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Abstract. The aim of the article is to choose algorithms suited for optimal placement of piles in real grillages by 
performing experimental comparison of different global optimization algorithms. The comparison includes several 
algorithms: random search, metaheuristics (simulated annealing and genetic algorithm) and local optimization com-
bined with random search. The algorithms are compared using the results of optimization of pile placement schemes of 
10 practical grillages of small-to-medium scale with data obtained from several design bureaus. The best results have 
been achieved with simulated annealing and nonlinear optimization algorithm NEWUOA combined with heuristic 
random search. 
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1. Introduction 

Finding a global optimum in industrial optimiza-
tion problems usually is a difficult and time-con-
suming task. A number of studies are published 
comparing various optimization algorithms. A fre-
quent pitfall with comparative studies of this type is a 
difficulty to generalize the results to other problems. 
Each search method has its own characteristics which 
make the various search techniques more suited to 
different problem domains. Eriksson and Arora (2002) 
presented a comparison of global optimization algo-
rithms applied to industrial ride comfort optimization 
problem. The genetic algorithm (GA) was found more 
efficient than the simulated annealing (SA) algorithm 
for this particular problem. Dumas et al. (2005) 
studied the drag reduction in the automotive industry 
problem. Various modifications of GAs were com-
pared; in the most successful case the computational 
time of a GA is reduced by a factor up to 7. Fowler et 
al. (2008) compare the derivative-free optimization 
methods for groundwater supply problems. Horne and 
MacBeth (1998) applied global optimization algo-
rithms to the problem of geophysical inversion and did 
not find pronounced advances of Tabu Search, GA and 
SA for this problem. 

In this paper we shall concentrate on one specific 
class of optimization problems in civil engineering – 
optimal design of grillage-type foundations, which are 
called “grillages” throughout this paper. Grillages are 

the most popular and effective scheme of foundations, 
especially in the case of weak grounds. The grillages 
consist of supporting piles and connecting beams. 
Bowles (1996), Reese et al. (2005) outline exhaustive 
technical details on the grillages. However, only a few 
works so far deal with optimization of foundation 
schemes. Chan et al. (2009) combine the sizing and 
topology optimization, however the piles are aggre-
gated to special groups. Kim et al. (2001) minimize 
the differential settlements of piled rafts, again, by a 
special way minimizing the number of design va-
riables. We are trying to obtain the globally minimal 
price of pile foundations treating all piles as a separate 
design variables. Belevičius and Valentinavi-
čius (2001) and Belevičius et al. (2002) introduced the 
idealizations of real grillages, which are taken in the 
present mathematical model as well. 

The optimal grillage should meet twofold criteria: 
the number of piles should be minimal, and connec-
ting beams should receive minimal possible torques. 
In fact, here we encounter two separate optimization 
problems: search for the minimal number of piles and 
search for the minimal volume of beams. Both prob-
lems can be integrated into one with a compromise 
objective function. We assume that the characteristics 
of piles and connecting beams are given and consider 
the first optimization problem. 

Initial data for the grillage optimization problem 
are the following: 
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 The geometrical scheme of connecting beams; 
 Cross-section data of all beams (area, moments of 

inertia); 
 Material data of all beams (material in one beam is 

treated as isotropic); 
 Positions of immovable piles (if any); 
 Maximum allowable reactive force at any pile; 
 Minimum possible distance between adjacent 

piles; 
 Vertical and two rotational stiffnesses (along the 

beam and normal to the beam) of pile; 
 Loading data. Active forces can be applied in the 

form of concentrated loads and moments at any 
point on beam, or in the form of distributed 
trapezoidal loadings at any segment of beam.  

The results of optimization are the number of re-
quired piles and their positions. To solve this problem 
it is necessary to find such a placement of the given 
number of piles that reactive forces do not exceed the 
carrying capacities of piles. If such a placement is not 
possible, the number of piles should be increased. 

