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In this paper we address the problem of optimizing an unbalanced Mach-Zehnder interferometer,
for a given pure input state and considering a specific detection scheme. While the optimum trans-
mission coefficient of the first beam splitter can be uniquely determined via the quantum Fisher
information only [Phys. Rev. A 105, 012604 (2022)], the second beam splitter transmission coeffi-
cient is detection-scheme dependent, too. We systematically give analytic solutions for the optimum
transmission coefficient of the second beam splitter for three types of widely used detection schemes.
We provide detailed examples including both Gaussian and non-Gaussian input states, showing when
an unbalanced Mach-Zehnder interferometer can outperform its balanced counterpart in terms of
phase sensitivity.

I. INTRODUCTION

Optical interferometers, alongside with their atomic
counterparts, are among the most precise metrological
devices when it comes to detection of small signals. It is
no accident that LIGO [1] and Virgo [2] are laser-based
interferometers. Quantum enhanced metrology [3, 4]
promises significant precision improvements in different
areas of quantum technologies [5], gravitational wave as-
tronomy [6, 7], quantum-enhanced dark matter searches
[8] and biological samples measurements [9, 10]. The en-
gineering of strong squeezed vacuum states of light is a
key technology for the reduction of quantum noise [11].
By using classical resources one can arrive at the so-

called shot-noise limit, ∆ϕSNL ∼ 1/
√
N̄ , where N̄ de-

notes the average number of input photons [12]. Em-
ploying quantum resources, such as squeezed [4, 13–15],
NOON [16] or other non-classical [17, 18] states one can
approach the ultimate quantum limit ∆ϕHL ∼ 1/N̄ also
called as the Heisenberg limit (HL) [19].
In this work we focus on the phase sensitivity of a

Mach-Zehnder interferometer (MZI), however, as it is
well known [14, 20], most interferometers can be mapped
into a MZI.
Achieving the theoretically best phase sensitivity for

an interferometer is an important goal, since one would
like to optimize over all possible estimators and for all
possible detection schemes. The answer to this problem
is given by the quantum Fisher information (QFI) [21–
24]. The QFI’s (F) pivotal importance stems from its
connection to the quantum Cramér-Rao bound (QCRB),

i. e. ∆ϕQCRB = 1/
√
F . Thus, the phase sensitivity of

any practical detection scheme is bound to be ∆ϕdet ≥
∆ϕQCRB .
However, it was realized that by employing the above

(single-parameter QFI) definition leads to an over-
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estimation of the available performance [25]. It was thus
realized that the role of a potentially available (even
if not explicitly used) external phase reference [20, 25]
should not be neglected. Proper ways to discard re-
sources that are actually unavailable have been put for-
ward [25]. These include input state phase averaging and
the introduction of the two-parameter QFI [25, 26]. How-
ever, an external phase reference is often available, and
thus the aforementioned single-parameter QFI yields an
attainable performance [27].

The phase sensitivity of a balanced Mach-Zehnder in-
terferometer (MZI) depends on a number of parameters,
including the input state [27–32] and the employed de-
tection scheme [33, 34].

Among the proposed input states we mention the large
class of Gaussian states which includes the coherent plus
squeezed vacuum [4, 13], squeezed coherent plus squeezed
vacuum [29, 35] and squeezed coherent plus squeezed co-
herent [29, 36] input states. When it applies, we also
discuss the important role of the input phase-matching
conditions (PMC) [28, 29, 37].

When the input state is non-Gaussian, aside from the
well-known NOON [16] states, the coherent plus Fock in-
put [17] has been shown to have a quantum metrological
interest.

When considering an unbalanced MZI [27, 38, 39], the
transmission coefficients of the two BS come also into
play. As discussed in reference [40], the first BS can
be unequivocally optimized via the QFI. Although the
balanced (50:50) MZI scenario yields the optimal two-
parameter QFI a large class of input states, this is no
longer true when an external phase reference available
[27].

Many detection schemes have been reported in the lit-
erature [41–46] including difference intensity (also called
direct detection) [28, 34], single mode [28, 34, 41], bal-
anced homodyne [41, 42] and parity [44, 46] detection.

In this paper we address the optimization in terms of
the phase sensitivity for an unbalanced MZI. The input
state is assumed to be pure and the optimization is car-
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ried out for each considered detection scheme. As men-
tioned previously, the transmission coefficient of the first
BS can be unambiguosly optimized with the help of QFI
[40]. We thus thoroughly address the second beam split-
ter’s transmission coefficient and the working point’s op-
timization for each considered detection scheme. We give
analytical solutions for all the optima involved. We are
also able to explain many previously results reported in
the literature.
Examples are given for a number of Gaussian [29, 35,

41] and non-Gaussian [17] input states, outlining situa-
tions when an unbalanced MZI can outperform its bal-
anced counterpart in terms of phase sensitivity.
This paper is structured as follows. In Section II we

describe our interferometric setup, make some notation
conventions, introduce the quantum Fisher information
and provide the quantum Cramér-Rao bound. In Sec-
tion III we characterize in detail the three considered
detection schemes. In Section IV we describe the general
phase sensitivity optimization procedure in the sense of
minimizing the phase uncertainty ∆ϕ. We thoroughly
discuss via examples our results in Section V. Finally,
conclusions are drawn in Section VI.

II. INTERFEROMETRIC SETUP

We consider the Mach-Zehnder interferometric setup
depicted in Fig. 1. The input state is assumed pure and
the interferometer is characterized by the two beam split-
ters having transmission coefficients T (for BS1), respec-
tively, T ′ (for BS2). We consider the most general sce-
nario encompassing two internal phase shifts, ϕ1 (ϕ2) in
the upper (lower) arm of the interferometer.
Energy conservation for a symmetrical (i. e. thin-

film) beam splitter imposes the usual constraints
|T |2 + |R|2 = 1 and T ∗R+TR∗ = 0 [47]. Here R denotes
the reflection coefficient of the first beam splitter (BS1).
Throughout this work we will use the parametrization

{
T = cos ϑ

2

R = i sin ϑ
2

(1)

and similarly for BS2,

{
T ′ = cos ϑ′

2

R′ = i sin ϑ′

2 ,
(2)

where R′ denotes the reflection coefficient of the second
beam splitter and {ϑ, ϑ′} ∈ [0, π]. We introduce the input
Schwinger pseudo-angular momentum operators [48, 49],

Ĵx =
â†0â1 + â0â

†
1

2
, (3)

Ĵy =
â†0â1 − â0â

†
1

2i
, (4)

FIG. 1. The interferometric experimental setup considered in
this work. The transmission coefficient (T ) of the first beam
splitter is optimized via the QFI, as discussed in reference
[40]. The transmission coefficient of the second BS (T ′) is
optimized by taking into account the specific detection scheme
employed.

and

Ĵz =
â†0â0 − â†1â1

2
, (5)

where âl (â†l ) denote the usual annihilation (creation)
operators for the input modes l = 0, 1 [47]. We also
introduce the input total photon number operator,

N̂ = n̂0 + n̂1, (6)

where n̂l = â†l âl denotes the usual number operator for
a mode l.

A. First BS optimization via QFI

We encounter two main scenarios in this optimization
and we briefly outline them below. In the case when no
external phase reference in available, the only relevant
phase information is

ϕ = ϕ2 − ϕ1, (7)

and one needs to use the so-called two-parameter QFI
in order to discharge resources that are unavailable. We
thus introduce the two-parameter quantum Fisher infor-
mation [25, 27, 29, 40] (see details in Appendix A),

F (2p) = Fdd −
F2

sd

Fss

, (8)

and this QFI implies the QCRB,

∆ϕ
(2p)
QCRB =

1√
F (2p)

. (9)

This limit will be relevant especially for the difference-
intensity (direct) detection scheme described in Section



3

IIIA and for the single-mode intensity detection scheme
described in Section III B.
The optimum transmission coefficient T

(2p)
opt of the first

beam splitter that maximizes the two-parameter QFI (8)
is found in reference [40], Section VA. In all performance
plots from Section V involving a detection scheme having
no access to an external reference, we will assume for

the first BS the transmission coefficient T
(2p)
opt , thus in all

future calculations we will consider ϑ = 2 arccosT
(2p)
opt .

If an external phase reference is available and assuming
the internal phase shift convention [40],

{
ϕ1 = 0
ϕ2 = ϕ,

(10)

the (asymmetric) single-parameter QFI [25, 27, 40],

F (i) = 4∆2n̂3 (11)

must be employed (see also Appendix A). The single-
parameter QFI F (i) implies the QCRB

∆ϕ
(i)
QCRB =

1√
F (i)

. (12)

The optimum transmission coefficient T
(i)
opt of the first

beam splitter that maximizes the asymmetric single-
parameter QFI (11) is given in reference [40], Section
VB. All performance plots from Section V involving a
balanced homodyne detection (BHD) scheme will use the
convention from Eq. (10) and also assume that BS1 is

characterized by T
(i)
opt, thus in all calculations we will use

ϑ = 2 arccosT
(i)
opt.

We mention that a sub-case to the scenario with an
external phase reference is possible, namely by replacing
Eq. (10) with the convention

{
ϕ1 = −ϕ

2
ϕ2 = ϕ

2 .
(13)

As discussed in the literature [25, 27, 40], this ±ϕ/2
scenario is described by the QFI F (ii) = ∆2(n̂2 − n̂3)
[25] that can also be expressed in respect with the two-
parameter Fisher matrix elements as F (ii) = Fdd [40].

This QFI implies the QCRB ∆ϕ
(ii)
QCRB = 1/

√
F (ii). Since

this ±ϕ/2 convention presents little interest for an un-
balanced MZI scenario, we will not consider it in this
work.

B. Field operator transformations for an

unbalanced MZI

We have the input-output field operator transforma-
tions,

{
â4 = A40â0 +A41â1
â5 = A50â0 +A51â1,

(14)

where the A-coefficients are given by (see e. g. [50, 51])





A40 = TT ′e−iϕ1 +RR′e−iϕ2

A41 = TR′e−iϕ2 +RT ′e−iϕ1

A50 = TR′e−iϕ1 +RT ′e−iϕ2

A51 = TT ′e−iϕ2 +RR′e−iϕ1 .

