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Abstract— In this paper we present a procedure for the 

optimal siting and sizing of Energy Storage Systems (ESSs) 

owned, and directly controlled by network operators of Active 

Distribution Networks (ADNs). The peculiarity of the proposed 

planning procedure consists in embedding the grid 

reconfiguration. We use a recently proposed conditionally exact 

convex Optimal Power Flow (OPF) as the core of the 

optimization model. We appropriately model the objective 

function to include both technical and economic aspects, while 

keeping the exactness of the relaxed convex OPF. In particular, 

the proposed procedure accounts for the minimization of: 

voltage-magnitude deviations, feeders’/lines’ congestion, cost of 

supplying loads, and investment costs related to the ESSs. In 

addition, the seasonal configurations of the grid are determined 

based on (1) network security constraints, and (2) the minimum 

resistive losses.  The stochasticity of loads and renewable 

productions also are taken into account. We suitably modeled 

the ESSs to consider their ability to support the network by both 

active and reactive powers. Two test cases are used to 

demonstrate, and quantify, the capabilities of the proposed 

procedure for providing optimal and feasible solutions.     

 
Index Terms—Optimal power flow, energy storage systems, 

active distribution networks, resource planning, grid 

reconfiguration. 

NOMENCLATURE 
Variables 𝐶𝐶𝑙𝑙 Energy reservoir capacity of ESS 𝑙𝑙 𝒞𝒞𝑠𝑠,𝜑𝜑 Objective function of scenario (subproblem) 𝜑𝜑 of 

season 𝑠𝑠 𝑑𝑑𝑘𝑘𝑙𝑙(𝑑𝑑𝑙𝑙𝑘𝑘) The direction of the line between buses 𝑘𝑘 and 𝑙𝑙 
(𝑑𝑑𝑘𝑘𝑙𝑙 = 1 means the direction is from 𝑘𝑘 to 𝑙𝑙, 𝑑𝑑𝑙𝑙𝑘𝑘 = 1 
means the direction is from 𝑙𝑙 to 𝑘𝑘) 𝐸𝐸𝑙𝑙(𝑡𝑡) Energy stored in ESS 𝑙𝑙 at time 𝑡𝑡 𝑓𝑓𝑙𝑙 /𝑓𝑓𝑘𝑘𝑙𝑙, 𝑓𝑓̅ Square of current producing losses in line 𝑙𝑙 (line 
between buses 𝑘𝑘 and 𝑙𝑙)  
current auxiliary variable upper bound (see Fig. 1) 𝐼𝐼𝑙𝑙𝑡𝑡 , 𝐼𝐼𝑙𝑙𝑏𝑏 Upper bound for square of current flows at top and 
bottom of lines 𝑙𝑙, respectively  𝑃𝑃𝑛𝑛𝐸𝐸,𝑄𝑄𝑛𝑛𝐸𝐸 Active and reactive power output of ESS located at 
bus 𝑛𝑛 𝑄𝑄𝑙𝑙𝑠𝑠ℎ Reactive power injection associated with the shunt 
capacitance of the lines connected to bus 𝑙𝑙 ℛ𝑙𝑙 Square of power rating of ESS 𝑙𝑙 𝑆𝑆𝑙𝑙𝑡𝑡 = 𝑃𝑃𝑙𝑙𝑡𝑡 + 𝑗𝑗𝑄𝑄𝑙𝑙𝑡𝑡 , 

(�̂�𝑆𝑙𝑙𝑡𝑡 = 𝑃𝑃𝑙𝑙𝑡𝑡 + 𝑗𝑗𝑄𝑄�𝑙𝑙𝑡𝑡, 𝑆𝑆�̅�𝑙𝑡𝑡 = 𝑃𝑃�𝑙𝑙𝑡𝑡 + 𝑗𝑗𝑄𝑄𝑙𝑙𝑡𝑡) 

Complex power flow entering line 𝑙𝑙 from the top, 
power auxiliary variables lower and upper bounds, 
respectively (see Fig. 1) 𝑠𝑠𝑙𝑙 Complex power absorbed at bus 𝑙𝑙 
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𝑆𝑆𝑙𝑙𝑏𝑏 = 𝑃𝑃𝑙𝑙𝑏𝑏 + 𝑗𝑗𝑄𝑄𝑙𝑙𝑏𝑏 , �̂�𝑆𝑙𝑙𝑏𝑏 = 𝑃𝑃�𝑙𝑙𝑏𝑏 + 𝑗𝑗𝑄𝑄�𝑙𝑙𝑏𝑏 , 𝑆𝑆�̅�𝑙𝑏𝑏 = 𝑃𝑃�𝑙𝑙𝑏𝑏 + 𝑗𝑗𝑄𝑄�𝑙𝑙𝑏𝑏 

Complex power flow entering bus 𝑙𝑙 from the 
bottom, corresponding auxiliary variables lower and 
upper bounds, respectively (see Fig. 1) 𝑆𝑆𝑘𝑘𝑙𝑙(𝑆𝑆𝑙𝑙𝑘𝑘) =𝑃𝑃𝑘𝑘𝑙𝑙(𝑃𝑃𝑙𝑙𝑘𝑘) +𝑗𝑗𝑄𝑄𝑘𝑘𝑙𝑙(𝑄𝑄𝑙𝑙𝑘𝑘) 

Complex power flow from bus 𝑘𝑘 to 𝑙𝑙 (from 𝑙𝑙 to 𝑘𝑘) 

𝑢𝑢𝑛𝑛 Binary variable associated with the presence of an 
ESS at bus 𝑛𝑛 𝑣𝑣up(𝑙𝑙), 𝑣𝑣𝑙𝑙 

(𝑣𝑣�up(𝑙𝑙),𝑣𝑣�𝑙𝑙) Square of nodal voltage magnitude at bus 𝑙𝑙 (up(𝑙𝑙)) 
voltage auxiliary variables of bus 𝑙𝑙 𝔏𝔏𝑙𝑙(𝑡𝑡) Resistive losses of the ESS located at bus 𝑙𝑙 at time 𝑡𝑡 𝜒𝜒𝑘𝑘𝑙𝑙 Binary variable associated with the switch between 
buses 𝑘𝑘 and 𝑙𝑙 𝜓𝜓𝑙𝑙𝑙𝑙/ 𝜓𝜓𝑙𝑙𝑣𝑣 Variables associated with the voltage 
deviation/lines’ congestion of bus/line l 

Parameters 𝑏𝑏𝑙𝑙(𝑏𝑏𝑘𝑘𝑙𝑙) Susceptance of line 𝑙𝑙 (between buses 𝑘𝑘 and 𝑙𝑙) 𝔅𝔅 A big number 𝐶𝐶𝑛𝑛𝐶𝐶 ,𝐶𝐶𝑛𝑛ℛ,𝐶𝐶𝑛𝑛𝑓𝑓 ESS investment costs (energy reservoir, power 
rating, fixed installation costs) 𝐶𝐶𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 Maximum ESS energy reservoir capacity that can be 
installed at bus 𝑛𝑛 ℰ𝑢𝑢 ,ℰ𝑑𝑑 Maximum and minimum allowed SoE of the ESS 
located at bus 𝑙𝑙, respectively ℱ Total budget for ESS installation 𝐆𝐆  The adjacency matrix of the oriented graph of the 
grid 𝐼𝐼𝑙𝑙max(𝐼𝐼𝑘𝑘𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚) Upper limit of  line 𝑙𝑙 current-flow square (between 
buses 𝑘𝑘 and 𝑙𝑙) 𝑁𝑁𝑐𝑐 Number of allowed cycles per day for a given ESSs 𝑃𝑃𝑘𝑘𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚, 𝑄𝑄𝑘𝑘𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 Upper limits of active and reactive powers of the 
line between buses 𝑘𝑘 and 𝑙𝑙 ℛ𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 Upper bound of the square of power rating capacity 
that can be installed at bus 𝑛𝑛 𝑡𝑡𝑒𝑒 Last time step of the day ∆𝑡𝑡 Time step length 𝑣𝑣𝑙𝑙max/𝑣𝑣𝑙𝑙min 

 
Upper and lower bounds associated with the bus 𝑙𝑙 
voltage-magnitude square 𝒲𝒲𝑣𝑣,𝒲𝒲𝐼𝐼 Weight coefficients associated with the voltage 
deviation and lines’ congestion goals, respectively 𝑧𝑧𝑙𝑙 = 𝑟𝑟𝑙𝑙 + 𝑗𝑗𝑥𝑥𝑙𝑙  

(𝑧𝑧𝑘𝑘𝑙𝑙 = 𝑟𝑟𝑘𝑘𝑙𝑙 +𝑗𝑗𝑥𝑥𝑘𝑘𝑙𝑙) Longitudinal impedance of line 𝑙𝑙  (between buses 𝑘𝑘 
and 𝑙𝑙) 𝜉𝜉(𝑡𝑡) Energy price profile 𝜋𝜋𝑠𝑠,𝜑𝜑 probability of the scenario 𝑠𝑠 of 𝜑𝜑 𝜎𝜎 Annual interest rate 

Sets and indices 𝑙𝑙 Index of lines and buses other than slack bus 
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ℒ Set of lines (buses except the slack one) ℒ𝑠𝑠 Set of lines with switches ℒ\ℒ𝑠𝑠 Set of lines without switches 𝑠𝑠 Index of seasons in the master problem 𝒮𝒮 Set of seasons in master problem 𝑛𝑛 Index of buses 𝒩𝒩 Set of buses (for reconfiguration part) 𝒩𝒩𝐺𝐺 Set of substation buses (for reconfiguration part) 𝒩𝒩\𝒩𝒩𝐺𝐺 Set of buses other than substations 𝑦𝑦 Index of year Ω(𝜁𝜁,𝜃𝜃) Set of equations associated with reconfiguration 
model (𝜁𝜁: vector of variable, 𝜃𝜃: vector of 
parameters) Ψ(𝛼𝛼,𝛽𝛽) Set of equations associated with ESS model (𝛼𝛼: 
vector of variable, 𝛽𝛽: vector of parameters) Θ(𝛾𝛾, 𝜏𝜏) Set of equations associated with the Augmented 
Relaxed Optimal Power Flow (AR-OPF) (𝛾𝛾: vector 
of variable, 𝜏𝜏: vector of parameters) 𝜑𝜑 Index of scenarios in subproblems  Υs Set of subproblem scenarios associated with season 𝑠𝑠 of master problem  

I. INTRODUCTION 
he lack of direct controllability of the Distributed 
Generations (DGs) is the main hindrance to the increase 
of the renewable energy resources penetration in 

distribution networks. Energy Storage Systems (ESSs) 
owned by Distribution Network operators (DNOs) will have 
an important role in the Active Distribution Networks 
(ADNs), since they have the capability to provide both 
technical services and economic benefits (by providing both 
active and reactive powers) [1]- [4]. The ESSs optimal siting 
and sizing including the possible network reconfiguration is 
the first challenge to be addressed, which is the focus of this 
paper. 

Optimal Power Flow (OPF) is the core of optimization 
problems for control, operation, and planning of power 
networks. The main and common technical drawback of the 
existing literature related to the resource planning in ADNs is 
associated with the appropriate formulation of the OPF with 
regard to its non-convexities. Recently, several works have 
been proposed to convexify the OPF e.g., [5]-[7]. In 
particular, Semi Definite Programming (SDP) and Second 
Order Cone Programming (SOCP) relaxations are used for 
this purpose. It is shown in [6] that the SOCP is more 
computationally efficient with reference to SDP. In this 
respect, we have employed the exact convex OPF model 
proposed in [7], since the lines’ transverse-parameter as well 
as the network static operational constraints (lines ampacity 
limits and nodal voltage magnitudes) are appropriately 
included. Note that the exactness of the model proposed in [7] 
is conditional. The derived conditions in [7] are mild and hold 
for realistic distribution grids. In Section V, we show that 
these conditions also hold for the benchmark networks used 
in this paper.  

