
Optimal planning of energy storage system in active distribution

system based on fuzzy multi-objective bi-level optimization

Rui LI1 , Wei WANG1, Zhe CHEN2, Xuezhi WU1

Abstract A fuzzy multi-objective bi-level optimization

problem is proposed to model the planning of energy stor-

age system (ESS) in active distribution systems (ADS). The

proposed model enables us to take into account how optimal

operation strategy of ESS in the lower level can affect and

be affected by the optimal allocation of ESS in the upper

level. The power characteristic model of micro-grid (MG)

and typical daily scenarios are established to take full

consideration of time-variable nature of renewable energy

generations (REGs) and load demand while easing the

burden of computation. To solve the bi-level mixed integer

problem, a multi-subgroup hierarchical chaos hybrid algo-

rithm is introduced based on differential evolution (DE) and

particle swarm optimization (PSO). The modified IEEE-33

bus benchmark distribution system is utilized to investigate

the availability and effectiveness of the proposed model and

the hybrid algorithm. Results indicate that the planning

model gives an adequate consideration to the optimal

operation and different roles of ESS, and has the advantages

of objectiveness and reasonableness.

Keywords Active distribution system, Energy storage

system, Optimal planning, Bi-level programming, Fuzzy

multiple objective

1 Introduction

For the purpose of energy security and environmental

benefits, a rapid growth has been experienced in the inte-

gration of REGs into distribution networks, mainly wind

generation (WG) and photovoltaic (PV). However, due to

natures of intermittent and difficult prediction, REGs pose

new challenges to the reliability of distribution networks.

In this regard, MGs and ADSs are introduced and per-

ceived to be key technologies to alleviate aforementioned

challenges [1–4].

As a comprehensive energy unit, MG can integrate

multiple REGs and be managed autonomously. In addition,

multiple MGs in ADSs can share distributed energy

resources and operate them in close coordination. There-

fore, multiple MGs in ADSs can improve operation fea-

tures and have significant merits for ADSs [5, 6]. In this

architecture, distributed ESSs (DESSs) in MGs and mass

ESSs (MESSs) in ADSs perform multiple important roles,

such as network upgrade deferral, frequency-voltage con-

trol, power quality and reliability improvement, and alle-

viating the fluctuation of REGs [7, 8]. However, the large

costs of ESS lead to the cost ineffectiveness of ADSs.

Therefore, ESS should be properly sized and sited

according to optimal costs while satisfying the load

demand.
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Optimal planning of ESS has been previously studied in

the literature of different fields, such as MGs [9–11], dis-

tribution networks [12–18], and large-scale power plants

[19–22]. In terms of MGs, an optimal sizing method in [9]

is proposed for the wind solar battery hybrid power system,

considering two working modes of stand-alone and grid-

connected. A sub-period optimization strategy is utilized to

calculate the battery capacity. Authors in [11] use PSO to

optimize the power rating and energy capacity of ESS for

frequency control of a stand-alone MG.

For distribution networks, to accommodate spilled wind

energy, a multi-step method based on the optimal power

flow is presented in [13] for allocation of ESS to minimize

the annual electricity cost. Authors in [14] explore a multi-

objective allocation model of ESS in ADSs for sake of

peak shaving, voltage quality improvement, and power

self-regulation capacity. A weighted minimum module

ideal point method is proposed to simplify the multi-ob-

jective problem. A chance constrained optimal model is

proposed in [16] to determine the sizing and sitting of ESS.

The model adopts minimizing investment and operation

costs as the objective while meeting the constraint of wind

utilization level. Research [17] proposes an optimal model

to determine the location, capacity, and power rating of

ESS in ADSs. The model takes roles of ESS into account

based on the short-term optimal power flow. The roles are

modeled as different costs and the penalty factor in the

objective function. In [18], authors extend their work in

[17] to take electric vehicles (EVs) into account. A point

estimate method serves to tackle the uncertainties of load,

REGs, and EVs.

In terms of large scale power plants, a two-steps co-

optimization model is proposed to determinate the suit-

able sizing and control of ESS for the hybrid system of PV

& ESS in [20]. Authors in [21] propose operation models

of ESS to maximize REGs revenues, and sizing models of

ESS to minimize costs of the hybrid system.

Regarding the above literature review, it is clear that

many optimal allocation models of ESS have been pro-

posed. However, it is worth noticing a common drawback

that most of the planning models do not take full consid-

eration for the operation of ESS. For example, some

straightforward models are used to represent the operation

process with one objective, or they adopt the weighting

method to deal with multiple objectives. Thus, multiple

crucial roles of ESS in ADSs can’t be represented

adequately.

In addition, another drawback in the aforementioned

literature is related to the models of REGs: probabilistic

models are often adopted to reflect the intermittent nature

of WG and PV, such as [12, 16, 22], which can’t give full

expression to the time-variable nature of multiple REGs.