Therefore we formulate a problem of placement of 
piles searching for appropriate pile positions under 
connecting beams. In an ideal grillage, reactive forces 
at all piles are identical. Practically this is hardly 
feasible, particularly when a designer introduces the 
so-called “immovable supports” that have to retain 
their positions and cannot change them during 
optimization process. Some technological constraints 
may also make the ideal scheme non-achievable, for 
example, the distance between adjacent piles cannot 
be too small due to the specific capacities of a pile 
driver. In the present work we do not consider the 
immovable supports and allow for a pile to take 
whatever position in the grillage, thus typically the 
piles are not placed at the joints of grillage. This fact 
confines the pile placement problem scope to a low-
rise buildings without significant overturning mo-
ments due to horizontal thrust, e.g. due to earthquake 
loading or wind loads.  

The objective function for minimization can be 
formulated in several alternative forms, e.g. the maxi-
mal vertical reactive force at a pile, the difference 
between the maximal and minimal reactive forces in 
the whole grillage, or the maximal difference between 
the reactive force and carrying capacity of a pile. A 
grillage supported by piles with different character-
ristics can be optimized using the third objective func-
tion mentioned. We assume that the characteristics of 
all piles are equal and in this case the first and last 
objective functions are equivalent. We use the first 
objective function in the current paper.  

An even distribution of reactive forces or differ-
rences between reactions and carrying capacities 
among all piles indicates an ideal grillage. Therefore 
the ideal value of the objective function or the lower 
bound for the minimum is known in advance. This 
makes the problems attractive as test sets for expe-
rimental investigation of optimization algorithms 

since it can be estimated how far the best value found 
is from the ideal one. 

Our experience shows that the objective function 
for practical grillage optimization problems possesses 
many local minima points. Another complicated trait 
of the problem is that usually the objective function is 
very sensitive to the positions of piles: sometimes 
even a small alteration of one position leads to a sig-
nificant change of the value of the objective function. 
All this makes the placement of piles in practical 
grillage a difficult global optimization problem. 

In our previous work we tried to approach the 
problem as “black-box” global optimization by cove-
ring methods (Čiegis et al. 2006; Žilinskas 2008), 
genetic algorithms (Belevičius and Šešok 2008), and 
local optimization combined with random search (Iva-
nikovas et al. 2009), but the results were not inspiring 
even for problems with 10 and 15 piles. One possible 
reason is that heuristic information on the problem is 
not employed in the case of “black-box” optimization. 
In this paper we compare different strategies for 
solution of the problem: starting from random search 
and heuristic random search, then progressing to meta-
heuristics (simulated annealing and genetic algo-
rithms) and local optimization combined with heu-
ristic random search. Promising results have been 
achieved when heuristic random search is combined 
with metaheuristics and local optimization. 

The algorithms are compared using the results of 
optimization of pile placement schemes of 10 practical 
grillages. All these grillages are of small-to-medium 
scale, requiring from 18 to 55 piles. Data for these 
problems are obtained from several Dutch design 
bureaus (courtesy of Consultancy W.F.O. B.V., Paauw 
B.V. Aannemingsbedrijf, Aannemingsbedrijf V. Dijk, 
Bouwtectuur West Friesland, Stabo Bouw B.V., Aan-
nemingsbedrijf A. Tuin Den Helder and others) which 
use the professional software for structural enginee-
ring package MatrixFrame (http://www.matrix-soft-
ware.com/uk/structuralengineering/matrixframe/ 
index.html). It is intended for an analysis and design 
of steel and concrete erections. Apropos, MatrixFrame 
implemented our software for optimization of pile 
placement schemes employing local search methods 
(Belevičius and Valentinavičius 2001). However, the 
current optimization routine of MatrixFrame was not 
capable to yield even a rational scheme of pile place-
ment for the problems considered in this paper. 

2.  Mathematical formulation 

The optimization problem is formulated as follows: 
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the global minimum , one or all global minimizers 

 should be found. No assumptions on 

unimodality are included into formulation of the 
problem – many local minima may exist. 
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In this paper the maximal vertical reactive force at 
a pile is considered as the objective function: 

R
p

, 

where  is the number of piles,  is the 

reactive force at the i-th pile.  

)x(iR

Since a supporting pile may reside only under con-
necting beams, there are evident restrictions on the 
positions of piles: during the optimization process the 
piles can move only along the connecting beams. 
Therefore, a two-dimensional beam structure of the 
grillage is “unfolded” to a one-dimensional construct, 
and the piles are allowed to range through this space 
freely. 

