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Abstract Optimal placement and sizing of DG in distribution network is an optimization problem with continuous and 
discrete variables. Many researchers have used evolutionary methods for finding the optimal DG placement. This paper 
proposes a shuffled frog leaping algorithm (SFLA) for optimal placement and sizing of distributed generation (DG) in radial 
distribution system to minimize the total real power loss and to improve the voltage profile. The SFLA is a meta-heuristic 
search method inspired from the memetic evolution of a group of frogs when seeking for food. It consists of a frog leaping 
rule for local search and a memetic shuffling rule for global information exchange. The proposed SFL algorithm is used to 
determine optimal sizes and locations of multi-DGs. Test results indicate that SFLA method can obtain better results than the 
simple heuristic search method on the 33-bus radial distribution systems. Moreover, voltage profile improvement and branch 
current reduction are obtained. 
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1. Introduction 
One of the most important motivation for the studies on 

integration of distributed resources to the grid is the exploi-
tation of the renewable resources such as; hydro, wind, so-
lar, geothermal, biomass and ocean energy, which are natu-
rally scattered around the country and also smaller in size. 
Accordingly, these resources can only be tapped through 
integration to the distribution system by means of Distrib-
uted Generation. Distributed Generation (DG), which gen-
erally consists of various types of renewable resources, can 
be defined as electric power generation within distribution 
networks or on the customer side of the system[1].DG af-
fects the flow of power and voltage conditions on the sys-
tem equipment. These impacts may manifest themselves 
either positively or negatively depending on the distribution 
system operating conditions and the DG characteristics. 
Positive impacts are generally called ‘system support bene-
fits’, and include voltage support and improved power qual-
ity; loss reduction; transmission and distribution capacity 
release; improved utility system reliability. On account of 
achieving above benefits, the DG must be reliable, dis-
patchable, of the proper size and at the proper loca-
tions[2],[3]. Distributed Generation (DG) is a small genera-
tor spotted throughout a power system network, providing 
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the electricity locally to load customers. DG can be an al-
ternative for industrial, commercial and residential applica-
tions. DG makes use of the latest modern technology which 
is efficient, reliable, and simple enough so that it can com-
pete with traditional large generators in some areas[4],[5]. 
In fact, three types of DG are considered as follows: DG is 
capable of supplying only real power; DG is capable of 
supplying only reactive power; DG is capable of supplying 
real power but consuming proportionately reactive power. 
The methodology is proposed for optimal placement and 
sizing of only first type DG. Moreover, the heuristic search 
requires exhaustive search for all possible locations which 
may not be applicable to more than one DG. Therefore, in 
this paper, SFLA method is proposed to determine the op-
timal location and sizes of multi-DGs to minimize the total 
real power loss and improve the voltage profile of the dis-
tribution systems. The organization of this paper is as fol-
lows. Section 2 addresses the Load flow in radial distribu-
tion network. The problem formulation is in Section 3. The 
SFL algorithm is presented in Section 4. A SFLA computa-
tion procedure for the optimal placement and sizing of dis-
tributed generation problem is given in Section 5. Simula-
tion result on the test systems are illustrated in Section 6.  

2. Load Flow 
On account of the some inherent features of distribution 

systems such as radial structure, unbalanced distributed 
loads, large number of nodes, a wide range of R/X ratios, the 
conventional techniques have been developed for transmis-
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sion systems generally fail on the determination of optimum 
size and location of distributed generations. In this study, the 
proposed methodology is based on the equivalent current 
injection that uses the Bus–Injection to Branch-Current 
(BIBC) and Branch-Current to Bus-Voltage (BCBV) ma-
trices which were developed based on the topological 
structure of the distribution systems and is implemented for 
the load flow analysis of the distribution systems. The 
methodology proposed here requires only one base case load 
flow to determine the optimum size and location of DG. 
Detailed description of BIBC and BCBV matrix’s building 
algorithm is omitted due to the lack of space. 

3. Problem Formulation 
The problem is to determine allocation and size of the DGs 

which minimizes the distribution power losses and to im-
prove the voltage profile for a fixed number of DGs and 
specific total capacity of the DGs.  

3.1. Objective Function 

In this paper the objective function for the optimal 
placement and sizing of DG in distribution network prob-
lem is to minimize the real power losses and improve the 
voltage profile, which is calculated as follows: 
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X=l1,l2,…,lbus,x1,x2,…,xpower limit          (3) 
Where, Ri and Ii are resistance and actual current of the ith 

branch, respectively. Nbr is the number of the branches. Vi is 
the magnitude of bus voltage i. Vi,ref is the magnitude of 
voltage of slack bus .X is the vector of control variables. l is 
the number of DG location candidates. x is the number of 
capacity types of DGs. The objective function of the place-
ment and sizing is to minimize the real power loss and im-
prove the voltage profile. Mathematically, the objective 
function can be written as: 
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W1 and W2 are weight factor. 