Furthermore, these models are not suitable for the simu-

lation of ESS.

These two main drawbacks lead to the distortion of ESS

operating state in planning models, contrary to the princi-

ple of ADS planning [23], where operation models of

active managements, such as the operation of ESS, should

be integrated into planning models of ADS to get more

optimal and reasonable planning solutions.

This paper focuses on the planning problem of MESS in

ADSs, which contains WG, PV, and multi-MGs. In order to

properly determine the sizing, siting and type of ESS, a

fuzzy multi-objective bi-level optimal planning model is

proposed with several primary highlights.

Firstly, to capture operation aspects which can affect

planning stage, a bi-level model is adopted to achieve the

collaborative optimization between planning and operation

of ESS. For the purpose of giving expression to multiple

roles of MESS in ADSs, a fuzzy multi-objective model is

adopted, which consists of peak load shaving, restraining

volatility, and improving the reserve capability of ESS.

Moreover, time-dependent data are adopted to represent

time variable nature of REGs, MGs and ESSs instead of

probabilistic models. To ease the computational burden,

these time-series profiles are recognized and clustered into

typical daily scenarios based on the fuzzy C mean (FCM)

clustering algorithm and multiple scenarios technique.

Finally, to solve this bi-level mixed integer optimization

problem efficiently, a multi-subgroup hierarchical chaos

algorithm is introduced based on DE and PSO.

The paper is organized as follows. Section 2 provides

the framework of the planning model. Section 3 presents

methods to establish the power characteristic model of MG

and typical daily scenarios. In Section 4, we formulate the

fuzzy multi-objective bi-level model. A multi-subgroup

hierarchical chaos hybrid approach is further developed in

Section 5. Then, the computational results and discussions

are given in Section 6. Section 7 concludes this paper with

several remarks.

2 Framework of optimal planning model of ESS

The planning of ESS in ADSs should consider not only

minimizing of costs, but also significant roles of ESS. To

demonstrate multiple roles of ESS, two statuses of ADSs

should be considered: 1) the normal status with roles of

peak load shaving and restraining volatility, 2) the failure

status with the responsibility for system support. Moreover,

the time-variable nature of load and REGs is another

essential factor that needs to be considered.

Based on the discussion above, the framework of the

optimal planning model of ESS is described in Fig. 1,

where Fupper and flower are objectives of the upper level and
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the lower level, respectively; Ccap,d, CFOM,d, CVOM,d are the

diurnal capital cost, the diurnal fixed operating and main-

tenance (O&M) cost and the diurnal variable O&M cost of

ESS, respectively; Cload,d and Closs,d are diurnal costs of

load demand and network losses, respectively; Bdef,d

denotes the benefits got by deferral upgrade; f1, f2, and f3
represent the three objectives of the lower level.

The left side of Fig.1 describes the procedure to estab-

lish these scenarios: after annual forecasting data of REGs

and load are processed by FCM, the typical daily scenarios

are developed by multiple scenarios technique. These

typical daily scenarios preserve the chronological sequence

of power outputs of REGs and power consumptions of

load, which allows representing eventual chronological

aspects related to ESS scheduling [23].

The right side provides the fuzzy multi-objective bi-

level planning model. Each level of bi-level model has its

objectives and decision spaces affected by variables con-

trolled at another level. Meanwhile, the execution of

decisions is sequential, from higher level to lower level

[24]. These features enable bi-level model to be suitable for

the planning of ADS. For the planning aspect, minimizing

the total costs of the ADS and ESS serves as the objective

of the upper level. For the operation aspect, a fuzzy multi-

objective model is introduced to obtain ESS scheduling in

the lower level, which will be fed back to the upper level to

calculate operation costs by power flow calculation at

hourly time-steps for every daily scenario.

The most prominent roles of ESS to ADSs are elected to

be optimal objectives: 1) peak load shaving and valley load

filling aiming at deferral of system investment, 2)

restraining the volatility with the purpose of alleviating the

fluctuation of load and REGs, and 3) improving the reserve

capability of ESS seeking to take some degree of respon-

sibility for system support.

3 Establishment of typical daily scenarios

3.1 Power characteristic model of MG

The power characteristic of MG is bundled with the

allocation of MG, as well as the operation strategy [5]. In

this work, the wind solar battery hybrid MGs are adopted,

and maximizing the utilization of REGs is adopted to be

the strategy of DESS in MGs. Meanwhile, the electricity

price is also an important factor to be considered.

1) When the output of REGs is more than the local load

demand, the DESS should be charged. At this moment, if

this surplus power is larger than the charging demand of

DESS, DESS is charged by REGs alone. If this surplus

power is smaller than the charging demand of DESS, and

the electricity price of the external system is lower than the

contract price of REGs, DESS is charged by both REGs

and the external system. If this surplus power is smaller

than the charging demand of DESS, and the electricity

price of the external system is higher than the contract

price of REGs, DESS is charged by REGs alone, or

charged by both REGs and the external system until the

SOC of DESS reaches a pre-set value (k) in case of

need.