(15)

Employing the conventions (1)-(2) and assuming a single
internal phase shift (10), Eq. (15) can be rewritten as





A40 = cos ϑ
2 cos ϑ′

2 − sin ϑ
2 sin ϑ′

2 e
−iϕ

A41 = i
(
cos ϑ

2 sin ϑ′

2 e
−iϕ + sin ϑ

2 cos ϑ′

2

)

A50 = i
(
cos ϑ

2 sin ϑ′

2 + sin ϑ
2 cos ϑ′

2 e
−iϕ
)

A51 = cos ϑ
2 cos ϑ′

2 e
−iϕ − sin ϑ

2 sin ϑ′

2 .

(16)

For future convenience, we introduce the following K-
coefficients:




Kx = sinϑ′sinϕ
Ky = − (sinϑcosϑ′ + cosϑsinϑ′cosϕ)
Kz = cosϑcosϑ′ − sinϑ sinϑ′cosϕ

(17)

and the above terms obey the constraint

K2
x +K2

y +K2
z = 1. (18)

Also, by direct calculation we get the following results
connecting the K- and A-coefficients:





|A40|2 = |A51|2 = 1
2 (1 +Kz)

|A50|2 = |A41|2 = 1
2 (1−Kz)

ℜ{A40A∗
41} = −ℜ{A50A∗

51} = Kx

2

ℑ{A40A∗
41} = −ℑ{A50A∗

51} =
Ky

2 ,

(19)

where ℜ (ℑ) denotes the real (imaginary) part.

III. DETECTION SCHEMES

For a general detection scheme employing an observ-
able Ô(ϕ), the phase sensitivity can be defined via the
error propagation formula [20, 47]

∆ϕ =

√
∆2Ô(ϕ)
∣∣∣∂〈Ô(ϕ)〉

∂ϕ

∣∣∣
, (20)

where the variance of the operator Ô(ϕ) is defined by

∆2Ô = 〈Ô(ϕ)2〉 − 〈Ô(ϕ)〉2 . (21)

For clarity, from this point on, we will not write explic-
itly the operator’s ϕ-dependence, i. e. we will write Ô
instead of Ô(ϕ).
In the following, we will determine the phase sensitivity

corresponding to each of the three considered detection
schemes.
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FIG. 2. The three detection schemes considered in this work.
For the difference-intensity (direct) detection scheme (see

Sec. III A) we have the output operator N̂d = n̂4 − n̂5. For
the single-mode intensity detection scheme we use n̂4 as out-
put operator (see Sec. III B), while for the balanced homo-

dyne detection scheme (see Sec. III C) we employ X̂L given
in Eq. (32).

A. Difference intensity detection scheme

In the difference-intensity detection scheme, we employ
as observable the difference between the output photo-
currents, N̂d = n̂4 − n̂5 (see Fig. 2). Expressing N̂d in
respect with the input field operators yields

N̂d = 2KxĴx + 2KyĴy + 2KzĴz (22)

and we have

∂ 〈N̂d〉
∂ϕ

= 2
(
〈Ĵx〉 cosϕ+ (cosϑ 〈Ĵy〉

+sinϑ 〈Ĵz〉) sinϕ
)
sinϑ′. (23)

After some calculations (see Appendix B), the variance

of the operator N̂d is found to be

∆2N̂d = 4K2
x∆

2Ĵx + 4K2
y∆

2Ĵy + 4K2
z∆

2Ĵz

+8KxKzĈov
(
Ĵx, Ĵz

)
+ 8KxKyĈov

(
Ĵx, Ĵy

)

+8KyKzĈov
(
Ĵy, Ĵz

)
, (24)

where the symmetrized covariance of two non-commuting
operators Â and B̂ is defined by

Ĉov
(
Â, B̂

)
=

〈ÂB̂〉+ 〈B̂Â〉
2

− 〈Â〉 〈B̂〉 . (25)

From definition (21) and using the previous results,
the phase sensitivity for a difference-intensity detection
scheme is

∆ϕdf =
1

2| sinϑ′| ×

×
√

∆2N̂d∣∣∣ 〈Ĵx〉 cosϕ+
(
cosϑ 〈Ĵy〉+ sinϑ〈Ĵz〉

)
sinϕ

∣∣∣
. (26)

B. Single mode intensity detection scheme

In this scenario we consider a single photo-current at
the output port 4, the observable conveying information
is thus n̂4 (see Fig. 2). Expressing it in respect with the
input field operator yields

n̂4 =
1

2
N̂ +KxĴx +KyĴy +KzĴz (27)

and thus

∂ 〈n̂4〉
∂ϕ

=
(
〈Ĵx〉 cosϕ+ cosϑ sinϕ 〈Ĵy〉

+sinϑ sinϕ〈Ĵz〉
)
sinϑ′. (28)

The variance is found to be (see details in Appendix C)

∆2n̂4 =
1

4
∆2N̂ +K2

x∆
2Ĵx +K2

y∆
2Ĵy +K2

z∆
2Ĵz

+2KxKyĈov
(
Ĵx, Ĵy

)
+ 2KxKzĈov

(
Ĵx, Ĵz

)

+2KyKzĈov
(
Ĵy, Ĵz

)
+KxCov

(
Ĵx, N̂

)

+KyCov
(
Ĵy, N̂

)
+KzCov

(
Ĵz, N̂

)
,(29)

where the covariance of two operators Â and B̂ is defined
as usually by

Cov
(
Â, B̂

)
= 〈ÂB̂〉 − 〈Â〉 〈B̂〉 . (30)

The phase sensitivity (20) for this scenario is

∆ϕsg =
1

| sinϑ′| ×

×
√
∆2n̂4∣∣∣ 〈Ĵx〉 cosϕ+

(
cosϑ 〈Ĵy〉+ sinϑ〈Ĵz〉

)
sinϕ

∣∣∣
. (31)

C. Balanced homodyne detection scheme

If we assume a balanced homodyne detection (BHD)
scheme at the output port 4 (see Fig. 2), the operator
modeling this detection scheme is

X̂φL
=
e−iφL â4 + eiφL â†4

2
. (32)

We find the variance of the above operator,

∆2X̂φL
=

1

4
+

1

2

(
Cov

(
â†4, â4

)
+ ℜ

{
e−i2φL∆2â4

})
,(33)

where by the covariance term above we obviously mean

Cov
(
â†4, â4

)
= 〈n̂4〉 − | 〈â4〉 |2. (34)
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FIG. 3. Example plot of the phase sensitivity ∆ϕdf for a
difference-intensity detection scheme given in Eq. (26) versus
the total internal phase shift (ϕ) and the BS2 transmission co-

efficient (T ′2). A coherent plus squeezed vacuum input state
Eq. (39) is employed and BS1 is optimized via QFI yield-
ing T = 1/

√
2. The optimum in terms of phase sensitivity is

found by imposing the working point(s) ϕopt = π
2

+kπ (k ∈ Z)

and BS2 balanced. Parameters used: |α| = 102, r = 1.2, and
input PMC 2θα − θ = 0.

In the single internal phase shift scenario (10), by using
the field operator transformations (14) and (16) we find

∂ 〈X̂φL
〉

∂ϕ
=

(
sin

ϑ

2
ℜ
{
ie−i(φL+ϕ) 〈â0〉

}

+cos
ϑ

2
ℜ
{
e−i(φL+ϕ) 〈â1〉

})
sin

ϑ′

2
. (35)

The phase sensitivity in this case is found to be

∆ϕhom =
1

sin ϑ′

2

×

×

√
∆2X̂φL

| sin ϑ
2ℜ
{
e−i(φL+ϕ)i 〈â0〉

}
+ cos ϑ

2ℜ
{
e−i(φL+ϕ) 〈â1〉

}
|
, (36)

where ∆2X̂φL
is given in Eq. (33). More details are found

in Appendix D.

IV. PHASE SENSITIVITY OPTIMIZATION

Since our MZI is unbalanced, we find that our phase
sensitivity – as expected – depends on the statistics of
the input state but also on the transmission coefficients
of both BS, plus the two internal phase shifts, ϕ1 and ϕ2.
As mentioned previously, we assume the first beam split-
ter (parametrized by ϑ) to be already optimized via the
QFI [40]. This guarantees that up to the phase shifts (see
Fig. 1) the interferometer is optimized, no matter what
beam splitter or detection scheme are employed next.

Our phase sensitivity is thus a function of three vari-
ables, ∆ϕ(ϑ′, ϕ1, ϕ2). For a detection scheme not having
access to an external phase reference, the phase sensitiv-
ity simplifies to ∆ϕ(ϑ′, ϕ), where ϕ = ϕ2 − ϕ1. We wish
to optimize this phase sensitivity and this is obviously an
extremization problem applied to a two variable function
[52]. We thus impose the constraints

{
∂ϑ′∆ϕ(ϑ′, ϕ) = ∂∆ϕ(ϑ′,ϕ)

∂ϑ′ = 0

∂ϕ∆ϕ(ϑ
′, ϕ) = ∂∆ϕ(ϑ′,ϕ)

∂ϕ
= 0.

(37)

yielding a number of solutions, (ϑ′opt, ϕopt). However,
in the general case, the resulting pairs (ϑ′opt, ϕopt), are
not necessarily extrema points. One must thus also com-
pute the second order derivatives ∂ϑ′ϑ′∆ϕ, ∂ϕϕ∆ϕ, and
∂ϑ′ϕ∆ϕ and impose the constraints





∂ϑ′ϑ′∆ϕ(ϑ′opt, ϕopt)∂ϕϕ∆ϕ(ϑ
′
opt, ϕopt)

−
(
∂ϑ′ϕ∆ϕ(ϑ

′
opt, ϕopt)

)2
> 0

∂ϑ′ϑ′∆ϕ(ϑ′opt, ϕopt) > 0
∂ϕϕ∆ϕ(ϑ

′
opt, ϕopt) > 0,

(38)
in order to find the pair(s) (ϑ′opt, ϕopt) actually yielding
a minimum of the function ∆ϕ.
Nonetheless, the phase sensitivity ∆ϕ(ϑ′, ϕ) has usu-

ally a well defined minimum1 and the optimal solutions
are unambiguous. An example is given in Fig. 3, where
we plot the phase sensitivity for a coherent plus squeezed
vacuum input given in Eq. (39) and a difference-intensity
detection scheme (see Section IIIA). Being in a scenario
without an external phase reference, optimizing the two-
parameter QFI points towards a balanced BS1, i. e.

