
1

Optimal Piecewise Linear Function Approximation

for GPU-based Applications
Daniel Berjón, Guillermo Gallego, Carlos Cuevas, Francisco Morán and Narciso Garcı́a

Abstract—Many computer vision and human-computer inter-
action applications developed in recent years need evaluating
complex and continuous mathematical functions as an essential
step toward proper operation. However, rigorous evaluation of
this kind of functions often implies a very high computational
cost, unacceptable in real-time applications. To alleviate this
problem, functions are commonly approximated by simpler
piecewise-polynomial representations. Following this idea, we
propose a novel, efficient, and practical technique to evaluate
complex and continuous functions using a nearly optimal design
of two types of piecewise linear approximations in the case
of a large budget of evaluation subintervals. To this end, we
develop a thorough error analysis that yields asymptotically tight
bounds to accurately quantify the approximation performance of
both representations. It provides an improvement upon previous
error estimates and allows the user to control the trade-off
between the approximation error and the number of evaluation
subintervals. To guarantee real-time operation, the method is
suitable for, but not limited to, an efficient implementation in
modern Graphics Processing Units (GPUs), where it outperforms
previous alternative approaches by exploiting the fixed-function
interpolation routines present in their texture units. The proposed
technique is a perfect match for any application requiring the
evaluation of continuous functions; we have measured in detail its
quality and efficiency on several functions, and, in particular, the
Gaussian function because it is extensively used in many areas of
computer vision and cybernetics, and it is expensive to evaluate.

Index Terms—Computer vision, image processing, numerical
approximation and analysis, parallel processing, piecewise lin-
earization, Gaussian, Lorentzian, Bessel.

I. INTRODUCTION

THE DESIGN of high-quality and real-time image pro-

cessing algorithms is a key topic in today’s context,

where humans demand more capabilities and control over

their rapidly increasing number of advanced imaging devices

such as cameras, smart phones, tablets, etc. [1]. Many efforts

Manuscript received March 7, 2014; revised June 26, 2015; accepted
September 22, 2015. This work has been supported in part by the Ministerio
de Economı́a y Competitividad of the Spanish Government under grant
TEC2013-48453 (MR-UHDTV) and by the European Commission under
grant 610691 (BRIDGET).

D. Berjón, C. Cuevas, F. Morán, and N. Garcı́a are with the
Grupo de Tratamiento de Imágenes, ETSI Telecomunicación, Universidad
Politécnica de Madrid, Madrid 28040, Spain (e-mail: dbd@gti.ssr.upm.es,
ccr@gti.ssr.upm.es, fmb@gti.ssr.upm.es, narciso@gti.ssr.upm.es).

G. Gallego was also with the Grupo de Tratamiento de Imágenes, Universi-
dad Politécnica de Madrid, Madrid 28040, Spain. He is now with the Robotics
and Perception Group, University of Zurich, Zurich 8001, Switzerland (e-mail:
guillermo.gallego@ifi.uzh.ch).

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE. DOI: 10.1109/TCYB.2015.2482365

(a) (b)

Fig. 1. High level tasks such as (a) object/person-tracking or (b) video-based
gestural interfaces often require a foreground segmentation method as a base
building block.

are being made toward satisfying those needs by exploit-

ing dedicated hardware, such as Graphics Processing Units

(GPUs) [2], [3], [4]. Some areas where GPUs are emerging

to improve Human Computer Interaction (HCI) include cy-

bernetics (for example, in facial [5] or object [6] recognition,

classification using Support Vector Machines [7] and genetic

algorithms for clustering [8]), and image processing (e.g.,

unsupervised image segmentation [3], [9], optical coherence

tomography systems [4], efficient surface reconstruction from

noisy data [10], remote sensing [11], real-time background

subtraction [12], etc.). In such hardware-oriented designed

algorithms, the computational efficiency of processing tasks

is significantly improved by parallelizing the operations.

Automated video analysis applications such as person track-

ing or video-based gestural interfaces (see Fig. 1) rely on

lower-level building blocks like foreground segmentation [13],

[14], where the design of efficient computational methods

for dedicated hardware has a significant impact. Multimodal

nonparametric segmentation strategies have drawn a lot of

attention [15], [16] since they are able to provide high-quality

results even in complex scenarios (dynamic background, illu-

mination changes, etc.) [17]. However, their main drawback

is their extremely high computational cost (requiring the

evaluation of billions of multidimensional Gaussian kernels

per second), which makes them difficult to integrate in the

latest generation of image processing applications [18], [19].

To overcome this important drawback and achieve real-time

performance [20], the use of parallel hardware such as GPUs

helps but may not be enough by itself, depending on the

required resolution, hence the need for algorithms capable

of evaluating non-linear (e.g., Gaussian) functions at high

speed within a required error tolerance. GPU vendors are

aware of this recurrent computing problem and provide hard-

ware implementations of common transcendental functions in

http://dx.doi.org/10.1109/TCYB.2015.2482365

2

Special Function Units (SFUs) [21]; indeed, we can find in

the literature examples of successful use of these hardware

facilities [22]. However, their ease of use comes at the price

of non-customizable reduced numerical precision [23].

A. Contribution

We propose a novel, fast, and practical method to evaluate

any continuous mathematical function within a known interval.

Our contributions include, based on error equalization, a nearly

optimal design of two types of piecewise linear approximations

(linear interpolant and orthogonal projection) in the L2 norm

under the constraint of a large budget of evaluation subinter-

vals N . Moreover, we provide asymptotically tight bounds for

the approximation errors of both piecewise linear representa-

tions, improving upon existing ones. Specifically, in addition to

the O(N−2) convergence rate typical of these approximations,

we quantify their interpolation constants: 1/
√
120 for the

linear interpolant and a further
√
6 improvement factor in case

of the orthogonal projection. The obtained error relations are

parameterized by the number of segments used to represent

the complex (nonlinear) function, hence our approach allows

the user to estimate the errors given N or, conversely, estimate

the required N to achieve a target approximation error.

We also propose an efficient implementation of the tech-

nique in a modern GPU by exploiting the fixed-function

interpolation routines present in its texture units to accelerate

the computation while leaving the rest of the GPU (and, of

course, the CPU) free to perform other tasks; this technique

is even faster than using SFUs [21].

Although the initial motivation of the developed method was

to improve the efficiency of nonparametric foreground seg-

mentation strategies, it must be noted that it can be also used

in many other scientific fields such as computer vision [24],

[25] or audio signal processing [26], [27], where the evaluation

of continuous mathematical functions constitutes a significant

computational burden.

B. Organization

Section II summarizes the basic facts about piecewise linear

approximation of real-valued univariate functions and reviews

related work in this topic; Section III derives a suboptimal

partition of the domain of the approximating function in order

to minimize the distance to the original function (proofs of

results are given in the Appendixes); Section IV analyzes

the algorithmic complexity of the proposed approximation

strategies and Section V gives details about their implementa-

tion on modern GPUs. Section VI presents the experimental

results of the proposed approximation on several functions

(Gaussian, Lorentzian and Bessel’s), both in terms of quality

and computational times, and its use is demonstrated in an

image processing application. Finally, Section VII concludes

the paper.