2) When the output of REGs cannot meet the local load

demand of MG, and the DESS together with REGs has no

enough energy to meet the local load demand, the DESS

starts to be charged with the external system until the SOC

of DESS reaches a pre-set value (k).

3) When the output of REGs cannot meet the local load

demand of MG, and the DESS together with REGs has

enough energy to meet the local load demand, the DESS

starts to discharge and has the priority to meet load demand

before the external system.

The power model of DESS is formulated as follows:

PDESðtÞ ¼ Pmax
C 0�Pmax

C �DPðtÞ ð1Þ

PDES tð Þ ¼ Pmax
C 0�DP tð Þ\Pmax

C

� �

& EPG tð Þ�EPRð Þ

ð2Þ

PDES tð Þ ¼ min PR
DES;

EDES;k � EDES t � 1ð Þ
� �

gC

Dt

� �

0�DP tð Þ\Pmax
C

� �

& EPG tð Þ[EPRð Þ & SOCDES t � 1ð Þ\kð Þ

ð3Þ

PDES tð Þ ¼ DP tð Þ

0�DP tð Þ\Pmax
C

� �

& EPG tð Þ[EPRð Þ & SOCDES t � 1ð Þ� kð Þ

ð4Þ

Power output 

forecasting of REG

Power output/

consumption 

forecasting of MG1

Power output/

consumption 

forecasting of MGn

Upper level: Planning scheme considerations

Objective: comprehensive costs of installation, 

operation and maintenance.

min Fupper=Ccap,d+CFOM,d+CVOM,d+Cload+Closs,d Bdef,d

Lower level: Operation considerations

Objective: peak load shaving, restraining volatility, 

improving reserve capability of ESS

min  flower=min( f1, f2, f3)

Lead Follow

Establishment of 

typical daily scenarios

Planning model of ESS 

based on fuzzy multi-objective bi-level optimization

Load demand 

forecasting

Fig. 1 Framework of bi-level optimal planning model of ESS
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PDES tð Þ ¼ min PR
DES;

EDES;k � EDES t � 1ð Þ
� �

gC

Dt

� �

DP tð Þ\0ð Þ & PMG
REG tð ÞþPmax

D tð Þ\PMG
load tð Þ

� �

& SOCDES t � 1ð Þ\kð Þ

ð5Þ

In other cases, the DESS discharges.

PDES tð Þ ¼ min DP tð Þj j;Pmax
D

� �

ð6Þ

where

Pmax
C ¼ min PR

DES;

Emax
DES � EDES t � 1ð Þ

� �

Dt � gC

� �

ð7Þ

Pmax
D ¼ min PR

DES;

EDES t � 1ð Þ � Emin
DES

� �

gD

Dt

� �

ð8Þ

Emax
DES ¼ ER

DESSOC
max
DES ð9Þ

Emin
DES ¼ ER

DESSOC
min
DES ð10Þ

EDES tð Þ ¼
EDES t � 1ð Þ þ PDES tð ÞDtgC PDES tð Þ[ 0

EDES t � 1ð Þ þ
PDES tð ÞDt

gD
PDES tð Þ� 0

8

<

:

ð11Þ

t = 1,2, …, 24; Dt is the duration of the commitment

interval, in hours (1 hour); PDES(t), EDES(t) and SOCDES(t)

are charging/discharging power, energy stored in the

battery bank, and state of charge (SOC) of DESS at time-

t, respectively; gC and gD are efficiencies of charging and

discharging, respectively; DP(t) is the difference between

REGs output and load demand in MG; PR
DES and ER

DES are

the power rating and the energy capacity of DESS,

respectively; SOCmax
DES and SOCmin

DES denote the permissible

range of SOC; Emax
DES and Emin

DES denote the permissible range

of energy stored of DESS; Pmax
C and Pmax

D are the

maximums of charging/discharging power under

constraints of SOC, respectively; EDES,k is the energy

stored of DESS when SOC=k; EPG(t) and EPR are the

electricity prices of the external system and contract price

of REGs, respectively.

Due to simple constructions of MGs, the power losses in

MGs are ignored. Thus, the power characteristic model of

MG can be expressed as an electrical unit by (12).

PMG tð Þ ¼ PMG
load tð Þ þ PDES tð Þ � PMG

REG tð Þ ð12Þ

where PMG
REG tð Þ and PMG

load tð Þ are the REGs output and the

local load demand in MG at time-t, respectively.

3.2 Establishment of typical daily scenarios

Firstly, these annual time-dependent data are segmented

into 365 daily intervals. Then, these 365 daily patterns of

REGs power output, and load demand are clustered into

typical daily profiles with corresponding probabilities by

FCM, respectively. It means that the daily variation trends

of these 365 daily patterns serve as the features of

clusters.

