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INTRODUCTION

The size spectrum of phytoplankton is a defining
characteristic of oceanic ecosystems. Cycling of carbon
and other functional properties are strongly influenced
by the relative abundance of small and large cells,
which in turn appears to be dictated by local environ-
mental conditions such as the water density profile (Li
2002) and mesoscale eddy activity (Rodriguez et al.
2001). Small phytoplankton species dominate the
equatorial and subtropical oceans, where nutrient
upwelling is low, while larger species are more abun-

dant in subpolar regions, where nutrient supply is both
large and highly variable in time (e.g. Uitz et al. 2006).
The structure of phytoplankton communities thus pre-
sents large-scale geographical patterns that reflect cir-
culation features and biogeochemical processes in the
ocean.

The success of large phytoplankton remains some-
what poorly understood, especially when considered
in terms of nutrient uptake kinetics. It is widely be-
lieved that small cells should dominate under steady-
state conditions in the absence of predators. Simple
scaling arguments suggest that the best evolutionary
strategy is to minimize cell size in order to maximize
the surface to volume ratio (Raven 1998, Jiang et al.
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2005) and reduce sinking losses (Raven et al. 2005).
More specifically, Laws (1975) showed analytically
that the competitive advantage of large cells is deter-
mined by the size-dependence of the growth to loss
ratio. Grover (1991) identified a trade-off between the
rates of nutrient uptake and assimilation, but con-
cluded that the potential benefit is not sufficient to
compensate for the increased nutrient requirement in
large cells.

Other studies suggest different mechanisms for the
evolution of large phytoplankton. Thingstad et al.
(2005) argued that the success of diatoms is due to their
ability to use a non-limiting nutrient (silica) to increase
their size without increasing their need for limiting
nutrients. Yoshiyama & Klausmeier (2008) identified
optimal cell sizes in a model of resource diffusion in
fluids, and found that large cells can only outcompete
smaller cells if the loss rate decreases with size. Among
the studies addressing competition in non-equilibrium
conditions, Grover (1990, 1991) found that trading-off
competitive ability for high maximum growth rate,
which might be achieved by increasing cell size, can
be a successful strategy when nutrient supply is vari-
able in time. An alternative hypothesis is that the
appearance of predators triggers the evolution of large
phytoplankton cells, which are less vulnerable to pre-
dation than small prey cells (Butterfield 1997). The the-
oretical study of Jiang et al. (2005), however, suggests
that the evolutionarily stable cell size for phyto-
plankton co-evolving with zooplankton is still in the
picoplankton range.

Here we use a simple theoretical framework (chemo-
stat with a single nutrient) to demonstrate that, even in
steady-state conditions and in the absence of preda-
tors, increasing cell size can be a successful strategy.
The evolution of phytoplankton cell size is examined in
the context of allometric scaling arguments derived
empirically by Litchman et al. (2007) and grounded in
theoretical predictions (Aksnes & Egge 1991, Arm-
strong 2008). The various parameters characterizing
nutrient uptake kinetics can be expressed as power
laws of cell volume. We refer to this scaling to constrain
phytoplankton growth in a simple model, which we
then use to identify evolutionarily stable cell sizes. The
patterns emerging from our analysis are the result of
the empirical allometric rules, without any artificial
size-dependence that would a priori favor large cells
in specific environmental conditions.

There are 3 principal results from our model. First,
phytoplankton growth involves 2 processes: nutrient
acquisition and assimilation of stored resources. If
growth is limited by the rate of assimilation, increasing
size can be an evolutionarily stable strategy that allows
cells to produce more biomass by maintaining higher
excess cell quota in steady state. Second, large cells

are competitive when the storage capacity, defined
as the difference between maximum and minimum
quotas, increases with size. Third, the positive size-
dependence of the storage capacity is traded-off with a
higher surface to volume ratio. The evolutionarily
stable cell size is set by the allometric relationships
for nutrient uptake kinetics, which are empirically con-
strained, and by metabolic rates, which are not as well
constrained.

The ecological model is presented in the next sec-
tion. We derive size-dependent expressions for the
maximum growth rate and half-saturation resource
concentration, which together determine the shape of
the Holling type II curve describing phytoplankton
growth. This is followed by an analysis of the evolu-
tionarily stable strategies (existence, sensitivity, and
ecological significance), and a discussion of the limita-
tions of the idealized framework. Finally, the implica-
tions of our main results are discussed in the context of
modeling phytoplankton communities.

ALLOMETRIC MODEL

To address the effect of size-dependence on phyto-
plankton growth, we use a mathematical model of
nutrient storage with parameters constrained by
empirical allometric relationships (Litchman et al.
2007). The model includes distinct mechanisms for
nutrient uptake and assimilation (e.g. Droop 1973,
Grenney et al. 1973, Collins 1980, Grover 1991, Flynn
et al. 1997). We consider the size-dependence of the
maximum uptake rate, half-saturation nutrient con-
centration, and cell quotas.