II. PIECEWISE LINEAR MODELIZATION

A. Related Work

In many applications, rigorous evaluation of complex math-

ematical functions is not practical because it takes too much

computational power. Consequently, this evaluation is car-

ried out approximating them by simpler functions such as

(piecewise-)polynomial ones. Piecewise linearization has been

used as an attractive simplified representation of various com-

plex nonlinear systems [28]. The resulting models fit into well

established tools for linear systems and reduce the complexity

of finding the inverse of nonlinear functions [29], [30]. They

can also be used to obtain approximate solutions in com-

plex nonlinear systems, for example, in Mixed-Integer Linear

Programming (MILP) models [31]. Some efforts have been

devoted as well to the search for canonical representations in

one and multiple dimensions [32], [33] with different goals

such as black box system identification, approximation or

model reduction.

Previous attempts to address the problem considered here

(optimal function piecewise linearization) include [34], [35],

[29], [36], the latter two in the context of nonlinear dynamical

systems. In [34] an iterative multi-stage procedure based on

dynamical programming is given to provide a solution to the

problem on sequences of progressively finer 2-D grids. In [29]

the piecewise linear approximation is obtained by using the

evolutionary computation approach such as genetic algorithm

and evolution strategies; the resulting model is obtained by

minimization of a sampled version of the mean squared error

and it may not be continuous. In [36] the problem is addressed

using a hybrid approach based on curve fitting, clustering and

genetic algorithms. Here we address the problem from a less

heuristic point of view, using differential calculus to derive

a more principled approach [37]. Our method solely relies

on standard numerical integration techniques, which takes

few seconds to compute, as opposed to recursive partitioning

techniques such as [35], which take significantly longer.

B. Basic Results in Piecewise-Linear Interpolation and Least-

Squares Approximation

In this section we summarize the basic theory behind piece-

wise linear functions [38] and two such approximations to real-

valued functions: interpolation and projection (Sections II-B1

and II-B2, respectively), pictured in Fig. 2 along with their

absolute approximation error with respect to f .

In essence, a piecewise function over an interval I = [a, b]
is a partition of I into a set of N subintervals T = {Ii}Ni=1,

where Ii = (xi−1, xi) | a = x0 < x1 < . . . < xN = b,
and a set of N functions fi(x), one for each subinterval Ii.
In particular we are interested in continuous piecewise lin-

ear (CPWL) functions, which means that all the fi(x) are

linear and fi(xi) = fi+1(xi) ∀i = {1, . . . , N − 1}. CPWL

functions of a given partition T are elements of a vector space

VT : the addition of such functions and/or multiplication by a

scalar yields another CPWL function defined over the same

subintervals. A useful basis for the vector space VT is formed

by the set of hat functions or nodal basis functions {ϕi}Ni=0,

pictured in Fig. 3 and defined in general by the formula

ϕi(x) =











(x− xi−1)/(xi − xi−1), x ∈ [xi−1, xi]

(x− xi+1)/(xi − xi+1), x ∈ [xi, xi+1]

0, x /∈ [xi−1, xi+1] .

(1)

3

Fig. 2. Top: fifth-degree polynomial f(x) = (x + 4)(x + 2)(x + 1)(x −
1)(x − 3) and two continuous piecewise linear (CPWL) approximations,
the orthogonal projection PT f and the linear interpolant πT f ; bottom:
corresponding absolute approximation errors (magnified by a 5× factor).

Fig. 3. Hat functions constitute a basis of VT . Since all the basis functions
are zero outside I = [a, b], the basis functions associated with boundary
nodes are only half hats.

The basis functions ϕ0 and ϕN associated to the boundary

nodes x0 and xN are only half hats.

These basis functions are convenient since they can repre-

sent any function v in VT by just requiring the values of v at

its nodal points, v(xi), in the form

v(x) =

N
∑

i=0

v(xi)ϕi(x). (2)

1) Linear Interpolation: The piecewise linear interpolant

πT f ∈ VT of a continuous function f over the interval I can

be defined in terms of the basis just introduced:

πT f(x) =

N
∑

i=0

f(xi)ϕi(x). (3)

While this CPWL approximation is trivial to construct, and

may be suitable for some uses, it is by no means the best

possible one. Crucially, πT f(x) ≥ f(x) ∀x ∈ I for any

function f that is convex in I . Depending on the application

in which this approximation is used, this property could skew

the results. However, as we will see in Section III, the linear

interpolant is useful to analyze other possible approximations.

It is also at the heart of the trapezoidal rule for numerical

integration.

2) Orthogonal Projection onto Vector Space VT : Let the

usual inner product between two square-integrable (L2) func-

tions in the interval I be given by

〈u, v〉 =
∫

I

u(x) v(x) dx. (4)

Then, the vector space VT can be endowed with the above

inner product, yielding an inner product space. As usual, let

‖u‖ =
√

〈u, u〉 be the norm induced by the inner product, and

let d(u, v) = ‖u − v‖ be the distance between two functions

u, v. The orthogonal projection of the function f onto VT is

the function PT f ∈ VT such that

〈f − PT f, v〉 = 0 ∀v ∈ VT . (5)

Since PT f ∈ VT , it can be expressed in the nodal basis

{ϕi}Ni=0 by

PT f(x) =
N
∑

i=0

ciϕi(x), (6)

where the coefficients ci solve the linear system of equations

Mc = b. The (N + 1)×(N+1) matrix M = (mij) has entries

mij = 〈ϕi, ϕj〉, and vector b has entries given by bi = 〈f, ϕi〉.
The Gramian matrix M is tridiagonal and strictly diagonally

dominant. Therefore, the system has exactly one solution c,
which can be obtained efficiently using the Thomas algorithm

(a particular case of Gaussian elimination) [39].

PT f is the element in VT that is closest to f in the sense

given by the aforementioned L2 distance d, as we recall next.

For any w ∈ VT ,

‖f − PT f‖2 = 〈f − PT f, f − w + w − PT f〉
= 〈f − PT f, f − w〉+ 〈f − PT f, w − PT f〉
(5)
= 〈f − PT f, f − w〉 ,

where we used property (5) that the vector (w−PT f) ∈ VT .

Next, applying the Cauchy-Schwarz inequality,

‖f − PT f‖2 = 〈f − PT f, f − w〉 ≤ ‖f − PT f‖ ‖f − w‖,

and so ‖f − PT f‖ ≤ ‖f − w‖, i.e.,

d(f, PT f) ≤ d(f, w) ∀w ∈ VT , (7)

with equality if w = PT f . This makes PT f most suitable as

an approximation of f under the L2 norm.

III. FINDING THE OPTIMAL PARTITION

As just established, for a given vector space of CPWL

functions VT , PT f is the function in VT whose L2 distance

to f is minimal. However, the approximation error ‖f−PT f‖
does not take the same value for every possible VT ; therefore,

we would like to find the optimal partition T ∗ (or a reasonable

approximation thereof) corresponding to the space VT∗ in

which the approximation error is minimum,

‖f − PT∗f‖ ≤ ‖f − PT f‖.

This is a difficult optimization problem: in order to properly

specify PT f in (6) and measure its distance to f , we need

to solve the linear system of equations Mc = b, whose

coefficients depend on the partition itself, which makes the

problem symbolically intractable. Numerical algorithms could

be used but it is still a challenging problem.

Let us examine the analogous problem for the interpolant

function πT f(x) defined in Section II-B1. Again, we would

4

Fig. 4. Function f in the subinterval Ii = [xi−1, xi] and two linear
approximations. On the left, the linear interpolant πT f given by (8); on the
right, a general linear segment linei given by (10). ∆yj is a signed distance
with respect to f(xj).

like to find the optimal partition T ∗ corresponding to the space

VT∗ in which the approximation error is minimum,

‖f − πT∗f‖ ≤ ‖f − πT f‖.