Then, these typical daily scenarios are established by the

multiple scenarios technique based on these clustered data.

Finally, these representative typical daily scenarios are

divided into elementary intervals (1 hour) and the power

flow calculation are repeated sequentially for each of them

to calculate operation costs.

The cluster number can be determined by the clustering

validity index IM [25]. A larger value of IM implies well-

separated clusters and a better solution.

By this means, typical daily scenarios can be extracted

from these annual prediction data and assumed sufficiently

representative of the behaviors of REGs and load demand.

Thus, the operation process can be simulated more pre-

cisely and take the time-variable nature of REGs and load

demand into consideration, while easing the burden of

planning computation.

4 Problem formulation

4.1 Upper level model: planning considerations

The control vector of the upper level consists of the

power rating (PR
ESS), the energy capacity (ER

ESS) and the

location (LESS) of ESS. The model is described as follows.

4.1.1 Objective function of upper level

minFupper ¼ minCtotal P
R
ESS;ER

ESS; LESS
� �

¼ Ccap;d þ CFOM;d þ CVOM;d þ Cload;d þ Closs;d � Bdef;d

� �

ð13Þ

Implications and calculation methods of these items are

illustrated below.

1) Diurnal capital cost of ESS

The capital cost of ESS can be represented as a function

of two main parts. One is related to the power conversion

system cost, and another is related to all the costs to build

energy storage banks or reservoirs, shown as (14).

Ccap;d ¼
1

365
CPCS � PR

ESS þ CB&R � ER
ESS

� �

CRF ð14Þ

where CPCS and CB&R are the annualized per unit cost of

power conversion system and the annualized per unit cost

of energy storage section, respectively. Capital recovery

factor (CRF) is the ratio used to calculate the present value

of equal annual cash flows, shown as (15), and subjected to

the interest rate r during the life time TESS.
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CRF ¼
r 1þ rð ÞTESS

1þ rð ÞTESS�1
ð15Þ

2) Diurnal operating and maintenance costs of ESS

Diurnal O&M costs include two main parts: the fixed

O&M cost (CFOM.d) and the variable O&M cost (CVOM.d)

[26], expressed as(16) and (17), respectively.

CFOM;d ¼
1

365
CFOM;aP

R
ESS ð16Þ

CVOM;d ¼ nCVOMP
R
ESS ð17Þ

where CFOM.a is the annualized per unit cost of fixed O&M;

CVOM is the hourly per unit cost of variable O&M; n is the

diurnal operating hour of ESS.

3) Diurnal operating costs of regional ADS

The diurnal operating costs of regional ADS (Cope,d),

including the costs of load demand (Cload,d) and network

losses (Closs,d), can indicate the economic efficiency of

planning schemes. Moreover, time-of-use (TOU) electric-

ity prices are taken into account.

Cload;d ¼
X

t2tp

CpPNL tð Þ þ
X

t2tf

CfPNL tð Þ þ
X

t2tv

CvPNL tð Þ

ð18Þ

Closs;d ¼
X

t2tp

CpPloss tð Þ þ
X

t2tf

CfPloss tð Þ þ
X

t2tv

CvPloss tð Þ

ð19Þ

where CP, Cf and Cv are TOU prices during peak hours (tP),

flat hours (tf) and valley hours (tv), respectively; PNL(t) is

the net load demand at time-t, which can be expressed as

(20); Ploss(t) is the active power loss at time-t, which can be

calculated by the power flow calculation.

PNL tð Þ ¼ Pload tð Þ þ PMG tð Þ þ PESS tð Þ � PREG tð Þ ð20Þ

where Pload(t) is the load demand of ADS at time-t;

PREG(t) is the power output of REGs at time-t; PMG(t) and

PESS(t) are the power output/consumption of MG and ESS

at time-t, respectively.

4) Diurnal benefits of upgrade deferral

The integration of ESS enables us to release the capacity

of ADSs and defer the upgrade of system, the benefits of

which (Bdef,d) can be presented in (21).

Bdef;d ¼
1

365
CDE;a Pmax

NL � Pmax
NL0

� �

CRF ð21Þ

where CDE,a is the annualized per unit capital cost of dis-

tribution equipment; Pmax
NL and Pmax

NL0 are maximum of net

load without ESS and with ESS, respectively.

It should be noticed that CVOM.d, Cload,d, Closs,d, and

Bdef,d depend on the operation of ESS and the regional

ADS in different daily scenarios. Therefore, the objective

function of the upper level should be adapted by (22).

minFupper ¼ minCtotal P
R
ESS;ER

ESS; LESS
� �

¼ Ccap;d þ CFOM;d þ
X

S

s¼1

gs CVOM;s þ Cload;s þ Closs;s � Bdef;s

� �

ð22Þ

where gsis the probability of scenario s; CVOM.s is the

diurnal variable O&M cost of ESS in scenario s; Cload,s,

Closs,s and Bdef,s are costs of the diurnal load demand,

network losses and benefits in scenario s, respectively.