Unfortunately in such a formulation small varia-
tion of the design variable may correspond to a finite 
variation of the position of the pile in the physical 
space, what leads to discontinuity of the problem. One 
possibility to overcome this is to use multilevel opti-
mization where the upper level combinatorial problem 
assigns piles to beams, while the lower level con-
tinuous problems aim to position the piles in the 
assigned beams. Another possibility is to divide search 
space avoiding jumps of piles from one beam to ano-
ther and perform searches in such separate spaces. 
However both possibilities are applicable only when a 
considerable number of objective function evaluations 
can be performed. Since evaluation of objective func-
tion of pile placement based on finite element analysis 
is computationally expensive and we will perform 
only 5000 evaluations in each run of optimization 
algorithm, we do not think these possibilities are ap-
plicable. Unfortunately, we do not know a parameter-
rization that would not introduce discontinuities and 
lead to simpler optimization problem. 

One design parameter corresponds to a position of 
one pile in the one-dimensional construct. The back-
ward transformation restores the positions of piles in 
the two-dimensional beam structure of the grillage. 
The constraints for the design parameters are as 
follows: 

x  L, i  

i

,...,N , 

where x  is a design parameter defining the position 

of the i-th pile, L is the total length of all beams in the 
grillage. If the minimal possible distance   between 
adjacent piles is specified, there are additional const-
raints 

ji,ji    xx  , 

where  are two-dimensional coordinates of piles 

and 

ix

ji xx  denotes the distance between piles. To 

cope with this constraint, a penalty is included in the 

objective function. 
A finite element program is used as a “black-box” 

routine to the optimization program for solution of 
direct problem to find reactive forces in the grillage. 
In the direct problem that is solved via finite element 
analysis, the connecting beams in the grillage are 
idealized as the beam elements, while the piles are 
treated as supports, i.e. finite element mesh nodes with 
given elastic boundary conditions. Since time of opti-
mization crucially depends on time of solution the 
direct problem, fast problem-oriented original 
FORTRAN programs with a special mesh pre-
processor have been developed and used. 

The beam elements have 2 nodes with 6 degrees of 
freedom each (3 displacements along the coordinate 
axes and 3 rotations about these axes). The stiffness 
matrix for element can be found in many textbooks, 
e.g. by Spyrakos and Raftoyiannis (1997): 
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where E is the Young‘s modulus, A is a cross-sectional 
area of the beam, J, Iz and Iy are the inertial moments 
of cross-section. Sub-matrix [K22] coincides with [K11] 
but non-diagonal members are with opposite signs. 
The main statics equation is 

     aaa FuK    , 

where a stands for the ensemble of elements (not 
shown in eq. below), {u} are the nodal displacements, 
and {F} are the active forces. The reactive forces at 
piles are available after obtaining the nodal displace-
ments: 

 
j

jiji uKR      . 

Sensitivity analysis may be used if optimization 
algorithm requires information about derivatives. 
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3.  Optimization algorithms 

Several algorithms have been employed for place-
ment of piles minimizing the maximal vertical reactive 
force at a pile:  
 Random search (RS); 
 Modified random search (MRS); 
 Simulated annealing (SA); 
 Genetic algorithm (GA); 
 Simplex method (SM); 
 Variable metric method (VM); 
 NEWUOA algorithm. 

To make a fair comparison, the total number of 
objective function evaluations for each algorithm is 
the same: N=5000. The values for parameters of the 
algorithms have been chosen according to the results 
of exhaustive numerical investigation. 

Random search is performed generating decision 
variables randomly with uniform distribution. N inde-
pendent random structures are generated and reactive 
forces at the piles are found using finite element ana-
lysis. The structure with the smallest maximal reactive 
force at a pile is considered to be the best solution 
found.  

Heuristic information is employed in modified 
random search. Decision variables are generated ran-
domly with uniform distribution, but additional const-
raint is set: the difference of two decision variables 
should be larger than S which is obtained by dividing 
the half of the total length of all beams by the number 
of piles: 

p
ji N

L
SjiSxx

2
  ,  ,  . 