Albeit not as difficult as the previous problem, because πT f
is more straightforward to define, this is still a challenging

non-linear optimization problem. Fortunately, as it is shown

next, a good approximation can be easily found under some

asymptotic analysis.

In the rest of this section we investigate in detail the error

incurred when approximating a function f by the interpolant

πT f and the orthogonal projection PT f defined in Section II

(see Fig. 2). Then we derive an approximation to the optimal

partition (Section III-B) that serves equally well for πT f and

PT f because, as we will show (Section III-A), their approx-

imation errors are roughly proportional under the assumption

of a sufficiently large number of intervals.

A. Error in a Single Interval

1) Linear Interpolant: First, let us consider the error in-

curred when approximating a function f , twice continuously

differentiable, by its linear interpolant in an interval (Fig. 4).

Result 1. The L2 error between a given function f and its

linear interpolant

πT f(x) = f(xi−1)
(

1− δi(x)
)

+ f(xi)δi(x), (8)

with δi(x) = (x−xi−1)/hi, in the interval Ii = [xi−1, xi], of

length hi = xi − xi−1, is bounded:

‖f − πT f‖L2(Ii) ≤
1√
120

|f ′′

i |maxh
5/2
i , (9)

where |f ′′

i |max = maxη∈Ii |f ′′(η)|.
Proof: See Appendix A.

Formula (9) has the following intuitive explanation: the

error measures the deviation of f from being straight (linear),

and this is directly related to the convexity/concavity of the

function, thus the presence of the term |f ′′

i |max to bound the

amount of bending.

The other interesting part of (9) is the h
5/2
i dependence

with respect to the interval size or the local density of knots.

Other works in the literature use the weaker bound that does

not require carrying out integration [39]: ‖f − πT f‖L2(Ii) ≤
C |f ′′

i |maxh
2
i , for some constant C > 0.

2) Best Linear Approximation: Let us now characterize the

error of the orthogonal projection PT f . We do so in two steps:

first we compute the minimum error of a line segment in

the interval Ii, and then we use an asymptotic analysis to

approximate the error of the orthogonal projection.

Stemming from (8), we can write any (linear) segment in

Ii as

linei(x) =
(

f(xi−1) + ∆yi−1

)(

1− δi(x)
)

+
(

f(xi) + ∆yi
)

δi(x), (10)

where ∆yi−1 and ∆yi are extra degrees of freedom (pictured

in Fig. 4) with respect the interpolant πT f that allow the

line segment to better approximate the function f in Ii. By

computing the optimal values of ∆yi−1 and ∆yi we obtain

the following result.

Result 2. The minimum squared L2 error between a given

function f and a line segment (10) in an interval Ii =
[xi−1, xi], of length hi = xi − xi−1, adopts the expression

min ‖f − linei‖2L2(Ii)
=

h5
i

120
(f ′′(η))2

− h5
i

144

(

(

f ′′(η0)
)2

+
(

f ′′(η1)
)2 − f ′′(η0)f

′′(η1)
)

. (11)

for some η, η0, η1 in (xi−1, xi).

Proof: See Appendix B.

Corollary 2.1. If Ii is sufficiently small so that f ′′ is approx-

imately constant within it, say f ′′

Ii
, then

min ‖f − linei‖2L2(Ii)
≈ h5

i

720
(f ′′

Ii)
2. (12)

Proof: Substitute f ′′(x) ≈ f ′′

Ii
for x = {η, η0, η1} in (11).

The segments in PT f may not strictly satisfy (11) because

PT f must also be continuous across segments. However, as

the size of the intervals hi become smaller (due to a finer

partition T of the interval I , i.e., the number of segments N
in T increases) we may approximate PT f in Ii by the best

(independently-optimized) segment linei and, consequently,

use Corollary 2.1 to yield the following result.

Result 3. The squared L2 error between a given function f
and its orthogonal projection PT f in a small interval Ii =
[xi−1, xi], of length hi = xi − xi−1, is

‖f − PT f‖2L2(Ii)
≈ h5

i

720
(f ′′

Ii)
2. (13)

where f ′′

Ii
is the approximately constant value that f ′′ takes

within the interval Ii.

Proof: See Appendix C.

In the same asymptotic situation, the linear interpolant (9),

(see (29)) gives a bigger squared error by a factor of six,

‖f − πT f‖2L2(Ii)
≈ h5

i

120
(f ′′

Ii)
2. (14)

B. Approximation to the Optimal Partition

Now we give a procedure to compute a suboptimal partition

of the target interval I and then derive error estimates for both

πT f and PT on such a partition and the uniform one.

5

1) Procedure to Obtain a Suboptimal Partition: Let us

consider a partition T of I = [a, b] with subintervals Ii =
[xi−1, xi], i = 1, . . . , N . A suboptimal partition for a given

N is one in which every subinterval has approximately equal

contribution to the total approximation error [39], [40], which

implies that regions of f with higher convexity are approxi-

mated using more segments than regions with lower convexity.

Let us assume N is large enough so that f ′′ is approximately

constant in each subinterval and therefore the bound (9) is

tight. Consequently,

|f ′′

i |maxh
5/2
i ≈ C, (15)

for some constant C > 0, and the lengths of the subintervals

(local knot spacing [40]) should be chosen hi ∝ |f ′′

i |
−2/5
max , i.e.,

smaller intervals as |f ′′

i |max increases. Hence, the local knot

distribution or density is

lkd(x) ∝ |f ′′(x)|2/5, (16)

so that more knots of the partition are placed in the regions

with larger magnitude of the second derivative.

Then, the proposed approximation T (∗) to the optimal

partition is as follows: x0 = a, xN = b, and take knots

{xi}N−1
i=1 given by

F (xi) = i/N, (17)

where the monotonically increasing function F : [a, b] → [0, 1]
is

F (x) =

∫ x

a

(

f ′′(t)
)2/5

dt
/

∫ b

a

(

f ′′(t)
)2/5

dt. (18)

In this procedure, pictured in Fig. 5, the range of F (x) is

divided into N contiguous sub-ranges of equal length, and the

values of xi are given by the abscissas corresponding to the

endpoints of the sub-ranges.

2) Error Estimates: With this partition, we can further

estimate approximation error bounds in the entire interval

based on those of the subintervals.

Result 4. The approximation error of the linear interpolant

πT (∗)f in the partition T (∗) given by (17) in I = [a, b] is

‖f − πT (∗)f‖ .
1

N2
√
120

(

∫ b

a

(

f ′′(t)
)2/5

dt

)5/2

. (19)

Proof: The total squared error for any partition T is the

sum of squared errors over all subintervals Ii, and by (9),

‖f − πT f‖2 ≤
N
∑

i=1

1

120

(

|f ′′

i |maxh
5/2
i

)2

, (20)

which, under the condition of error equalization (15) for the

proposed partition T (∗), becomes

‖f − πT (∗)f‖2 ≤
N
∑

i=1

1

120
C2 =

1

120
C2N. (21)

To compute C, let us sum |f ′′

i |
2/5
maxhi ≈ C2/5 over all intervals

Ii and approximate the result using the Riemann integral:

C2/5N
(15)≈

N
∑

i=1

|f ′′

i |2/5maxhi ≈
∫ b

a

(

f ′′(t)
)2/5

dt, (22)

Fig. 5. Graphical summary of the proposed knot placement technique. Top:
local knot density (16) obtained from input function f (example in Fig. 2);
middle: cumulative knot distribution function F given by (18) and knots given
by the abscissas corresponding to a uniform partition of the range of F , as
expressed by (17); bottom: approximation of f by CPWL interpolant πT∗f
with N = 31 (32 knots). In this suboptimal partition, knots are distributed
according to the amount of local convexity/concavity of f given by the lkd
in the middle plot. Hence, fewer knots are placed around the zeros of the lkd,
which correspond to the less steep regions of F .

whose right hand side is independent of N . Substituting (22)

in (21) gives the desired approximate bound (19) for the error

in the interval I = [a, b].
Since the approximation error of PT f in each interval is

roughly proportional to that of πT f , as shown in (13) and (14),

the partition (17) is also a very good approximation to the

optimal partition for PT f as the number of subintervals N
increases. This is briefly stated next.