4.1.2 Constraints of upper level

Main constraints of the upper level are given from (23)

to (27).

1) Active/reactive power balance equation

Sload tð Þ þ Sloss tð Þ þ SMG tð Þ þ SESS tð Þ ¼ SGrid tð Þ þ SREG tð Þ

ð23Þ

where Sload(t), SESS(t), SREG(t), SMG(t) and SGrid(t) are the

electric load, charge/discharge load of ESS, REG output,

MG output/consumption and power exchange of main grid

at time-t, respectively; Sloss(t) is the network power

losses.

2) Power flow equations

Pi tð Þ ¼ Ui tð Þ
X

Nbus

j¼1

Uj tð Þ Gij cos hij tð Þ þ Bij sin hij tð Þ
� �

ð24Þ

Qi tð Þ¼Ui tð Þ
X

Nbus

j¼1

Uj tð Þ Gij sin hij tð Þ � Bij cos hij tð Þ
� �

ð25Þ

where Pi(t) and Qi(t) are the active and the reactive power

of bus i, respectively; Ui(t) is the voltage magnitude of bus

i; Gij and Bij are the transfer conductance and the suscep-

tance between bus i and bus j, respectively; hij(t) is the

voltage angle difference between bus i and bus j.

3) Security constraints

Security constraints include the constraints of the bus

voltage magnitudes and transmission line loadings.

Ui;min �Ui tð Þ�Ui;max ð26Þ

Sl tð Þ� Sl;max ð27Þ

where Ui,min and Ui,max denote the permissible range of

voltage magnitude for bus i; Sl,max is the maximum of

power flow for line l.
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4.2 Lower level model: operation considerations

The control vector of the lower level is constituted by

charging/discharging power of ESS at time-t in every

typical scenario. The model is described as follows.

4.2.1 Objective function of lower level

The fuzzy multi-objective model serves as the objective

function of the lower level, considering peak load shaving,

restraining volatility, and improving the reserve capability

of ESS, as given by (28) to (31).

1) Peak load shaving

Minimizing the variance of net load is adopted to rep-

resent the objective of peak load shaving, as given by (28).

minf1 ¼ min
1

24

X

24

t¼1

PNL tð Þ � PNL:average

� �2
ð28Þ

where PNL.average is the average of net load demand of ADS

during the typical scenario.

2) Restraining volatility

Based on the ability to inject and absorb power quickly,

ESS can be used to alleviate the negative impacts brought

by fluctuations of REGs and load, given by (29).

minf2 ¼ min
X

24

t¼2

PNL tð Þ � PNL t � 1ð Þð Þ2 ð29Þ

3) Improving reserve capability of ESS

When ADS malfunctions, ESS can provide some degree

of power supply to the essential load, and participate in the

service restoration. The reserve capability of ESS is

introduced and defined as the maximum power which ESS

can supply to ADS, subjected to operation constraints at

time-t, expressed as (30).

Pava tð Þ¼min PR
ESS;

EESS t � 1ð Þ � Emin
ESS

� �

gD

Dt

� �

ð30Þ

where EESS(t) is the energy stored in the battery bank of

ESS at time-t; Emin
ESS is the minimum of energy stored in the

battery bank of ESS.

Maximizing the reserve capability of ESS serves as the

third objective of the lower level, shown by (31).

minf3 ¼ min 1

,

X

24

t¼1

Pava tð Þ

 !

ð31Þ

Aiming to get more reasonable optimization result, the

fuzzy satisfaction-maximizing is selected to deal with the

multi-objective problem [27].

4.2.2 Constraints of lower level

The constraints of the lower level are mainly operation

constraints of ESS, including equality and inequality con-

straints, as given by (32) to (37).

1) Equality constraints of ESS periodical behavior

EESS tð Þ ¼
EESS t � 1ð Þ þ PESS tð ÞDtgC PESS tð Þ[ 0

EESSðt � 1Þ þ
PESSðtÞDt

gD
PESS tð Þ� 0

8

<

:

ð32Þ

2) Equality constraint of state transition

X

24

t¼1

PESS tð ÞDtgC þ
PESS tð ÞDt

gD

� 	

¼ 0 ð33Þ

3) Inequality constraint of SOC

SOCmin
ESS � SOCESS tð Þ� SOCmax

ESS ð34Þ

4) Inequality constraint of peak power

�PR
ESS �PESS tð Þ�PR

ESS ð35Þ

5) Inequality constraints of power during tP and tv

PESS tð Þ� 0 t 2 tp ð36Þ

PESS tð Þ� 0 t 2 tv ð37Þ

where SOCESS(t) is SOC of ESS at time-t; SOCmin
ESS and

SOCmax
ESS denote the permissible range of SOC.