Topt = 1/
√
2 (or, equivalently ϑopt = π/2) [40]. As de-

tailed in Appendix E 1, for the input state (39) the best
performance in phase sensitivity is found when employ-
ing a balanced MZI (T ′

opt = 1/
√
2) and a working point

ϕopt = π/2 + kπ with k ∈ Z (see Fig. 3).
For the difference-intensity detection scenario numer-

ous input states will point towards the same optimal set-
tings, among them the squeezed-coherent plus squeezed
vacuum (43), the coherent plus Fock (51) and for most
input phase matching conditions, the squeezed-coherent
plus squeezed-coherent input (see Appendices E 1 and E 2
for a broader discussion).
Another example is given in Fig. 4, where we plot the

phase sensitivity for a MZI fed by the same input state
however using a single-mode intensity detection scheme.
Optimizing BS1 via the QFI points towards a balanced
solution i. e. Topt = 1/

√
2 [40]. Similar to the difference-

intensity detection scheme, the optimum transmission co-

1 Of course, degenerate cases (i. e. when Topt = 0/1 and/or
T ′
opt = 0/1) may appear as result of this optimization. They

may also appear while finding the optimum transmission coeffi-
cient of BS1 derived from the QFI, as discussed in reference [40].
Quite often, such poor results are the consequence of bad input
parameter/PMC choices.
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FIG. 4. Example plot of the phase sensitivity ∆ϕsg given in
Eq. (31) for a single mode intensity detection scheme versus
the total internal phase shift (ϕ) and the BS2 transmission co-

efficient (T ′2). A coherent plus squeezed vacuum input state
given in Eq. (39) is assumed and BS1 is optimized via the
QFI yielding T = 1/

√
2. The optimum in terms of phase sen-

sitivity is found for the working point(s) ϕopt ≈ π ± 0.124π
and for BS2 balanced. Parameters used: |α| = 102, r = 1.2,
and 2θα − θ = 0.

efficient of the second beam splitter (see details in Ap-
pendix F 1) is found in the balanced case. However, the
optimum working point is not found at a multiple of π/2,
as it was previously the case. Indeed, the working point
ϕopt for a single-mode intensity detection is found by
solving a 4th degree equation, namely Eq. (H3). How-
ever, for many input states, a simple analytical solution
is possible, as detailed in Appendix F 2. For the input
state considered here and by employing Eq. (F8) we find
the working points ϕopt ≈ 0.87π and ϕopt ≈ 1.12π (see
Fig. 4).
Having access to an external phase reference and as-

suming a single internal phase shift (10), not only changes

the best achievable performance to ∆ϕ
(i)
QCRB given in

Eq. (12), but usually also favors unbalanced scenarios
[27, 40]. When it comes to optimizing the phase sensi-
tivity of a MZI using a BHD scheme (see Section III C),
we have to optimize a function depending on the local
oscillator phase (φL), too i. e. ∆ϕhom(ϑ′, ϕ, φL). How-
ever, quite often the local oscillator phase is obvious (for
example in phase with the input coherent source, by set-
ting φL = θα). We thus assume φL already at its opti-
mum value and proceed as before to minimize the func-
tion ∆ϕhom(ϑ′, ϕ).
In Fig. 5 give an example of phase sensitivity when

an external phase reference is available. We consider the
same input state given in Eq. (39) and a BHD scheme.
From the single-parameter QFI we can deduce the op-
timal transmission coefficient of the first BS, namely
T ≈

√
0.55 [40]. By optimizing the second beam splitter

we find, as expected an unbalanced beam splitter fea-
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FIG. 5. Example plot of the phase sensitivity ∆ϕhom given in
Eq. (36) for a BHD scheme versus the total internal phase shift

ϕ and the BS2 transmission coefficient, T ′2. We consider the
coherent plus squeezed vacuum input state given in Eq. (39)
and BS1 is optimized via QFI yielding T ≈

√
0.55. The

optimum phase sensitivity is found for the working point(s)
ϕopt = π + 2kπ (k ∈ Z) and for the BS2 transmission coeffi-
cient T ′

opt ≈
√

0.45. Parameters used: |α| = 102, r = 1.2, and
2θα − θ = 0.

turing T ′
opt ≈

√
0.45 for BS2. Details on this type of

optimization are found in Appendix G1.
As for the working point for a MZI employing a BHD

scheme and a single internal phase shift, quite often (see
details in Appendix G2) the working point is found to
be ϕopt = π + 2kπ (k ∈ Z).

V. OPTIMIZED PHASE SENSITIVITY

PERFORMANCE WITH SOME INPUT STATES

In this section, we assess the performance of the three
considered detection schemes for a number of relevant
input states.
We start our discussion with Gaussian states. The ones

already considered in the literature are discussed briefly
while the more complicated case of the squeezed-coherent
plus squeezed-coherent input state is detailed at length.
We then go on to discuss an interesting non-Gaussian
input, namely the coherent plus Fock state.

A. Coherent plus squeezed vacuum input

One of the most widely used states both in theoreti-
cal and experimental quantum-enhanced metrology is the
coherent plus squeezed vacuum input [4, 13, 20, 28, 53],

|ψin〉 = |α1ξ0〉, (39)

where the coherent (or Glauber) state in port 1 is ob-
tained by applying the displacement or Glauber operator
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FIG. 6. Phase sensitivity for a squeezed-coherent plus
squeezed-vacuum input state in the balanced and unbalanced
scenarios with a BHD scheme. An unbalanced MZI is able
to slightly outperform its balanced counterpart. Parameters
used: |α| = 50, r = 1.2 and z = 0.6. The PMC employed is
the optimum one given in Eq. (44).

[47, 54],

D̂1 (α) = eαâ
†
1
−α∗â1 (40)

i. e. |α1〉 = D̂1 (α) |01〉 with α = |α|eiθα . The squeezed

vacuum in port 0, i. e. |ξ0〉 = Ŝ0 (ξ) |00〉, is obtained by
applying the squeezing operator [47, 55]

Ŝ0 (ξ) = e
1

2 (ξ
∗â2

0
−ξ(â†

0
)2), (41)

where ξ = reiθ . Usually r ∈ R
+ is called the squeezing

factor and θ denotes the phase of the squeezed state.
The optimum performance of this input state is ob-

tained by imposing the input PMC [28, 29, 41]

2θα − θ = 0. (42)

When no external phase reference is available, the rel-
evant QFI is the two-parameter one and it reaches its
maximum when BS1 is balanced (i. e. Topt = 1/

√
2)

yielding F (2p)
max = |α|2 + sinh2 r [13, 20, 28]. As discussed

in previous works [28, 29, 41], the two considered de-
tection schemes falling into this scenario (Sec. III A and
III B) are slightly suboptimal in respect with the QCRB
from Eq. (9) and their optimum performance is found for
a balanced MZI [27] (see also Figs. 3-4).
When an external phase reference is available, the rele-

vant QFI is the single-parameter one, F (i), and its maxi-
mum value can be computed in closed form (see eq. (F4)
in reference [27]). This maximum is usually found for
BS1 unbalanced [27, 40]. The phase sensitivity optimiza-
tion often also results in an unbalanced BS2, as depicted
in Fig. 5.

0
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0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

FIG. 7. The two-parameter QFI (F(2p)) versus the trans-
mission coefficient of the first beam splitter (T 2). We con-
sider the input state given in Eq. (45) and compare the three
input PMCs in the low-coherent regime. Parameters used:
|α| = 2.2, |β| = 1.4, r = 1.2, z = 0.6. Stars mark the maxi-
mum of each QFI curve.

It has been previously shown that, by employing a
BHD scheme (see Sec. III C) and an unbalanced MZI,
one is able to approach the F (i)-induced QCRB, i. e.

∆ϕ
(i)
QCRB (see Figs. 11 and 12 from reference [27]).
Thus, only the availability of an external phase refe-

rence justifies the use of an unbalanced MZI in the case
of the input state (39).

B. Squeezed-coherent plus squeezed vacuum input

Consider now the squeezed-coherent plus squeezed va-
cuum input state [27, 35, 56],

|ψin〉 = |(αζ)1ξ0〉 = D̂1 (α) Ŝ1 (ζ) Ŝ0 (ξ) |0〉, (43)

and the squeezer in input port 1 is characterized by
ζ = zeiφ. All QFIs are maximized if we impose the input
PMC [27],

{
2θα − θ = 0
2θα − φ = ±π. (44)

When no external phase reference is available, the opti-
mum two-parameter QFI is found in the balanced case

[27] yielding F (2p)
max = |α|2 + sinh2(r + z) [29]. For single-

and difference-intensity detection schemes the optimum
phase sensitivity is indeed found for a balanced MZI [27].
Similar to the discussion from Section VA, the avail-

ability of an external phase reference suggests a single-
parameter QFI, F (i), that is maximized in a non-
balanced scenario [27, 40].
In Fig. 6, we plot the phase sensitivity for the in-

put state (43) with a BHD scheme. After optimizing
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FIG. 8. Difference-intensity detection phase sensitivity in
the low-coherent intensity regime for a squeezed-coherent
plus squeezed coherent input state (45). Parameters used:
|α| = 2.2, |β| = 1.4, r = 1.2 and z = 0.6.

the non-balanced case we get Topt ≈
√
0.71 ≈ 0.84 and

T ′
opt ≈

√
0.28 ≈ 0.53. As seen from Fig. 6, the unbal-

anced scenario slightly outperforms the balanced one and
we gain approximatively 4 % at the peak phase sensitiv-
ity.
We conclude the for the input state (43), similar to

the coherent plus squeezed vacuum input, only the avail-
ability of an external phase reference justifies the phase
sensitivity optimization via an unbalanced MZI.