The framework: a variable-internal-resources model.
We simulate phytoplankton growing on a single nutri-
ent in a chemostat using the mathematical model for-
mulated by Droop (1973). As the limiting resource we
consider nitrogen, which is often the most limiting
nutrient in the ocean. Let N be the dissolved nutrient
concentration (μmol m–3), Q the cell quota (internal
concentration of nutrients, μmol cell–1), and B the
density (cells m–3). The model is written as a set of non-
linear ordinary differential equations:

(1)

(2)

(3)

where μ∞ is the growth rate at infinite quota, Qmin the
minimum quota required by each cell, V = V(N,Q) is
the nutrient uptake rate (a function of the dissolved
nutrient concentration and cell quota), d is the dilution
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rate, and N0 is the input nutrient concentration. The
parameter δ represents losses by the phytoplankton
due to mortality and dilution, so that we write δ = m +
d. Parameters and corresponding units are listed in
Table 1.

Phytoplankton growth as represented by Eqs. (1) to
(3) includes 2 steps, nutrient uptake and assimilation
(synthesis of biomass from inorganic nutrients), which
are schematically illustrated in Fig. 1. The model effec-
tively decouples these processes, and the growth rate
is limited by the slower of the two. Diffusion rates of
dissolved inorganic resources can also limit population
growth (Yoshiyama & Klausmeier 2008), but this effect
is not considered here.

New cells are produced at a rate proportional to the
amount of internal resources in excess of the minimum
quota (Q includes both structural and stored nutrients;
the excess quota is defined as QXS ≡ Q – Qmin, cf. Fig. 1).
We define the quota-specific synthesis rate as

(4)

In this model, μ can theoretically vary between 0 and
μ∞. The limit Q → Qmin corresponds to nutrient-starved
cells, which do not have stored resources to be assimi-
lated and thus cannot produce new biomass (hence μ =
0). In contrast, the rate of assimilation reaches its max-
imum, μ∞, in the limit Q → ∞, which corresponds to
nutrient-replete cells. The yield is defined as Q –1, the
mass of nutrients needed to produce a new cell. The
rate at which resources are assimilated is given by μQ.

If we form the equation for phytoplankton biomass,
P = QB, we have

(5)

and the equation for the resource is

(6)

From these equations we infer that the rate of phyto-
plankton growth is given by VQ –1, the resource uptake
divided by the amount of resources per new cell
(Thingstad et al. 2005, Yoshiyama & Klausmeier 2008).
If we assume that the cell quota Q is in equilibrium (i.e.
dQ/dt = 0, so that the value of Q can be determined
from the instantaneous nutrient concentration N (t),
then Eqs. (5) & (6) form a closed set of equations.

The phytoplankton per capita growth rate, a mea-
sure of fitness, is expressed as

(7)

where the asterisk denotes an equilibrium value.
Michaelis-Menten uptake and maximum quotas.

Uptake rate is often assumed to be limited by the
external concentration of nutrients (but diffusion can
also be important, cf. Yoshiyama & Klausmeier 2008).
The Michaelis-Menten function is a common and
mechanistically defendable choice to represent this
limitation (Aksnes & Egge 1991, Armstrong 2008). We
also take into account the upper bound on cell quota,
which reflects the fact that cells have a finite storage
capacity. Assuming that the uptake rate is a decreasing
function of cell quota, the uptake function can be
expressed as 

(8)

where Vmax is the maximum uptake rate and KN the
half-saturation nutrient concentration for uptake(Thing-
stad 1987). Uptake slows down as the quotas fill up,
and stops when the maximum quota, Qmax, is reached.
This prevents simulated cells from storing implausibly
large amounts of nutrients when resources are abun-
dant and assimilation is slow.

Given the uptake function (Eq. 8), we can find the
equilibrium cell quota. This equilibrium is the value of
Q for which uptake is exactly balanced by assimilation,
so that the cell is in steady state. Substituting Eq. (8)
into Eq. (2), we solve for the cell quota and get
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Table 1. Parameters of the variable-internal-resources model. 
See Table 2 for values

Parameter Definition Unit

Vmax Maximum nutrient uptake rate μmol N cell–1 d–1

KN Half-saturation nutrient μmol N
concentration (for uptake)

Qmin Minimum quota (N content) μmol N cell–1

Qmax Maximum quota μmol N cell–1

μ∞ Growth (cell multiplication) d–1

rate at infinite quota
δ Loss rate d–1

m Mortality rate d–1

d Chemostat dilution rate d–1

N0 Input nutrient concentration μmol N

Fig. 1. Nutrient uptake and assimilation in the Droop model
(adapted from Finkel et al. 2004, their Fig. 1). Nutrients are
taken up through the cell membrane, and excess quota, de-
fined here as QXS ≡ Q – Qmin, is used for the production of new
biomass (new cells). The growth rate is determined by the
minimum of nutrient uptake rate (V) and biomass production
(μQ). At equilibrium, V = μQ so that cell quotas are constant



Mar Ecol Prog Ser 379: 1–12, 2009

(9)

where we have defined ΔQ = Qmax – Qmin, the storage
capacity.