The value of decision variable is regenerated ran-
domly with uniform distribution if it is too close to a 
value of a previously generated decision variable. 
Such a heuristic modification is motivated by the fact 
that due to the usual distribution of loading over the 
grillage beams, the piles also should be spread over 
the whole space of grillage. Reactive forces at the 
piles are found for N feasible random structures and 
one with the smallest maximal reactive force at a pile 
is considered to be the best solution found.  

Simulated annealing (Kirkpatrick et al. 1983) 
replaces the current solution by a random solution 
with a probability that depends on the difference of the 
function values and a temperature parameter. In the 
beginning the temperature parameter is large allowing 
non-improving changes. Gradually temperature is de-
creased and the search becomes descent. In our imple-
mentation the initial solution is obtained using RS or 
MRS taking the best feasible solution out of 
N_init=200. Then SA algorithm is employed. A new 
potential set of values of decision variables is found 
adding independent random numbers uniformly 
distributed over [-y, y] to the current values. The value 
of y is gradually reduced during the solution process: 
in the iterations from 201 to (2N/5) it is equal to 0.5, 

in the succeeding (2N/5) iterations – 0.1, and in the 
final N/5 iterations – 0.05. All these values are chosen 
on the basis of numerical experiments. If the value of 
the objective function with the set of new values of 
decision variables is better than the previous one, the 
values of decision variables values are modified with 
probability 1; otherwise – with probability 

 jtt

h

e 


21 1ln/ , 

where h  denotes the difference between the best so 
far value of the objective function and its value after 
modification, t1 is the initial temperature, t2 is the 
annealing speed, and j denotes the iteration number. 
The SA algorithm proceeds until j exceeds the given 
number of iterations N. 

Genetic algorithms (Goldberg 1989) simulate evo-
lution (selection, mutation, crossover) in which a po-
pulation of solutions evolves improving values of the 
objective function. In our implementation, the initial 
population of popsize individuals is generated using 
RS or MRS. The new generation is obtained from the 
previous one using selection, crossover and mutation 
operations. During the selection, popsize/2 pairs of in-
dividuals are selected for breeding by the roulette 
principle. The individuals with a better objective func-
tion value have higher probability to be selected. The 
probability that the j-th individual with an objective 
function value fj will be chosen is 




i i
j

j

f
f

p
1

1
, 

where the sum operator covers entire population. The 
crossover between two individuals chosen for bree-
ding is performed with probability p_cross; the cross-
over position is obtained randomly from the interval 
of [1, Na-1]. The mutation is performed with 
probability p_mut to each decision variable: the value 
is augmented by a random number uniformly distri-
buted over [-y, y]. The algorithm proceeds for the 
given number of generations (G). As in SA, the value 
of y is gradually reduced in the same manner: y = 0.5 
for the generations 2nd to the (2G/5), y = 0.1 for the 
generations (2G/5+1) to (4G/5), and y = 0.05 for the 
last G/5 iterations.  

The simplex method by Nelder and Mead (1965) is 
a general method for optimization of nonlinear multi-
dimensional function requiring only function evalua-
tions, but not derivatives. A simplex is the geometrical 
figure consisting of n+1 vertices in n dimensions. The 
simplex method takes a series of steps, moving the 
vertex of the simplex where the objective function is 
worst. We use implementation of the method form 
Press (1992). The initial simplex is constrained around 
the best solution obtained using RS or MRS in the 
given number of iterations N_init: the first coordinate 
of the first vertex is by S/2 smaller than the first 
coordinate in the best solution, the other vertices are 
formed adding S/2 to one of the coordinates at a time. 
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The simplex method proceeds while the overall 
number of objective function evaluations reaches N. 

Variable metric methods (also known as quasi-
Newton methods) are based on Newton’s method to 
find the stationary point of the objective function 
where the gradient is 0. However Hessian matrix does 
not need to be computed, but it is updated by analy-
zing successive gradient vectors. We use implement-
tation of Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
method from Press (1992). Since variable metric 
method requires gradient information, the results of 
sensitivity analysis are used. The starting point is the 
best solution obtained using RS or MRS in the given 
number of iterations N_init. Then local optimization is 
performed. Initialization and local search is repeated 
until the overall number of function evaluations 
reaches N. Evaluations of objective function and gra-
dient (sensitivity analysis) function are counted, com-
putational time of these two functions is not very 
different. 