C. Squeezed-coherent plus squeezed-coherent input

We consider now the squeezed-coherent plus squeezed-
coherent input state [29, 36, 40],

|ψin〉 = |(αζ)1(βξ)0〉, (45)

where for port 0 we have |(βξ)0〉 = D̂0 (β) Ŝ0 (ξ) |0〉 and
β = |β|eiθβ . Optimum performance of this input state
in terms of QFI imposes one of the three input phase
matching conditions, namely [29, 40]:

(PMC1)





2θα − θ = 0
φ− θ = ±π
θα − θβ = 0,

(46)

(PMC2)





2θα − θ = 0
φ− θ = 0
θα − θβ = 0,

(47)

or

(PMC3)





2θα − θ = 0
φ− θ = ±π
θα − θβ = π

2 .
(48)

0 0.2 0.4 0.6 0.8 1
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FIG. 9. The single- and two-parameter QFI versus the trans-
mission coefficient of the first beam splitter for the three in-
put PMCs in the high-intensity coherent regime. A squeezed-
coherent plus squeezed-coherent input state (45) is consid-
ered. Parameters used: |α| = 103, |β| = 50, r = 1.2, z = 0.6.
Stars mark the maximum of each QFI curve.

We start our discussion in the low-coherent intensity
regime, i. e. when

{|α|2, |β|2} ≈ {sinh2 r, sinh2 z}. (49)

For the difference-intensity detection scheme, the rele-
vant QFI is F (2p). In Fig. 7 we plot the aforementioned
QFI for the three considered PMCs versus the transmis-
sion coefficient of the first beam splitter. The optimum
performance is thus expected by employing a balanced
MZI and (PMC1). The second best performance is ex-
pected if we employ (PMC2) still in the balanced case,
while the worst performance is predicted for (PMC3) and

a heavily unbalanced MZI (T
(2p)
opt ≈

√
0.04 = 0.2).

In Fig. 8, we plot the actual performance in terms
of phase sensitivity for a difference-intensity detection
scheme in the low-intensity coherent regime. Although
the best performance (based on the QFI-induced QCRB)
is expected for (PMC1), this is not what actually hap-
pens. The input (PMC3) is found to yield the best
performance (solid thin green curve) and the optimum
transmission coefficient for BS2 is found to be T ′

opt ≈√
0.498 = 0.706. The actual performance of a balanced

MZI with either (PMC1) or (PMC2) is found to be infe-
rior to the unbalanced MZI scenario.
While the low-intensity regime is interesting for a num-

ber of applications involving usually delicate or light-
affected samples (live biological cells, retina samples
etc.), the high intensity regime

{|α|2, |β|2} ≫ {sinh2 r, sinh2 z} (50)

is also interesting especially for high-precision measure-
ments. In all our calculations, besides the constraint
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FIG. 10. Phase sensitivity for the squeezed-coherent plus
squeezed coherent input in the high-coherent regime using a
single-mode intensity detection. All three input PMCs yield
suboptimal performance, with (PMC2) yielding the best re-
sult (∆ϕopt

sg = 3.084 × 10−4 at ϕopt = 0.99π) while (PMC3)
the worst (∆ϕopt

sg = 3.241 × 10−4 at ϕopt = 0.97π). Inset:
zoom around ϕ = π, where all three phase sensitivities peak.
Parameters used: |α| = 103, |β| = 50, r = 1.2, z = 0.6.

(50) we will also impose the second coherent source to
be weak in respect with the first one (i. e. |α|2 ≫
|β|2 ≫ {sinh2 r, sinh2 z}). This constraint is set to be
more realistic, since experiments usually have one high-
power laser. While the low-intensity regime favours the
difference-intensity detection scheme, in the high inten-
sity coherent regime, the single-mode intensity and BHD
schemes are experimentally preferred [29, 41].

In Fig. 9 we plot both the single- and two-parameter
QFI versus the transmission coefficient of the first beam
splitter for the three input PMCs in the high-intensity
coherent regime [40].

For the single-mode intensity detection the relevant
QFI is still the two-parameter one, F (2p). It becomes

obvious from Fig. 9 that the optimum F (2p)
max is roughly

identical for all three input PMCs. (One finds F (2p)
max =

11.024 × 106 for (PMC1), F (2p)
max = 11.031 × 106 for

(PMC2) while for (PMC3) we have F (2p)
max = 10.987×106.)

However, while for (PMC1) and (PMC2) the optimum is
found in the balanced case, for (PMC3) it is found in an

unbalanced scenario with Topt =
√
0.45.

In Fig. 10 we depict the performance of a single-mode
intensity detection scheme for a squeezed-coherent plus
squeezed-coherent input state for all three PMCs. While
all PMCs yield slightly sub-optimal and quite equivalent
performance, (PMC3) seems to perform worst.

However, this slight disadvantage can be compen-
sated by the advantage gained in the extinction rate
〈n̂4 (ϕ)〉 /N̄ at the optimum working point i. e.

0 0.5 1 1.5 2

10
-3

10
-2

10
-1

10
0

FIG. 11. Extinction rates 〈n̂4 (ϕ)〉 /N̄ for the squeezed-
coherent plus squeezed coherent input in the high-coherent
regime using a single-mode intensity detection. For
(PMC3) and an unbalanced MZI we find 〈n̂4

(
ϕopt

sg

)
〉 /N̄ =

2.1128 × 10−3; for a balanced MZI and (PMC1) we find
〈n̂4

(
ϕopt

sg

)
〉 /N̄ = 4.257 × 10−3 while for (PMC2) we have

〈n̂4

(
ϕopt

sg

)
〉 /N̄ = 8.876 × 10−3.

〈n̂4 (ϕopt)〉 /N̄ . Indeed, especially in the high intensity
regime, it is desirable to have the output port nearly
“dark”. In Fig. 11 we plot the extinction rates for all
three PMCs as well as the extinction rates at their re-
spective optimum working points. We conclude that al-
though (PMC3) and an unbalanced MZI did not yield the
best phase sensitivity (as depicted in Fig. 10), it outper-
formed the other input PMCs using a balanced MZI in
terms of extinction rate at the optimum working point.

We set our attention now to the case when the detec-
tion scheme has access to an external phase reference. As
mentioned previously, the relevant QFI in this scenario
is the single-parameter one, F (i) [25, 27].

From the QFI prediction (see Fig. 9), the best per-
formance for the input state (45) is expected if we em-
ploy (PMC3) and an unbalanced MZI with BS1 featur-

ing Topt =
√
0.67. The next best performance is expected

for (PMC1) in which case Topt =
√
0.7. We set to verify

these predictions in Fig. 12. Indeed, employing (PMC3)
and an unbalanced MZI (the optimal BS2 transmission

coefficient is found to be T ′
opt =

√
0.278) we get the op-

timum phase sensitivity ∆ϕhom (thick solid green curve)

reaching its optimal value ∆ϕopt
hom = 2.437× 10−4 at the

working point ϕopt = π. Imposing a balanced MZI for
the same input PMC (thin dotted red curve) degrades
the optimum phase sensitivity and the best value at the
working point is found to be ∆ϕopt

hom = 2.515× 10−4.

As predicted by the QFI plot (see Fig. 9), the next
best performance is potentially given by the input state
(45) and (PMC1). Indeed, one finds ∆ϕhom (thin solid
light-blue curve) reaching the optimum phase sensitivity
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FIG. 12. Phase sensitivity for the squeezed-coherent plus
squeezed coherent input in the high-coherent regime. Unbal-
ancing the MZI brings an advantage in terms of best phase
sensitivity both in the case of (PMC3) (thick solid green curve
versus thin dotted red curve) as well as (PMC1) (thin solid
light-blue curve versus thin dashed black curve). Parameters
used: |α| = 103, |β| = 50, r = 1.2, and z = 0.6. Inset: zoom
around the ϕ = π working point.

∆ϕopt
hom = 2.517 × 10−4 at the optimum working point

ϕopt = π. Imposing a balanced MZI for the same input
PMC (thin dashed black curve) degrades the optimum

phase sensitivity to ∆ϕopt
hom = 2.64× 10−4.

We also depicted in Fig. 12 all corresponding QCRBs,
in order to assess the sub-optimality of each considered
scenario. From the inset one can see that all scenarios
are nearly optimal, the thickness of the lines not allow-
ing the visibility of the minute sub-optimality of each
scheme. For example the best performance, as stated
previously belongs to a non-balanced MZI with (PMC3)

and we found ∆ϕopt
hom = 2.43732×10−4. The correspond-

ing QCRB is ∆ϕ
(i)
QCRB = 2.43729× 10−4.

In ref. [36] it was claimed that for a squeezed-coherent
plus squeezed-coherent input state “Unbalanced devices
may be also considered, which however lead to inferior
performances”. As discussed in this section, at least for
some input parameters, this claim cannot be sustained.

We conclude that when it comes the squeezed-coherent
plus squeezed-coherent input state given by Eq. (45), it
is more difficult to point out when an unbalanced MZI
is able to outperform its balanced counterpart. Indeed,
while in the previous sections (Sec. VA and VB) the
availability of an external phase reference justified unbal-
ancing the MZI, for the input state (45) even not having
access to an external phase reference might justify this
choice.
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FIG. 13. Phase sensitivity for a coherent plus Fock input
state. The unbalanced cases outperform the balanced ones
(labelled “bal” in the legend) for both n = 1 and n = 3.
Parameter used: |α| = 103. For the unbalanced scenarios,
the first BS is optimized following Eq. (52), while the second
one is optimized via Eq. (G6).