From Eq. (7) we then infer the per capita growth rate
for cells whose uptake rate follows Eq. (8). After some
algebraic manipulations we get

(10)

Eq. (10) has the form of the growth function pro-
posed by Monod (1949) for bacterial cultures. It can
conveniently be rewritten as

(11)

where

(12)

(13)

Here μmax is the maximum specific growth rate and κ
is the half-saturation nutrient concentration for phyto-
plankton growth; these can be related to the empirical
parameters in Monod’s model. It should be empha-
sized that μmax is different from μ∞: the maximum
growth rate μmax is the actual (observable) fastest per
capita growth rate when quotas are at equilibrium, as
opposed to μ∞, which is the rate of assimilation when
quotas are infinite (i.e. not taking into account the
coupling between uptake and assimilation). This dis-
tinction is subtle but important. Note also that μmax

approaches μ∞ when the maximum quota is large com-
pared to the minimum quota (Litchman et al. 2007) and
when assimilation is slow compared to nutrient uptake
(cf. Eq. 17 and discussion thereafter).

An interesting special case arises when cells have
very large storage capacity. At the limit Qmax >> Qmin,
the expressions above reduce to

(14)

(15)

which is also the result that one would obtain when
assuming a Michaelis-Menten function for nutrient

uptake, .

Uptake- or assimilation-limited growth. Two pro-
cesses can limit phytoplankton growth in our model:
resource uptake and resource assimilation. The slower
of these two determines the rate at which the popula-

tion grows. When the maximum growth rate is given
by Eq. (14), limiting processes can be identified by
comparing the rates of uptake (V) and assimilation
(μQ) under optimal conditions. If equilibrium quotas
are assumed to be proportional to Qmin, then the
uptake rate scales with Vmax and the assimilation rate
scales with μ∞Qmin.

Defining the ratio of uptake to assimilation rates as

(16)

we identify 2 limits:

(17)

(18)

The non-dimensional ratio ξ determines the rela-
tive importance of assimilation-limitation and uptake-
limitation in cell growth. Large values of ξ indicate that
growth is limited by the assimilation step. In that case,
nutrients can be taken up faster than they can be used,
and the maximum growth rate approaches the growth
rate at infinite quota. When the ratio is small, nutrient
uptake is the limiting step: resources are converted
into organic matter nearly as fast as they are absorbed.
Growth should then be proportional to the rate of
nutrient uptake and inversely proportional to the
amount of resources that are ‘locked in’ the minimum
quota. Note that ξ will be size-dependent if the uptake
and assimilation rates are size-dependent.

Size-dependent growth parameters. We use allo-
metric relationships for the 4 parameters Vmax, KN, Qmin,
and Qmax from the literature as detailed in Table 2.
These have the form asb, where s is cell size (cell vol-
ume normalized by a reference volume), b is the allo-
metric exponent, and a is a constant. We obtain ex-
pressions for the size-dependence of μmax and κ by
substituting the allometric relationships into Eqs. (12)
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Table 2. Scaling for size-dependent parameters (x) in the form x =
asb, where s is the cell size normalized by 1 μm3. Allometric rela-
tionships for Vmax, μ∞, and Qmin are derived from a compilation of
data from various phytoplankton groups (Litchman et al. 2007).
Scaling for Qmax is specific to diatom cells (Montagnes & Franklin
2001, their Table 3). Allometric coefficients and exponents for the 

growth and mortality rates are unspecified (–)

Parameter a b (exponent) Source

Vmax 9.10 × 10–9 0.67 Litchman et al. (2007)
KN 0.17 0.27 Litchman et al. (2007)
Qmin 1.36 × 10–9 0.77 Litchman et al. (2007)
Qmax 4.64 × 10–9 0.81 Montagnes & Franklin 

(2001)
μ∞ aμ α –
m am β –
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& (13) (see Appendix 1). The resulting expressions are
specific to the choice of the uptake function V (N,Q).
Of the parameters in Eqs. (12) & (13), only μ∞ is not
constrained by an empirical power law; we have con-
siderably reduced the number of parameters in the
model by expressing phytoplankton growth in terms of
cell size. If we assume that quotas are at equilibrium,
we can use the consumer–resource model (Eqs. 5 & 6)
with the expressions for μmax(s) and κ(s).