An important aspect of ADN operation, which is neglected 
in the literature, is related to the inclusion of ADN 
reconfiguration in the targeted problem. As known, the 
distribution networks are designed in meshed structure but 
operated as radial one. Consequently, they can be operated 

with different topologies as function of the utilities 
requirements. This aspect influences the optimal planning 
problem of ESSs. In this paper, we have incorporated the 
network reconfiguration into the optimal ESS siting and 
sizing using a two-stage formulation. In the first-stage, the 
ESSs site and size as well as the network configurations are 
determined. The second stage evaluates the benefits of the 
allocated ESSs.   

Furthermore, we have appropriately modified the objective 
function proposed in [3] in order to preserve the exactness of 
the SOCP relaxation used for the OPF. As stated in [6], and 
[7], the objective function of the OPF have to be strictly 
increasing in total resistive losses, in order to have an exact 
relaxed OPF model. In this respect, we have appropriately 
modified the terms associated with the minimization of the 
nodal over-voltages and lines’ congestion using the auxiliary 
variables for nodal voltage-magnitude and lines’ current-
flow. In case of large reverse power flow (power flow toward 
the external grid), this permits to model the nodal over-
voltages and lines’ congestion minimization.  

The solution of the targeted planning problem is 
computationally challenging due to the large-scale size and/or 
presence of discrete variables. The inherent large-scale nature 
of the problem lays on the fact that it should cover a 
reasonable number of scenarios in order to obtain a solution 
accounting for a sufficiently large set of variations of the 
considered parameters. In this respect, one of the most 
common approaches is to decompose the optimization 
problem. We followed this approach employing the Bender 
decomposition in order to breakdown the problem into a 
master one and a set of (convex) subproblems [8-10]. As a 
side note, it is worth observing that the convergence of the 
Benders decomposition is guaranteed if the subproblems are 
convex, which is the case here (see [8]-[9]).  

In view of the above, the contributions of the paper are here 
summarized. The paper defines the most important factors 
affecting the problem of ESSs siting and sizing in ADNs; 
specifically, we have (i) incorporated the network 
reconfiguration, (ii) used a conditionally exact convex model 
of OPF, (iii) formulated the objective function of the OPF 
accounting for the grid technical operation objectives 
(voltage-magnitudes’ deviation and lines’ congestion) while 
preserving the exactness of the OPF relaxation, and (iv) 
applied the Benders decomposition for the solution of this 
specific optimization problem. 

The structure of the paper is as the following:  In Section 
II, we review the related works. In Section III, we present the 
structure of the optimization problem and its different parts. 
The problem formulation and solution methodology are 
described in Section IV. In Section V, we provide numerical 
evaluation of our method. Finally, Section VI concludes the 
paper. 

II. RELATED WORK      
A large literature exists concerning the optimal siting and 

sizing of the ESSs in ADNs. A comprehensive survey of this 
subject is presented in [11]. A cost-benefit analysis of ESSs 
for peak demand reduction in medium voltage grids is 
proposed in [12]. A number of works employ heuristic 
methods to solve the targeted optimization problem with 
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single or multi-objective goals including voltage control, 
losses minimization, energy supply cost minimization, etc. 
(e.g., [2], and [13]- [18]). In [15] it is presented a cost-benefit 
analysis of the use of ESSs for peak demand reduction in 
medium-voltage distribution networks. The objective 
function considers (i) savings in energy costs derived from 
storing energy at low-priced hours and selling it at peak hours 
and (ii) savings in network reinforcement thanks to the peak 
shaving. In [17] the Authors use the non-dominated sorting 
genetic algorithm for the solution of optimal allocation of 
DGs in distribution networks considering off-line network 
reconfiguration. The objective function minimizes resistive 
losses, energy not supplied (ENS), and the costs associated 
with DGs. In [19] a procedure is proposed for siting and 
sizing of storage devices in order to support both transmission 
and distribution networks. The objective function includes 
provision of frequency and reserve services in transmission 
network; peak shaving and load curve smoothing in 
distribution networks. A cost-benefit approach is presented in 
[20] to find the optimal sites and sizes of ESSs in distribution 
networks. The goal of the optimization is to maximize the 
DNO profits from energy transactions, as well as investment 
and operation costs savings. In [21] a two-stage methodology 
is proposed for optimal ESS sizing. The first stage determines 
initial storage sizes considering hourly wind and load 
profiles. The second stage adopts a mono-period bi-level AC 
OPF to tune the first-stage storage sizes considering lines 
congestion and voltages limits, on-load tap changers, DG 
power factor, and renewable energies curtailment.  

The above-mentioned works either use the non-convex 
formulation of power flow equations or do not consider the 
full AC power flow equations. Recently, several works have 
used the convex formulations of AC-OPF for ESS planning 
in ADNs.  The relaxed Second Order Cone Programming 
(SOCP) model of the OPF is used in [3], [22]-[23] in order to 
convexify the power flow equations. However, the relaxed 
OPF used in these works may face difficulties in case of 
reverse power flow [24]. The methodology presented in [22] 
first determines the size of the required ESS for mitigating the 
impacts of large-scale distributed PV. Afterward, the optimal 
locations for the ESS along the feeder, taking into account the 
AC power flow equations is determined. In [3] a multi-
objective approach for siting and sizing of ESSs considering 
both technical and economic goals is presented. The work is 
further augmented in [23 by decomposing the optimization 
problem using Alternative Direction Method of Multiplies 
(ADMM) and make it applicable for large-scale case studies.  

III. PROBLEM STRUCTURE  
In what follows, we describe the different parts composing 

the proposed procedure for the targeted optimization 
problem. In particular, the load flow equations and auxiliary 
load flow equations, used to formulate the grid security 
constraints, are first described. Furthermore, the developed 
model of lossy ESSs, including the State-of-Energy (SoE)1, 
capability curve, and reservoir capacity constraints, is 
presented. Finally, the power flow equations with radiality 
constraints and the uncertainty modeling of the stochastic 

 
1 We use the term state-of-energy (SoE) to indicate the energy, in per unit, 

accumulated in a given ESS.  

parameters (load, PV and energy prices) are given.       

A. Power flow and auxiliary power flow 

equations 

For a given radial power network, the power flow 
equations, considering the lines shunt impedances, are given 
in (1.a)-(1.d). For sake of clarity, and to introduce a part of 
nomenclature, the complete transmission line two-port Π 
model is shown in Fig.  1. 

 𝑆𝑆𝑙𝑙𝑡𝑡 = 𝑠𝑠𝑙𝑙 + �𝐆𝐆𝑙𝑙,𝑚𝑚 𝑆𝑆𝑚𝑚𝑡𝑡𝑚𝑚∈ℒ + 𝑧𝑧𝑙𝑙𝑓𝑓𝑙𝑙 − 𝑗𝑗�𝑣𝑣up(𝑙𝑙) + 𝑣𝑣𝑙𝑙�𝑏𝑏𝑙𝑙 ,   ∀ 𝑙𝑙 ∈ ℒ (1.a) 

𝑣𝑣𝑙𝑙 = 𝑣𝑣up(𝑙𝑙) −  2ℜ�z𝑙𝑙∗�𝑆𝑆𝑙𝑙𝑡𝑡 + 𝑗𝑗𝑣𝑣up(𝑙𝑙)𝑏𝑏𝑙𝑙��+ |𝑧𝑧𝑙𝑙|2𝑓𝑓𝑙𝑙 ,∀𝑙𝑙 ∈ ℒ (1.b) 

𝑓𝑓𝑙𝑙 =
�𝑆𝑆𝑙𝑙𝑡𝑡 + 𝑗𝑗𝑣𝑣up(𝑙𝑙)𝑏𝑏𝑙𝑙�2𝑣𝑣up(𝑙𝑙) =

�𝑆𝑆𝑙𝑙𝑏𝑏 − 𝑗𝑗𝑣𝑣𝑙𝑙𝑏𝑏𝑙𝑙�2𝑣𝑣𝑙𝑙 ,   ∀𝑙𝑙 ∈ ℒ 
(1.c) 

𝑆𝑆𝑙𝑙𝑏𝑏 = 𝑠𝑠𝑙𝑙 + � 𝐆𝐆𝑙𝑙,𝑚𝑚 𝑆𝑆𝑚𝑚𝑡𝑡𝑚𝑚∈ℒ ,   ∀ 𝑙𝑙 ∈ ℒ (1.d) 

Where ℜ represents the real part of an imaginary number. 
Buses other than the slack bus are denoted with 1, … , 𝐿𝐿; ℒ 
denotes the set ℒ = {1,2, … , 𝐿𝐿} and up(𝑙𝑙) is the label of the 
bus that is upstream of bus 𝑙𝑙. We also label with 𝑙𝑙 the line 
whose downstream bus is bus 𝑙𝑙; its upstream bus is therefore 
up(𝑙𝑙). 𝐆𝐆  is the adjacency matrix of the oriented graph of the 
network, i.e. 𝐆𝐆𝑘𝑘,𝑙𝑙 is defined for 𝑘𝑘, 𝑙𝑙 ∈ ℒ and 𝐆𝐆𝑘𝑘,𝑙𝑙 = 1 if 𝑘𝑘 =

up(𝑙𝑙) and 0 otherwise. 𝑆𝑆𝑙𝑙𝑡𝑡 = 𝑃𝑃𝑙𝑙𝑡𝑡 + 𝑗𝑗𝑄𝑄𝑙𝑙𝑡𝑡 is the complex power 
flow entering line 𝑙𝑙 from the top, i.e. from bus up(𝑙𝑙); 𝑆𝑆𝑙𝑙𝑏𝑏 =𝑃𝑃𝑙𝑙𝑏𝑏 + 𝑗𝑗𝑄𝑄𝑙𝑙𝑏𝑏  is the complex power flow entering bus 𝑙𝑙 from the 
bottom part of line 𝑙𝑙, 𝑓𝑓𝑙𝑙 is the square of the current in the 
central element of line 𝑙𝑙 (Fig.  1), 𝑧𝑧𝑙𝑙 = 𝑟𝑟𝑙𝑙 + 𝑗𝑗𝑥𝑥𝑙𝑙  and 2𝑏𝑏𝑙𝑙 are 
the longitudinal and shunt impedances of line 𝑙𝑙. We denote 
with z𝑙𝑙∗ the complex conjugate of 𝑧𝑧𝑙𝑙, 𝑣𝑣𝑙𝑙  is the square of 
voltage magnitude and 𝑠𝑠𝑙𝑙 = 𝑝𝑝𝑙𝑙 + 𝑗𝑗𝑞𝑞𝑙𝑙  is the power absorption 
at bus 𝑙𝑙 (𝑝𝑝𝑙𝑙 ≥ 0 and 𝑞𝑞𝑙𝑙 ≥ 0 denotes power consumptions, 𝑝𝑝𝑙𝑙 ≤ 0 and 𝑞𝑞𝑙𝑙 ≤ 0  denote powers injections).  

Equations (1.a)-(1.c) are directly derived by the application 
of the Kirchhoff’s law to Fig.  1 and represent the power and 
voltage equilibriums in each line. Equation (1.d) represents 
complex power flow of line 𝑙𝑙 at its 𝑙𝑙 side. 

An optimization problem with the original power flow 
equations is non-convex due to equation (1.c). However, it 
becomes convex if we replace (1.c) by the following 
inequality: 𝑓𝑓𝑙𝑙𝑣𝑣up(𝑙𝑙) ≥ �𝑆𝑆𝑙𝑙𝑡𝑡 + 𝑗𝑗𝑣𝑣up(𝑙𝑙)𝑏𝑏𝑙𝑙�2,   ∀𝑙𝑙 ∈ ℒ (2) 

 
However, it may often occur that the optimal solution of 

the relaxed optimization problem (i.e., with (2)) does not 
satisfy the original constraint (1.c), (i.e. the obtained solution 
has no physical meaning [24]). In particular, this may happen 
when either one of the nodal voltage upper-bounds or lines 
ampacity limit is/are binding. In [7] the Authors propose a 
way to modify the relaxed OPF to ensure the exactness of the 
relaxation. In particular, they propose to use auxiliary 
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variables in order to formulate the grid security constraints. 
The main idea of modifying the OPF problem is to account 
for the security constraints using a set of auxiliary variables 
that: i) are upper bounding the nodal voltage magnitudes and 
line current magnitudes and ii) do not depend on 𝑓𝑓. In this 
respect, it is introduced a new set of auxiliary variables: 𝑓𝑓,̅ �̂�𝑆 
, 𝑆𝑆̅ for the lines of the grid and 𝑣𝑣� for the buses of the network 
as defined in (3.a)- (3.f). �̂�𝑆 and 𝑣𝑣� represent lower bound and 
upper bound on 𝑆𝑆 and 𝑣𝑣, respectively whereas 𝑆𝑆̅ and 𝑓𝑓 ̅ are 
upper bounds on 𝑆𝑆 and 𝑓𝑓, respectively (see [7] for further 
details). Note that the exactness of the model proposed in [7] 
is conditional and, as already mentioned, the conditions are 
mild and hold for realistic distribution networks. These 
conditions imply that, when both active and reactive power 
losses of one or more than one lines decrease, we have: (i) the 
increase of voltage magnitude in all buses, (ii) the net active 
power imported (exported) from (to) the external 
transmission network decreases (increases), and (iii) the 
procedure to obtain a new load flow solution with the reduced 
losses converges. 