D. Coherent plus Fock input

As a last example we consider the coherent plus Fock
input state [17, 44],

|ψin〉 = |α1n0〉, (51)

where n̂0 |n0〉 = n |n0〉.
If no external phase reference is available, the optimum

in terms of phase sensitivity is found in the balanced
case [40]. The optimization of the second BS yields a
similar result. However, if an external phase reference is
available, from the single-parameter QFI (12) we obtain
the optimum transmission coefficient for BS1, namely
[40],

T
(i)
opt =

√
1

2
+

|α|2
2n (1 + 2|α|2) . (52)

The optimum working point is found, as expected from
Eq. (H6), among multiples of π, irrespective on the values
of n and α (assuming α 6= 0).
In Fig. 13 we plot the phase sensitivity for a coherent

plus Fock input and a BHD scheme, both in the balanced
and unbalanced scenarios. In order to be realistic, we
employ the high coherent regime, |α|2 ≫ n.
For |α| = 103 and n = 1 we have from Eq. (52)

Topt ≈
√
0.75 = 0.866. Optimizing the second beam

splitter via Eq. (G6) yields a transmission coefficient

T ′
opt ≈

√
0.107 = 0.328. As expected, the unbalanced

MZI scenario (solid blue curve in Fig. 13, lowest among
the wavy lines) outperforms in terms of phase sensitivity
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the balanced one (thick dashed light-green curve). Both
scenarios, though, are suboptimal in respect with the
QCRBs (thick dashed dark-blue and, respectively, thick
solid dark green horizontal lines).
Keeping the coherent amplitude fixed but increasing

the photon number for the Fock state to n = 3 results
in a less important advantage for the unbalanced (dotted
pink-red line) versus the balanced MZI (thin black line) in
terms of phase sensitivity performance. This result is not

surprising, since T
(i)
opt from Eq. (52) implies that BS1 be-

comes balanced as n grows indefinitely. While the unbal-
anced scenario for n = 3 (we find Topt ≈

√
0.577 ≈ 0.76

and T ′
opt ≈

√
0.3 ≈ 0.55) still outperforms the balanced

one, the sub-optimality of both scenarios increases in re-
spect with the case n = 1. This becomes obvious when
comparing the performances for n = 3 with the two cor-
responding QCRBs (thick solid violet and, respectively,
dash-dotted gray lines). We discuss more about this sub-
optimality in Sec. VE.
We conclude that for the coherent plus Fock input state

(51), only the availability of an external phase reference
can justify unbalancing the MZI.

E. Performance comparison for two input states:

coherent plus squeezed vacuum versus coherent plus

Fock

In reference [27] it was shown that a unbalanced MZI
can outperform a balanced one in terms of phase sensi-
tivity if a coherent plus squeezed vacuum is applied at its
input. In Fig. 13 we showed that an unbalanced MZI can
show an advantage in terms of phase sensitivity over a
balanced one in terms of phase sensitivity for a coherent
plus Fock input state.
In reference [40], the two input states i. e. Eq. (39)

and Eq. (51) were compared in terms of single- and two-
parameter QFI (see Fig. 12 from the aforementioned refe-
rence). It was found that their performance has a similar
scaling in respect with the input resources, with a slight
advantage for the coherent plus squeezed vacuum input
state. From the QFI performance only, one cannot de-
cide which of the states Eq. (39) and Eq. (51) shows a
practical advantage. We will assess this question in the
following.
For both difference-intensity and single mode detec-

tion schemes we found that the coherent plus Fock input
state yielded largely sub-optimal results, while the co-
herent plus squeezed vacuum, as already reported in the
literature, yielded nearly optimal results [20, 27, 29, 41].
In Fig. 14 we plot the two aforementioned states for un-

balanced MZIs and a BHD scheme. For each input state,
the MZI is optimized following the already described pro-
cedure. We keep the same parameters employed in refe-
rence [40]. It ought to be mentioned that Fig. 14 depicts
the most favourable scenario for the coherent plus Fock
input, namely for n = 1. For n = 3, this input state be-
comes largely suboptimal (as depicted in Fig. 14), while
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FIG. 14. Phase sensitivity comparison between coherent plus
squeezed vacuum (39) and coherent plus Fock (51) input
states for an unbalanced MZI and a BHD scheme. While
the phase sensitivity for coherent plus squeezed vacuum in-
put is almost optimal, for a coherent plus Fock input state
it remains largely suboptimal. Parameters used: |α| = 103.
For the coherent plus Fock input we used n = 1 while for the
coherent plus squeezed vacuum input we imposed r = 0.882
so that n ≈ sinh2 r.

the coherent plus squeezed vacuum remains almost op-
timal, even for increasing squeezeing factors (see e. g.

Fig. 12 from reference [27]).
We conclude that while in terms of the QFI-induced

QCRB the two states Eq. (39) and Eq. (51) show a
roughly similar performance, in terms of realistic phase
sensitivity the coherent plus squeezed vacuum outper-
forms the coherent plus Fock input for all three detection
schemes considered in this work. This explains why prac-
tical implementations usually prefer the coherent plus
squeezed vacuum state [6, 7] when implementing sub-
shot noise interferometry.
However, we would like to point out that Fock state

interferometry has been shown to perform well with par-
ity [44, 46] or double parity [45] detection. While for
very low input average photon numbers this detection
technique is feasible, for high-intensity input light, it be-
comes problematic.

VI. CONCLUSIONS

In this paper we addressed the problem of phase sensi-
tivity optimization for an unbalanced Mach-Zehnder in-
terferometer with three different detection schemes.
We optimized the first beam splitter guided by the

quantum Fisher information. We discussed both the
single- and two-parameter QFI cases, thus being able to
take into account the availability (or not) of an external
phase reference. The optimum transmission coefficient
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of the second beam splitter was obtained as a result of
a two variable function optimization problem, where the
optimal working point of the interferometer had to be
taken into account, too.

For detection schemes not having access to an exter-
nal phase reference (single- or difference-mode detection
schemes in our case) we found that the optimal phase
sensitivity is almost always obtained by employing bal-
anced BS2. The optimum working point, though, was
found to be detector-dependent.

When it comes to a detection scheme having access to
an external phase reference, the balanced MZI scenario is
rather the exception, not the rule. Unbalancing the MZI,
almost always showed an advantage in terms of phase
sensitivity.

Examples of non-balanced MZI optimizations were

given for both Gaussian and non-Gaussian input states
with a more in-depth discussion of the squeezed-coherent
plus squeezed-coherent input state.
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Appendix A: Single- and two-parameter QFI

When estimating a (single) parameter problem, the optimal solution is found by employing the quantum version
of the Fisher information, i. e. the quantum Fisher information (QFI) [21–23, 57]. For a thorough discussion of this
topic, see reference [12].
When dealing with a multi-parameter estimation problem the single QFI approach has to be extended to a matrix

form [25–27]. We thus replace the QFI by a 2× 2 matrix:

F =

[
Fss Fsd

Fds Fdd

]
(A1)

having the following Fisher matrix elements [25, 26],

Fij = 4ℜ{〈∂iψ|∂jψ〉 − 〈∂iψ|ψ〉〈ψ|∂jψ〉} (A2)

with i, j ∈ {s, d} and we performed the variable changes ϕs = ϕ1 + ϕ2 and ϕd = ϕ1 −ϕ2. The quantum Cramér-Rao
bound inequality implies [26, 58]

[
(∆ϕs)

2 Cov(ϕs, ϕd)
Cov(ϕs, ϕd) (∆ϕd)

2

]
= Σ ≥ F

−1 =
1

FssFdd −FsdFds

[
Fdd −Fsd

−Fds Fss

]
. (A3)

Generally, this matrix inequality i. e. Σ ≥ F−1 cannot be saturated for all components [12]. However, we are solely
interested in the difference-difference phase estimator, ∆ϕd, thus the only inequality we are interested to saturate is

(∆ϕd)
2 ≥ (F−1)dd =

Fss

FssFdd −F2
sd

(A4)

and in order to simplify the writing we were led to introduce the definition from Eq. (8). We also used in the last
equation the obvious fact that Fds = Fsd. The single-parameter QFI, F (i), can be computed from the Fisher matrix
coefficients [27, 40],

F (i) = Fss + Fdd − 2Fsd. (A5)

Appendix B: Difference-mode intensity detection calculations

From the field operator transformations (14) we have

N̂d = Kz (n̂0 − n̂1) +Kx

(
â0â

†
1 + â†0â1

)
+ iKy

(
â0â

†
1 − â†0â1

)
(B1)
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and employing the Schwinger pseudo-angular momentum operators we get the result from Eq. (22). Averaging the

square of the operator N̂d takes us to

〈N̂2
d 〉 = 4K2

x 〈Ĵ2
x〉+ 4K2

y 〈Ĵ2
y 〉+ 4K2

z 〈Ĵ2
z 〉+ 4KxKy

(
〈ĴxĴy〉+ 〈ĴyĴx〉

)

+4KxKz

(
〈ĴxĴz〉+ 〈ĴzĴx〉

)
+ 4KyKz

(
〈ĴyĴz〉+ 〈Ĵz Ĵy〉

)
. (B2)

Using the above result as well as Eq. (22) takes us to the variance given in Eq. (24).

Appendix C: Single-mode intensity detection calculations

From Eq. (14) we find the output number operator

n̂4 = |A40|2n̂0 + |A41|2n̂1 +A∗
40A41â

†
0â1 +A40A∗

41â0â
†
1 (C1)

and using relations (19) we end up with the result from Eq. (27). The average of the number operator n̂4 is thus

〈n̂4〉 =
1 +Kz

2
〈n̂0〉+

1−Kz

2
〈n̂1〉+Kxℜ

{
〈â0â†1〉

}
−Kyℑ

{
〈â0â†1〉

}
(C2)

and by employing Eqs. (3)-(6) we end up with

〈n̂4〉 =
1

2
〈N̂〉+Kx 〈Ĵx〉+Ky 〈Ĵy〉+Kz〈Ĵz〉. (C3)

Its derivative in respect with ϕ is easily obtained and given in Eq. (28). In order to find ∆2n̂4, we first square the
operator (27) and using the fact that [Jk, N ] = 0 for k = {x, y, z} we find

n̂2
4 =

1

4
N̂2 +K2

xĴ
2
x +K2

y Ĵ
2
y +K2

z Ĵ
2
z +KxĴxN̂ +KyĴyN̂ +KzĴzN̂

+KxKy

(
ĴxĴy + ĴyĴx

)
+KxKz

(
ĴxĴz + Ĵz Ĵx

)
+KyKz

(
ĴyĴz + ĴzĴy

)
. (C4)

Using the above result and squaring the average 〈n̂4〉 from Eq. (C3) takes us to the variance given in Eq. (29).

Appendix D: Balanced homodyne detection

In order to obtain ∆2X̂L, we need to calculate the last two terms from Eq. (33). Using the results from Eq. (19),
we get

Cov
(
â†4, â4

)
=

1

2
(1 +Kz)Cov

(
â†0, â0

)
+

1

2
(1−Kz)Cov

(
â†1, â1

)

+Kxℜ
{
Cov

(
â0, â

†
1

)}
−Kyℑ

{
Cov

(
â0, â

†
1

)}
. (D1)

The last term from the variance (33) is given by

∆2â4 = A2
40∆

2â0 +A2
41∆

2â1 + 2A40A41Cov(â0, â1). (D2)

Please note that the coefficients of the above term are dependent on the phase of local oscillator, φL.