5 Hybrid solution strategy for bi-level models

From the mathematical perspective, the proposed model

is a problem of bi-level nonlinear commitment optimiza-

tion with mixed-integers. To address this problem, a multi-

subgroup hierarchical chaos hybrid algorithm

(MHCDEPSO) is introduced based on DE and PSO on

basis of [28].

5.1 MHCDEPSO

DE and PSO are effective intelligent algorithms to solve

nonlinear multi-extrema optimization problems. However,

PSO is easily trapped into the local optimal solution, and

DE has the drawback of slow convergence speed. To tackle

these problems, we combine them and introduce several

improvement measures given as follows.

1) Multi-subgroup hierarchical structure

Every whole iteration consists of the base layer and the

elite layer. Meanwhile, the population of every iteration in

the base layer is divided into multi-subgroups, and each

subgroup carries out DE operator respectively. To improve

the information interaction among these subgroups, elite
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individuals of every subgroup are brought into the elite

layer to form the elite population for PSO operator.

2) Tent chaos mapping

The tent mapping has better features of ergodicity and

randomness, so the tent chaos mapping is applied to gen-

erate the initial population instead of random initialization

method. Meanwhile, the chaos mutation operator is intro-

duced to escape from the premature taking variance of

fitness (r2) as the criterion [29].

3) Adaptive coefficients of DE and PSO

To optimize the local search ability and the global

search ability based on the number of iterations, an adap-

tive weight coefficient (x) in PSO and an adaptive cross-

over probability (CR) in DE are used instead of the

constants, as given by (38) and (39).

x kð Þ ¼ xmax � xmax � xminð Þ
k

kmax

� 	2

ð38Þ

CR kð Þ ¼ CRmin þ CRmax � CRminð Þe�30 1� k
kmax

ð Þ
h

ð39Þ

where k is the number of iterations, and kmax is upper

bound of k; xmax and xmin denote the permissible range of

x; CRmax and CRmin denote the permissible range of CR;

h is an integer coefficient greater than 1.

Hence, with the increase of k, x(k) in PSO decreases and

CR(k) in DE increases, which will improve global

searching ability in the beginning stages and local search

ability in the end, respectively [30].

5.2 Hybrid strategy based on MHCDEPSO

and CPSO

MHCDEPSO serves as the basic frame of the hybrid

strategy to determine the allocation of ESS in the upper

level. Chaos PSO serves as the algorithm embedded in the

basic frame to obtain ESS scheduling in the lower level.

The flow charts are shown in Fig. 2 and Fig. 3. The *

means the steps where chaos PSO embeds.

6 Computational results and discussion

6.1 Parameters of test system

To verify the effectiveness of the planning model and

the hybrid solving strategy, simulation studies are carried

out based on the modified IEEE-33 bus distribution net-

work, as shown in Fig. 4. The total load demands of the

ADS are 3.715 MW for active power and 2.300 Mvar for

reactive power, and the reference voltage is 12.6 kV.

In order to utilize the power of REGs locally, PV and

WG are allocated in Bus 7 and Bus 24, and three types of

MGs, such as the residential area, the business service area,

and the industrial area, are allocated in Bus 18, Bus 13 and

Bus 22, respectively. Table 1 provides data of MGs [5].

Other parameters refer to the Appendix A.

Figure 5 shows the annual profiles of solar irradiance,

and wind speed obtained by HOMER, and the load curve

extracted from IEEE-RTS79 in [31].

Three types of ESS are selected to be candidates,

including lead-acid battery (LAB), sodium-sulfur battery

(NaS) and li-ion (LIB). Parameters of them are provided in

Table 2 [26]. The permissible ranges of power rating and

energy capacity of ESS are 500–1000 kW, and

500–3000 kWh, respectively. Buses 1–32 are candidate

sites.
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Fig. 4 Modified IEEE-33 bus benchmark distribution network

Fig. 5 Annual data of wind speed, solar irradiance and load demand

Table 1 Data of MGs

MG PV

(kW)

WT

(kW)

DESS Load Bus

PR
DES (kW) ER

DES (kWh) (kW)

MG1 150 160 80 280 90 18

MG2 200 200 70 320 120 13

MG3 100 160 80 500 90 22
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6.2 Results of typical daily scenarios

1) Power output characteristics of MGs

Based on Section 3.1, power characteristics of MGs are

calculated. Curves of active power are shown in Fig. 6.

These curves indicate different variation trends based on

load demands and allocations of different MGs. These zero

points of these curves mean self-sufficiency situations

based on the dynamic power regulating by the effect of

DESSs in MGs.

2) Establishment results of typical daily scenarios

Based on Section 3.2, considering weather conditions,

the annual prediction data of WG, PV and load demand are

calculated by models of PV and WT in [32] and [33], and

clustered into four types by FCM, shown as Fig. 7.