 �̂�𝑆𝑙𝑙𝑡𝑡 = 𝑠𝑠𝑙𝑙 + �𝐆𝐆𝑙𝑙,𝑚𝑚�̂�𝑆𝑙𝑙𝑡𝑡𝑙𝑙∈ℒ − 𝑗𝑗�𝑣𝑣�up(𝑙𝑙) + 𝑣𝑣�𝑙𝑙�𝑏𝑏𝑙𝑙 ,   ∀ 𝑙𝑙 ∈ ℒ (3.a) 

𝑣𝑣�𝑙𝑙 = 𝑣𝑣�up(𝑙𝑙) −  2ℜ�z𝑙𝑙∗��̂�𝑆𝑙𝑙𝑡𝑡 + 𝑗𝑗𝑣𝑣�up(𝑙𝑙)𝑏𝑏𝑙𝑙�� ,   ∀ 𝑙𝑙 ∈ ℒ (3.b) 

𝑆𝑆�̅�𝑙𝑡𝑡 = 𝑠𝑠𝑙𝑙 + �𝐆𝐆𝑙𝑙,𝑚𝑚 𝑆𝑆�̅�𝑚𝑡𝑡𝑚𝑚∈ℒ + 𝑧𝑧𝑙𝑙𝑓𝑓�̅�𝑙 − 𝑗𝑗�𝑣𝑣up(𝑙𝑙) + 𝑣𝑣𝑙𝑙�𝑏𝑏𝑙𝑙,   ∀ 𝑙𝑙 ∈ ℒ (3.c) 

𝑓𝑓�̅�𝑙𝑣𝑣𝑙𝑙 ≥ �max��𝑃𝑃�𝑙𝑙𝑏𝑏�, �𝑃𝑃�𝑙𝑙𝑏𝑏���2 + �max��𝑄𝑄�𝑙𝑙𝑏𝑏 − 𝑗𝑗𝑣𝑣�𝑙𝑙𝑏𝑏𝑙𝑙�, �𝑄𝑄�𝑙𝑙𝑏𝑏 − 𝑣𝑣𝑙𝑙𝑏𝑏𝑙𝑙���2,∀𝑙𝑙 ∈ ℒ 

(3.d) 

𝑓𝑓�̅�𝑙𝑣𝑣up(𝑙𝑙) ≥ �max��𝑃𝑃�𝑙𝑙𝑡𝑡�, |𝑃𝑃�𝑙𝑙𝑡𝑡|��2
+ �max��𝑄𝑄�𝑙𝑙𝑡𝑡 + 𝑗𝑗𝑣𝑣�up(𝑙𝑙)𝑏𝑏𝑙𝑙�, �𝑄𝑄�𝑙𝑙𝑡𝑡
+ 𝑣𝑣up(𝑙𝑙)𝑏𝑏𝑙𝑙���2,∀𝑙𝑙 ∈ ℒ 

(3.e) 

𝑆𝑆�̅�𝑙𝑏𝑏 = 𝑠𝑠𝑙𝑙 + �𝐆𝐆𝑙𝑙,𝑚𝑚 𝑆𝑆�̅�𝑙𝑡𝑡𝑚𝑚∈ℒ ,   ∀ 𝑙𝑙 ∈ ℒ (3.f) 

The grid static security constraints composed by: (i) the 
nodal voltage magnitudes and (ii) lines ampacity limit 
constraints, can be formulated as follows (for further details 
see [7]). 

 𝑣𝑣min ≤ 𝑣𝑣𝑙𝑙 ,      ∀ 𝑙𝑙 ∈  ℒ (4-a) 

 
2 The value of the resistance can be inferred from a fitting problem 

representing the ESS losses provided by the model of Fig. 2 and the real ones 
at different discharge rates and SoE. 

𝑣𝑣�𝑙𝑙 ≤ 𝑣𝑣max , ∀ 𝑙𝑙 ∈  ℒ (4-b) 
 ��max��𝑃𝑃�𝑙𝑙𝑏𝑏�, �𝑃𝑃�𝑙𝑙𝑏𝑏���+ 𝑗𝑗max��𝑄𝑄�𝑙𝑙𝑏𝑏�, �𝑄𝑄�𝑙𝑙𝑏𝑏���2 ≤ 𝑣𝑣𝑙𝑙𝐼𝐼𝑙𝑙𝑏𝑏 ≤ 𝑣𝑣𝑙𝑙𝐼𝐼𝑙𝑙max , (4-c) 
 �max��𝑃𝑃�𝑙𝑙𝑡𝑡�, �𝑃𝑃�𝑙𝑙𝑡𝑡��+ 𝑗𝑗(max��𝑄𝑄�𝑙𝑙𝑡𝑡�, �𝑄𝑄�𝑙𝑙𝑡𝑡���2 ≤ 𝑣𝑣up(𝑙𝑙)𝐼𝐼𝑙𝑙𝑡𝑡≤ 𝑣𝑣up(𝑙𝑙)𝐼𝐼𝑙𝑙max,∀𝑙𝑙 ∈ ℒ 

(4-d) 
 

where 𝑣𝑣𝑙𝑙max/𝑣𝑣𝑙𝑙min is upper/lower limit of  the bus 𝑙𝑙 voltage 
magnitudes’ square and and 𝐼𝐼𝑙𝑙max is the upper limit of the 
square of current flow of the line 𝑙𝑙. 

For the sake of brevity, hereinafter, the set of above-

mentioned equations ((1.a), (1.b), (1.d), (3), (4)) are 
represented as follows: 

 Θ(𝛾𝛾, 𝜏𝜏) ≥ 0 (5) 
 

where  𝛾𝛾 = �𝑆𝑆𝑡𝑡 = 𝑃𝑃𝑡𝑡 + 𝑗𝑗𝑄𝑄𝑡𝑡 , 𝑣𝑣, 𝑓𝑓, �̂�𝑆𝑡𝑡 = 𝑃𝑃�𝑡𝑡 + 𝑗𝑗𝑄𝑄�𝑡𝑡 , 𝑣𝑣�, 𝑓𝑓̅, 𝑆𝑆̅𝑡𝑡 =𝑃𝑃�𝑡𝑡 + 𝑗𝑗𝑄𝑄�𝑡𝑡 , 𝑠𝑠, �̂�𝐼𝑏𝑏 , �̂�𝐼𝑡𝑡 � is the set of variables and 𝜏𝜏 =�𝑧𝑧, 𝑏𝑏, 𝑣𝑣𝑙𝑙max , 𝑣𝑣𝑙𝑙min, 𝐼𝐼max� is the set of parameters. The notation 
without subscript represents the vector of corresponding 
variable/parameter for the all buses/lines.  

B. Energy storage systems  

We model the ESS charging/discharging losses with its 
equivalent resistance connecting an ideal ESS to the grid2. In 
this respect, we connect each ESS through a new line whose 
impedance is equal to the ESS equivalent resistance (see Fig. 
2).    

Ideal ESS

ESS equivalent 

resistance EP

EQER  
Fig. 2: ESS model  

 
The ideal ESS is modeled with equations (6.a) - (6.d). 
 𝐸𝐸(𝑡𝑡) = 𝐸𝐸(𝑡𝑡 − 1) − 𝑃𝑃𝐸𝐸(𝑡𝑡)Δ(𝑡𝑡) − 𝔏𝔏(𝑡𝑡)Δ(𝑡𝑡) (6.a) 𝐶𝐶ℰ𝑑𝑑 ≤ 𝐸𝐸(𝑡𝑡) ≤ 𝐶𝐶ℰ𝑢𝑢 (6.b) �𝑄𝑄𝐸𝐸(𝑡𝑡)�2 + �𝑃𝑃𝐸𝐸(𝑡𝑡)�2 ≤ ℛ2 (6.c) 𝐸𝐸(1) = 𝐸𝐸(𝑡𝑡𝑒𝑒) (6.d) ∆𝑡𝑡

2 ∗ 3600
|𝜔𝜔𝑃𝑃𝐸𝐸(𝑡𝑡)| ≤ 𝑁𝑁𝑐𝑐𝐶𝐶 

(6.e) 

𝔏𝔏(𝑡𝑡) ≥ 𝑟𝑟𝐸𝐸 ��𝑄𝑄𝐸𝐸(𝑡𝑡)�2 + �𝑃𝑃𝐸𝐸(𝑡𝑡)�2� (6.f) 

where 𝐸𝐸(𝑡𝑡) is the energy stored in the ESS at time step 𝑡𝑡, 𝑃𝑃𝐸𝐸(𝑡𝑡) and 𝑄𝑄𝐸𝐸(𝑡𝑡) are the active and reactive power outputs of 
the ESS at time 𝑡𝑡, 𝔏𝔏(𝑡𝑡) represents the resistive losses in the 
battery energy storage, ∆𝑡𝑡 is the time step length, ℰ𝑙𝑙  and ℰ𝑢𝑢 
are the maximum and minimum allowed SoE levels of the 
ESS. 𝐶𝐶 and ℛ are the reservoir capacity and square of power 

 
Fig.  1: Classical two-port Π model of a transmission line adopted for 
the formulation of the OPF relaxed constraints. 

𝑠𝑠𝑙𝑙
� 𝐆𝐆𝑙𝑙,𝑚𝑚𝑆𝑆𝑚𝑚𝑡𝑡𝑚𝑚∈ℒ

𝑣𝑣𝑙𝑙𝑣𝑣up(𝑙𝑙) 𝑧𝑧𝑙𝑙 𝑏𝑏𝑙𝑙𝑏𝑏𝑙𝑙 𝑆𝑆𝑙𝑙𝑏𝑏𝑓𝑓𝑙𝑙 𝑓𝑓𝑙𝑙𝑆𝑆𝑙𝑙𝑡𝑡
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rating of the ESS. 𝑁𝑁𝑐𝑐 is the allowed number of cycles per day 
chosen as a function of the desired end-of-life time of the ESS 
(for instance, 20 years) (see [25] for further details in case 
ESS is a battery). Finally, 𝑡𝑡𝑒𝑒 is the last time step of the day. 

Equation (6.a) represents the SoE equation of the ESS. It 
implies that the amount of stored energy in the ESS reservoir 
at time 𝑡𝑡 depends on its SoE in the previous time step and the 
net energy injected/extracted from it. The maximum and 
minimum SoE limits are modeled by equation (6.b). ESSs are 
normally interfaced with the grid using a power electronic 
converter. In this respect, their capability curve (on the AC 
side of the grid interface) is governed by the ampacity limit 
of the power converter that, in case of an operation under 
constant AC grid voltage, can be translated into a constraint 
to the apparent power delivered by the ESS (6.c). Equation 
(6.d) implies that the energy stored in the ESSs at the end of 
the day have to be identical to its initial value.  In case the 
ESS is composed by a battery, we account for the degradation 
of the battery cells using equation (6.e) (this constraint is 
defined using the approach proposed in [25]). More 
specifically, this constraint, bounds the exchanged energy of 
the battery. Note that 𝜔𝜔 is a positive parameter and its value 
depends on 𝑃𝑃𝐸𝐸(𝑡𝑡). We chose the maximum value of 𝜔𝜔 using 
the indications provided in [25] (𝜔𝜔 = 1). Finally, constraint 
(6.f) models the ESS resistive losses.  