Note that we can consider either constant or size-
dependent values for μ∞. Because assimilation rate
scales as μ∞Qmin, the size-dependence of the assimila-
tion rate follows that of the minimum quota when we
assume a constant value for the growth rate at infinite
quota. In our case this implies an allometric exponent
of 0.77 (Table 2). This value happens to be remarkably
similar to the 3⁄4-power scaling of metabolic rates with
body size (e.g. Kleiber 1947, West et al. 1997). It is con-
sistent with the scaling of photosynthesis rate under
optimal growth conditions assumed by Finkel et al.
(2004). In our model, as in Finkel et al. (2004), actual
growth rates depart from the rate of biomass synthesis
because of resource limitation. The size-dependence
of growth takes the form of a complex function of size,
captured by the expressions for μmax(s) and κ(s) given
in Appendix 1.

RESULTS

With the model laid out, we can now use it to explore
the evolutionary pressures on phytoplankton cell size.
We proceed analytically to find evolutionarily stable
strategies (ESS) in the model with constant nutrient
supply.

Evolutionarily stable size

ESS can be identified when considering cell size (s)
as an adaptive trait. On ecological timescales, phyto-
plankton are competing for a single resource and
only cells that are best adapted to their environment
(i.e. that have the highest fitness, here defined by G)
will survive. If we assume that (1) the environment is
determined by the resident population; (2) the adap-
tive trait varies slowly compared to the ecological
dynamics, so that on an evolutionary timescale the
ecological model is always at equilibrium; and (3)
invaders with slightly different trait values are intro-
duced at low densities (e.g. Dercole & Rinaldi 2008),
then invasibility is determined by the invasion fit-
ness, i.e. the initial per capita growth rate of indi-
viduals with trait s in the environment consisting of
the resident population.

An ESS corresponds to a maximum of the invasion
fitness function. When the resident strategy yields
higher fitness than all nearby strategies, it is evolution-
arily stable. The invasion fitness as defined by Eq. (7)
vanishes when evaluated for the resident population.
The resident can be replaced by invaders with positive
fitness, so until it has reached the optimal value, evolu-
tion will move the resident cell size in the direction of
the local fitness gradient. At the optimum cell size, –s,
all invaders have a negative fitness. Mathematically,
the conditions for –s to be an ESS are

(19)

and

(20)

where G, given by Eq. (11) and in which we have sub-
stituted the expressions for μmax(s) and κ(s), is evalu-
ated at the equilibrium nutrient concentration (N =
N*). The function G gives the fitness of a rare invader
into the resident population.

In steady-state conditions, resource competition the-
ory (Tilman 1980) applies, so that the ESS also corre-
sponds to the minimum value of N* (cf. proof in
Appendix 1): the phytoplankton that has the lowest
threshold resource concentration wins the competition
for a single limiting resource. The numerical simula-
tions of Jiang et al. (2005) confirm that the nutrient–
phytoplankton (NP) system evolves to a steady state
where the concentration of dissolved nutrients is mini-
mized and phytoplankton fitness is maximized. The
ESS is globally stable; local stability or instability (evo-
lution toward a fitness minimum) do not occur in these
simulations. Thus, evolutionary dynamics drive cell
size toward its optimal value, which can be either 0
(the smallest cells are favored) or some positive value.

The function G is independent of the input nutrient
concentration N0, and depends on the dilution rated only
through its contribution to phytoplankton loss. This im-
plies that the optimal size is not affected by the resource
supply. Since most parameters are constrained by empir-
ical allometric relationships, the ESS is determined en-
tirely by the values assigned to the loss rate (δ) and
growth rate at infinite quota (μ∞). Note, however, that the
existence of positive equilibrium solutions does depend
on the rate of nutrient supply; a larger amount of re-
sources must be supplied to sustain a population of large
cells than a population of small cells.

Eqs. (19) & (20) are solved numerically for the evolu-
tionarily stable size. Graphical solutions are useful for
illustrating the concept of ESS. Fig. 3 shows an exam-
ple of a pairwise invasibility plot (PIP). The approach
consists of plotting the growth rate of an invader spe-
cies (size s’ = s + δs) in a resident population (size s) for
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all pairs {s,s’}. The growth rate is, by definition, zero for
all s = s’ (the growth rate vanishes in steady-state). An
ESS corresponds to a value of s for which all nearby
invaders (|s – s’| << s) have a negative growth rate.
From the PIP we can see that –s is an ESS in this partic-
ular example (Fig. 3). The stability of this point is not
only local, since all invaders have a negative fitness,
thus –s = 56 μm3 is a global ESS.

Some conclusions can be drawn from inspecting the
form of the fitness gradient, D. Differentiating the
expression for G yields

(21)

The last term vanishes if we assume that losses are
independent of size (i.e. β = 0, see Table 2). Solutions to
Eq. (21) then require that the derivatives of μmax and κ
have the same sign. This implies that there must be a
trade-off between maximum growth rate and resource
requirements in order to get a positive ESS. We will show
that a trade-off is possible only when (1) the size-depen-
dence of storage capacities is taken into account and (2)
when growth is assimilation-limited as opposed to up-
take-limited. These 2 aspects are examined separately.