Appendix E: Phase sensitivity optimization for a difference-intensity detection scheme

The difference intensity detection scheme is described in Section III A and the corresponding phase sensitivity ∆ϕdf

is given by Eq. (26). In the following we apply the principles discussed in Section IV in order to obtain both T ′
opt (or

equivalently, ϑ′opt) and ϕopt.
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1. Optimum transmission coefficient for the second BS

From Eq. (37) we get the first constraint

tanϑ′opt =
∆2Ĵy sin

2 ϑ+∆2Ĵz cos
2 ϑ− sin 2ϑĈov

(
Ĵy, Ĵz

)

(
(∆2Ĵz−∆2Ĵy) sin 2ϑ

2 + Ĉov
(
Ĵy, Ĵz

)
cos 2ϑ

)
cosϕopt +

(
Ĉov

(
Ĵx, Ĵy

)
sinϑ− Ĉov

(
Ĵx, Ĵz

)
cosϑ

)
sinϕopt

,(E1)

where, as discussed in Appendix E 2, ϕopt is found in a similar extremization process. Usually though, simplifications
can be found by simple arguments leading to a straightforward solution.

Indeed, very often, the working point for a MZI coupled with a difference-intensity detection scheme is given by
Eq. (H5), we thus have from Eq. (E1) the simpler formula

ϑ′opt = arctan



∆2Ĵy sin

2 ϑ+∆2Ĵz cos
2 ϑ− sin 2ϑĈov

(
Ĵy, Ĵz

)

Ĉov
(
Ĵx, Ĵy

)
sinϑ− Ĉov

(
Ĵx, Ĵz

)
cosϑ


 . (E2)

Moreover, for many interesting input states we have Ĉov
(
Ĵy, Ĵz

)
= 0 = Ĉov

(
Ĵx, Ĵz

)
(see Tab. I). Even if it were not

the case, the optimization of the first BS via the two parameter QFI, usually results in ϑ = π/2 [40]. Thus, Eq. (E2)
reduces to

ϑ′opt = arctan


 ∆2Ĵy

Ĉov
(
Ĵx, Ĵy

)


 . (E3)

Now from Tab. I it is clear that Ĉov
(
Ĵx, Ĵy

)
6= 0 for a number of input states. However, one must not forget that

when looking for the best performance, the optimum input PMC must also be employed. So actually for a coherent

plus squeezed vacuum input (39), since sin(2θα−θ) = 0 due to the PMC (42), we also get Ĉov
(
Ĵx, Ĵy

)
= 0. Similarly,

for the squeezed-coherent plus squeezed vacuum input state (43) we find

Ĉov
(
Ĵx, Ĵy

)
= −1

4
sinh 2r|α|2 sin(2θα − θ)− 1

8
sinh 2rsinh 2z sin (θ − φ) , (E4)

and imposing the PMC (44) sets the above symmetrized covariance to zero. For the squeezed-coherent plus squeezed-
coherent input state (45) the same conclusions apply for all discussed input PMCs. Applying these arguments to
Eq. (E3) leads to the result

ϑ′opt =
π

2
. (E5)

Even if we assume that ϕopt 6= π/2 (but still assuming the first BS balanced [40]), from Eq. (E1) we have

tanϑ′opt =
∆2Ĵy

−Ĉov
(
Ĵy, Ĵz

)
cosϕopt + Ĉov

(
Ĵx, Ĵy

)
sinϕopt

(E6)

and since Ĉov
(
Ĵy, Ĵz

)
= 0 for most of the interesting input states (see Tab. I), we conclude that the optimum for a

difference intensity detection scheme is usually reached if the second beam splitter is balanced (i. e. T ′
opt = 1/

√
2).
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2. Optimum working point

The phase sensitivity for a difference intensity detection scheme i. e. Eq. (26) can be rewritten in the form given
by Eq. (H1), where the coefficients are given by





Adf = sin2 ϑ′∆2Ĵx + sin2 ϑcos2 ϑ′∆2Ĵy + cos2 ϑcos2 ϑ′∆2Ĵz − sin 2ϑcos2 ϑ′Ĉov
(
Ĵy, Ĵz

)

Bdf = −sin2 ϑ′∆2Ĵx + cos2 ϑsin2 ϑ′∆2Ĵy + sin2 ϑsin2 ϑ′∆2Ĵz + sin 2ϑsin2 ϑ′Ĉov
(
Ĵy, Ĵz

)

Cdf = −
(
cosϑĈov

(
Ĵx, Ĵy

)
+ sinϑĈov

(
Ĵx, Ĵz

))
sin2 ϑ′

Ddf =
(

sin 2ϑ
2 ∆2Ĵy − sin 2ϑ

2 ∆2Ĵz − cos 2ϑĈov
(
Ĵy, Ĵz

))
sin 2ϑ′

Edf =
(
− sinϑĈov

(
Ĵx, Ĵy

)
+ cosϑĈov

(
Ĵx, Ĵz

))
sin 2ϑ′

Fdf = 〈Ĵx〉 sinϑ′
Gdf =

(
cosϑ 〈Ĵy〉+ sinϑ 〈Ĵz〉

)
sinϑ′.

(E7)

If we take no simplifying assumptions, by imposing ∂∆ϕdf/∂ϕ = 0, as discussed in Appendix H, we are lead to a
4th degree equation that can be solved either analytically or numerically. Even if we assume the unbalanced case
({ϑ, ϑ′} 6= π/2) one of the simple scenarios from Appendix H might show up, allowing for a simple solutions for ϕopt.
However, as mentioned previously [40], the maximization of the two-parameter QFI, usually results in a balanced

BS1 (i. e. ϑ = π/2). In Appendix E 1 we argued that often BS2 ends up being balanced, too, when optimizing the
phase sensitivity. Thus, the coefficients from Eq. (E7) simplify to





Adf = ∆2Ĵx
Bdf = −∆2Ĵx +∆2Ĵz

Cdf = −Ĉov
(
Ĵx, Ĵz

)

Ddf = 0
Edf = 0

Fdf = 〈Ĵx〉
Gdf = 〈Ĵz〉 .

(E8)

For most interesting input states Ĉov
(
Ĵx, Ĵz

)
= 0 (see Tab. I), thus Cdf = 0. If 〈Ĵx〉 6= 0 then the optimum working

point is given by (H7) and for the current discussion (i. e. both BS balanced) we have

ϕopt = arctan

(
〈Ĵz〉∆2Ĵz

〈Ĵx〉∆2Ĵx

)
+ kπ, (E9)

with k ∈ Z. Input states obeying 〈Ĵx〉 = 0 are frequently used (equivalent to at least one of 〈â0〉 or 〈â1〉 be null), thus
Fdf = 0. We conclude that the optimum working point is given by Eq. (H5) i. e.

ϕopt =
π

2
+ kπ, (E10)

with k ∈ Z.

Appendix F: Phase sensitivity optimization for a single mode intensity detection scheme

The single mode intensity detection scheme is described in Section III B. In the following we apply the extremization
process described in Section IV in order to point out how to compute both T ′

opt and ϕopt.

1. Optimum transmission coefficient for the second BS

In the general case, when optimizing ϑ′ for a non-balanced MZI with a single-mode intensity detection scheme we
are led to a 4th degree equation,

(S2 − S0)t
4 + (S1 − S3)t

3 − 4S2t
2 + (S1 + S3)t+ S0 + S2 = 0, (F1)



16

where we denoted ϑ′ = 2 arctan t. The coefficients are given by





S0 = 1
4∆

2N̂ +∆2Ĵz cos
2 ϑ+∆2Ĵy sin

2 ϑ− Ĉov
(
Ĵy, Ĵz

)
sin 2ϑ

S1 =
((

∆2Ĵy −∆2Ĵz

)
sin 2ϑ− 2Ĉov

(
Ĵy, Ĵz

)
cos 2ϑ

)
cosϕ

+2
(
Ĉov

(
Ĵx, Ĵz

)
cosϑ− Ĉov

(
Ĵx, Ĵy

)
sinϑ

)
sinϕ

S2 = Cov
(
Ĵz, N̂

)
cosϑ− Cov

(
Ĵy, N̂

)
sinϑ

S3 = Cov
(
Ĵx, N̂

)
sinϕ−

(
Cov

(
Ĵz, N̂

)
sinϑ− Cov

(
Ĵy, N̂

)
cosϑ

)
cosϕ

(F2)

and at the end of the calculation ϕ should be replaced with the value of the working point, ϕopt, found in Appendix
F 2. Since for most input states of interest some of the variances/covariances are null (see Tab. I), the simpler scenarios
described in Appendix H are possible.

As discussed previously [40], for most input states, the two-parameter QFI is maximized if BS1 is balanced, i. e.

ϑ = π/2. This remark simplifies the S-coefficients to





S0 = 1
4∆

2N̂ +∆2Ĵy

S1 = 2Ĉov
(
Ĵy, Ĵz

)
cosϕ− 2Ĉov

(
Ĵx, Ĵy

)
sinϕ

S2 = −Cov
(
Ĵy, N̂

)

S3 = Cov
(
Ĵx, N̂

)
sinϕ− Cov

(
Ĵz, N̂

)
cosϕ.

(F3)

Since for many input states Ĉov
(
Ĵy, Ĵz

)
= 0 = Cov

(
Ĵy, N̂

)
and, moreover, Ĉov

(
Ĵx, Ĵy

)
= 0 if the optimum PMCs

are imposed (see Tab. I), we also have S1 = S2 = 0. Thus, the initial 4th degree Eq. (F1) can be rewritten as(
S0t

2 + S3t− S0

) (
t2 − 1

)
= 0, implying the solution t = 1 thus

ϑ′opt =
π

2
. (F4)

Remarkably, this solution is independent of the value of the total internal phase shift, ϕ.