3.2. Constraints 

The constraints are listed as follows: 
a) Distribution line absolute power limits: 

Pij
Line≤Pij,max

Line                     (5) 
Pij

Lineand Pij,max
Line are the absolute power and its corre-

sponding maximum allowable value flowing over the   
distribution line between the nodes i and j, respectively. 

b) Bus voltage limit: 

Bus voltage amplitudes are limited as 
Vmin≤Vi≤Vmax                       (6) 

Where Vmin and Vmax are the minimum and maximum 
values of bus voltage amplitudes, respectively. 

c) Radial structure of the network:  
M= Nbus Nf                    (7) 

Where M is the number of branches, Nbus is the number of 
nodes and Nf is the number of sources. 

d) Power limits of DG:  
PDGi

min≤PDGi≤PDGi
max ,QDGi

min≤QDGi≤QDGi
max    (8) 

Where Pi and Qi are the injected active and reactive power 
of DG components at the ith bus. 

e) Subject to power balance constraints: 
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Where Nsc is total number of sections, PL is the real power 
loss in the system, PDGi is the real power generation at bus i, 
PDi is the power demand at bus i. 

4. Shuffled Frog Leaping Algrithm 
(SFLA) 

The SFL algorithm, in essence, combines the benefits of 
the genetic-based MAs and the social behavior-based PSO 
algorithms. In the SFL, the population consists of a set of 
frogs (solutions) that is partitioned into subsets referred to as 
memeplexes. The different memeplexes are considered as 
different cultures of frogs, each performing a local search. 
Within each memeplex, the individual frogs hold ideas, that 
can be influenced by the ideas of other frogs, and evolve 
through a process of memetic evolution. After a defined 
number of memetic evolution steps, ideas are passed among 
memeplexes in a shuffling process. The local search and the 
shuffling processes continue until defined convergence cri-
teria are satisfied[6].As described in the pseudocode of Ap-
pendix A, an initial population of P frogs is created randomly. 
For S-dimensional problems (S variables), a frog i is repre-
sented as Xi = (xi1, xi2,…, xiS). Afterwards, the frogs are 
sorted in a descending order according to their fitness. Then, 
the entire population is divided into m memeplexes, each 
containing n frogs (P m×n). In this process, the first frog 
goes to the first memeplex, the second frog goes to the sec-
ond memeplex, frog m goes to the mth memeplex, and frog 
m+1 goes back to the first memeplex, etc. Within each me-
meplex, the frogs with the best and the worst fitnesses are 
identified as Xb and Xw, respectively. Also, the frog with the 
global best fitness is identified as Xg. Then, a process similar 
to PSO is applied to improve only the frog with the worst 
fitness (not all frogs) in each cycle. Accordingly, the position 
of the frog with the worst fitness is adjusted as follows: 
Change in frog position(Di) = rand( )× ( Xb Xw)      (10) 

New position Xw= current position Xw + Di     (11) 
Dmax≥Di≥-Dmax 

Where rand( ) is a random number between 0 and 1 and 
Dmax is the maximum allowed change in a frog’s position. If 
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this process produces a better solution, it replaces the worst 
frog, otherwise the calculations in (10) and (11) are repeated 
but with respect to the global best frog (Xg replaces Xb). If no 
improvement becomes possible in this case, then a new 
solution is randomly generated to replace that frog. The 
calculations then continue for a specific number of itera-
tions[6]. Accordingly, the main parameters of SFL are: 
number of frogs P, number of memeplexes, number of gen-
eration for each memeplex before shuffling, number of 
shuffling iterations, and maximum step size. 

5. SFLA Procedure 
The SFLA-based approach for solving the optimal 

placement and sizing of distributed generation problem to 
minimize the loss and improve the voltage profile takes the 
following steps: 

In SFLA, each possible solution Xi = (xi1, xi2,…, xiS) that 
in this paper Xi=l1,l2,…,lbus,x1,x2,…,xpower limit 

Where, l is the number of DG location candidates and x is 
the number of capacity types of DGs are is considered as a 
frog. The steps of the algorithm are as follows: 

Step 1: Create an initial population of P frogs generated 
randomly. 

SFLA_Population =[X1,X2,…,Xp]p×n 
Where, P=m×n, N is the number of DG, m is the number 

of memplexes and n is the number of frogs in memplex. 
Step 2:  Sort the population increasingly and divide the 

frogs into m memplexes each holding n frogs such that 
P=m×n. The division is done with the first frog going to the 
first memplex, second one going to the second memplex, the 
mth frog to the mth memplex and the m+lth frog back to the 
first memplex. Fig.1 illustrates this memeplex partitioning 
process. 