Assumption 1: no upper bound on internal quotas

If the maximum quota is very large compared to the
minimum quota (Qmax >> Qmin), then nutrient uptake is
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Fig. 2. Size-dependence of the maximum growth rate (μmax;
––––) and half-saturation nutrient concentration (κ; –––– ), when
it is assumed that (A) cell quotas are unbounded: Qmax >> Qmin;
(B) growth is limited by the rate of nutrient uptake: μ∞Qmin >>
Vmax; and (C) growth is limited by the rate of assimilation:
Vmax >> μ∞Qmin. Maximum quotas in (B) and (C) follow an allo-
metric relationship (Table 2). We assume a constant value for
the growth rate at infinite quota (μ∞ = 1, α = 0). Since fast
growth rates and low half-saturation values are advanta-
geous, the smallest cells are favored in (A) and (B). Only the
scenario shown in (C) provides a trade-off between μmax and κ
as cell size increases, so that the optimal cell size can take 
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not restricted by the available space to store nutrients.
This assumption effectively reduces the uptake rate V
to a Michaelis-Menten function, and the growth para-
meters are given by Eqs. (14) & (15). We examine
how the maximum growth rate and half-saturation
nutrient concentration depend on size to identify poten-
tial trade-offs.

The derivative of κ is positive for all values of s (Appen-
dix 1). This implies that the half-saturation nutrient con-
centration strictly increases with size, thus favoring small
cells. The derivative of μmax is negative for all values of s
(Appendix 1), implying that the maximum growth rate
decreases with size, so that again small cells are favored.
These results (Fig. 2a) suggest that it is not possible to
get an ESS (other than –s = 0) if maximum quotas are large
for all cells. Small cells have the advantage of a larger
surface to volume ratio—or, more precisely, surface to
nutrient requirement ratio (Thingstad et al. 2005). To find
a positive ESS, we must consider the size-dependence
of the storage capacity.

Assumption 2: assimilation-limited growth

Relaxing the first assumption, we now examine the
case where nutrient uptake is fast compared to assimi-
lation (Vmax >> μ∞Qmin). This is a valid assumption for a
wide range of cell sizes (Fig. 4A), and implies that
assimilation of stored resources is the limiting step in
phytoplankton growth. The maximum growth rate and
half-saturation nutrient concentration from Eqs. (12)
& (13) become

(22)

(23)

From the first expression we infer that, with μ∞ con-
stant, the derivative ∂μmax/∂s will be positive as long as
Qmax increases with size faster than Qmin. Indeed this
appears to be the case (Table 2). The derivative of the
half-saturation concentration is also positive (Appen-
dix 1). Since κ increases with size faster than μmax, the
solution to Eq. (21) must be a maximum. Thus the con-
ditions for the existence of an ESS (Eqs. 19 & 20) are
satisfied. In contrast, when nutrient uptake is slow
compared to assimilation (Vmax << μ∞Qmin), we find that
μmax is proportional to the ratio of Vmax and Qmin; thus it
decreases with size, unlike κ which still increases with
size, being proportional to KN. Hence a positive ESS is
not possible in that case, and evolutionary pressure
inevitably selects for the smallest cell size. The uptake-
limited and assimilation-limited cases are illustrated
in Fig. 2B,C.

Based on our analysis of the model under Assump-
tions 1 & 2, we conclude that size-dependence of the
storage capacity is the key to evolving large cells in
this model. Although empirical data suggest that the
allometric exponent for maximum quota is larger than
the allometric exponent for minimum quota, the differ-
ence between them is small and, given the paucity of
data, there is likely a large uncertainty. We will keep
that in mind as we carry out our analysis, but proceed
on the assumption that ΔQ has a positive dependence
on cell size. Another source of uncertainty is the size-
dependence of the growth rate at infinite quota; if, as
suggested by the metabolic theory of ecology, μ∞

decreases with size, then the storage effect needs to be
greater for the derivative of μmax to be positive (see
‘Discussion’).
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When storage capacity increases with size, the abil-
ity of large phytoplankton to store nutrients allows
them to maintain a larger quota at equilibrium. Small
cells fill up more quickly and thus see their uptake rate
reduced because of quotas approaching the upper
limit (Qmax) when the uptake rate is given by the func-
tion Eq. (8). The large equilibrium quota in large cells
increases the rate at which biomass is produced; this is
an advantage when growth is limited by the assimila-
tion rate. The resulting trade-off between rapid maxi-
mum growth rate and high half-saturation concentra-
tion implies that there is an intermediate cell size for
which growth is optimal.