Result 5. The approximation error of the orthogonal projec-

tion PT (∗)f in the partition T (∗) given by (17) in I = [a, b] is

‖f − PT (∗)f‖ ≈ 1√
6
‖f − πT (∗)f‖. (23)

Both CPWL approximations (πT f and PT f) converge to the

true function f at a rate of at least O(N−2) ((19) and (23)).

We use a similar procedure to derive an estimate error bound

for the uniform partition TU that can be compared to that of

the optimized one.

Result 6. The approximation error of the linear interpolant

πTU
f in the uniform partition TU of the interval I = [a, b] is

‖f − πTU
f‖ ≈ (b− a)

2

N2
√
120

‖f ′′‖. (24)

Proof: For TU , we may substitute hi = (b−a)/N in (20)

and approximate the result using the Riemann integral,

‖f−πTU
f‖

(20)

≤ h2
i√
120

(

N
∑

i=1

|f ′′

i |2maxhi

)1/2

≈ (b− a)
2

N2
√
120

‖f ′′‖.

Thus, we can estimate how much we can expect to benefit

from optimizing a partition by simply dividing (19) by (24).

Since (24) also shows a O(N−2) convergence, the profit will

not depend on N (assuming N is large enough).

6

Algorithm 1 (CPWL function evaluation). Given as input the description of a continuous piecewise linear function (CPWL)

v ∈ VT by means of the the nodal values v samples = v(x0), . . . , v(xN) at the knots x samples = x0, . . . , xN of the

partition T , and an abscissa x⋆ ∈ [x0, xN), return v(x⋆).

1 Determine the subinterval Ii that contains x⋆: i | xi−1 ≤ x⋆ < xi

2 Find the fractional distance δi to the left endpoint of Ii: δi ⇐ (x⋆ − xi−1)/(xi − xi−1)
3 Return the interpolated value (1− δi) v(xi−1) + δi v(xi)

IV. COMPUTATIONAL ANALYSIS

The implementation of the approximations previously dis-

cussed is straightforward (Algorithm 1) and we only need

to distinguish two different cases depending on whether the

partition T of I has all subintervals of equal width or not.

Although their values are different, πT f(x) and PT f(x) are

qualitatively the same from the computational viewpoint.

Let us discuss the general case that T is non-uniform.

Line 1 in Algorithm 1 implies searching in the ordered array

x samples for the right index i. Since the other steps in the

algorithm do not depend on the size of the input vectors,

Line 1 is the dominant step and makes its run-time complexity

O(logN). In the particular case that T is uniform, no search

is needed to determine the index: i ⇐
⌊

x⋆
−x0

xN−x0
N
⌋

+ 1 and

the fractional part δi ⇐ x⋆
−x0

xN−x0
N + 1− i. Thus, the run-time

complexity of the uniform case is O(1). There is also no need

to store the full array x samples but only its endpoints x0 and

xN , roughly halving the memory needed for a non-uniform

partition of the same number of intervals.

Consequently, approximations based on a uniform partition

are expected to perform better in usual CPUs or GPUs,

computationally-wise, than those based on non-uniform parti-

tions. However, optimizing the partition might lead, depending

on the specific objective function, to a reduction in the memory

requirements for a desired approximation error. If memory

constraints are relevant or hardware-aided search routines

become available, optimized partitions could become practical.

V. IMPLEMENTATION IN A GPU

The proposed algorithm is simple to implement either in a

CPU or in a GPU. However, there are some implementation

details that help further optimize the performance in a GPU.

Modern GPUs implement a Single Instruction, Multiple

Data (SIMD) execution model in which multiple threads ex-

ecute exactly the same instructions (each) over different data.

If two threads scheduled together in the same execution group

or warp follow different branches in a conditional statement,

both branches are not executed in parallel but sequentially,

thereby halving throughput. In the case of T being non-

uniform, the (binary) search performed to find the index i
could lead to divergent paths for different threads evaluating

v(x) for different values of x, thus reducing throughput.

Since the purpose of the proposed algorithm is to save

computation at run-time, it is reasonable to assume that at

least N , and possibly x samples and v samples too, have

been determined at compile time. Then, we can particularize

the search code in compile time, unrolling the loop needed to

implement the binary search and, most importantly, replacing

conditional statements with a fixed number of invocations of

the ternary operator, which is implemented in the GPU with

a single instruction and no code divergence [41].

In general, accesses to memory in a GPU need to be

arranged so that neighbouring threads access neighbouring

addresses in memory. This allows the host interface of the

GPU to coalesce operations from several threads into fewer

transactions bigger in size. In the described algorithm, if each

thread is evaluating v(x) for different values of x, it is not

guaranteed that the memory access pattern complies with this

restriction. Although some devices provide caching and isolate

the programmer from this issue, not all do.

However, there is a case in a regular computer graphics

pipeline in which a similar problem arises. Texture data need

to be accessed many times in a short period and it is generally

impossible to ensure that neighbouring pixels in screen need to

read neighbouring texels. Consequently, most GPUs do cache

texture data and even have dedicated cache layers for it. We

therefore store the arrays of samples in texture memory rather

than in global memory to benefit from texture caches.

The use of the texture units to access our samples provides

another important benefit. In the usual computer graphics

pipeline, GPUs need to constantly filter texture data. In order

to efficiently perform that task, texture units are equipped with

hardware fixed-function interpolation routines that include

linear interpolation [21]. Therefore, we can use them to speed

up line 3 in Algorithm 1; results in the next section confirm

that the texture filtering unit is indeed faster than performing

interpolation “manually”.

VI. EXPERIMENTAL RESULTS

In this section we apply the proposed linearization algorithm

to several functions of interest in cybernetics, computer vision

and other scientific areas. The section starts with the analysis

of the Gaussian function and demonstrates the proposed tech-

nique on an image processing application. The section then

analyzes two other sample nonlinear functions of interest: the

Lorentzian function and the Bessel function of the first kind.

A. Gaussian Function

The Gaussian function f(x) = exp(−x2/2)/
√
2π is widely

used in many applications in every field of science, but it

is of particular interest to us in the context of foreground

segmentation in video sequences using spatio-temporal non-

parametric background models [20]. To estimate these models,

the Gaussian function needs to be evaluated approximately

1300 times per pixel and input image, or around 2 billion times

per second at modest video quality (CIF, 352× 288 pixels at

15 fps). Therefore it is crucial to lower the computing time

of the Gaussian function. In the performed experiments it was

7

Fig. 6. L2 distance for different approximations to the Gaussian function

f(x) = exp(−x2/2)/
√
2π over the interval x ∈ [0, 8].

enough to approximate the function in the interval x ∈ [0, 8]
to achieve the required quality.