For the sake of brevity, hereinafter in this paper, the set of 
above-mentioned equations (ESS model) are represented as 
follows: Ψ(𝛼𝛼,𝛽𝛽) ≥ 0 (7) 
 
where  𝛼𝛼 = {𝑃𝑃𝐸𝐸 ,𝑄𝑄𝐸𝐸 , 𝐸𝐸, ℛ,𝐶𝐶,𝔏𝔏} is the set of variables and 𝛽𝛽 = {Δ(𝑡𝑡),𝜔𝜔,𝑁𝑁𝑐𝑐,ℰ𝑢𝑢 ,ℰ𝑑𝑑} is the set of parameters. The 
notation without subscript represents the vector of 
corresponding variable/parameter for the all buses/lines.       

C. Power flow equations with radiality 

constraints 

The radiality constraints are modeled with the set of 
equations (8.a) - (8.e). We have employed the radiality 
constraints proposed in [26]. The main idea is to ensure that 
every single bus is supplied by only one substation through a 
unique path. In other words, any loop that includes one or 
more substations is not a feasible solution. The loops without 
substations cannot supply the loads, thus they are unfeasible 
solutions. The variable 𝑑𝑑𝑘𝑘𝑙𝑙  defines the direction between 
buses 𝑘𝑘 and 𝑙𝑙 (𝑑𝑑𝑘𝑘𝑙𝑙 = 1 means the direction is from 𝑘𝑘 to 𝑙𝑙 and 𝑑𝑑𝑙𝑙𝑘𝑘 = 1 means the direction is from 𝑙𝑙 to 𝑘𝑘). Note that these 
are continuous variables. Binary variables are used for the 
lines with a switch. However, the identified values of 𝑑𝑑𝑘𝑘𝑙𝑙  or 𝑑𝑑𝑙𝑙𝑘𝑘 are either 0 or 1 (see [26] for the proof of this property). 
The adoption of this modeling approach allows the 
optimization problem to have less binary variables as they are 
only used for the lines with a switch. ℒ is the set of the lines. ℒ𝑠𝑠 is the set of the lines with switches whereas ℒ\ℒ𝑠𝑠 
represents the set of the lines without switch. ℒ𝑙𝑙 represents 
the set of the lines connected to bus 𝑙𝑙. The set of all buses is 
represented by 𝒩𝒩. The buses that are substations are 
represented by 𝒩𝒩𝐺𝐺  whereas the set of remaining buses is 
represented by 𝒩𝒩\𝒩𝒩𝐺𝐺 . The constraint (8.a) implies that the 
lines without switch must have only one direction (either 

from 𝑘𝑘 to 𝑙𝑙 or from 𝑙𝑙 to 𝑘𝑘). Every switch has one direction in 
case its switch (𝜒𝜒𝑘𝑘𝑙𝑙) is on. This is modeled by equation (8.b). 
The direction of any line connected to a substation is from the 
substation to its corresponding adjacent bus. It is shown in the 
equation (8.c). The buses that are not substation can only have 
one infeed as modeled by (8.d).  

 𝑑𝑑𝑘𝑘𝑙𝑙 + 𝑑𝑑𝑙𝑙𝑘𝑘 = 1,∀  (𝑙𝑙, 𝑘𝑘) ∈ ℒ\ℒ𝑠𝑠 (8.a) 𝑑𝑑𝑘𝑘𝑙𝑙 + 𝑑𝑑𝑙𝑙𝑘𝑘 = 𝜒𝜒𝑘𝑘𝑙𝑙 ,∀  (𝑙𝑙, 𝑘𝑘) ∈ ℒ𝑠𝑠 (8.b) 𝑑𝑑𝑘𝑘𝑙𝑙 = 0, ∀ 𝑙𝑙 ∈ 𝒩𝒩𝐺𝐺  (8.c) �(𝑑𝑑𝑘𝑘𝑙𝑙)𝑘𝑘:

= 1, 𝑙𝑙 ∈ 𝒩𝒩\𝒩𝒩𝐺𝐺  (8.d) 𝜒𝜒𝑘𝑘𝑙𝑙 ∈ {0,1},∀  (𝑙𝑙, 𝑘𝑘) ∈ ℒ𝑠𝑠 (8.e) 
 
Using these direction variables, the power flow equations, 

are modeled as shown in (9.a)-(9.h). Note that the linear 
DistFlow model is used here [27]. We appropriately modified 
the DistFlow model to incorporate the shunt elements of the 
lines.    −𝑑𝑑𝑘𝑘𝑙𝑙𝑃𝑃𝑘𝑘𝑙𝑙max ≤ 𝑃𝑃𝑘𝑘𝑙𝑙 ≤ 𝑑𝑑𝑘𝑘𝑙𝑙𝑃𝑃𝑘𝑘𝑙𝑙max,∀  (𝑙𝑙, 𝑘𝑘) ∈ ℒ −𝑑𝑑𝑙𝑙𝑘𝑘𝑃𝑃𝑙𝑙𝑘𝑘max ≤ 𝑃𝑃𝑙𝑙𝑘𝑘 ≤ 𝑑𝑑𝑙𝑙𝑘𝑘𝑃𝑃𝑙𝑙𝑘𝑘max,∀  (𝑙𝑙, 𝑘𝑘) ∈ ℒ 

(9.a) 

−𝑑𝑑𝑘𝑘𝑙𝑙𝑄𝑄𝑘𝑘𝑙𝑙max ≤ 𝑄𝑄𝑘𝑘𝑙𝑙 ≤ 𝑑𝑑𝑘𝑘𝑙𝑙𝑄𝑄𝑘𝑘𝑙𝑙max,∀  (𝑙𝑙, 𝑘𝑘) ∈ ℒ −𝑑𝑑𝑙𝑙𝑘𝑘𝑄𝑄𝑙𝑙𝑘𝑘max ≤ 𝑄𝑄𝑙𝑙𝑘𝑘 ≤ 𝑑𝑑𝑙𝑙𝑘𝑘𝑄𝑄𝑙𝑙𝑘𝑘max ,∀  (𝑙𝑙, 𝑘𝑘) ∈ ℒ 

(9.b) 

𝑣𝑣𝑘𝑘 ≤ 𝑣𝑣𝑙𝑙 − 2ℜ(𝑧𝑧𝑘𝑘𝑙𝑙∗ 𝑆𝑆𝑘𝑘𝑙𝑙) +𝔅𝔅(1 − 𝑑𝑑𝑘𝑘𝑙𝑙),∀  𝑙𝑙 ∈ 𝒩𝒩\𝒩𝒩𝐺𝐺  𝑣𝑣𝑘𝑘 ≥ 𝑣𝑣𝑙𝑙 − 2ℜ(𝑧𝑧𝑘𝑘𝑙𝑙∗ 𝑆𝑆𝑘𝑘𝑙𝑙) −𝔅𝔅(1 − 𝑑𝑑𝑘𝑘𝑙𝑙),∀  𝑙𝑙 ∈ 𝒩𝒩\𝒩𝒩𝐺𝐺  

(9.c) 

𝑣𝑣𝑙𝑙 ≤ 𝑣𝑣𝑘𝑘 − 2ℜ(𝑧𝑧𝑘𝑘𝑙𝑙∗ 𝑆𝑆𝑙𝑙𝑘𝑘) +𝔅𝔅(1 − 𝑑𝑑𝑙𝑙𝑘𝑘),∀  𝑙𝑙 ∈ 𝒩𝒩\𝒩𝒩𝐺𝐺  𝑣𝑣𝑙𝑙 ≥ 𝑣𝑣𝑘𝑘 − 2ℜ(𝑧𝑧𝑘𝑘𝑙𝑙∗ 𝑆𝑆𝑙𝑙𝑘𝑘) −𝔅𝔅(1 − 𝑑𝑑𝑙𝑙𝑘𝑘),∀  𝑙𝑙 ∈ 𝒩𝒩\𝒩𝒩𝐺𝐺  

(9.d) 

� (𝑆𝑆𝑙𝑙𝑘𝑘 − 𝑆𝑆𝑘𝑘𝑙𝑙) + 𝑠𝑠𝑙𝑙𝑘𝑘:(𝑙𝑙,𝑘𝑘)∈ℒ𝑙𝑙 = 𝑗𝑗𝑄𝑄𝑙𝑙𝑠𝑠ℎ ,∀  𝑙𝑙 ∈ 𝒩𝒩 (9.e) 

𝑣𝑣min ≤ 𝑣𝑣𝑘𝑘 ≤ 𝑣𝑣max,∀  𝑙𝑙 ∈ 𝒩𝒩\𝒩𝒩𝐺𝐺  (9.f) 

(𝑃𝑃𝑘𝑘𝑙𝑙)2 + (𝑄𝑄𝑘𝑘𝑙𝑙 − 𝑣𝑣𝑘𝑘𝑏𝑏𝑘𝑘𝑙𝑙)2 ≤ 𝑣𝑣min𝐼𝐼𝑙𝑙max,∀  (𝑙𝑙, 𝑘𝑘) ∈ ℒ (9.g) 

(𝑃𝑃𝑙𝑙𝑘𝑘)2 + (𝑄𝑄𝑙𝑙𝑘𝑘 − 𝑣𝑣𝑙𝑙𝑏𝑏𝑘𝑘𝑙𝑙)2 ≤ 𝑣𝑣min𝐼𝐼𝑙𝑙max,∀  (𝑙𝑙, 𝑘𝑘) ∈ ℒ (9.h) 𝑄𝑄𝑙𝑙𝑠𝑠ℎ = � (𝑏𝑏𝑘𝑘𝑙𝑙𝑣𝑣𝑙𝑙)𝑘𝑘:(𝑙𝑙,𝑘𝑘)∈ℒ𝑙𝑙 ,∀  𝑙𝑙 ∈ 𝒩𝒩\𝒩𝒩𝐺𝐺  (9.i) 

where 𝑆𝑆𝑘𝑘𝑙𝑙 = 𝑃𝑃𝑘𝑘𝑙𝑙 + 𝑗𝑗𝑄𝑄𝑘𝑘𝑙𝑙  (𝑆𝑆𝑙𝑙𝑘𝑘 = 𝑃𝑃𝑙𝑙𝑘𝑘 + 𝑗𝑗𝑄𝑄𝑙𝑙𝑘𝑘) is the complex 
power flow from bus 𝑘𝑘 to 𝑙𝑙 (𝑙𝑙 to 𝑘𝑘) after the shunt element of 
the line (in the central part of the line).  𝑄𝑄𝑙𝑙𝑠𝑠ℎ is the reactive 
power associated with the shunt elements of the lines 
connected to bus 𝑙𝑙. ℜ represents the real part of an imaginary 
number. 

Constraints (9.a) and (9.b) impose the flow limits based on 
the lines’ direction variables (𝑑𝑑𝑘𝑘𝑙𝑙 ,𝑑𝑑𝑙𝑙𝑘𝑘). The direction of the 
line could be either from 𝑘𝑘 to 𝑙𝑙 or vice versa. It should be 
noted that with any direction, the active and reactive power 
flows could have both positive and negative values. The 
voltage drop across the line is modeled by equations (9.c) and 
(9.d). The big number approach ensure that these constraints 
are always satisfied for open switches. For the closed 
switches and other lines, this constraint is always satisfied 
either for 𝑘𝑘 to 𝑙𝑙, or for 𝑙𝑙 to 𝑘𝑘. 𝔅𝔅 is a big number (in per unit 
system 3 is big enough). The nodal power balance equation is 
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modeled in (9.e). The nodal voltage magnitudes’ upper and 
lower limits and the lines ampacity constraints are modeled 
using equations (9.f)- (9.h). It should be noted that in 
equations (9.g) and (9.h) the reactive powers associated to the 
shunt elements of the lines are added to the lines current flow.  

For the sake of brevity, hereinafter in this paper, the set of 
above-mentioned equations (radiality constraints and load 
flow equations with radiality constraints) are represented as 
follows: Ω(𝜁𝜁,𝜃𝜃) ≥ 0 (10) 
 
where  𝜁𝜁 = {𝑣𝑣, 𝑆𝑆 = 𝑃𝑃 + 𝑗𝑗𝑄𝑄,𝑑𝑑,𝜒𝜒, 𝑠𝑠} is the set of variables and 𝜃𝜃 = {𝑣𝑣min, 𝐼𝐼max, 𝑣𝑣max, 𝑧𝑧,𝔅𝔅} is the set of parameters. 