Sensitivity

The sensitivity of ESS values to the model parame-
ters sheds light on the mechanisms of the evolution of
large cells. We focus on the sensitivities to the growth
rate at infinite quota and the loss rate, assumed here to
be independent of size. Fig. 5 shows how the ESS
varies with μ∞ for different values of the loss rate δ. The
upper limit on ESS values is due to the collapse of the
phytoplankton population when size increases past a
threshold value; large cells require more nutrients
than small ones and can only be supported by environ-
ments with high nutrient supply, at least when mortal-

ity is independent of size. No lower limit is imposed in
the analysis, but it should be kept in mind that cell vol-
umes of ~10–1 μm3 are on the order of the smallest
observed phytoplankton.

The evolutionarily stable size is negatively correlated
with the growth rate at infinite quota (Fig. 5), assumed
here to be the same for all species. In steady-state con-
ditions, large cells have the advantage of maintaining a
larger quota since Q* increases with size (Fig. 4B). Re-
ducing the (size-independent) value of μ∞ is one way to
achieve assimilation-limited growth. The ESS does not
depend on the input nutrient concentration N0, which
does not appear in the expression for N*.

The ESS is positively correlated with the loss rate
(Fig. 5). If we consider m = 0, this implies that the ESS
increases with the dilution rate. If, however, we
assume that dilution does not contribute to phyto-
plankton loss (δ = m), then the ESS would be indepen-
dent of the dilution rate d. This result was obtained by
Jiang et al. (2005) for their NP model. The assumption
is relevant under oceanic conditions, where nutrient
supply is not necessarily correlated with phytoplank-
ton loss. Regardless of the details of phytoplankton
loss, the evolutionarily stable size always increases
with δ. The explanation lies in the fact that the equilib-
rium nutrient concentration (N*) increases with the
loss parameter (Appendix 1). Thus increasing δ bene-
fits large cells which, having higher nutrient require-
ments, thrive when the ambient nutrient concentration
is high.

The high sensitivity of the optimal cell size to the loss
rate limits the range of parameter values for which the
model predicts a positive ESS. Taking into account the
size-dependence of mortality (e.g. due to increasing
sinking rates with increasing weight) may expand the
relevant range of parameter values, though this is not
examined here.

Size-dependence of the maximum growth rate

With size-dependent storage capacity, there is a
range of cell sizes for which μmax increases with size
(Fig. 6). The ESS is always found in the region where
∂μmax/∂s > 0. The value of cell size that optimizes max-
imum growth rate is a function of the growth and loss
parameters (note that it is not an ESS); it is always pos-
itive and finite. The upper bound on the maximum
growth rate is due to Assumption 2 failing as s → ∞:
uptake-limitation becomes increasingly important as
cells get larger. This is evidenced by the non-dimen-
sional ratio ξ (Fig. 6).

Given the empirical allometric relationships (Table 2),
the value of ξ is always a decreasing function of cell
size. Larger cells have an advantage when assimilation
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Verdy et al.: Optimal phytoplankton cell size

is limiting, because they have a higher cell quota at
equilibrium, which allows them to produce biomass
faster. When nutrient uptake is also limiting, smaller
cells have an advantage due to their large surface to
volume ratio. Indeed we find that the growth potential,
μmax, increases with size when ξ is large, but decreases
with size when ξ ≈ 1. We find that the positive relation
between μmax and size occurs in the range of cell sizes
for which the non-dimensional ratio ξ exceeds 1, con-
firming the importance of assimilation limitation.

The shape of the μmax(s) function reflects the com-
bined effects of size-dependent storage ability, nutri-
ent limitation, and assimilation limitation (in contrast to
the curves presented in Fig. 2, which highlight each of
these effects when considered independently). It is
qualitatively similar to the function assumed by Jiang
et al. (2005) (Fig. 6C). However, unlike Jiang et al.
(2005), we do not impose an arbitrary form to the size-
dependence; our expression for the maximum growth
rate is determined by the allometric relationships for
nutrient uptake. Also in contrast to Jiang et al. (2005),
the maximum of the curve is not constrained to the
picophytoplankton size range. The maximum is very
sensitive to the value of μ∞, which is the only parameter
appearing in the expression for μmax(s) that is not
empirically constrained.

