, we suggest an improvedIterated Voronoi Algorithm
which is still fast, but which deletes a smaller number of edges from
the conflict graph. Instead of running the Greedy Algorithm at the final
step of the Voronoi Algorithm, the Iterated Voronoi Algorithm deletes
the edges of the dual graphG0 that correspond to the edges fromVM,
then iteratively finds the new Voronoi graph for vertices corresponding
to the new setT. This iterative application of the Voronoi Algorithm
is continued untilT is empty, i.e., until the critical graph is bipartite.
Our experimental results in Section 5 show that the Iterated Voronoi
Algorithm remains sufficiently fast, and deletes fewer conflict edges, in
comparison to the Voronoi Algorithm of [9].

5 Implementation Experience
We have implemented the “one-shot” method from Section 3;other meth-
ods including several proposed in [9] are also currently under investi-
gation.

5.1 Software Implementation
Our system has been implemented in C++ on the Solaris 2.6, Sun CC
4.2 platform. Input is (hierarchical) GDSII that is converted to CIF, then
read into an internal polygon database. There are two major software
elements.

Thephase generatorfinds a minimum-cost set of conflict edges for
deletion, induces a phase assignment, and generates compaction con-
straints such that the layout remains consistent with the phase assign-
ment. The codeBlossom-IVfor the Minimum-Weight Perfect Match-
ing, by W. Cook and A. Rohe (1998) [3], was obtained from http://www.
or.uni-bonn.de/home/rohe/matching.html.

In the one-shot flow, the phase generator creates compaction con-
straints as follows: if two features are assigned different phases, they
have minimum separationb; otherwise, they have minimum separation
B. (By contrast, in the iterative flow, constraints are specified only for
pairs of features corresponding to broken conflict edges.)

Thegraph-based compactor(i) generates constraints between fea-
ture edges according to standard design rules and an efficient sweepline
approach, (ii) adds constraints produced by the phase generator, and
(iii) stores all constraints as edges of a constraint graph. The com-
pactor then applies the Bellman-Ford algorithm to solve the constraint
graph, i.e., obtain optimalx-coordinates of all edges of all features.
Our implementation generally follows the description of leaf-cell com-
paction given by Bamji and Varadarajan [1]. We consider three types
of constraints: (i)shapeconstraints fix the shape of features which can-
not be changed according to design rules; (ii)overlapconstraints en-
sure that features will remain electrically connected after compaction,
and/or properly aligned between different layers; and (iii)spacingcon-
straints enforce separation design rules (including PSM-specific sepa-
ration rules between features of the same or of the different phase).

Note that we performy-compaction the same way that we dox-
compaction (after temporarily swappingx andy coordinates). In the

Testcases Layout1 Layout2 Layout3
#polygons/#edges 3769 12442 9775 26520 18249 51402

Algorithms #conflicts runtime #conflicts runtime #conflicts runtime
Greedy 2654 .56 2690 3.66 6168 5.38
Voronoi 2340 2.20 2064 4.69 5050 11.07

Iterated Voronoi 1828 2.35 1554 5.46 3494 13.51
Exact 1468 19.88 1346 16.67 2958 74.33

Table 1: Computational results for phase assignment of layouts with various sizes. The top row gives the number of polygons and the number of
conflict edges for each testcase. The bottom four rows contain the numbers of unresolved conflict edges (i.e., the numbers of pairs of polygons
within distanceB with the same phase, which must be resolved by perturbing the layout with a compactor) and runtimes for four phase assignment
algorithms. All runtimes are in seconds for a 300 MHz Sun Ultra-10 workstation with 128MB RAM.

one-shot flow, we output the new positions of all features after com-
pacting inx and y directions. (By contrast, in the iterative flow, we
return control to the phase generator and continue the iteration until we
obtain a valid phase assignment for all features.)

5.2 Computational Experience

Table 1 summarizes our computational experience with three layouts
of different sizes and densities. All layouts were derived from industry
standard-cell layouts. All runtimes are CPU seconds on a 300 MHz
Sun Ultra-10 workstation with 128MB RAM. We see that our code can
handle very large flat designs in reasonable time, and is a promising
basis for phase assignment in alternating PSM at the block level, if not
the full-chip level. Table 1 also confirms that the four algorithms stud-
ied exhibit a clear trade-off between runtime and the number of unre-
solved conflicts in the resulting valid phase assignment. Moreover, our
new exact method significantly improves over the previous methods of
[16] [9]: it reduces by 40% the number of unresolved conflicts, which
correspondingly reduces the amount of layout modification needed in
compaction.