D. Uncertain Parameters 

The parameters (load, PV, and energy price) of the 
optimization problem have uncertainties. These variations are 
characterized by their stochastic behaviors over different time 
spans. The PV profiles have variations across the seasons and 
they have dissimilar characteristics for the cloudy and clear 
sky days. The load and energy prices have seasonal variations 
in addition to dissimilarities in weekdays and weekends. 
Additionally, their profile can have variations with respect to 
the external parameters like temperature and holidays. In this 
paper, we have considered all these variations in order to 
generate scenarios. The scenario generation and reduction are 
explained in the following sub-sections. 
1) Scenario generation 

The historical data of the parameters (load, solar 
irradiation) are assumed to be available. These data are 
grouped with different criteria. In case of load and energy 
price, the profiles are first divided into 4 bins representing the 
seasonal variations (winter/spring/fall/summer). The grouped 
data for each season is again divided in two categories: 
weekdays, weekends. Finally, the data in the weekends and 
weekdays bins are further divided into two groups. This last 
step is necessary since there may exist a big variation in the 
weekend/weekdays load/energy price profiles of each season 
with respect to temperature or other external factors. 
Similarly, the PV data is distributed between 4 groups 
representing the seasonal variations. The data of each season 
is again divided with respect to the irradiation profiles for 
clear/cloudy or partially cloudy sky.  

In order to generate scenarios, we have accounted for the 
temporal correlation of the parameters during the day. We 
assumed that the daily vector of each input parameter (load, 
and PV) has a multivariate Gaussian distribution with mean 
µ and covariance Ω (𝒩𝒩(µ, Ω)). The mean and covariance 
matrix of the parameters are obtained empirically using the 
historical data in each bin. The obtained distributions are used 
to generate appropriate scenarios using multivariate normal 
random numbers for each bin. Once the scenarios for load and 
PV are generated, they are used to generate the final scenario 
tree3.  

The obtained scenarios for the PV production are 
distributed between the PV sites in proportion to their 
nominal power. In this way, we achieve their spatial 
correlation. In order to account for the spatial correlation of 

 
3 The choice of using Gaussian distribution is driven by sake of 

reproducibility and goes beyond the scope of the paper. Indeed, since the 

the load data, the generated scenarios for the load are 
distributed between the buses of the system in proportion to 
their medium to low voltage transformer rating. The annual 
increase rates of the load and PV are considered to be constant 
(any other complex growth rate can be easily considered).  

In case of energy price scenarios, the historical energy 
price data for one year are used as the initial scenarios.  The 
energy and fuel prices’ growth over the years are modeled by 
using the Geometric Brownian Motion (GBM) [28]. 
Algorithm 1 shows the scenario generation procedure.  
2) Scenario reduction 

Accounting for all possible scenarios may results in 
computationally expensive simulations. Thus, often the 
number of scenarios is reduced to a reasonable one 
characterized by the same degree of volatility/stochasticity of 
the original scenarios. The scenarios for our targeted 
problems are the daily load/PV/price ones. In other words, we 
have scenarios in the form of time series with 𝑇𝑇𝐿𝐿 + 𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑇𝑇𝑃𝑃𝑃𝑃 
dimension. 𝑇𝑇𝐿𝐿 ,𝑇𝑇𝑃𝑃𝑃𝑃 and ,𝑇𝑇𝑝𝑝𝑃𝑃 are the length of the daily load, 
PV, and price profiles respectively. The first step is to 
determine an appropriate criterion for comparing the 
resemblances of the scenarios. We have employed Euclidian 
distance to determine the similarities between each pair of 
daily profiles.  

Once the similarities between every pair of the daily time 
series are determined, they are grouped into a binary 
hierarchical cluster tree. In this respect, the pairs of the 
objects are linked based on their proximity. The new formed 
clusters are again grouped into larger clusters and this 
continues until a hierarchical tree is formed. The distance 
between the newly formed clusters can be defined using 
various algorithms; here we have used the furthest distance of 
the two grouped scenarios. 

The next step is to partition the data into the clusters using 
the created hierarchical tree of binary clusters. This can be 
done using several approaches. The simplest one is to 
determine the number of clusters by the user based on his 
intuition. It can be done also based on the clusters’ 
inconsistency criteria or distances. Here we have selected the 
final number of clusters based on a predefined maximum 
distance. Finally, we have used K-Medoids algorithm to 
select one representative scenarios for each bin [29]. 
Algorithm 2 shows the scenario generation procedure.  

IV. PROBLEM FORMULATION 
The objective is to optimally determine the seasonal  

network configurations and global ESSs site and size in order 
to (i) decrease nodal voltage-magnitude deviations, (ii) lines’ 
congestion, (iii) energy supply cost, and (iv) ESS investment 
costs. Our working hypothesis is to have one configuration 
per season. For each season, we take into account a number 
of scenarios to evaluate the operational benefits of ESSs. In 
this respect, the targeted optimization problem is shown in 
(11). 

minimize𝜆𝜆,𝜇𝜇,𝜚𝜚  �𝑐𝑐𝜆𝜆𝑇𝑇𝜆𝜆 + 𝑐𝑐𝜚𝜚𝑇𝑇𝜚𝜚� + � �𝜌𝜌𝜑𝜑𝑐𝑐𝜇𝜇𝜑𝜑𝑇𝑇 𝜇𝜇𝜑𝜑�𝜑𝜑∈Φ  (11.a) 

approach is scenario-based, the modeler can adopt any other statistical 
representation that better fits his modeling capabilities. 
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subject to:   𝐀𝐀𝜇𝜇𝜑𝜑 + 𝐁𝐁𝜆𝜆 + 𝐂𝐂𝜚𝜚 = 𝐃𝐃𝝋𝝋,   ∀  𝜑𝜑 ∈ Φ (11.b) 𝐄𝐄𝜇𝜇𝜑𝜑 + 𝐅𝐅𝜆𝜆 + 𝐆𝐆𝜚𝜚 ≤ 𝐇𝐇𝝋𝝋,   ∀  𝜑𝜑 ∈ Φ (11.c) 𝜇𝜇𝜑𝜑 ∈ 𝒦𝒦𝜑𝜑 (11.d) 𝜚𝜚 ∈ {0,1} (11.e) 𝜚𝜚 represents the binary variables associated with the ESSs 
allocation and seasonal status of switches. 𝜆𝜆 represents the 
continuous variables associated with the seasonal network 
reconfiguration and ESS installation. 𝜇𝜇𝜑𝜑 is the vector of 
variables related to the subproblems (AR-OPF with ESS) for 
scenario 𝜑𝜑. Finally, 𝒦𝒦𝜑𝜑  is a convex envelope. The first goal �𝑐𝑐𝜆𝜆𝑇𝑇𝜆𝜆 + 𝑐𝑐𝜚𝜚𝑇𝑇𝜚𝜚� corresponds to the minimization of the ESS 
investment and network resistive losses. The second 

objective ∑ �𝜌𝜌𝜑𝜑𝑐𝑐𝜇𝜇𝜑𝜑𝑇𝑇 𝜇𝜇𝜑𝜑�𝜑𝜑∈Φ  aims at minimizing the daily 

operational-costs of the grid (the cost includes the technical 
and economic ones). The details of these objectives are 
provided in the Sections IV.A and IV.B. Constraints (11.b) 
and (11.c) corresponds to the ESS operation and installation 
costs, AR-OPF, and network reconfiguration. More details 
about these constraints are provided in Sections IV.A and 
IV.B. 

We decompose the targeted optimization problem using an 
iterative two stages procedure. Normally, planning problems 
deal with large number of scenarios in order to cover all the 
possible future operating conditions of a given system. In this 
respect, the size of the problem could easily explode, 
especially for networks with a large number of nodes. We 
have applied Benders decomposition to break down the 
problem and decrease its computational complexity [8-10]. In 
this respect, the problem is decomposed to a master problem 
and several subproblems. The subproblems are independent 
of each other and can be solved simultaneously and in 
parallel. The first stage, called master problem, determines 
the site and size of the ESS units as well as the state of the 
switches (the network configuration) for each season. The 
fitness of the master problem solution is determined in the 
second stage, called subproblem. The convergence criteria is 
the difference between the Upper Bound, 𝑈𝑈𝑈𝑈 = 𝒞𝒞 𝑖𝑖∗ +∑ ∑ �𝒞𝒞𝑠𝑠,𝜑𝜑∗ �𝜑𝜑∈Υs𝑠𝑠∈𝒮𝒮  (see equations 11.a and (12.a), ∗ 
indicates that it is the identified optimal solution) and the 
Lower Bound, 𝐿𝐿𝑈𝑈 = 𝒞𝒞𝑖𝑖∗ + 𝒞𝒞𝑠𝑠∗ (see equation (11.a), ∗ 
indicates that it is the identified optimal solution). It should 
be less than a predefined value. The LB corresponds to the 
objective value of the master problem. The UB corresponds 
to the objective value of the subproblems plus the investment 
cost and resistive losses in the master problem. Note that the 
Master problem is a Mixed-Integer Quadratically-
Constrained Quadratic Programming (MIQCQP) and the 
subproblems are Second Order Cone Programming (SOCP). 
The Benders decomposition casted to our planning problem 
is shown in Algorithm 3.  

 

A. Master problem 

The ESS sites and sizes are determined in this stage. 

Moreover for each season (𝑠𝑠 ∈ 𝒮𝒮), the grid configuration is 
determined. We determine the network configuration with 
one daily profile with time step discretization of 2 hours (the 
time step discretization is 15 minutes in the subproblems). 
The main purpose of the switching in the master stage is to 
choose the feasible (satisfying the nodal voltage-magnitude 
and lines’ ampacity limits) network configuration for each 
season. In this respect, we consider the worst daily profile for 
each season in the master problem. In winter and fall, we 
consider a daily profile with maximum load and minimum 
PV; and in summer and spring, we consider a profile with 
maximum PV and minimum load. The price scenarios are not 
considered here, as they are assumed to not influence the 
network configuration. Note that no cost is assumed for 

 
Algorithm 1: PV and load scenario generation (for one year) 

 

• Input all the empirically measured profiles. Set 𝑆𝑆= number of 
seasons, 𝐷𝐷= number of desired bins inside each season. 
Name seasons 𝑖𝑖 = 1, … ,𝑆𝑆 and number of bin inside each 
season 𝑗𝑗 = 1, … ,𝐷𝐷 

•  Initialize 𝑖𝑖 = 1    

1: repeat 

2:     𝑗𝑗 = 1 

3:     repeat 

4:         group the profiles associated with bin 𝑗𝑗 of season 𝑖𝑖 into 
generic bin 𝑋𝑋𝑖𝑖,𝑗𝑗 

5:         C𝑖𝑖,𝑗𝑗 ← COV(𝑋𝑋𝑖𝑖,𝑗𝑗) (covariance matrix of the profiles in  

bin   𝑋𝑋𝑖𝑖,𝑗𝑗) 
6:         𝜇𝜇𝑖𝑖,𝑗𝑗 ← 𝐸𝐸(𝑋𝑋𝑖𝑖,𝑗𝑗) (mean of profiles in bin 𝑋𝑋𝑖𝑖,𝑗𝑗) 
7:         Λ𝑖𝑖,𝑗𝑗 ←generate 𝑛𝑛 scenarios with the method of   

multivariate normal random numbers by using 𝜇𝜇𝑖𝑖,𝑗𝑗 and 
C𝑖𝑖,𝑗𝑗 

8:         𝑗𝑗 = 𝑗𝑗 + 1 

9:     until 𝑗𝑗 = 𝐷𝐷 

10:    𝑖𝑖 = 𝑖𝑖 + 1 

11: until 𝑖𝑖 = 𝑆𝑆 
 
Algorithm 2: Scenario reduction 
 

• Input all the scenarios associated with load, PV, and energy 
price from the algorithm 1. Set the desired Euclidean distance 
between the final scenarios (Δ𝑚𝑚).  