DISCUSSION

Using a simple ecosystem model, we have derived ex-
pressions for the resource-limited specific growth rate
and half-saturation constant that, under 2 simple as-
sumptions, depend only on the phytoplankton cell size.
The first assumption is that nutrient uptake kinetics fol-
low an exactly allometric relationship; in fact, these rela-
tionships are computed as the ‘best fit’ to large datasets
that are typically noisy (e.g. Litchman et al. 2007), such
that for a given phytoplankton species, excursions from
the allometric rule can be significant. The second as-
sumption is that cell quotas are always at equilibrium.
This implies that nutrient uptake is fast compared to as-
similation of stored nutrients and fluctuations in ambient
nutrient concentration. While this assumption is consis-
tent with our steady-state chemostat analysis, it becomes
more restrictive if applied to time-varying systems. In the
ocean, seasonal and diurnal cycles, as well as turbulent
circulation features, influence the rate of nutrient supply
to the euphotic zone, with consequences for phytoplank-
ton dynamics. Assuming equilibrium quotas effectively
prevents the simulated cells from accumulating nutrients
during periods of abundance.

The proposed mechanism for the evolution of large
cells relies strongly on the size-dependence of storage,
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which implies that the allometric exponent of maximum
quotas must be greater than that of minimum quotas.
Although the allometric relationships used in the quan-
titative part of our analysis satisfy the necessary condi-
tion, the uncertainties in the measurements considerably
exceed the difference between these exponents. Sev-
eral published studies do assume size-dependent stor-
age capacity (e.g. Grover 1989, Irwin et al. 2006), but
more laboratory studies are needed in order to obtain
a statistically significant relationship between storage
capacity and cell size in phytoplankton.

The allometric model with constant (size-independent)
storage capacity will also support an ESS if the mortal-
ity rate (m) decreases with size. Sinking is one mecha-
nism which might produce size-dependent losses, but,
at least for spherical cells, these losses would increase
for larger organisms. Here we have neglected preda-
tion and other density-dependent effects on mortality.
Because we assume a linear mortality rate, the evolu-
tionarily stable size is independent of the input nutri-
ent concentration. However, since the maximum cell
size increases with the availability of resources, we
expect to find only small cells in oligotrophic environ-
ments (even if they would be better competitors, popu-
lations of large cells are bound to collapse due to the
lack of resources to support their growth). Evolution-
ary dynamics determine whether large or small (or
intermediate) cells will dominate in eutrophic environ-
ments. Including a grazer population in the model
leads to a dependence of the ESS on the nutrient sup-
ply and can destabilize the phytoplankton population
dynamics (Jiang et al. 2005). Interestingly, the phyto-
plankton–zooplankton model can evolve to a fitness
minimum (Jiang et al. 2005), opening up the door to
evolutionary branching events and coexistence of mul-
tiple cell sizes. Even with grazers, however, ESS are
constrained to the region where maximum growth rate
increases with size (Jiang et al. 2005).

ESS values are highly sensitive to the value of the
growth rate at infinite quota, μ∞, which defines the max-
imum rate at which stored inorganic nutrients are con-
verted into biomass. We have assumed μ∞ to be indepen-
dent of size, mainly because we do not have empirical
evidence of an allometric relationship for this parameter
across phytoplankton groups. If μ∞ scales with body size
as predicted by the metabolic theory of ecology (West et
al. 1997), the analysis presented here should be revisited
to account for the metabolic disadvantage of increasing
cell size. A weak decrease of μ∞ with size could reduce
the magnitude of the storage effect without affecting the
size-dependence of μmax. A strong decrease of μ∞ with
size, on the other hand, could qualitatively change the
size-dependence of μmax and κ. However, assuming a
constant value for μ∞ is not equivalent to assuming size-
independent metabolism. The actual rate of biomass

production in our model scales like μ∞Qmin, which has an
allometric exponent of 0.77. The fact that this is so close
to 3⁄4 may not be meaningful, but it suggests that assum-
ing a constant value for μ∞ is not necessarily in conflict
with metabolic theory.

The origin of allometry in biological systems is a fun-
damental question that is still widely debated. There
are theories relating the scaling laws to basic physical
and geometrical constraints (e.g. West et al. 1997). It is
also plausible that allometric relationships themselves
have evolved as a result of competition and adaptation
processes. While some relationships are tied to bio-
chemical or biomechanical principles, others probably
are not, and might be considered as emergent proper-
ties of the ecological–evolutionary system. This ques-
tion is, however, outside the scope of the present study.

Finally, we emphasize that our model is not formu-
lated for a particular phytoplankton species, but rather
as a framework describing phytoplankton ecological
interactions in the most general sense possible. How-
ever, the framework may be more adequate for some
phytoplankton taxonomic groups than others.

While diatoms are known to store nutrients and are
well described by the Droop model, other taxa such as
coccolithophorids and dinoflagellates may be more
adequately represented by a classical Monod model.
There is also a lack of empirical studies of the size-
dependence of maximum quotas across taxa. Here we
relied on diatom data for the size-dependence of the
storage effect; other taxonomic groups may not follow
similar allometric relationships.