2. Optimum working point

The phase sensitivity for a single mode intensity detection scheme i. e. Eq. (31) can also be put in the format
given by Eq. (H1), and we have the coefficients





Asg = sin2 ϑ′∆2Ĵx + sin2 ϑcos2 ϑ′∆2Ĵy + cos2 ϑcos2 ϑ′∆2Ĵz − sin 2ϑcos2 ϑ′Ĉov
(
Ĵy, Ĵz

)

+ 1
4∆

2N̂ − sinϑcosϑ′Cov
(
Ĵy, N̂

)
+ cosϑcosϑ′Cov

(
Ĵz , N̂

)

Bsg = −sin2 ϑ′∆2Ĵx + cos2 ϑsin2 ϑ′∆2Ĵy + sin2 ϑ sin2 ϑ′∆2Ĵz + sin 2ϑsin2 ϑ′Ĉov
(
Ĵy, Ĵz

)

Csg = − cosϑsin2 ϑ′Ĉov
(
Ĵx, Ĵy

)
− sinϑsin2 ϑ′Ĉov

(
Ĵx, Ĵz

)

Dsg = 1
2 sin 2ϑsin 2ϑ

′∆2Ĵy − 1
2 sin 2ϑsin 2ϑ

′∆2Ĵz − cos 2ϑsin 2ϑ′Ĉov
(
Ĵy, Ĵz

)

− cosϑsinϑ′Cov
(
Ĵy, N̂

)
− sinϑsinϑ′Cov

(
Ĵz, N̂

)

Esg = − sinϑsin 2ϑ′Ĉov
(
Ĵx, Ĵy

)
+ cosϑsin 2ϑ′Ĉov

(
Ĵx, Ĵz

)
+ sinϑ′Cov

(
Ĵx, N̂

)

Fsg = 〈Ĵx〉 sinϑ′
Gsg =

(
cosϑ 〈Ĵy〉+ sinϑ 〈Ĵz〉

)
sinϑ′.

(F5)

Following the discussion from Appendix H, the extremization process in the generic case with an unbalanced MZI
results an a 4th degree equation. However, as already discussed, the phase sensitivity optimization for a single-
mode intensity detection scheme results in a balanced MZI (BS1 is usually balanced from the maximization of the



17

two-parameter QFI and BS2 is discussed in Appendix F 1). This implies the much simpler coefficients:





Asg = ∆2Ĵx + 1
4∆

2N̂

Bsg = −∆2Ĵx +∆2Ĵz

Csg = −Ĉov
(
Ĵx, Ĵz

)

Dsg = −Cov
(
Ĵz , N̂

)

Esg = Cov
(
Ĵx, N̂

)

Fsg = 〈Ĵx〉
Gsg = 〈Ĵz〉 .

(F6)

As discussed before, for almost all considered input states Ĉov
(
Ĵx, Ĵz

)
= 0 = Cov

(
Ĵx, N̂

)
, thus Csg = Esg = 0.

Moreover, if Fsg = 0, we are able to apply Eq. (H4) and obtain the working point

ϕopt = ±2 arctan 4

√√√√√
∆2Ĵz +

1
4∆

2N̂ − Cov
(
Ĵz, N̂

)

∆2Ĵz +
1
4∆

2N̂ +Cov
(
Ĵz, N̂

) + 2kπ. (F7)

For example, applying the above result to the coherent plus squeezed vacuum input (39) yields [28]

ϕopt = ±2 arctan

√ √
2|α|

sinh 2r
+ 2kπ. (F8)

Applying Eq. (F7) to a squeezed-coherent plus squeezed vacuum input Eq. (43) yields [29]

ϕopt = ±2 arctan
4

√
sinh2 2z + 2|α|2 (cosh 2z − sinh 2z cos(2θα − φ))

sinh2 2r
. (F9)

Appendix G: Phase sensitivity optimization for a balanced homodyne detection scheme

The balanced homodyne detection scheme is described in Section III C. In the following we apply the extremization
process described in Section IV in order to point out how to compute both ϑ′opt and ϕopt. The specificity of this state
is the existence of the phase of the local oscillator. As described below, this phase is typically matched with the one
of the input laser (G11).

1. Optimum transmission coefficient for the second BS

Assuming the convention from Eq. (10), the phase sensitivity for a BHD scheme is described in Section III A and
given by Eq. (36). Applying the principles from Eq. (37) to this case yields the optimum BS2 transmission coefficient

ϑ′ = 2 arctan
Lbhd

Ubhd

, (G1)

where we have the terms

Ubhd = − sinϑcosϕ̟− − sinϑℜ
{
e−i(2φL+ϕ)

(
∆2â0 +∆2â1

)}
+ 2sinϕℜ

{
Cov

(
â0, â

†
1

)}

−2 cosϑcosϕℜ
{
iCov

(
â0, â

†
1

)}
+ 2 cosϑℜ

{
e−i(2φL+ϕ)iCov(â0, â1)

}
(G2)

and

Lbhd = −(1 +̟+)−ℜ
{
e−i2φL

(
∆2â0 −∆2â1

)}
− cosϑ̟− − cosϑℜ

{
e−i2φL

(
∆2â0 +∆2â1

)}

+2 sinϑℜ
{
iCov

(
â0, â

†
1

)}
− 2ℜ

{
ie−i2φL sinϑCov(â0, â1)

}
. (G3)
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For a more compact writing, we introduce the following notations:



̟− = Cov

(
â†0, â0

)
− Cov

(
â†1, â1

)

̟+ = Cov
(
â†0, â0

)
+Cov

(
â†1, â1

)
.

(G4)

If we assume a non-entangled input state Cov(â0, â1) = 0, we thus get the simpler solution

ϑ′opt = 2 arctan

(
1 +̟+ + cosϑ̟ + ℜ

{
e−i2φL

(
∆2â0 −∆2â1)

)}
+ cosϑℜ

{
e−i2φL

(
∆2â0 +∆2â1)

)}

sinϑ
(
cosϕ̟− + ℜ

{
e−i(2φL+ϕ) (∆2â0 +∆2â1)

})
)
. (G5)

However, quite often, the optimum working point for a balanced homodyne detection scheme is given by Eq. (G10).
We thus have the simpler solution

ϑ′opt = 2 arctan

(
1 +̟+ + cosϑ̟ + ℜ

{
e−i2φL

(
∆2â0 −∆2â1)

)}
+ cosϑℜ

{
e−i2φL

(
∆2â0 +∆2â1)

)}

sinϑ (−̟− −ℜ{e−i2φL (∆2â0 +∆2â1)})

)
. (G6)

For example, by applying the above equation to the coherent plus squeezed vacuum input state (39), if we set the
phase of the local oscillator to (G11) and impose the optimum PMC (42) we get

T ′(i)
opt = cos

ϑ′opt
2

=
cos ϑ

2 sin ϑ
2 (1− e−2r)√

1− cos2 ϑ
2 (1− e−4r)

(G7)

and by replacing cos ϑ
2 with T

(i)
opt we recover equation (81) from reference [27].

2. Optimum working point

Similar to the previously discussed detection schemes, we can write the phase sensitivity in the form of Eq. (H1),
where the coefficients are given by





Ahom = 1
4 + 1

4

(
Cov(â†0, â0) + Cov(â†1, â1)

)
+ cosϑcosϑ′

4

(
Cov(â†0, â0)− Cov(â†1, â1)

)

+ 1
2

(
cos2 ϑ

2 cos2 ϑ′

2 − sin2 ϑ
2 sin2 ϑ′

2

)
ℜ
{
∆2â0

}
− 1

4 (1− cosϑ cosϑ′)ℜ
{
∆2â1

}

+ 1
2 sinϑcosϑ

′
(
ℑ
{
Cov

(
â0, â

†
1

)}
−ℑ{Cov(â0, â1)}

)

Bhom =
(
sin2 ϑ

2ℜ
{
∆2â0

}
− cos2 ϑ

2ℜ
{
∆2â1

}
+ sinϑℑ{Cov(â0, â1)}

)
sin2 ϑ′

2

Chom = 1
2

(
sin2 ϑ

2ℑ
{
∆2â0

}
− cos2 ϑ

2ℑ
{
∆2â1

}
− sinϑℜ{Cov(â0, â1)}

)
sin2 ϑ′

2

Dhom = 1
2

(
cosϑ

(
ℑ
{
Cov

(
â0, â

†
1

)}
−ℑ{Cov(â0, â1)}

)

− sinϑ
2

(
Cov(â†0, â0)− Cov(â†1, â1) + ℜ

{
∆2â0

}
+ ℜ

{
∆2â1

}))
sinϑ′

Ehom = 1
2

(
ℜ
{
Cov

(
â0, â

†
1

)}
− 1

2 sinϑ
(
ℑ
{
∆2â0

}
+ ℑ

{
∆2â1

})
+ cosϑℜ{Cov(â0, â1)}

)
sinϑ′

Fhom =
(
− sin ϑ

2ℑ{〈â0〉}+ cos ϑ
2ℜ{〈â1〉}

)
sin ϑ′

2

Ghom =
(
sin ϑ

2ℜ{〈â0〉}+ cos ϑ
2ℑ{〈â1〉}

)
sin ϑ′

2

(G8)

and we set φL = 0 for readability. If we assume a non-entangled input state (and restore φL), the coefficients are
expressed by





Ahom = 1
4 + 1

4

(
Cov(â†0, â0) + Cov(â†1, â1)

)
+ cosϑcosϑ′

4

(
Cov(â†0, â0)− Cov(â†1, â1)

)

+ 1
2

(
cos2 ϑ

2 cos2 ϑ′

2 − sin2 ϑ
2 sin2 ϑ′

2

)
ℜ
{
e−i2φL∆2â0

}
− 1

2

(
sin2 ϑ

2 cos2 ϑ′

2 + cos2 ϑ
2 sin2 ϑ′

2

)
ℜ
{
e−i2φL∆2â1

}

Bhom =
(
sin2 ϑ

2ℜ
{
e−i2φL∆2â0

}
− cos2 ϑ

2ℜ
{
e−i2φL∆2â1

})
sin2 ϑ′

2

Chom = 1
2

(
sin2 ϑ

2ℑ
{
e−2φL∆2â0

}
− cos2 ϑ

2ℑ
{
e−2φL∆2â1

})
sin2 ϑ′

2

Dhom = − 1
4

(
Cov(â†0, â0)− Cov(â†1, â1) + ℜ

{
e−i2φL∆2â0

}
+ ℜ

{
e−i2φL∆2â1

})
sinϑsinϑ′

Ehom = − 1
4

(
ℑ
{
e−i2φL∆2â0

}
+ ℑ

{
e−i2φL∆2â1

})
sinϑsinϑ′

Fhom =
(
− sin ϑ

2ℑ
{
e−φL 〈â0〉

}
+ cos ϑ

2ℜ
{
e−φL 〈â1〉

})
sin ϑ′

2

Ghom =
(
sin ϑ

2ℜ
{
e−φL 〈â0〉

}
+ cos ϑ

2ℑ
{
e−φL 〈â1〉

})
sin ϑ′

2 .