The NEWUOA algorithm is an iterative algorithm 
for nonlinear optimization. A quadratic model is used 
in a trust region procedure for adjusting the variables 
(Powell 2006). The quadratic model interpolates the 
function at 2n+1 points, only one interpolation point is 
altered on each iteration. The starting point is the best 
solution obtained using RS or MRS in the given 
number of iterations N_init. The NEWUOA algorithm 
is stopped when the number of objective function 
evaluations reaches N. 

The values of main parameters of the algorithms 
are summarized in Table 1. Other parameters, for 
example the initial temperature for SA or probabilities 
of crossover and mutation for GA are tuned to the 
problems under consideration.  

Table 1.  Parameters for algorithms 

Algorithm Parameters 

RS N = 5000 
MRS N = 5000 
SA N_init = 200, N = 5000, t1 = 5, t2 = 2 
GA popsize = 20, p_cross = 0.9, p_mut = 

0.3, G = N/popsize = 5000/20 = 250 
SM N_init = 300, N = 5000 
VM N_init = 300, N = 5000 
NEWUOA N_init = 300, N = 5000 

4.  Numerical examples and timings 

The characteristics of test problems are presented 
in Table 2. There are no immovable piles, therefore 
the numbers of piles (Np) and decision variables (n) 
coincide. Rallw denotes the allowable reactive force at 
the piles. In all problems it is equal for all piles of 
grillage. The number of piles is obtained by dividing 
the sum of loadings by the allowable reactive force of 
piles – the number of piles cannot be less than this 
number. Rideal denotes the ideal theoretical value. The 

ideal solution is when all reactive forces at the piles 
are equal. In this case the reactive forces are equal to 
the sum of loadings divided by the number of piles. In 
all these problems the proportion between the total 
loading and the allowable reaction is such that the 
engineering solution requires achieving almost the 
ideal solution. This is the main reason, why these 
problems are difficult to solve. The typical grillage 
together with obtained pile positions is shown in Figu-
re 1. The two-dimensional schemes of all grillages 
with indicated positions of piles are depicted in 
Figures 3 to 12 in Appendix. 

Table 2.  Characteristics of problems 

Problem No Np L Rallw Rideal 

1 25 172.90 325 307.47 
2 18 52.90 110 104.12 
3 31 84.10 105 101.85 
4 31 84.90 105 101.24 
5 30 63.90 100 97.51 
6 37 80.10 100 97.53 
7 23 129.10 300 287.35 
8 34 137.90 250 236.28 
9 17 97.60 250 244.71 
10 55 315.61 350 349.05 

 

 

Figure 1.  Grillage No 1 (according to Table 2) 

The black-box finite element routine for evaluation 
of the objective function in a library format together 
with 10 grillage data (txt format) and FORTRAN 
example file are available at: http://soften.ktu.lt/ 
~mockus/grillage/contgrillage.html. 

The algorithms were tested on a personal computer 
with Intel(R) Xeon(R) CPU E5420 @ 2.50GHz, 3069 
MB RAM, 32-bit Operating System. 28 independent 
runs were performed for each algorithm. Tables 3 and 
4 present the average results when RS (Table 3) or 
MRS (Table 4) is used for search and initialization. As 
can be seen comparing these tables, the heuristic 
modification significantly improves the results and 
enables optimal design of real grillages. When a pure 
random search is used for initialization, the results are 
much worse. In all tables the bold type highlights the 
best achieved results. The best average results are 
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achieved by SA and NEWUOA. Results of GA are 
close, while RS, MRS, SM and VM perform worse. 
When MRS is used for initialization NEWUOA signi-
ficantly outruns SA for Problem 8 (34 piles). It shows 
slightly better results also for Problems 4 (31) and 6 
(37). Nearly in all cases the GA shows the third best 
solutions; it never outruns the SA or NEWUOA algo-
rithms. The results of SM and VM are sometimes even 
worse than that of MRS what means that it is not 
worth to spend time to find local minima for these 
problems, but rather to search wider globally since lo-
cal searches do not improve the value of the objective 
function significantly. Good performance of SA and 
GA does not surprise since their parameters (for 
example the initial temperature for SA or probabilities 
of crossover and mutation for GA) are tuned to the 
problems under consideration. NEWUOA optimizes a 
quadratic model of the objective function and per-
forms better than local optimization of the objective 
function itself. The use of a model allows overcoming 
of problems of discontinuity and non-differentiability. 