Fig. 6 shows L2 distances between the Gaussian function

and the approximations described in previous sections. It

reports actual distances as well as the approximate and tight

upper bounds to the distances, i.e., Results 4 to 6. It can be

observed that the L2 distances between πT f and f using the

uniform and optimized partitions agree well with Results 4

to 6. All curves in Fig. 6 have similar slope to that of (19),

i.e., their convergence rate is O(N−2), and the ratio between

the distances corresponding to PT f and πT f is approximately

the value 1/
√
6 that stems from Result 3 and (14).

Table I shows mean processing times per evaluation both

in the CPU (sequentially, one core only) and in the GPU. All

execution times have been measured in a computer equipped

with an Intel Core i7-2600K processor, 16 GiB RAM and an

NVIDIA GTX 580 GPU. We have exercised the utmost care to

ensure that all different strategies achieve the same utilization

of the GPU so that measurements are fair.

We compare the proposed algorithm against the exact Gaus-

sian implemented using the exponential function of the C

standard library (CPU or GPU) and against a fast Gaussian

implemented using the hardware-accelerated low-precision ex-

ponential function from the SFU of the GPU [23]. In either

hardware (CPU or GPU), there are no separate measurements

for πT f(x) and PT f(x) because they only differ in value but

not in their implementation. As was expected from the com-

putational analysis, execution times for the uniform partition

are constant, whereas they are heavily dependent on N for the

optimized partition (see Fig. 7).

In the CPU case, the optimized partition approach is faster

than the C standard library implementation if N < 128, but

the speed-up gain is smaller than that of the uniform partition

approach, which is 8 times faster than the C standard library

(regardless of N).

In the GPU case, we have also measured the proposed

algorithm both with and without the texture filtering unit (last

four rows of Table I) to prove that the former option is indeed

Fig. 7. Mean per-evaluation execution times of all the proposed variants on
a GPU (in picoseconds). The graph clearly shows the O(1) and O(logN)
dependencies on the number of intervals N for uniform and non-uniform
partitions, respectively.

faster than coding the interpolation explicitly, thanks to its

dedicated circuitry. The proposed strategy, using a uniform

partition (7.9 ps), solidly outperforms both the exact (33.3 ps)

and fast SFU (14.2 ps) Gaussians, by approximate speed-up

factors of ×4 and ×2, respectively, even though the latter is

hardware-accelerated. However, we must stress that this is a

synthetic benchmark; in a real application such as the one

described in the next section, there may exist limitations in

memory bandwidth to access operands. Moreover, many re-

sources such as shared memory, cache and hardware registers

are being used for other tasks too. This can (and does) affect

the execution time of each of the different implementation

strategies.

Foreground Segmentation (Sample Application): To obtain

high-quality detections in complex situations (e.g., dynamic

background, illumination changes, etc.), multimodal moving

object detection strategies are commonly used because they

are able to model the multiple pixel states in such situations.

Among multimodal strategies, nonparametric methods have

shown to provide the best quality detections [42] because, in

contrast to other algorithms, they do not assume that the pixel

values conform to a particular distribution, but obtain instead

probabilistic models from sets of recent samples.

Fig. 8 illustrates this by comparing the results from different

strategies against a difficult scene featuring a dynamic back-

ground. The results of two unimodal background modeling

methods are shown in the second row of this figure: the

Temporal Median Filter (e.g., [43]) and the Running Gaus-

sian Average (e.g., [44]); whereas the segmentations resulting

from the application of two multimodal modeling approaches

are depicted in the third row: an improved version of the

Mixture of Gaussians method [45] and the spatio-temporal

nonparametric-based background modeling in [20].

To improve the quality of the results in sequences con-

taining non-static background regions, and/or captured with

portable cameras, most recent nonparametric methods use

8

TABLE I
MEAN PER-EVALUATION EXECUTION TIMES (IN PICOSECONDS) FOR THE GAUSSIAN FUNCTION.

Number of points (N + 1) 32 64 128 256 512

CPU
exact function using expf from <cmath> 13710
uniform partition 1750 - 1780
optimized partition 8900 11230 13830 16910 20120

GPU

exact function using expf from <cmath> 33.3
fast function using __expf from the SFU 14.2
uniform partition, manual interpolation 19.7 - 19.8
uniform partition, hardware interpolation 7.8 - 7.9
optimized partition, manual interpolation 142.0 161.9 181.8 203.1 224.1
optimized partition, hardware interpolation 122.7 142.9 163.2 188.3 211.1

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 8. Results from several different foreground segmentation methods for
a complex dynamic scene. (a) Original scene; (b) Ground truth; (c) Temporal
Median Filter; (d) Running Gaussian Average; (e) Mixture of Gaussians; (f)
Nonparametric modeling.

spatio-temporal reference data [46]. However, these strategies

involve huge memory and computational costs, since they need

to evaluate millions of Gaussian kernels per image. Therefore,

lowering the cost of evaluating the Gaussian function has

a direct impact in the performance of the algorithm. To

demonstrate this, we have implemented our proposed tech-

nique in a nonparametric background modeling method [20].

Table II shows mean per-pixel (in order to make measurements

resolution-independent) processing times for the three best

performing options in Section VI. Processing times are not

proportional to those in Table I because the model needs to

do many other things aside from evaluating Gaussians, and

TABLE II
MEAN PER-PIXEL PROCESSING TIMES (IN NANOSECONDS) FOR THE

NONPARAMETRIC BACKGROUND MODELING TECHNIQUE.

Uniform partition, hardware interpolation 286
Fast Gaussian using __expf from the SFU 324
Exact Gaussian using expf from <cmath> 391

(a)

(c)

(b)

(d)

Fig. 9. Sample detections using nonparametric modeling with CPWL-
approximated Gaussian kernels. Subfigures (a) and (b) show the original scene
and results of the segmentation, respectively, for the tracking application;
subfigures (c) and (d) show the original scene and results of the segmentation,
respectively, for the video-based interface application.

access to reference data is bandwidth-limited. However, our

proposed technique still outperforms any of the alternatives:

the exact Gaussian by 27% and the fast SFU Gaussian by

12%, while the final segmentation results of the method are

the same in all three cases, as depicted in Fig. 9.

B. Lorentzian Function

The performance of the approximation technique has also

been tested on other functions. For example, the Lorentzian

function with peak at x0 and width γ is

L(x;x0, γ) =
1

π

γ

(x− x0)2 + γ2
(25)

As a probability distribution, (25) is known as the Cauchy

distribution. It is an important function in Physics since it

9

Fig. 10. L2 distance for different CPWL approximations to the standard
Cauchy distribution f(x) = 1/((1 + x2)π) in the interval x ∈ [0, 6].

solves the differential equation describing forced resonance.

In such case, x0 is the resonance frequency and γ depends on

the damping of the oscillator (and is inversely proportional to

the Q factor, a measure of the sharpness of the resonance).

Fig. 10 reports the L2 distances between L(x; 0, 1) (25) and

the CPWL approximations described in previous sections, in

the interval x ∈ [0, 20]. The measured errors agree well with

the predicted approximate error bounds, showing the expected

O(N−2) trend.

We have measured the mean per-evaluation execution times

of the exact function both in the CPU (576 ps) and in the GPU,

both using regular and reduced-precision accelerated division

(19.5 ps and 9.2 ps, respectively). The evaluation times of

our proposed strategy coincide with those of the Gaussian

function (Table I) because the processing time of the CPWL

approximation does not depend on the function values.