(G9)
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In the general case, the optimum working point is found by solving Eq. (H3). However, quite often, when using the
optimum input PMC, it turns out that Chom = Ehom = Ghom = 0 and we can use the result (H6) for the optimum
working point. For most input states, further refinements allow one to show that

ϕopt = π + 2kπ (G10)

with k ∈ Z.
We would like to show how the optimum input PMC is connected to the constraint Chom = Ehom = Ghom = 0. Let

us assume that we have the coherent plus squeezed vacuum input state given in Eq. (43). (The argument is similar
for other input states.) It is well known that for optimal performance one must match the local oscillator’s phase
with the input coherent phase, i. e.

φL = θα. (G11)

Thus, the nonzero term of Ghom (〈â0〉 = 0 for the input state considered) reads

ℑ
{
e−φL 〈â1〉

}
= |α|ℑ

{
e−(φL−θα)

}
(G12)

and ℑ
{
e−φL 〈â1〉

}
= 0 because of Eq. (G11). When it comes to Chom and Ehom, we seem to have the non-zero terms

ℑ
{
e−2φL∆2â0

}
= ℑ

{
e−2θα∆2â0

}
= −1

2
sinh 2rℑ

{
e−(2θα−θ)

}
(G13)

and

ℑ
{
e−2φL∆2â1

}
= ℑ

{
e−2θα∆2â1

}
= −1

2
sinh 2zℑ

{
e−(2θα−φ)

}
. (G14)

However, by imposing the optimum input PMC (44) guarantees that these terms vanish, too.

Appendix H: Generic optimum working point calculation

All detection schemes discussed in Section III yield the same structure of the phase sensitivity when it comes to
the ϕ-dependence, namely

∆ϕ =

√
A+ Bcos2 ϕ+ Csin 2ϕ+Dcosϕ+ Esinϕ

|F cosϕ+ G sinϕ| , (H1)

where the A . . .G coefficients are specific to each respective detection scheme and are given in Appendices E 2, F 2
and respectively G 2. In order to find the working point ϕopt for a generic detection scheme, we start from Eq. (H1)
and impose ∂ϕ∆ϕ = 0. For the most general case (assuming that none of the coefficients is zero), we are led to the
trigonometric equation

(DF − EG) sinϕcosϕ+ (2EF − DG)sin2 ϕ+ (EF − 2DG)cos2 ϕ
+2 (CF − BG −AG) cosϕ+ 2 (AF − CG) sinϕ = 0. (H2)

Using the parametrization cosϕ = 1−t2

1+t2
and sinϕ = 2t

1+t2
we are led to a 4th degree equation,

[EF − 2DG − 2CF + 2(A+ B)G] t4 + [4 (AF − CG)− 2 (DF − EG)] t3 + 6EFt2
+ [2 (DF − EG) + 4 (AF − CG)] t+ 2 [CF − (A+ B)G] + (EF − 2DG) = 0 (H3)

that can be solved either analytically or numerically. The optimum internal phase shift is found among the solutions
tsol ∈ R of Eq. (H3) and then we have ϕopt = 2 arctan tsol.
However, quite often simplifications are found. We discuss below the scenarios that present an interest for the

current analysis.

i) If C = E = F = 0 then the optimum working point is given by

ϕopt = ±2 arctan 4

√
A+ B +D
A+ B −D + 2kπ (H4)

with k ∈ Z.
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input single double coherent plus squeezed-coherent coherent
state coherent coherent squeezed vacuum plus squeezed vacuum plus Fock
|ψin〉 |α100〉 |α1β0〉 |α1ξ0〉 |(αζ)1ξ0〉 |α1n0〉

Ĉov
(
Ĵx, Ĵy

)
0 0 − sinh 2r|α|2 sin(2θα−θ)

4
− sinh 2r|α|2 sin(2θα−θ)

4
− sinh 2rsinh 2z sin(θ−φ)

8
0

Ĉov
(
Ĵx, Ĵz

)
0 0 0 0 0

Ĉov
(
Ĵy , Ĵz

)
0 0 0 0 0

Cov
(
Ĵx, N̂

)
0 |αβ| cos(θα − θβ) 0 0 0

Cov
(
Ĵy , N̂

)
0 |αβ| sin(θα − θβ) 0 0 0

Cov
(
Ĵz, N̂

)
− 1

2
|α|2 1

2

(
|β|2 − |α|2

)
sinh2 2r

2
− |α|2 sinh2 2r−sinh2 2z

2
− |α|2(cosh 2z − sinh 2z cos(2θα − φ)) − 1

2
|α|2

TABLE I. The covariances and symmetrized covariances for a number of input states.

ii) If C = E = F = 0 and also D = 0 then the optimum is given by

ϕopt =
π

2
+ kπ (H5)

with k ∈ Z.

iii) If C = E = G = 0 then the optimum is found among the solutions

ϕopt = kπ (H6)

with k ∈ Z.

iv) If C = D = E = 0 then the optimum is found among the solutions

ϕopt = arctan

(
(A+ B)G

AF

)
+ kπ (H7)

with k ∈ Z.

Appendix I: Calculation for some needed variances and covariances

Throughout the main part of this paper we referred to some variances, covariances and symmetrized covariances for
the various input states considered. They are given in Tab. I and II. In the following, we detail some computational
details needed to obtain the aforementioned results.
For the squeezed-coherent plus squeezed-coherent input state (45), we find the variances of the Schwinger pseudo-

angular momentum operators

∆2Ĵx =
1

4

(
|β|2 (cosh 2z − sinh 2z cos(2θβ − φ)) + |α|2 (cosh 2r − sinh 2r cos(2θα − θ))

+
1

2
(cosh 2r cosh 2z + sinh 2r sinh 2z cos(θ − φ)− 1)

)
, (I1)

∆2Ĵy =
1

4

(
|β|2 (cosh 2z + sinh 2z cos(2θβ − φ)) + |α|2 (cosh 2r + sinh 2r cos(2θα − θ))

+
1

2
(cosh 2r cosh 2z − sinh 2z sinh 2r cos(θ − φ)− 1)

)
, (I2)

and

∆2Ĵz =
1

4

(
sinh2 2r

2
+ |β|2 (cosh 2r − sinh 2r cos(2θβ − θ)) − sinh2 2z

2
− |α|2 (cosh 2z − sinh 2z cos (2θα − φ))

)
. (I3)

The symmetrized covariances are found to be

Ĉov
(
Ĵx, Ĵy

)
= −1

8
sinh 2rsinh 2z sin(θ − φ) − 1

4
|α|2sinh 2r sin(2θα − θ) +

1

4
|β|2sinh 2z sin(2θβ − φ), (I4)
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input Eq. (45) Eq. (45) Eq. (45)
state with (PMC1) with (PMC2) with (PMC3)

Ĉov
(
Ĵx, Ĵy

)
0 0 0

Ĉov
(
Ĵx, Ĵz

)
− |αβ|(sinh 2r+sinh 2z)

4
0 0

Ĉov
(
Ĵy, Ĵz

)
0 0 |αβ|(sinh rer−sinh zez)

2

Cov
(
Ĵx, N̂

)
|αβ|(1 − sinh re−r + sinh zez) |αβ|(1 − sinh re−r − sinh ze−z) 0

Cov
(
Ĵy , N̂

)
0 0 |αβ|(1 + sinh rer + sinh zez)

Cov
(
Ĵz, N̂

)
sinh2 2r−sinh2 2z

4
+ |β|2e−2r−|α|2e2z

2
sinh2 2r−sinh2 2z

4
+ |β|2e−2r−|α|2e−2z

2
sinh2 2r−sinh2 2z

4
+ |β|2e2r−|α|2e2z

2

TABLE II. The covariances and symmetrized covariances for the squeezed-coherent plus squeezed coherent input state given
in Eq. (45).

Ĉov
(
Ĵx, Ĵz

)
=

1

2
|αβ|(sinh2 r−sinh2 z) cos(θα−θβ)−

|αβ|
4

(sinh 2r cos(θα + θβ − θ)− sinh 2z cos(θα + θβ − φ)) , (I5)

and

Ĉov
(
Ĵy, Ĵz

)
=

1

2
|αβ|(sinh2 r− sinh2 z) sin(θα−θβ)−

|αβ|
4

(sinh 2r sin(θα + θβ − θ) + sinh 2z sin(θα + θβ − φ)) . (I6)

The variance of the total input photon number operator is found to be

∆2N̂ =
sinh2 2r

2
+

sinh2 2z

2
+ |β|2 (cosh 2r − sinh 2r cos(2θβ − θ)) + |α|2 (cosh 2z − sinh 2z cos (2θα − φ)) (I7)

and finally the covariances of the Ĵ-operators with the input photon number operator N̂ are

Cov
(
Ĵx, N̂

)
= |αβ|(sinh2 r+sinh2 z+1) cos(θα−θβ)−

|αβ|
2

(sinh 2r cos(θα + θβ − θ) + sinh 2z cos(θα + θβ − φ)) , (I8)

Cov
(
Ĵy, N̂

)
= |αβ|

(
sinh2 r + sinh2 z + 1

)
sin(θα − θβ)−

|αβ|
2

(sinh 2r sin(θα + θβ − θ)− sinh 2z sin(θα + θβ − φ)) ,

(I9)
and

Cov
(
Ĵz , N̂

)
=

1

2

(
sinh2 2r

2
− sinh2 2z

2
+ |β|2 (cosh 2r − sinh 2r cos(2θβ − θ))− |α|2 (cosh 2z − sinh 2z cos (2θα − φ))

)
.

(I10)
The results for the three considered PMCs i. e. Eqs. (46), (47) and (48) are detailed in Tab. II.
By setting β = 0 we obtain all the needed results for the squeezed coherent plus squeezed vacuum input discussed

in Sec. VB. By setting z = 0, too, we get the needed results for the coherent plus squeezed vacuum input discussed
in Sec VA.
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