The best obtained results in 28 runs are rendered in 
Table 5. MRS is used for initialization. NEWUOA 
obtains the best solutions for two problems, for other 
problems SA provides better results. An ideal solution 
was not obtained for any problem in any of 28 inde-
pendent runs; in each run the objective function was 
evaluated 5000 times. The best values found in 28 
runs normalized to Rideal (discrepancies in %) are 
shown in Figure 2. The last column of Table 5 pre-
sents discrepancies between the best obtained results 
and the corresponding ideal value. The best objective 
values found differ from ideal from 2.2% (Problem 2, 
18 piles) to 46.8% (Problem 8, 34 piles). As it can be 
expected, generally discrepancy is larger for problems 
with the larger number of piles. Thus, for Problem 8 
(34 supports), 10 (55), and 6 (37) the discrepancies 
between the best obtained and ideal values are 
respectively 46.8%, 32.7%, and 20.2%, while for 
Problems 2 (18), 9 (17), and 5 (30) – 2.2%, 3.4%, and 
3.6%. Also, the character of loading distribution over 
the grillage plays a crucial role too. 

Table 3.  Average of the best values found in 28 runs when RS is used for search and initialization 

Problem No Rideal RS SA GA SM VM NEWUOA 

1 307.47 593.33 463.08 490.01 633.77 547.63 440.31
2 104.12 153.07 119.74 119.60 172.79 152.38 118.68
3 101.85 258.45 134.59 142.24 274.06 230.73 139.88
4 101.24 265.41 139.63 149.87 264.42 251.90 136.43
5 97.51 318.16 132.52 142.53 310.40 290.67 128.79
6 97.53 460.31 162.09 175.90 460.16 435.57 188.60
7 287.35 472.74 372.63 380.48 507.99 450.81 369.03
8 236.28 695.60 455.63 479.87 721.70 655.56 467.22
9 244.71 402.17 307.55 321.27 427.50 385.72 296.27
10 349.05 1321.48 806.46 890.51 1319.49 1163.32 771.26

Table 4.  Average of the best values found in 28 runs when MRS is used for search and initialization 

Problem No Rideal MRS SA GA SM VM NEWUOA 

1 307.47 470.90 371.55 405.36 486.50 454.01 394.92
2 104.12 125.71 109.10 112.49 131.75 127.64 113.35
3 101.85 144.46 119.06 124.48 153.82 143.60 119.80
4 101.24 141.18 117.10 123.72 147.46 139.82 116.81
5 97.51 126.08 106.25 112.23 133.28 128.13 108.68
6 97.53 160.18 132.22 144.16 172.38 160.85 132.07
7 287.35 379.80 314.11 332.11 402.36 382.45 330.16
8 236.28 494.83 413.57 444.88 520.98 491.25 385.99
9 244.71 343.91 281.12 294.62 369.06 334.90 292.28
10 349.05 702.53 562.79 636.87 759.33 705.57 559.88
 

Average times of one run in seconds are shown in 
Table 6. One numerical experiment takes from appro-
ximately 1.5 (algorithm GA, Problem 2, 18 piles) to 
41 minutes (SM, Problem 8, 34 piles). Peculiarly, the 
more complex-looking grillages 10 (55 supports) and 
6 (37) take shorter time for almost all algorithms. The 
related question is, why in several cases RS takes lon-
ger time than, e.g., MRS or GA that employ additional 

computations. All this is due to the fact that the 
dimensions of direct finite element problem are va-
rying: the finite element mesh is prepared automa-
tically in view of the distribution of supports given by 
the optimizer, and of distribution character of the 
loading. Plausible, the more “smooth” loading to-
gether with more sophisticated algorithms always 



Optimal Placement of Piles in Real Grillages: Experimental Comparison of Optimization Algorithms 

render more even distribution of supports which re- sults in a lesser finite element mesh. 