Then, based on the clustering centers and corresponding

probabilities, the typical daily scenarios consisting of

REGs and load are established by the multiple scenarios

technique, and these most likely 10 scenarios are selected,

as shown in Table 3.

6.3 Case study

1) Case 1

In Case 1, minimizing the total costs is selected to be the

objective of the upper level from (22). Based on the three

Fig. 6 Curves of 24h outputs of MGs in typical daily scenarios

Fig. 7 Clustering centers of annual power output of PV, WT and load

Table 2 Technical and economic parameters of ESSs

Parameter LAB NaS LIB

PCS (¥/kW) 2835 2745 3472.5

Storage section (¥/kWh) 4635 2145.6 5962.5

Fixed O&M (¥/kW) 25.5 27 51.75

Variable O&M (¥/MWh) 2.775 13.5 15.75

Efficiency (%) 0.80 0.85 0.90

Range of SOC (%) 30–70 10–90 20–80

Lifetime (yr) 10 15 12.5

Table 3 Scenarios and corresponding probabilities

Scenario 1 2 3 4 5

Scheme PV 1

WT 1

Load 1

PV 2

WT 1

Load 1

PV 3

WT 1

Load 1

PV 4

WT 1

Load 1

PV 1

WT 1

Load 2

Prob. 0.0909 0.0797 0.0778 0.0938 0.1359

Scenario 6 7 8 9 10

Scheme PV 2

WT 1

Load 2

PV 3

WT 1

Load 2

PV 4

WT 1

Load 2

PV 1

WT 4

Load 2

PV 4

WT 4

Load 2

Prob. 0.1191 0.1163 0.1401 0.0720 0.0742
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types of ESS, different planning results are provided in

Table 4.

As Table 4 shows, power ratings and energy capacities

of ESS tend to lower bounds, no matter which type the ESS

is. This is because that the diurnal capital cost and the

O&M costs of ESS are much greater than extra benefits

obtained by the arbitrage alone. In other words, the diurnal

capital cost and the O&M costs of ESS play a decisive role

in the planning process.

Based on these planning schemes in Case 1, power

curves of net load in Scenario 5 with the largest probability

of occurrence are shown in Fig. 8. Due to the small power

ratings and energy capacities, these three ESSs have small

effects on peak load shaving and valley load filling, which

is also indicated by the benefits of upgrade deferral shown

in Table 4.

2) Case 2

In Case 2, minimizing the diurnal operating costs of

regional ADS from (18) and (19). Three different planning

results are shown in Table 5.

In Case 2, due to taking no account of costs of ESS,

optimal results tend to the upper bounds of power rating

and energy capacity to obtain more extra benefits by the

arbitrage. Power curves of net load in Scenario 5 are shown

in Fig. 9.

From Fig. 9, it can be seen that ESSs keep charging

during valley hours and discharging during peak hours.

And these ESSs have recommendable effects on peak load

shaving and valley load filling.

Nevertheless, it can be noted that the diurnal costs of

ESS rise dramatically. Taking LIB as an example, com-

pared to the ADS without ESS, the total costs of ADS with

LIB experience a drastic increase from 45.91 9 103 to

53.18 9 103. However, the extra benefits obtained by the

arbitrage (0.78 9 103) are much smaller than the costs of

LIB (8.10 9 103). Consequently, benefits obtained by the

arbitrage alone are not big enough to achieve profitability

under the current technical and economic conditions.

Meanwhile, the ADS with LIB spends more than twice

as much cost on the installation, O&M of ESS as the ADS

with NaS does. It suggests that the NaS has more economic

efficiency than other two types of ESS.

3) Case 3

To reflect the influence of optimal operation on the

planning scheme, besides the total costs as (22), the daily

average level of peak load shaving, shown as (40), is added

into the objective function of the upper level by means of a

penalty function. The planning results are shown in

Table 6.

Fig. 9 Power curves of net load of Case 2 in Scenario 5

Table 4 Optimal schemes and costs of ESS in Case 1

Parameter LAB NaS LIB None

Bus 31 8 31 –

Prate (kW) 500 500 500 0

Erate (kWh) 500 500 500 0

Ccap,d (10
3¥) 1.53 0.78 1.67 –

CFOM&VOM,d (¥) 68.22 198.95 259.85 –

Cload,d (10
3¥) 44.49 44.33 44.30 44.39

Closs,d (10
3¥) 1.52 1.51 1.52 1.52

Bdef,d (¥) 2.39 5.43 3.64 –

Ctotal,d (10
3¥) 47.60 46.81 47.74 45.91

Fig. 8 Power curves of net load of Case 1 in Scenario 5

Table 5 Optimal schemes and costs of ESS in Case 2

Parameter LAB NaS LIB None

Bus 27 23 32 –

Prate (kW) 1000 1000 1000 0

Erate (kWh) 3000 3000 3000 0

Ccap,d (10
3¥) 6.83 2.94 7.58 –

CFOM&VOM,d (¥) 136.45 397.91 519.71 –

Cload,d (10
3¥) 44.00 43.62 43.63 44.39

Closs,d (10
3¥) 1.50 1.49 1.50 1.52

Bdef,d (¥) 47.49 53.20 53.33 –

Cope,d (10
3¥) 45.50 45.11 45.13 45.91

Ctotal,d (10
3¥) 52.42 48.39 53.18 45.91
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X

S

s¼1

gs

Pmax
NL;s � Pmax

NL0
;s


 �

Pmax
NL;s

ð40Þ

Compared with Case 1, power ratings and energy

capacities of these ESSs all rise in different degrees.