• Create the cluster tree including load, PV, and energy 
scenarios. 𝒩𝒩 = number of scenarios associated with the 

scenario tree. 
•  Initialize 𝑖𝑖=1 

1: repeat 

2:      𝑗𝑗 = 1 

2:     repeat 

3:             Δ𝑖𝑖,𝑗𝑗 ← Euclidean distance bnetween time series 𝑖𝑖 and 𝑗𝑗   
4:             𝑗𝑗 = 𝑗𝑗 + 1 

5:      until 𝑗𝑗 = 𝒩𝒩 

6:       𝑖𝑖 = 𝑖𝑖 + 1 

7: until 𝑖𝑖 = 𝒩𝒩 

• Create the binary hierarchical cluster tree of scenarios using Δ 

• Create clusters of scenarios (criteria → Δ𝑚𝑚 as the maximum Euclidean 
distance) 

• Choose one scenarios from each bin using K-Medoids  
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switching, as we do not do switching frequently. Note that 
our working hypothesis is to have one configuration for each 
season. The ESS losses are neglected at this stage. We solve 
OPF, using linear DistFlow (see Section III.C) in the master 
problem to choose the optimal and feasible network 
configuration for each season (i.e., satisfying the static grid 
constraints composed by the nodal voltage-magnitude and 
lines’ ampacity limits). The network configuration is decided 
independently for each season and is identical for all the days 
within the season. We consider a multi-period OPF in the 
master problem accounting for the potential impacts of ESSs 
on the network configuration. 

 
Algorithm 3 Benders decomposition procedure 
• Set 𝑖𝑖 = 1 and input 𝜀𝜀 

 
1. repeat 
2. Input all the optimality cuts form the previous iterations. Solve 

master problem and identifies the ESS sites and sizes and 
switches’ status.  𝐶𝐶𝑖𝑖 = 𝐶𝐶∗ ℛ𝑖𝑖 = ℛ∗ 𝜒𝜒𝑖𝑖 = 𝜒𝜒∗ 

 
3. For each configuration 𝑚𝑚 
4. For each scenario (𝜑𝜑𝑚𝑚) in configuration 𝑚𝑚 
5. Solve subproblem associated with scenario 𝜑𝜑𝑚𝑚 and 

create the optimality cut (equation (13)). 
6. ENDFOR 
7. ENDFOR 

8. 𝑖𝑖 ← 𝑖𝑖 + 1 

9. Until 
(𝑈𝑈𝑈𝑈−𝐿𝐿𝑈𝑈)𝑈𝑈𝑈𝑈 ≤ 𝜀𝜀 

 
The determined ESS sites and sizes are fixed for the 

subproblems. In each iteration of subproblems, a set of 
constraints are added to the master problem representing the 
value of the identified ESS sites and sizes in the previous 
iteration. These constraints are formed based on the Lagrange 
multipliers associated with the fixed capacity constraint of the 
ESS units in the subproblems. The formulation of the Benders 
cut are explained in the next section.   

The Master problem is formulated in (12). The constraints 
of the optimization problem are (i) geographical (i.e., the 
buses that cannot host ESS) and budget constraints for ESSs 
installation (ii) the radiality ones, and (iii) the constraints 
related to the seasonal network reconfiguration using 
DistFlow equations with inclusion of transverse parameters 
(see section III.C). 

minimize𝒵𝒵,𝜁𝜁,𝛼𝛼,𝑢𝑢,Ξ 
∶   𝒞𝒞𝑖𝑖 + 𝒞𝒞𝑠𝑠 (12.a) 

𝒞𝒞𝑖𝑖 = ��𝐶𝐶𝑛𝑛𝐶𝐶𝐶𝐶𝑛𝑛 + 𝐶𝐶𝑛𝑛ℛℛ𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑓𝑓𝑢𝑢𝑛𝑛�𝑛𝑛∈𝒩𝒩
+ �� � �𝑟𝑟𝑘𝑘𝑙𝑙 ��𝑃𝑃𝑘𝑘𝑙𝑙,𝑠𝑠(𝑡𝑡)�2

(𝑘𝑘,𝑙𝑙)∈ℒ𝑠𝑠∈𝒮𝒮 𝑡𝑡∈𝒯𝒯
+ �𝑃𝑃𝑙𝑙𝑘𝑘,𝑠𝑠(𝑡𝑡)�2 + �𝑄𝑄𝑘𝑘𝑙𝑙,𝑠𝑠(𝑡𝑡)�2
+ �𝑄𝑄𝑙𝑙𝑘𝑘,𝑠𝑠(𝑡𝑡)�2�� 

(12.b) 

𝒞𝒞𝑠𝑠 = � � 𝒵𝒵𝑠𝑠,𝜑𝜑𝜑𝜑∈Υs𝑠𝑠∈𝒮𝒮  (12.c) 

Ω�𝜁𝜁𝑠𝑠(𝑡𝑡),𝜃𝜃𝑠𝑠(𝑡𝑡)� ≥ 0,∀𝑠𝑠 ∈ 𝒮𝒮,∀ 𝑡𝑡 ∈ 𝒯𝒯 (12.d) Ψ(𝛼𝛼𝑠𝑠(𝑡𝑡),𝛽𝛽𝑠𝑠(𝑡𝑡)) ≥ 0,∀𝑠𝑠 ∈ 𝒮𝒮,∀ 𝑡𝑡 ∈ 𝒯𝒯 (12.e) 

��𝐶𝐶𝑛𝑛𝐶𝐶𝐶𝐶𝑛𝑛 + 𝐶𝐶𝑛𝑛ℛℛ𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑓𝑓𝑢𝑢𝑛𝑛�𝑛𝑛∈𝒩𝒩 ≤ ℱ (12.f) 

𝐶𝐶𝑛𝑛 ≤ 𝑢𝑢𝑛𝑛𝐶𝐶𝑛𝑛max,∀𝑛𝑛 ∈ 𝒩𝒩 (12.g) ℛ𝑛𝑛 ≤ 𝑢𝑢𝑛𝑛ℛ𝑛𝑛max,∀𝑛𝑛 ∈ 𝒩𝒩 (12.h) 𝒵𝒵𝑠𝑠,𝜑𝜑 ≥ 𝒵𝒵𝑠𝑠,𝜑𝜑 ,∀𝑠𝑠 ∈ 𝒮𝒮,∀𝜑𝜑 ∈ Υs (12.i) 𝒵𝒵𝑠𝑠,𝜑𝜑 ≥ Ξ𝑠𝑠,𝜑𝜑𝑖𝑖 ,∀𝑠𝑠 ∈ 𝒮𝒮,∀𝜑𝜑 ∈ Υs,∀𝑖𝑖 ∈ ℐ (12.j) 𝑢𝑢𝑛𝑛 ∈ {0,1} (12.k) 

where 𝐶𝐶𝑛𝑛𝐶𝐶 and 𝐶𝐶𝑛𝑛ℛ are the unit prices for energy reservoir (𝐶𝐶𝑛𝑛 ), 

and power rating (ℛ𝑛𝑛) of ESSs, respectively. 𝐶𝐶𝑛𝑛𝑓𝑓 is associated 
with the fixed installation cost of the ESSs, and 𝑢𝑢𝑛𝑛 is the 
binary variable associated with the presence of an ESS on bus 𝑛𝑛. 𝑛𝑛 ∈ 𝒩𝒩 is the index of buses, 𝑡𝑡 ∈ 𝒯𝒯 is the index of time, 𝑖𝑖 ∈ℐ is the index of benders iterations, 𝑠𝑠 ∈ 𝒮𝒮 is the index of 
seasons  (note that the network configuration is identical for 
all the scenarios inside each season), 𝜑𝜑 ∈ Υs is the set of 
scenarios associated with season 𝑚𝑚. ℱ is the total budget for 
ESSs installation,  𝒵𝒵𝑠𝑠,𝜑𝜑 is a set of positive variables 
introduced to represent the subproblems cost, 𝒵𝒵𝑠𝑠,𝜑𝜑 represents 
the lower bound of the solution associated to each 
subproblem scenario, and Ξ𝑠𝑠,𝜑𝜑𝑖𝑖  represents the benders cuts 
from the subproblems (see equation (14)). The Θ(Ω, 𝜃𝜃) and Ψ(𝛼𝛼,𝛽𝛽) represent the reconfiguration (see (10)) and ESS (see 
(7)) models, respectively. 𝜁𝜁 and 𝛼𝛼 are the set of variables for 
modelling the ADN reconfiguration and ESS installation and 
operation constraints, respectively. The decision variables are 
the ESS sites and sizes, ESSs active and reactive output, and 
network configuration for each scenario.  

The objective includes: (i) the investment cost, composed 

by three terms, a) fixed cost (𝐶𝐶𝑛𝑛𝑓𝑓𝑢𝑢𝑛𝑛), b) power rating cost 

(𝐶𝐶𝑛𝑛ℛℛ𝑛𝑛) and c) energy reservoir cost (𝐶𝐶𝑛𝑛𝑓𝑓𝐶𝐶𝑛𝑛); (ii) operation 
cost represented by the Benders cuts form the subproblems 
and (iii) total resistive losses (recall that 𝑃𝑃𝑙𝑙𝑘𝑘 + 𝑗𝑗𝑄𝑄𝑙𝑙𝑘𝑘  is the 
complex power flow from bus 𝑘𝑘 to 𝑙𝑙 (𝑙𝑙 to 𝑘𝑘) after the shunt 
element of the line).   

Equations (12.d) and (12.e) represent the set of ADN 
reconfiguration and ESSs constraints for all the scenarios and 
time steps. The budget limit is shown in the equation (12.f). 
The constraints (12.g) and (12.h) show the maximum 
capacity (power rating and energy) of ESS that can be 
installed on each particular bus. Equations (12.i) and (12.j) 
show the benders cuts.  

B. Subproblems 

For each season (configuration), a set of scenarios 
characterized by load, PV, and price variations assesses the 
operational benefits of the identified ESS sites and sizes. 
Each subproblem is a multi-period OPF with time-step 
discretization of 15 minutes. The objective is to decrease the 
nodal voltage-magnitude deviations, lines’ congestion and 
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cost of supplied energy. The subproblem formulation is 
represented in equations (13). We remove the sub-script 𝑠𝑠 
and 𝜑𝜑, associated with the senarios, for notational 
conveniences. Note that our working hypothesis do not allow 
for PV curtailment. However, one can easily incorporate it in 
the problem using a new set of variables for PV curtailment.  