Table 5.  The best values found in 28 runs 

Problem No Rideal MRS SA GA SM VM NEWUOA Discrepancy, % 
1 307.47 430.67 339.30 360.73 436.68 429.34 370.79 10.4
2 104.12 119.16 106.36 106.52 125.83 123.18 107.18 2.2
3 101.85 138.37 107.25 115.04 138.58 135.54 109.00 5.3
4 101.24 131.15 106.80 112.10 132.10 133.65 108.16 5.5
5 97.51 116.88 102.00 104.58 120.42 120.74 101.05 3.6
6 97.53 148.24 117.26 119.65 151.95 146.01 125.37 20.2
7 287.35 351.71 298.11 310.24 355.82 358.73 306.31 3.7
8 236.28 440.42 357.67 363.15 426.74 430.11 346.94 46.8
9 244.71 318.38 253.00 274.55 339.68 313.40 270.68 3.4
10 349.05 670.72 463.34 519.07 698.15 648.84 486.46 32.7
 

 

Figure 2.  The best values found in 28 runs normalized to Rideal (discrepancies in %) 

Table 6.  Average times of one run, sec 

Problem No Na RS MRS SA GA SM VM NEWUOA 

1 25 899 943 960 844 821 855 878 
2 18 92 96 91 82 90 91 91 
3 31 835 876 822 732 811 801 753 
4 31 1015 1045 1046 935 910 914 916 
5 30 319 319 302 276 313 318 315 

6 37 811 823 742 718 674 761 750 
7 23 649 695 683 635 622 660 656 
8 34 3009 2982 2956 2668 2467 2455 2489 
9 17 424 417 410 359 413 419 423 

10 55 2198 2136 2125 1934 1826 1811 1850 
 

Comparing the timings of all algorithms, the clear 
winners here are the GA and SM. However, the other 
algorithms are not far behind, until ~18% in ultimate 
cases. Thus, the timings cannot be treated as the deci-
sive factor for comparison of these algorithms. This is 
due to the fact that most of the time is spent for eva-
luation of the objective function. In such cases it is 
worth to use optimization algorithms with more auxi-
liary computations, as NEWUOA is. Although auxilia-

ry computations improve the results, optimization 
time is still quite similar. 

5. Conclusions 

Computer that is common to a typical civil engi-
neering design bureaus and a reasonable computation 
time for engineering practice do not allow solution of 
the problem of pile placement till global optimality. 
However, the ideal solution usually is not required for 
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the engineering purposes. The simulated annealing, 
genetic algorithm and nonlinear optimization algo-
rithm NEWUOA applied from a good random point 
can be successfully used to obtain rational pile 
placement schemes under the small- and moderate-
scale grillages.  

The results of simplex and variable metric methods 
show that the problems of pile placement have a 
number of local minima and it is not worth to spend 
time to find local minima for these problems, but ra-
ther to search wider globally. This is why simulated 
annealing and genetic algorithm perform better for 
these problems. NEWUOA optimizes a quadratic 
model of the objective function and performs better 
than local optimization of the objective function itself.  
Evaluation of objective function of pile placement 
based on finite element analysis is computationally 
expensive. Because of this, timings of all algorithms 
are quite similar when stopping condition is the num-
ber of function evaluations. Therefore timings cannot 
be treated as the decisive factor for application of the 
algorithms to this problem. In such cases the use of 
optimization algorithms with more auxiliary computa-
tions is worth as can be seen from good results of 
NEWUOA – auxiliary computations improve the 
results, but do not prolong optimization time con-
siderably. 

Several runs of the algorithm are necessary to find 
good solutions. Inclusion into the algorithm even 
some information about the problem (due to the usual 
distribution of loading over the grillage beams, the 
piles also should be spread over the whole space of 
grillage) significantly improves the results – this is 
general to all algorithms tested.  
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Appendix: Solutions of the problems 

The two-dimensional schemes of all grillages with indicated positions of piles are depicted in Figs. 3 to 12. The 
values of decision variables of these solutions are given in Table 7. 