In conclusion, we have suggested new optimal and approximate ef-
ficient algorithms for minimum-cost layout perturbation and conflict
elimination in the dark field (negative photoresist, single exposure) al-
ternating PSM context. Our approach has been integrated with a GDSII
reader, polygon database and layout compactor. Our preliminary com-
putational tests show that our code can assign phases to comparatively
large designs in reasonable time. Other, potentially more powerful ap-
proaches to layout modification and phase assignment for alternating
PSM are currently under investigation. We are also pursuing unified
solutions to the dark-field and bright-field alternating PSM contexts.

Acknowledgments

We thank Andrew Caldwell, Stefanus Mantik and Igor Markov for crit-
ical assistance in our software development.

REFERENCES

[1] C. Bamji and R. Varadarajan,Leaf Cell and Hierarchical Com-
paction Techniques, Kluwer Academic Publishers, Boston, 1997.

[2] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank and A.
Shrijver,Combinatorial Optimization, Willey Inter-Science, New
York, 1998.

[3] W. Cook and A. Rohe, “Computing Minimum-Weight Per-
fect Matchings”, manuscript, August, 1998.http://www.or.uni-
bonn.de/home/rohe/matching.html.

[4] H. N. Gabow and R. E. Tarjan, “Faster scaling algorithms for gen-
eral graph matching problems”, Journal of the ACM 38 (1991)
815-853.

[5] F. O. Hadlock, “Finding a Maximum Cut of a Planar Graph in
Polynomial Time”,SIAM J. Computing4(3) (1975), pp. 221-225.

[6] A. B. Kahng, G. Robins, A. Singh, H. Wang and A. Ze-
likovsky, “Filling and Slotting: Analysis and Algorithms”,Proc.
ACM/IEEE Intl. Symp. on Physical Design, 1998, pp. 95-102.

[7] A. B. Kahng, G. Robins, A. Singh and A. Zelikovsky, “Filling Al-
gorithms and Analyses for Layout Density Control”,IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Sys-
tems, to appear.

[8] A. B. Kahng and H. Wang, “Toward Lithography-Aware Layout:
Preliminary Litho Notes”, manuscript, July 1997.

[9] A. B. Kahng, H. Wang and A. Zelikovsky, “Automated Lay-
out and Phase Assignment Techniques for Dark Field Alternat-
ing PSM”, SPIE 11th Annual BACUS Symposium on Photomask
Technology, SPIE 1604 (1998), pp. 222-231.

[10] M. D. Levenson, N. S. Viswanathan and R. A. Simpson, “Improv-
ing Resolution in Photolithography with a Phase-Shifting Mask”,
IEEE Trans. on Electron DevicesED-29(11) (1982), pp. 1828-
1836.

[11] K. Mehlhorn, “A Faster Approximation Algorithm for the Steiner
Problem in Graphs”,Information Processing Letters27 (1988),
pp. 125-128.

[12] A. Moniwa, T. Terasawa, N. Hasegawa and S. Okazaki, “Algo-
rithm for Phase-Shift Mask Design with Priority on Shifter Place-
ment”,Jpn. J. Appl. Phys.32 (1993), pp. 5874-5879.

[13] A. Moniwa, T. Terasawa, K. Nakajo, J. Sakemi and S. Okazaki,
“Heuristic Method for Phase-Conflict Minimization in Automatic
Phase-Shift Mask Design”,Jpn. J. Appl. Phys.34 (1995), pp.
6584-6589.

[14] J. Nistler, G. Hughes, A. Muray and J. Wiley, “Issues Associated
with the Commercialization of Phase Shift Masks”,SPIE 11th
Annual BACUS Symposium on Photomask Technology, SPIE 1604
(1991), pp. 236-264.

[15] K. Ooi, S. Hara and K. Koyama, “Computer Aided Design Soft-
ware for Designing Phase-Shifting Masks”,Jpn. J. Appl. Phys.32
(1993), pp. 5887-5891.

[16] K. Ooi, K. Koyama and M. Kiryu, “Method of Designing Phase-
Shifting Masks Utilizing a Compactor”,Jpn. J. Appl. Phys.33
(1994), pp. 6774-6778.

[17] G. I. Orlova and Y. G. Dorfman, “Finding the Maximum Cut in a
Graph”,Engr. Cybernetics10 (1972), pp. 502-506.

[18] F. P. Preparata and M. I. Shamos,Computational Geometry: An
Introduction, Springer-Verlag, New York, 1985.