 

minimize𝛾𝛾,𝛼𝛼,𝜓𝜓𝑣𝑣  ,𝜓𝜓𝑙𝑙 :𝒞𝒞𝑠𝑠,𝜑𝜑 = ����𝒲𝒲𝑣𝑣𝜓𝜓𝑙𝑙𝑣𝑣(𝑡𝑡)�������1
+ 𝒲𝒲𝐼𝐼𝜓𝜓𝑙𝑙𝐼𝐼(𝑡𝑡)�����2 �𝑙𝑙∈ℒ𝑡𝑡∈𝒯𝒯

+ 𝑃𝑃1,
𝑡𝑡(𝑡𝑡)𝜉𝜉(𝑡𝑡)∆𝑡𝑡���������3 � 

(13.a) 

𝜓𝜓𝑙𝑙𝑣𝑣 ≥ 0,   ∀ 𝑙𝑙 ∈ ℒ,∀ 𝑡𝑡 ∈ 𝒯𝒯  (13.b) 𝜓𝜓𝑙𝑙𝑣𝑣 ≥ 𝑣𝑣 − 𝑣𝑣𝑙𝑙(𝑡𝑡), ∀ 𝑙𝑙 ∈ ℒ,∀ 𝑡𝑡 ∈ 𝒯𝒯 (13.c) 𝜓𝜓𝑙𝑙𝑣𝑣 ≥ 𝑣𝑣�𝑙𝑙(𝑡𝑡) − 𝑣𝑣, ∀ 𝑙𝑙 ∈ ℒ,∀ 𝑡𝑡 ∈ 𝒯𝒯 (13.d) 𝜓𝜓𝑙𝑙𝑙𝑙 ≥ 0, ∀ 𝑙𝑙 ∈ ℒ,∀ 𝑡𝑡 ∈ 𝒯𝒯 (13.e) 𝜓𝜓𝑙𝑙𝑙𝑙 ≥ 𝐼𝐼𝑙𝑙𝑡𝑡(𝑡𝑡) − 𝐼𝐼𝑙𝑙 , ∀ 𝑙𝑙 ∈ ℒ,∀ 𝑡𝑡 ∈ 𝒯𝒯 (13.f) 𝜓𝜓𝑙𝑙𝑙𝑙 ≥ 𝐼𝐼𝑙𝑙𝑏𝑏(𝑡𝑡) − 𝐼𝐼𝑙𝑙 , ∀ 𝑙𝑙 ∈ ℒ,∀ 𝑡𝑡 ∈ 𝒯𝒯 (13.g) Θ(𝛾𝛾(𝑡𝑡), 𝜏𝜏(𝑡𝑡)) ≥ 0, ∀ 𝑡𝑡 ∈ 𝒯𝒯 (13.h) Ψ�𝛼𝛼(𝑡𝑡),𝛽𝛽(𝑡𝑡)� ≥ 0, ∀ 𝑡𝑡 ∈ 𝒯𝒯 (13.i) 𝐶𝐶𝑛𝑛 = 𝐶𝐶𝑛𝑛∗  ∶    𝜇𝜇𝑛𝑛,∀𝑛𝑛 ∈ 𝒩𝒩 (13.j) ℛ𝑛𝑛 = ℛ𝑛𝑛∗ ∶  𝜆𝜆𝑛𝑛 , ,∀𝑛𝑛 ∈ 𝒩𝒩    (13.k) 

where 𝒲𝒲𝑣𝑣, and 𝒲𝒲𝐼𝐼  are the weighting coefficients associated 
with the voltage deviation minimization and congestion 
management (assuming that the energy supply cost weight is 
equal to 1). 𝑃𝑃1𝑡𝑡 is the active power flow from the external 
transmission network to the grid (the active power flow at the 
substation transformer). 𝐼𝐼𝑙𝑙𝑡𝑡  and 𝐼𝐼𝑙𝑙𝑏𝑏 are upper bounds for the 
square of current flow at both ends of the line 𝑙𝑙  (see (4-d) and 
(4-c)). 𝑣𝑣𝑙𝑙  and 𝑣𝑣�𝑙𝑙 are the square of nodal voltage-magnitude of 
bus 𝑙𝑙 and its relevant auxiliary variable (see equations (1.b) 
and (3.b)). �̅�𝑣 and 𝑣𝑣 are the maximum and minimum voltage-
magnitude square beyond which nodal voltage-magnitude 

deviations are minimized. 𝐼𝐼𝑙𝑙  is the square of line 𝑙𝑙 current-
flow beyond which its current flow is minimized. 𝜇𝜇𝑛𝑛 and 𝜆𝜆𝑛𝑛 
are Lagrange multipliers of the fixed reservoir capacity and 
power rating of the ESS units. 𝜉𝜉 is the energy price, 𝜑𝜑 ∈ Υ𝑠𝑠 is 
the index of scenarios, 𝑡𝑡 ∈ 𝒯𝒯 is the index of time steps, 𝑛𝑛 ∈𝒩𝒩 is the index of buses,  𝑙𝑙 is the index of lines and the buses 
other than the slack bus, 𝐶𝐶𝑛𝑛∗ and ℛ𝑛𝑛∗  are parameters and are 
the identified optimal solution of master problem. The Θ(𝛾𝛾, 𝜏𝜏) 
and Ψ(𝛼𝛼,𝛽𝛽) represent the OPF (see (5)) and ESS (see (7)) 
models, respectively.  

The first term in the objective function minimizes the nodal 
voltage-magnitude deviations. Under-voltages and over-
voltages are minimized with respect to 𝑣𝑣 and 𝑣𝑣, respectively. 
Over-voltages are minimized using the auxiliary variable of 
voltage-magnitude square (recall this auxiliary variables are 
upper bounds for the voltage-magnitudes square). Similarly 
in the second term, the square of lines’ current-flow (at both 

ends of the lines) above the maximum threshold, 𝐼𝐼𝑙𝑙, are 
minimized using the auxiliary variables for the lines’ current-
flow square. The last term minimizes the energy supply cost 
with respect to the hourly energy price (𝜉𝜉).    

The capacity of the ESSs power rating and energy 
reservoirs are fixed to the values obtained from the master 
problem in equations (13.j) and (13.k). The duals of these 
constraints are used to form the appropriate cuts as shown in 
(14) for the master problem. A Notation with ∗ represents a 
parameter fixed from the optimal solution of the previous 
iteration. 𝜋𝜋𝑠𝑠,𝜑𝜑 is the probability of the scenario 𝜑𝜑 of Υ𝑠𝑠, 𝜎𝜎 is 
the annula interest rate, and 𝑦𝑦 is the index of the year after the 
installation of ESSs. Ξ𝑠𝑠,𝜑𝜑𝑖𝑖 =

𝜋𝜋𝑠𝑠,𝜑𝜑
(1− 𝜎𝜎)(1−𝑦𝑦)

�𝒞𝒞𝑠𝑠,𝜑𝜑∗− � ��̂�𝜇𝑛𝑛,𝑠𝑠,𝜑𝜑(𝐶𝐶𝑛𝑛 − 𝐶𝐶𝑛𝑛∗)𝑛𝑛∈𝒩𝒩
+ �̂�𝜆𝑛𝑛,𝑠𝑠,𝜑𝜑(ℛ𝑛𝑛 − ℛ𝑛𝑛∗ )�� 

(14) 

V. SIMULATION RESULTS 
This Section shows the effectiveness of the proposed 

methodology using two case studies. For the sake of clarity, 
the first one is a “toy example” composed of six buses and six 
lines. The second one is the standard 70-bus test case study. 
We use the second case to show the scalability of the 
proposed method.  

Note that all the conditions stated in [7] hold for the two 
grids used in this paper. We check the conditions for each 
season, using the maximum and minimum levels of 
consumption and production, separately and they hold for all 
four seasons. This ensures the exactness of the relaxation 
used in AR-OPF. Furthermore, we have performed an ex-post 
load flow analysis regarding the exactness of the relaxation 
used in AR-OPF for all the simulated scenarios and never 
observed inexactness. 

The price scenarios are extracted from EPEX price profiles 
in 2012, the load and PV profiles are coming from 
measurement in a primary substation in a region located in 
north of Italy and a region in south of Switzerland, 
respectively.   

A. Simple 6 lines, 6 nodes grid 

For the sake of reproducibility of the results, we have 
created a hypothetical small case study composed by 6 lines. 
The single line diagram of this network is shown in Fig. 3. 
The power, energy, and voltage base values are 1 MW, 1 
MWh, and 4.6 kV, respectively. The resistance, reactance, 
and susceptance of the lines are 0.2328 p.u., 0.279 p.u., and 
0.01 p.u., respectively. Note that all the lines have the same 
impedance and susceptance. The ESS installation cost 
parameters are 200 $/kWh, 40 $/kVA, and 20000 $/per site, 
for energy reservoir, power rating, and fixed cost, 
respectively. We have considered two seasons for the master 
problem, and 2 scenarios for the subproblem. The daily 
profile in the master problem has 12 time steps, whereas the 
subproblem profiles have 24 time steps. The Battery can 
perform 20,000 cycles; thus, with 20 years calendar lifetime 𝑁𝑁𝑐𝑐 is equal 2.7. The operation cost of the two scenarios are 
scaled up to 20 years.  The data associated with the scenarios 
are provided in Table A.1 in Appendix I. The weighting 
coefficient of each element of the objective function is as 
follows: (i) 𝑊𝑊𝐸𝐸 = 1 (ESS investment cosst as well as the 
energy supply cost), (ii) 𝑊𝑊𝑣𝑣 = 20 (nodal voltage magnitudes 
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deviations), and (iii) 𝑊𝑊𝑙𝑙 = 20 (lines congestions). Both the 
master and subproblems are solved using the solver Gurobi 
[32] via the MATLAB interface YALMIP [33] on a desktop 
PC with Intel Xeneon CPU 3.2 GHz and 16 GB RAM. The 
resistance of the ESSs, upper voltage-magnitude limit, and 
lower voltage-magnitude limit are considered 0.01 p.u., 1.05 
p.u. and 0.92 p.u., respectively. Table I shows the peak active 
and reactive load as well as the installed PV capacity of each 
bus. Table II illustrates the current-flow limit of the lines. The 
identified optimal ESS sites and sizes are shown in Table III. 

1

2

4

3

5

6

PV

PV  
Fig. 3: Hypothetical 6 lines grid 

 
Table I: Nodal peak active and reactive load and PV capacity 

Bus# Peak active 
load (kW) 

Peak reactive load 
(kVar) 

PV capacity 
[kW] 

2 27.73 4.44 0 
3 27.73 4.44 0 
4 356.61 33.28 0 
5 85.58 9.99 328.94 
6 362.95 29.96 411.18 

 
Table II: lines’ current-flow limit 

Line (1,2) (1,3) (2,4) (3,5) (4,6) (5,6) 

Current flow 
limit [p.u] 

0.1428 0.179 0.1325 0.1687 0.179 0.1366 

 
Table III: Identified optimal ESS sites and sizes for 6 bus grid 

Bus # Power rating 
(kVA) 

Energy reservoir 
(kWh) 

4    72.35   175.58 
5    52.94     2.66 
6   114.16   294.89 

 
Table III shows that three buses are selected for ESS 

installation. The total ESS capacity installation is equal to 
239.45 kW and 473.14 kWh.  

For the identified optimal solution, the switch between the 
buses #5 and #6 is open for the season 2, whereas the switch 
between buses 4# and 6# is open in season 1.  

Fig. 4 depicts the Cumulative Distribution Functions 
(CDFs) of the nodal voltage-magnitudes related to two cases, 
(i) with proposed procedure for optimal siting and sizing of 
ESSs, (ii) without ESS (base case)4. One can easily observe 
that the first case, optimal siting and sizing of ESSs taking 
into account network reconfiguration, has better voltage 
profile.  In particular, the voltage magnitudes are well kept in 
the desired operation region (±3% deviation). Furthermore it 
can be seen that the voltage magnitudes below 0.97 p.u. and 
larger than 1.03 p.u. are completely removed.  

 

 
4 For both case, optimal switching is considered.  

 
Fig. 4: CDF of nodal voltage-magnitude for (i) base case without ESS and 
(ii) optimal ESS siting and sizing with proposed procedure  

 
Table IV: Improvement in the objective function goals for the 6 

bus network 

 

Energy cost 
imported from 

the external grid 
[CHF] 

Lines with congestion 
(loading above 80% 
of nominal rating) 

with optimal ESS placement 
considering network configuration 

398,864.7 - 

without ESS 412,366 
(1,2), (1,3), 

(2,4),(3,5),(5,6), (4,6) 

 

 
Fig. 5: convergence of the proposed Benders decomposition  

 
Table V: the average computation time for 6-bus network   

 Master Problem Subproblem 

Average computation time [s] 1.82 0.53 

 
Table IV shows the improvements of the other elements of 

the objective function. One can observe that the lines’ 
congestions are completely removed with the use of 
optimally sited and sized ESSs. Additionally, the energy 
supply cost has been decreased by 3.27%. Note that the 
energy cost in Table IV represents the energy supply cost for 
the whole simulation period, and then scaled to 20 years. 

The convergence of the proposed decomposition procedure 
with Benders method is shown in Fig. 5. In particular, the 
process converged after 27 iterations (the stopping criteria is 
|𝑈𝑈𝑈𝑈−𝐿𝐿𝑈𝑈|𝑈𝑈𝑈𝑈 ≤ 0.001). Table V shows the average computation 

time associated with the master problem and subproblems.  
Note that the five conditions introduced in [7] holds for 

identified radial configurations of this grid for both scenarios 
(these conditions depends on the lines parameters and 
maximum nodal injections and absorptions; thus can be 
checked ex-ante).  
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1) Comparison with the case where network 

reconfiguration is not considered 
In this section, we present a comparison with the case 

where the network reconfiguration is not considered. We used 
the same parameters of the previous simulations. The only 
difference is that we consider a single network configuration 
for the grid. To reach the same level of voltage and line 
current quality as the previous case, 568.23 kW ESS power 
rating and 2.08 MWh ESS energy reservoir is required (in the 
previous case where we accounted for the reconfiguration, the 
required power/energy ratings are 239.45 kW and 473.14 
kWh). The total cost, (investment cost + operation cost) has 
also increased of 36.3% compared to the previous case.   