As expected from the lower complexity of this function

(compared to that of Sec. VI-A), which only involves ele-

mentary arithmetic operations, the advantage of our proposal

vanishes in the CPU because the operations needed to man-

ually perform interpolation, together with the two values that

need to be fetched from memory, are actually more than what

the direct evaluation requires. However, note that in the GPU

our proposal still remains competitive due to these operations

being carried out by the dedicated circuitry of the texture unit.

C. Bessel Function

Approximating the Bessel function of the first kind J0(x)
is more challenging than approximating the Gaussian or

Lorentzian (bell-shaped) functions because it combines both

nearly flat and oscillatory parts (see Fig. 11). Fig. 12 presents

the L2 approximation errors for J0(x) using CPWL functions

in the interval x ∈ [0, 20]. For N ≥ 63 the measured

errors agree well with the predicted approximate error bounds,

whereas for N < 63 the measured errors slightly differ from

the predicted ones (specifically in the optimized partition)

because in these cases the scarce number of linear segments

does not properly represent the oscillations.

Fig. 11. Suboptimal partition for the Bessel function f(x) = J0(x) in the
interval x ∈ [0, 20]. Top: local knot density (lkd) corresponding to f ; bottom:
CPWL interpolant πT∗f with N = 63 (64 knots) overlaid on function f .

Fig. 12. L2 distance for different CPWL approximations to the Bessel
function of the first kind f(x) = J0(x) in the interval x ∈ [0, 20].

A sample optimized partition and the corresponding CPWL

interpolant πT∗f is also represented in Fig. 11. The knots

of the partition are distributed according to the local knot

density (see Fig. 11, Top), accumulating in the regions of high

oscillations (excluding the places around the zeros of the lkd).

This function is more complex to evaluate in general be-

cause it does not have a closed form. However, our approxima-

tion algorithm works equally well on it. We have measured the

mean per-evaluation execution times in the CPU (39 ns using

the POSIX extensions of the GNU C Library and 130 ns—

only double-precision provided—using the GNU Scientific

Library) and in the GPU (78 ps using the CUDA [23] standard

library). We have also measured the execution time of the first

term in the asymptotic expansion [47, Eq. 9.57a], valid for

x ≫ 1/4, J0(x) =
√

2
πx

[

cos
(

x− π
4

)

+O
(

1
x

)]

. In the GPU

the evaluation takes 42 ps using reduced-precision accelerated

functions from the SFU for the cosine and multiplicative

inverse of the square root. Despite this approximation having a

non-customizable error (decreasing as x increases) and using

the fastest available implementation (SFU) of the operations

involved, our strategy still outperforms it by a sizable margin.

This clearly illustrates that the more complex the function to

be evaluated is, the greater the advantage of our proposal.

10

VII. CONCLUSIONS

We have developed a fast method to numerically evaluate

any continuous mathematical function in a given interval using

simpler continuous piecewise linear (CPWL) functions and the

built-in routines present in the texture units of modern GPUs.

Our technique allows real-time implementation of demanding

computer vision and cybernetics applications that use such

mathematical functions.

For this purpose, we analyzed the CPWL approximations

given by the linear interpolant and the L2 orthogonal projec-

tion of a function. We carried out a detailed error analysis

in the L2 distance to seek a nearly optimal design of both

approximations. In the practical asymptotic case of a large

number of subintervals N , we used error equalization to

achieve a suboptimal design (partition T ∗) and derived a tight

bound on the approximation error for the linear interpolant,

showing a O(N−2) convergence rate that was confirmed by

experimental results. The L2 orthogonal projection can only

but improve upon the results of the linear interpolant, resulting

in a gain factor of
√
6.

We discussed the computational complexity and the im-

plementation in a GPU of the numerical evaluation of both

CPWL approximations. Our experimental results show that

our technique can outperform both the quality and the com-

putational cost of previous similar approaches. In particular,

the fastest strategy consists of using the texture units in

the GPU to evaluate either of the CPWL approximations

defined over a uniform partition. This is normally faster than

performing exact function evaluations, even when using the

reduced-precision accelerated implementation of the SFUs in

a GPU, or evaluating the proposed linear approximations

without the assistance of the texture units. In practice, the

number of subintervals N to be considered for representing

the nonlinear function can be decided on its own or based

on other considerations such as a target approximation error,

speed or memory constraints.

Although mathematically sound, the strategies based on a

suboptimal (non-uniform) partition are not practical to imple-

ment in current CPU/GPU architectures due to the high cost

incurred to find the subinterval that contains the given point

of evaluation. Nevertheless, this opens future research paths

to explore practical implementations of such approaches using

specialized hardware.

APPENDIX A

PROOF OF RESULT 1 (LINEAR INTERPOLANT ERROR)

Recall one of the theorems on interpolation errors [48]. Let

f be a function in Cn+1[a, b], and let p be a polynomial of

degree n or less that interpolates the function f at n+1 distinct

points x0, x1, . . . , xn ∈ [a, b]. Then, for each x ∈ [a, b] there

exists a point ξx ∈ [a, b] for which

f(x)− p(x) =
1

(n+ 1)!
f (n+1)(ξx)

n
∏

k=0

(x− xk). (26)

In the interval Ii, the linear interpolant πT f is given by (8).

Since πT f interpolates the function f at the endpoints of

Ii, we can apply theorem (26) (with n = 1); hence, the

approximation error solely depends on f ′′ and x, but not on

f or f ′:

f(x)− πT f(x) = −1

2
f ′′(ξx)(x− xi−1)(xi − x). (27)

Let us integrate the square of (27) over the interval Ii,

‖f − πT f‖2L2(Ii)
=

∫

Ii

(

f ′′(ξx)
)2

4

(

(x− xi−1)(xi − x)
)2

dx.

Next, to simplify the previous integral, let us use the first

mean value theorem for integration, which states that if u :
[A,B] → R is a continuous function and v is an integrable

function that does not change sign on the interval (A,B), then

there exists a number η ∈ (A,B) such that

∫ B

A

u(x)v(x) dx = u(η)

∫ B

A

v(x) dx. (28)

Since (x − xi−1) ≥ 0 and (xi − x) ≥ 0 for all x ∈ Ii, let

us apply (28) to compute

‖f − πT f‖2L2(Ii)
=

1

4

(

f ′′(η)
)2
∫

Ii

(

(x− xi−1)(xi − x)
)2

dx

=
h5
i

120

(

f ′′(η)
)2
, (29)

for some η ∈ (xi−1, xi). Finally, if |f ′′

i |max =
maxη∈Ii |f ′′(η)|, it is straightforward to derive the L2 error

bound (9) from the square root of (29).

APPENDIX B

PROOF OF RESULT 2 (LINE SEGMENT MINIMUM ERROR)

The approximation error corresponding to the line seg-

ment (10) is

f(x)− linei(x) = f(x)− πT f(x)− (πT∆y)(x) (30)

where, by analogy with the form (8) of πT f, we defined

(πT∆y)(x) = ∆yi−1

(

1− δi(x)
)

+∆yiδi(x).
The proof proceeds by computing the optimal values of

∆yi−1 and ∆yi that minimize the squared L2 error over the

interval Ii:

‖f − linei‖2L2(Ii)
(30)
= ‖f − πT f‖2L2(Ii)

+ ‖πT∆y‖2L2(Ii)

− 2 〈f − πT f, πT∆y〉L2(Ii)
. (31)

The first term is given in (29). The second term is

‖πT∆y‖2L2(Ii)
=

hi

3

(

(∆yi−1)
2 + (∆yi)

2 +∆yi−1∆yi
)

,

and the third term is, applying (28) and the change of variables

t = δi(x) to evaluate the resulting integrals,

− 2 〈f − πT f, πT∆y〉L2(Ii)

= ∆yi−1

∫

Ii

f ′′(ξx)(x− xi−1)(xi − x)
(

1− δi(x)
)

dx

+∆yi

∫

Ii

f ′′(ξx)(x− xi−1)(xi − x)δi(x) dx

=
h3
i

12

(

∆yi−1f
′′(η0) + ∆yif

′′(η1)
)

,

for some η0 and η1 in (xi−1, xi).