CONCLUSIONS

Phytoplankton can be studied using trait-based
approaches (Litchman et al. 2007). Here we consider
cell size as an adaptive trait and incorporate empiri-
cally derived allometric relationships (Litchman et al.
2007) into an ecological–evolutionary model to iden-
tify evolutionarily stable states. Using this framework,
we revisit the paradigm of small-cell dominated phyto-
plankton communities in the absence of predation and
time-variability of resource supply (Laws 1975, Raven
1998, Raven et al. 2005).

Results from our simulations suggest that the size-de-
pendence of cellular quotas gives an advantage to large
cells, which theoretically can evolve from small cells as
a result of adaptation and competition processes. The
mechanism selecting for large phytoplankton involves
a trade-off between storage capacity and minimum nu-
trient requirement. Larger cells require more nutrients,
but they have a higher cell quota at equilibrium, which
allows them to produce biomass faster, thus giving
them advantage under assimilation-limited conditions.
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Smaller cells have an advantage under uptake-limited
conditions due to their large surface to volume ratio. We
find that, depending on the environmental conditions
(dilution rate) and the metabolic rates (growth rate at
infinite quota and respiration and/or mortality), the ESS
can range from cyanobacteria-sized cells (0.1 to 1 μm3)
to diatom-sized cells (≈102 to 103 μm3).

Our analysis focuses on a single ecological mecha-
nism, leaving out several potentially important factors
affecting the evolution of cell size; perhaps most signif-
icant is the top-down control by zooplankton grazing
preferentially on small phytoplankton cells. Here we
purposely construct an idealized framework in order to
gain a deeper understanding of its function. Despite its
simplicity, the chemostat model, together with allo-
metric scaling, provides a quantitative framework for
studying evolutionary dynamics in phytoplankton. Re-
sults may be relevant to the interpretation of observed
community structure in the global ocean. Moreover, the
trait-based concepts developed in the present study
may be implemented in more complex models, which
can offer a more complete description of aquatic eco-
systems by including competition and coexistence pro-
cesses. The numerical model developed by Follows et
al. (2007) is an ideal framework to simulate the assem-
bly of phytoplankton communities in realistic oceanic
conditions. The model operates on the principle that
natural selection determines the geographical distribu-
tion of phytoplankton ‘ecotypes’ in the ocean. The size-
dependent relations for specific growth and half-
saturation nutrient concentration presented in the
present study, incorporated into such a modeling frame-
work, would provide a novel approach to simulating
the assembly of size-structured communities.
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Appendix 1. Allometric model analysis

EQUILIBRIUM SOLUTIONS

The equilibrium nutrient is obtained by solving the equation
for G = 0. Then we can solve for the equilibrium phytoplank-
ton concentration by substituting V/Q = μ = δ into Eq. (6),
which gives

(A1)

(A2)

If the uptake function is given by Eq. (8) then the equilib-
rium nutrient concentration is

(A3)

SIZE-DEPENDENCE AND SENSITIVITY OF GROWTH
PARAMETERS

The size-dependent growth parameters are

(A4)

(A5)

where the allometric coefficient (aμ) and exponent (α) for
the growth rate at infinite quota have been left unspecified.
Other empirical allometric relationships have been substi-
tuted (Table 2).

When α = 0, the growth rate at infinite quota is equal to the
constant aμ. We examine the size-dependence of μmax and κ
under the assumption of constant μ∞.

Assumption 1: Qmax >> Qmin

In the limit of unbounded quotas, the expressions for μmax(s)
and κ(s) can be simplified to take the form of Eqs. (14) &
(15). We differentiate the reduced expressions to examine
the size-dependence of the growth parameters in the
absence of the size-dependent storage effect.

Differentiating Eq. (14), we get

(A6)

which is negative for all values of s.

Differentiating Eq. (15) yields

(A7)

which is positive for all values of s.

Assumption 2: Vmax >> μμ∞∞Qmin

At the limit of assimilation-limited growth, the expressions
for μmax(s) and κ(s) are given by Eqs. (22) & (23). The deriv-
ative of the maximum growth rate (Eq. 22) is

(A8)

which is positive for all values of s.

The derivative of the half-saturation nutrient concentration
(Eq. 23) is

(A9)

From Eq. (A6) we know that the second term is positive. The
first term is also positive:

(A10)

Thus the derivative of κ is positive for all values of s.

EQUIVALENCE TO RESOURCE COMPETITION THEORY

Proof that under steady nutrient supply, the ESS always cor-
responds to the size that yields the lowest steady-state nutri-
ent concentration (i.e. that has the competitive advantage*,
cf. resource competition theory). We have

(B1)

and

(B2)

It is easy to see that if Eq. (B1) vanishes, then Eq. (B2) must
vanish as well; thus N* is an extremum. We can rewrite
Eq. (B2) as

(B3)
where

(B4)

is always positive; then we have

(B5)

At the ESS, the first term vanishes, hence the second deriv-
atives of N* and G have opposite signs. This implies that N*
is a minimum at the ESS if G is a maximum.
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