B. 70-bus standard network 

The modified 70-bus network of [28] (shown in Fig. 6) is 
selected to verify the effectiveness of the proposed planning 
procedure with respect to a standard network. This test case 
is a hypothetical 11kV radial distribution system that has 1 
substations, 2 feeders, 69 nodes, 12 tile-lines, peak load of 1.3 
MW, PV capacity of 1.2 MW, and 76 branches. We have 
assumed a battery-life time of 20 years and considered 4 
seasonal configuration in the master problem and 60 
scenarios each five years for the subproblem (the scenarios 
are created using the scenarios generation/reduction method 
presented in section (III.D)).  

  
 Fig.  6: 70-bus network (the PV sites are shown in blue) [29] 
 

Both the master and subproblems are solved using the 
solver Gurobi [31] via the MATLAB interface YALMIP [32]. 

We have assumed that the DNO has constraints on the ESS 
installation sites. To represent this constraint, we assumed a 
list of 28 candidate buses for installing ESSs (see Table VI) . 
The ESSs installation costs are considered to be 300 $/kWh, 
100 $/kVA, and 20000 $/per site. Other simulation 
parameters are provided in Table VII. 

The identified optimal sites and sizes of the ESSs units are 
provided in Table IX. In particular, five buses are selected for 
installing ESS units. Table X shows the switches statue for 
the two identified network configurations. Note that the 

 
5 The numbers are rounded to the nearest integer values.  

network configurations for summer, spring, and fall are 
identical. 

In the following, we present the comparison between three 
cases: (i) base case without ESS (optimal network 
reconfiguration is considered), (ii) optimally located ESS 
without network reconfiguration, and (iii) optimally located 
ESSs considering network reconfiguration. Note that we used 
the same parameters for all the three cases.  

Table XI shows total amount of required ESS power rating 
and energy reservoir for cases (ii) and (iii). One can observe 
that considering the network reconfiguration significantly 
decreased the total ESS size. In particular, total energy 
reservoir capacity and power rating are cut off by 26% and 
42%, respectively.   

Fig. 7 shows the Cumulative Distribution Functions 
(CDFs) of the nodal voltage magnitudes related to three 
cases. These results clearly show that optimal siting and 
sizing of ESSs taking into account network reconfiguration, 
has the best voltage profile. In particular, it can be observed 
that the voltage magnitudes are well kept within the desired 
operating region (0.96 p.u. – 1.02 p.u.). Furthermore it can be 
seen that the voltage magnitudes below 0.94 p.u. and larger 
than 1.02 p.u. are completely removed. It is interesting to 
observe that although the case without network 
reconfiguration has larger ESS capacities with respect to the 
case with reconfiguration (see Table XI), it has slightly worse 
voltage-magnitude profile than the case with network 
reconfiguration.  

Improvements in the other objectives are presented in 
Table XII. Particularly, it can be observed that with optimally 
located ESS units taking into account network 
reconfiguration the number of lines with loading above 80% 
are decreased from 46 to 3. Furthermore, the energy supply 
cost is decreased by 15.1% with respect to the base case. It is 
also interesting to observe that the case without network 
reconfiguration has more lines with loading above 80% with 
respect the proposed procedure, even though it has ESSs with 
more capacity.  

 
 

Table VI: Candidate buses for installing ESSs 

 
Table VII: Simulation parameters 

Max/min voltage-
magnitude 

thresholds beyond 
which voltage 
deviation is 
minimized  

+2%/- 4% Max value of lines’ 
current loading 

beyond which lines’ 
current are 
minimized 

80 %  

ESS resistance (0.01 p.u.) Interest rate 3% 

Base power 
(energy) value 

1 MW 
(MWh) 

GBM sigma [26] 0.08 

 
Table IX: Identified optimal ESS sites and sizes5 (PR: Power 

rating, ER: Energy Reservoir) 
with network 

reconfiguration 
possibility 

Bus# 32 34 42 54 65 
PR (kVA) 138 62 53 162 21 
ER (kWh) 315 280 194 441 57 

4 5 7 8 12 14 17 27 29 20 62 65 55 54 

51 59 44 42 28 32 33 30 31 35 34 47 50 69 
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Table X: Closed switches for the identified configurations 

 Closed switch (tie-line) # 
winter  2 5 6 7 10 11 

Summer, spring, and fall 2 5 7 9 10 11 
 

Table XI: Total identified optimal ESS capacities with and without 
considering network reconfiguration  

 
Energy reservoir 

(MWh) 
Power rating 

(kVA) 
Optimal ESS siting and sizing 

with reconfiguration 
1.287 436 

Optimal ESS siting and sizing 
without reconfiguration 

1.752 752 

 
Table XII: improvement in the objective function goals 

 
Total operation cost for 

the whole period (20 
years)) [CHF] 

Number of lines with 
congestion (loading 

above 80% of the line 
rating) 

with optimal ESS 
placement considering 
network configuration 
(Total ESS capacities : 
1.287 MWh, 436 KVA) 

1,631,580 
 

3 

without ESS (base 
case) 

1,922,980 46 

with optimal ESS 
placement considering 
network configuration 
(Total ESS capacities : 
1.752 MWh, 752 KVA) 

1,640,783 14 

 
Note that the weighting coefficient of each element of 

the objective function is as follows: (i) 𝑊𝑊𝐸𝐸 = 1 (ESS 
investment costs as well as the energy supply cost), (ii) 𝑊𝑊𝑣𝑣 = 20 (nodal voltage-magnitudes’ deviations), and (iii) 𝑊𝑊𝑙𝑙 = 40 (lines’ congestion).  
The proposed decomposition procedure based on Benders 
method have converged after 38 iterations (the stopping 

criteria is 
|𝑈𝑈𝑈𝑈−𝐿𝐿𝑈𝑈|𝑈𝑈𝑈𝑈 ≤ 0.1%). The average computation time 

associated with master and subproblems are shown in 
Table XIII. 

 
 

 
Fig. 7: Nodal voltage magnitudes CDF, (i) with optimal placement of ESSs 
embedding network reconfiguration, (ii) with optimal placement of ESSs, 
and (iii) without ESSs 

 
 
 

Table XIII: the average computation time associated with 
master and subproblems of 70-bus test case study 

 Master Problem Subproblem 

Average computation time  1.3 [min] 0.73 [s] 

 
Finally, note that the 5 conditions introduced in [7] holds 

for identified radial configurations of this grid. 
 

1) Sensitivity analysis with respect to the 

weighting terms in the objective function 
 The results of multi-objective optimizations are sensitive 

to the weighting coefficients in the objective function, e.g., 
investment cost, voltage deviation minimization and lines’ 
congestion management in (11). In Table XIV, we provide a 
sensitivity analysis with respect to the variation of the 
weighting coefficients of the objective function.  

As it one can see from Table XIV, 2.3 MWh and 0.863 
MVA of energy storage are required to completely remove 
the lines’ loading above 80% in all the scenarios for all time 
steps. Furthermore, the required amount of ESS capacity 
decrease as one decrease the weighting coefficients of the 
lines congestion minimization and nodal voltage-magnitude 
deviations. For example with 1.01 MWh/ 0.435 MVA ESS 
the number of lines with loading above 80% increase from 3 
to 20. 

 
Table XIV: ESS capacities with different weights for 

voltage-magnitude and lines’ flow minimization 

 

Weighting 
coefficients for 

voltage and 
current  

(𝑊𝑊𝑣𝑣 −𝑊𝑊𝑙𝑙) 

ESS capacities 
(MWh - MVA) 

Number of 
lines with 

loading above 
8% 

Minimum and 
maximum voltage 

magnitudes 

Case I (50-50) 2.3 – 0.863 0 0.965 - 1.097 

Case II 
(30-45) 

1.87 – 0.650  1  0.931 – 1.097 

Case III 
(20-40) 

1.287- 0.436 3 0.93 – 1.02 

Case IV 
(5-15) 

1.01 – 0.435 20 0.912 – 1.02 

 

VI.  CONCLUSION 
The paper proposes a process for optimal ESSs allocation 

into Active Distribution Networks (ADNs) embedding grid  
reconfiguration. In addition to the investment cost of ESSs, 
the capability of ESSs to support the network in terms of: 
(i) network voltage deviations, (ii) feeders congestion, 
(iii) network losses, (iv) and cost of supplying loads (from 
external grid or local producers) has been accounted for to 
find their best locations and sizes. To solve this problem, we 
have appropriately adapted a recently proposed convex OPF 
model integrated with a suitable set of constraints to exploit 
network reconfiguration capability.   

Benders decomposition is used to break down the targeted 
optimization problem enabling its fast/accurate solution. This 
peculiarity has allowed the analysis of multiple scenarios, 
generated by a suitable process. It accounts for the stochastic 
behavior of both loads and renewables together with their 
evolution in terms of growth and price changes along the ESS 
lifetime.  

The obtained results have shown the capabilities of the 
proposed methods to optimally allocate ESSs to: (i) largely 
improve the quality of supply of the ADNs in terms of 
mitigating voltage deviations, eliminating line congestions 
together with (ii) minimizing the total cost of locally used 
electricity and investment cost for ESSs installation. It is 
possible to conclude that optimally allocated ESSs can 
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represent a valid solution for ADN operators that do not want 
to deploy massive DG controls. This opportunity will 
potentially postpone large control infrastructure deployment 
as well as grid infrastructure reinforcement. 
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APPENDIX I 
Table A.1: Time series associated with the load, PV, and energy price scenarios (for master problem profiles where we have time step 

length of 2 hours, we select the maximum value of the corresponding two hours) 

Time step (hour) 1 2 3 4 5 6 7 8 9 10 11 12 

Total Load in per unit (base value 1 MVA) 
(Scenario #1) 

0.296 0.287 0.287 0.279 0.269 0.287 0.317 0.362 0.441 0.587 0.622 0.633 

Total Load in per unit (base value 1 MVA) 
(Scenario #2) 

0.312 0.299 0.293 0.293 0.282 0.281 0.291 0.298 0.312 0.324 0.336 0.343 

Total PV in per unit (Scenario #1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.009 0.017 0.023 0.026 

Total PV in per unit of total peak PV 
capacity (base value 1 MW) (Scenario #2) 

0.000 0.000 0.000 0.000 0.007 0.056 0.186 0.367 0.528 0.653 0.720 0.740 

Energy price (CHF/MWh) (Scenario #1) 29.10 26.33 24.30 23.45 25.84 33.55 42.43 46.77 47.66 46.51 45.94 43.56 

Energy price (CHF/MWh) (Scenario #2) 24.41 22.16 19.97 19.94 23.11 28.27 34.41 37.27 37.69 38.02 38.52 36.84 

Time step (hour) 13 14 15 16 17 18 19 20 21 22 23 24 

Total Load in per unit (base value 1 MVA) 
(Scenario #1) 

0.634 0.472 0.430 0.470 0.647 0.785 0.861 0.843 0.567 0.466 0.384 0.336 

Total Load in per unit (base value 1 MVA) 
(Scenario #2) 

0.342 0.328 0.335 0.343 0.361 0.386 0.418 0.427 0.405 0.374 0.345 0.319 

Total PV in per unit (base value 1 MW) 
(Scenario #1) 

0.024 0.018 0.010 0.004 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Total PV in per unit (base value 1 MW) 
(Scenario #2) 

0.710 0.628 0.494 0.345 0.195 0.068 0.010 0.000 0.000 0.000 0.000 0.000 

Energy price (CHF/MWh) (Scenario #1) 41.61 42.16 42.58 42.98 44.18 45.40 47.72 46.38 44.08 43.19 37.99 33.61 

Energy price (CHF/MWh) (Scenario #2) 35.53 34.68 34.06 33.47 34.37 35.54 35.49 34.63 34.10 34.46 30.37 26.98 
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