11

Substituting previous results in (31),

‖f − linei‖2L2(Ii)
=

hi

3

(

(∆yi−1)
2 + (∆yi)

2 +∆yi−1∆yi

)

+
h3
i

12

(

∆yi−1f
′′(η0) + ∆yif

′′(η1)
)

+
h5
i

120

(

f ′′(η)
)2
.

We may now find the line segment that minimizes the distance

to f by taking partial derivatives with respect to ∆yi−1 and

∆yi, setting them to zero and solving the corresponding

system of equations. Indeed, the previous error is quadratic

in ∆yi−1 and ∆yi, and attains its minimum at
{

∆yi−1 =
(

f ′′(η1)− 2f ′′(η0)
)

h2
i /12,

∆yi =
(

f ′′(η0)− 2f ′′(η1)
)

h2
i /12.

(32)

The resulting minimum squared distance is (11).

APPENDIX C

PROOF OF RESULT 3 (ASYMPTOTIC ANALYSIS)

By the triangle inequality, the jump discontinuity at x = xi

between two adjacent independently-optimized segments is

∣

∣∆y−i −∆y+i
∣

∣ ≤ h2
i

12

∣

∣f ′′(η0,i)− 2f ′′(η1,i)
∣

∣

+
h2
i+1

12

∣

∣f ′′(η1,i+1)− 2f ′′(η0,i+1)
∣

∣, (33)

where ∆y−i =
(

f ′′(η0,i) − 2f ′′(η1,i)
)

h2
i /12 and ∆y+i =

(

f ′′(η1,i+1)−2f ′′(η0,i+1)
)

h2
i+1/12 are the offsets with respect

to f(xi) of the optimized segments (32) at the left and right of

x = xi, respectively; η0,j and η1,j lie in the interval Ij . Since

we are dealing with functions twice continuously differentiable

in a closed interval, the absolute value terms in (33) are

bounded, according to the extreme value theorem; therefore,

if hi and hi+1 decrease (finer partition T), the discontinuity

jumps at the knots of the partition also decrease. In the limit,

as suphi → 0, |∆y−i −∆y+i | → 0, i.e., continuity is satisfied.

Therefore the union of the independently-optimized segments

linei → PT f , which is the unique piecewise linear function

satisfying both continuity (∈ VT) and minimization of the L2

error (7). Consequently, if N is large we may approximate

‖f − PT f‖2L2(Ii)
≈ min ‖f − linei‖2L2(Ii)

; moreover, if Ii is

sufficiently small so that f ′′ is approximately constant within

it, f ′′

Ii
, then we use Corollary 2.1 to get (13).

REFERENCES

[1] G. Shapiro, “Consumer Electronics Association’s Five Technology
Trends to Watch: Exploring New Tech That Will Impact Our Lives,”
IEEE Consum. Electron. Mag., vol. 2, no. 1, pp. 32–35, 2013.

[2] N. Singhal, I. K. Park, and S. Cho, “Implementation and optimization
of image processing algorithms on handheld GPU,” in IEEE Int. Conf.

Image Process. (ICIP), 2010, pp. 4481–4484.
[3] V. Borges, M. Batista, and C. Barcelos, “A soft unsupervised two-

phase image segmentation model based on global probability density
functions,” in IEEE Int. Conf. Systems, Man and Cybernetics (SMC),
Oct 2011, pp. 1687–1692.

[4] K. Kapinchev, F. Barnes, A. Bradu, and A. Podoleanu, “Approaches
to General Purpose GPU Acceleration of Digital Signal Processing in
Optical Coherence Tomography Systems,” in IEEE Int. Conf. Systems,

Man and Cybernetics (SMC), Oct 2013, pp. 2576–2580.

[5] M. Song, D. Tao, Z. Liu, X. Li, and M. Zhou, “Image ratio features
for facial expression recognition application,” IEEE Trans. Syst., Man,

Cybern. B, vol. 40, no. 3, pp. 779–788, June 2010.
[6] J. Kim, E. Park, X. Cui, H. Kim, and W. Gruver, “A fast feature

extraction in object recognition using parallel processing on CPU and
GPU,” in IEEE Int. Conf. Systems, Man and Cybernetics (SMC), Oct
2009, pp. 3842–3847.

[7] S. Herrero-Lopez, “Accelerating SVMs by integrating GPUs into
MapReduce clusters,” in IEEE Int. Conf. Systems, Man and Cybernetics

(SMC), Oct 2011, pp. 1298–1305.
[8] P. Kromer, J. Platos, and V. Snasel, “Genetic algorithm for clustering

accelerated by the CUDA platform,” in IEEE Int. Conf. Systems, Man

and Cybernetics (SMC), Oct 2012, pp. 1005–1010.
[9] S. Balla-Arabe, X. Gao, and B. Wang, “GPU accelerated edge-region

based level set evolution constrained by 2D gray-scale histogram,” IEEE

Trans. Image Process., vol. 22, no. 7, pp. 2688–2698, 2013.
[10] A. Jalba and J. B. T. M. Roerdink, “Efficient Surface Reconstruction

From Noisy Data Using Regularized Membrane Potentials,” IEEE Trans.

Image Process., vol. 18, no. 5, pp. 1119–1134, 2009.
[11] S. Balla-Arabe, X. Gao, B. Wang, F. Yang, and V. Brost, “Multi-kernel

implicit curve evolution for selected texture region segmentation in VHR
satellite images,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8, pp.
5183–5192, Aug 2014.

[12] L. Cheng, M. Gong, D. Schuurmans, and T. Caelli, “Real-Time Discrim-
inative Background Subtraction,” IEEE Trans. Image Process., vol. 20,
no. 5, pp. 1401–1414, 2011.

[13] P. Chiranjeevi and S. Sengupta, “Robust detection of moving objects
in video sequences through rough set theory framework,” Image Vision

Comput., vol. 30, no. 11, pp. 829 – 842, 2012.
[14] N. Liu, H. Wu, and L. Lin, “Hierarchical ensemble of background

models for PTZ-based video surveillance,” IEEE Trans. Cybern., vol. 45,
no. 1, pp. 89–102, Jan 2015.

[15] Y. Sheikh, O. Javed, and T. Kanade, “Background subtraction for freely
moving cameras,” in IEEE Int. Conf. Computer Vision (ICCV). IEEE,
2009, pp. 1219–1225.

[16] L. Sigal, M. Isard, H. Haussecker, and M. Black, “Loose-limbed people:
Estimating 3D human pose and motion using non-parametric belief
propagation,” Int. J. Comput. Vision, vol. 98, no. 1, pp. 15–48, 2012.

[17] C. Cuevas, R. Mohedano, and N. Garcı́a, “Adaptable Bayesian classifier
for spatiotemporal nonparametric moving object detection strategies.”
Optics letters, vol. 37, no. 15, pp. 3159–3161, Aug. 2012.