 
Figure 1.  Memeplex partitioning process 

Step 3: Within each constructed memeplex, the frogs are 
infected by other frogs' ideas; hence they experience a me-
metic evolution. Memetic evolution improves the quality of 
the meme of an individual and enhances the individual frog’s 
performance towards a goal. Below are details of memetic 
evolutions for each memeplex: 

Step 3-1: Set m1=0 where m1 counts the number of me-

meplexes and will be compared with the total number of 
memeplexes m. Set y1=0 where y1 counts the number of 
evolutionary steps and will be compared with the maximum 
number of steps (ymax), to be completed within each meme-
plex. 

Step 3-2: Set m1=m1+1 
Step 3-3: Set y1=y1+1 
Step 3-4: For each memplex, the frogs with the best fitness 

and worst fitness are identified as Xw and Xb respectively. 
Also the frog with the global best fitness Xg is identified, and 
then the position of the worst frog Xw for the memplex is 
adjusted such as (10) and (11). Fig.2 demonstrates the 
original frog leaping rule. 

 
Figure 2.  The original frog leaping rule 

If the evolutions produce a better frog (solution), it re-
places the older frog, otherwise Xb is replaced by Xg in (10) 
and the process is repeated. If no improvement becomes 
possible in this case a random frog is generated which re-
places the old frog. 

Step 3-5: If m1<m, return to step3-2. If y1<ymax, return to 
step 3-3, otherwise go to step 2.  

Step 4: Check the convergence. If the convergence criteria 
are satisfied stop, otherwise consider the new population as 
the initial population and return to the step2. The best solu-
tion found in the search process is considered as the output 
results of the algorithm. The flowchart of the SFLA is illus-
trated in Fig. 3. 

6. Simulation Results 
The test system for the case study is radial distribution 

system with IEEE 33 buses as shown in Figure 4.The total 
loads for this test system are 3.72 MW and 2.3 MVR.  The 
original total real power loss and reactive power loss in the 
system are 227.6934 KW and 150.1784 KVAR respectively. 
The substation voltage is 12.66 KV and the base of power is 
10.00MVA.The current carrying capacity of branch No.1-9 
is 400 A, and the other remaining branches including the tie 
lines are 200A. The minimum and maximum voltages are set 
at 0.95 and 1.05 p.u. respectively. The load data are given in 
Table A1 and branch data is in Table A2[7, 8]. For SFLA 
parameters, population size is 50. The maximum iteration for 
SFL algorithm is 5.The number of memplexes is 5. The 
number of frogs in memplex is 10.The number of iterations 
in each memeplexes is 5. The total number of algorithm 
iterations is 5.The maximum number of DG is 3. The 
maximum real power of DG is 1200KW. The improvement 
in the voltage profile after optimally placing the DGs is 
shown in Figure 5. Without DG, the bus no. 18 has the lowest 
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voltage of 0.8889 p.u. and the bus voltage has improved to 
0.9687 p.u. after installing DG. For the 33 bus systems, in 
table 1, the SFLA can obtain the same optimal size and lo-
cation. For the 33bus system, first type DG can reduce the 
total real power loss by 48.09%. For two and three types DGs, 
they can further reduce the real power loss by 67.88% and 
73.66%, respectively. 

 
Figure 3.  Flowchart of the SFLA 

 
Figure 4.  Single-line diagram of 33-bus radial distribution system 

7. Conclusions 
In this paper, a shuffled frog leaping algorithm (SFLA) for 

optimal placement and sizing of multi-DGs is efficiently 
minimizing the total real power loss and improve the voltage 
profile satisfying transmission line limits and constraints. 
The methodology is fast and accurate in determining the 
sizes and locations. DG regulating bus voltage will be con-
sidered in future research work. 

 
Figure 5.  Bus voltage before and after DG Installation 

Table 1.  Optimal DG placement and sizing for DG  

Method Load flow 
analysis SFLA 

Bus --- 30 30 14 

DGsize(MW) --- 1.1999 1.0311 0.6022 

Bus --- --- 9 30 

DGsize(MW) --- --- 1.1623 0.7500 

Bus --- --- --- 6 

DGsize(MW) --- --- --- 1.0981 

PL(KW) 227.6934 118.1877 73.1137 59.9672 

Real loss  
Reduction (%) --- 48.09 67.88 73.66 

Appendix 
Pseudocode for a SFL procedure: 
Begin; 
Generate random population of P solutions (frogs); 
For each individual i∈P calculate fitness (i); 
Sort the population P in descending order of their fitness; 
Divide P into m memeplexes; 
For each memeplex determine the best and worst frogs; 
Improve the worst frog position using equations (10) or 

(11); 
Repeat for a specific number of iterations; 
End; 
Combine the evolved memeplexes; 
Sort the population P in descending order of their fitness; 
Check if termination = true; 
End; 
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