 
Figure 3.  The best found solution of grillage No 1 

 
Figure 4.  The best found solution of grillage No 2 

 
Figure 5.  The best found solution of grillage No 3 

 
Figure 6.  The best found solution of grillage No 4 

 
Figure 7.  The best found solution of grillage No 5 

 
Figure 8.  The best found solution of grillage No 6 

 
Figure 9.  The best found solution of grillage No 7 

 
Figure 10.  The best found solution of grillage No 8 
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Figure 11.  The best found solution of grillage No 9 

 
Figure 12.  The best found solution of grillage No 10 

Table 7. The best found solutions: values of decision variables in one-dimensional construct of grillage (with an accuracy of 1 cm) 

Pile No 1 2 3 4 5 6 7 8 9 10 
1 7.75 0.88 0.43 1.92 1.42 3.05 3.99 0.20 4.20 2.68 
2 12.70 2.55 6.34 5.09 3.51 4.68 7.73 4.10 13.45 8.44 
3 16.28 5.90 7.05 6.66 6.33 5.58 13.53 5.70 15.58 14.98 
4 25.52 7.97 8.39 8.68 9.69 11.43 16.75 9.55 21.38 18.05 
5 26.95 12.10 11.37 13.30 11.49 12.22 21.72 15.42 33.49 26.58 
6 34.27 14.70 13.17 14.55 13.03 14.94 28.23 18.18 44.70 27.41 
7 42.97 17.38 15.66 16.51 15.71 18.68 33.48 18.78 52.09 31.47 
8 46.08 21.75 18.90 17.95 18.19 21.34 35.26 23.53 57.56 39.64 
9 50.44 23.34 22.67 19.22 19.41 24.05 41.56 27.24 64.41 45.85 
10 60.06 27.69 27.18 25.25 20.32 26.11 53.41 33.28 65.52 55.15 
11 74.54 29.88 30.70 28.55 23.78 28.41 57.20 40.98 69.26 60.29 
12 79.69 33.08 33.04 31.97 25.44 29.27 67.17 49.08 71.58 67.45 
13 86.11 37.54 35.03 36.39 29.65 32.29 74.52 55.71 77.01 72.34 
14 92.52 39.38 36.14 37.92 32.34 35.07 80.56 60.11 84.33 79.55 
15 95.57 41.36 38.07 40.05 33.66 35.73 82.92 65.42 89.64 85.56 
16 101.84 45.07 38.93 42.39 35.72 36.79 89.77 71.11 92.35 91.83 
17 104.65 48.25 40.30 46.33 36.56 38.04 91.87 76.71 97.45 94.96 
18 115.06 51.15 44.65 47.06 38.37 41.80 97.93 79.62  100.98 
19 124.16  47.95 50.02 40.39 47.48 106.70 82.07  109.61 
20 126.28  49.76 56.63 41.92 48.14 111.53 88.51  117.11 
21 134.85  51.71 58.93 43.31 49.06 116.94 93.21  125.61 
22 141.23  54.61 61.96 45.36 50.81 124.74 95.22  130.89 
23 146.27  56.59 64.22 50.47 51.85 126.57 98.59  140.81 
24 160.35  62.38 65.82 51.72 54.06  99.71  142.96 
25 165.41  65.91 66.72 53.33 55.02  102.29  150.34 
26   69.84 70.60 54.86 56.50  103.42  152.28 
27   72.83 72.85 56.83 58.67  105.86  159.33 
28   74.36 74.64 58.86 59.37  107.16  161.21 
29   77.79 77.68 60.40 62.91  113.67  164.43 
30   79.54 80.36 63.29 64.08  116.93  169.04 
31   80.83 81.48  64.93  120.26  172.18 
32      66.32  128.00  181.62 
33      70.58  130.02  185.62 
34      71.56  136.10  191.77 
35      74.35    195.28 
36      77.33    206.05 
37      79.57    210.60 
38          213.56 
39          220.57 
40          228.86 
41          232.77 
42          240.32 
43          243.90 
44          251.15 
45          257.90 
46          260.88 
47          267.21 
48          270.61 
49          275.98 
50          279.52 
51          285.84 
52          292.54 
53          295.00 
54          300.91 
55          306.62 
Objective 
function 
value 

339.30 106.36 107.25 106.80 101.05 117.26 298.11 346.94 253.00 463.34 
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