[18] Y. Moshe, H. Hel-Or, and Y. Hel-Or, “Foreground detection using
spatiotemporal projection kernels,” in IEEE Conf. Computer Vision and

Pattern Recognition (CVPR), 2012, pp. 3210–3217.
[19] C. Cuevas and N. Garcı́a, “Efficient Moving Object Detection for

Lightweight Applications on Smart Cameras,” IEEE Trans. Circuits Syst.

Video Technol., vol. 23, no. 1, pp. 1–14, Jan. 2013.
[20] D. Berjón, C. Cuevas, F. Morán, and N. Garcı́a, “GPU-based implemen-

tation of an optimized nonparametric background modeling for real-time
moving object detection,” IEEE Trans. Consum. Electron., vol. 59, no. 2,
pp. 361–369, May 2013.

[21] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla:
A unified graphics and computing architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39–55, 2008.

[22] M. Sylwestrzak, D. Szlag, M. Szkulmowski, I. Gorczyńska,
D. Bukowska, M. Wojtkowski, and P. Targowski, “Real time 3D
structural and Doppler OCT imaging on graphics processing units,” in
Proc. SPIE, no. 85710Y. Int. Soc. Optics and Photonics, Mar. 2013.

[23] NVIDIA Corp., “CUDA C Programming Guide,” Tech. Rep., 2012.
[24] J. Gallego, M. Pardas, and J.-L. Landabaso, “Segmentation and tracking

of static and moving objects in video surveillance scenarios,” in IEEE

Int. Conf. Image Process. (ICIP), 2008, pp. 2716–2719.
[25] M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid, “Face recog-

nition from caption-based supervision,” Int. J. Comput. Vision, vol. 96,
no. 1, pp. 64–82, 2012.

[26] Z. Xie and L. Guan, “Multimodal Information Fusion of Audio Emotion
Recognition Based on Kernel Entropy Component Analysis,” in IEEE

Int. Symp. Multimedia, Dec. 2012, pp. 1–8.
[27] M. Sehili, D. Istrate, B. Dorizzi, and J. Boudy, “Daily sound recognition

using a combination of GMM and SVM for home automation,” in Proc.

20th European Signal Process. Conf., Bucharest, 2012, pp. 1673–1677.
[28] M. Storace and O. De Feo, “Piecewise-linear approximation of nonlinear

dynamical systems,” IEEE Trans. Circuits Syst. I, vol. 51, no. 4, pp.
830–842, 2004.

[29] T. Hatanaka, K. Uosaki, and M. Koga, “Evolutionary computation
approach to Wiener model identification,” in Congr. Evolutionary Com-

putation (CEC ’02), vol. 1, 2002, pp. 914–919.

12

[30] R. Tanjad and S. Wongsa, “Model structure selection strategy for Wiener
model identification with piecewise linearisation,” in Int. Conf. Elect.

Eng./Electron., Comput., Telecommun. and Inform. Technol. (ECTI-

CON), 2011, pp. 553–556.
[31] R. Rossi, S. A. Tarim, S. Prestwich, and B. Hnich, “Piecewise lin-

ear approximations of the standard normal first order loss function,”
arXiv:1307.1708 [math.OC], 2013.

[32] P. Julian, A. Desages, and O. Agamennoni, “High-level canonical
piecewise linear representation using a simplicial partition,” IEEE Trans.

Circuits Syst. I, vol. 46, no. 4, pp. 463–480, 1999.
[33] P. Julian, A. Desages, and B. D’Amico, “Orthonormal high-level canon-

ical PWL functions with applications to model reduction,” IEEE Trans.

Circuits Syst. I, vol. 47, no. 5, pp. 702–712, 2000.
[34] R. Bellman and R. Roth, “Curve fitting by segmented straight lines,” J.

Amer. Statistical Assoc., vol. 64, no. 327, pp. 1079–1084, 1969.
[35] C. Frenzen, T. Sasao, and J. Butler, “On the number of segments needed

in a piecewise linear approximation,” J. Comput. and Appl. Math., vol.
234, no. 2, pp. 437–446, 2010.

[36] S. Ghosh, A. Ray, D. Yadav, and B. M. Karan, “A Genetic Algorithm
Based Clustering Approach for Piecewise Linearization of Nonlinear
Functions,” in Int. Conf. Devices and Communications, 2011, pp. 1–4.

[37] G. Gallego, D. Berjón, and N. Garcı́a, “Optimal Polygonal L1 Lineariza-
tion and Fast Interpolation of Nonlinear Systems,” IEEE Trans. Circuits

Syst. I, vol. 61, no. 11, pp. 3225–3234, Nov 2014.
[38] K. Eriksson, D. Estep, and C. Johnson, “Piecewise linear approxima-

tion,” in Applied Mathematics: Body and Soul. Springer, 2004, vol. 2,
ch. 52, pp. 743–754.

[39] C. de Boor, “Piecewise linear approximation,” in A Practical Guide to

Splines. Springer, 2001, ch. 3, pp. 31–37.
[40] M. Cox, P. Harris, and P. Kenward, “Fixed- and free-knot univariate

least-square data approximation by polynomial splines,” in 4th Int. Symp.

Algorithms for Approximation, Jul. 2001, pp. 330–345.
[41] V. K. Pallipuram, N. Raut, X. Ren, M. C. Smith, and S. Naik, “A Multi-

Node GPGPU Implementation of Non-Linear Anisotropic Diffusion Fil-
ter,” in Symp. Application Accelerators in High Performance Computing,
Jul. 2012, pp. 11–18.

[42] C. Cuevas and N. Garcı́a, “Improved background modeling for real-
time spatio-temporal non-parametric moving object detection strategies,”
Image Vision Comput., vol. 31, no. 9, pp. 616–630, 2013.

[43] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detecting moving
objects, ghosts, and shadows in video streams,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 25, no. 10, pp. 1337–1342, 2003.
[44] Z. Tang, Z. Miao, and Y. Wan, “Background subtraction using running

Gaussian average and frame difference,” in Int. Conf. Entertainment

Computing (ICEC), 2007, pp. 411–414.
[45] C. Cuevas, N. Garcı́a, and L. Salgado, “A new strategy based on adaptive

mixture of Gaussians for real-time moving objects segmentation,” in
Proc. SPIE, no. 6811. Int. Soc. Optics and Photonics, 2008.

[46] Y. Sheikh and M. Shah, “Bayesian modeling of dynamic scenes for
object detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27,
no. 11, pp. 1778–1792, 2005.

[47] I. Bronshtein, K. Semendyayev, G. Musiol, and H. Mühlig, Handbook

of Mathematics, 6th ed. Springer, 2015.
[48] E. W. Cheney and D. R. Kincaid, “Errors in polynomial interpolation,”

in Numerical Mathematics and Computing, 7th ed. Cengage Learning,
2012, ch. 4.2, p. 181.

	Introduction
	Contribution
	Organization

	Piecewise Linear Modelization
	Related Work
	Basic Results in Piecewise-Linear Interpolation and Least-Squares Approximation
	Linear Interpolation
	Orthogonal Projection onto Vector Space VT

	Finding the Optimal Partition
	Error in a Single Interval
	Linear Interpolant
	Best Linear Approximation

	Approximation to the Optimal Partition
	Procedure to Obtain a Suboptimal Partition
	Error Estimates

	Computational Analysis
	Implementation in a GPU
	Experimental Results
	Gaussian Function
	Lorentzian Function
	Bessel Function

	Conclusions
	Appendix A: Proof of Result 1 (Linear Interpolant Error)
	Appendix B: Proof of Result 2 (Line Segment Minimum Error)
	Appendix C: Proof of Result 3 (Asymptotic Analysis)
	References