Meanwhile, due to the constraint kAPLS, there are more

extra benefits obtained by upgrade deferral. What is more,

there has been a drop in the costs of load demand and

network losses, respectively.

From the comparisons among these three ESSs, it can be

noted that LIB can reach the same daily average level of

peak load shaving at least costs of power rating and energy

capacity. However, in terms of economic efficiency, NaS

beats LAB and LIB for the top spot again.

These power curves of net load in Case 2 shown in

Fig. 10 demonstrate the commendable effects of peak load

shifting and valley load filling. Meanwhile, thanks to the

fuzzy satisfaction-maximizing method, the fluctuations of

all these curves with the integration of ESS decrease in

different degrees, as shown in Table 7.

Reserve capabilities of these ESSs are demonstrated in

Fig. 11.

As can be seen from the curves, ESSs can provide power

supply to the essential load and be ready to participate in

the system service restoration, while fulfilling other two

tasks. Planning schemes and technical features contribute

to the differences of the reserve ability. NaS leads in the

reserve capability among these three ESSs due to the big-

gish energy capacity and the wide permissible range of

SOC.

4) Case 4

To reflect the influence of planning scheme on the

optimal operation clearly, operation conditions of NaS in

these three cases are selected for analyses. The power

curves, SOC curves, and reserve capabilities of NaS are

demonstrated from Fig. 12 to Fig. 14, respectively.

It is noted that NaS in Case 2 has the largest scope of

power variation because of the largest power rating and

energy capacity, which means the strongest ability of

power regulation. Meanwhile, we also find that the dis-

charging power outputs in Case 1 fluctuate around 25 kW

during TOU peak time 10 to 13, and hit a low of 5.99 kW

at time 13, which means that the NaS has a small effect on

Table 7 Standard deviations of net load of Case 3 in Scenario 5

Parameter LAB NaS LIB None

Std 259.9 224.9 251.8 311.7

Range 852.7 752.9 860.4 1068

Fig. 10 Power curves of net load of Case 3 in Scenario 5

Table 6 Optimal schemes and costs of ESS in Case 3

Parameter LAB NaS LIB None

Bus 7 20 16 –

Prate (kW) 760 754 658 0

Erate (kWh) 2279 2198 1285 0

Ccap,d (10
3¥) 5.19 2.17 3.53 –

CFOM&VOM,d (¥) 86.45 300.07 341.97 –

Cload,d (10
3¥) 44.24 43.90 44.22 44.39

Closs,d (10
3¥) 1.50 1.52 1.51 1.52

Bdef,d (¥) 21.73 20.95 22.61 –

Cope,d (10
3¥) 45.74 45.42 45.73 45.91

Ctotal,d (10
3¥) 50.99 47.87 49.58 45.91

kAPLS (%) 2.5 2.5 2.5 –

Fig. 11 Reserve capability of ESS in Scenario 5

Fig. 12 Power of NaS in Scenario 5

352 Rui LI et al.

123



peak load shaving during TOU peak time 10–13 in Case

1.

As shown in Fig. 13, due to the largest installed

capacity, the lowest point of SOC in Case 2 is greater than

those of others. It indicates that NaS in Case 2 has the

greatest reserve capability even after finishes the mission of

peak load shaving, which is also certified by the compar-

ison in Fig. 14. In other words, NaS in Case 2 can take

more responsibility for system support.

What we analyze above suggests that the planning

model proposed in this work can integrate the operation

stage into account effectively, and the fuzzy multi-objec-

tive model in the lower level is an effectual operation

strategy for ESS.

5) Case 5

Figure 15 shows convergence characteristics of search-

ing for the minimum costs in Case 3 by MHCDEPSO,

chaos DE and chaos PSO.

It is also noteworthy that the hybrid algorithm can

converge to its best solution at the 17th iteration, which is

the smallest number of iterations among these algorithms.

Meanwhile, MHCDEPSO can converge to a better optimal

solution (47.87 9 103) than chaos PSO (48.14 9 103) and

chaos DE (48.30 9 103). The results verify the availability

and effectiveness of the proposed hybrid algorithm.

Additionally, to investigate the robustness of the pro-

posed algorithm, Case 3 is carried out 30 times

independently. The maximum, minimum, average and

standard deviation values of total costs are provided in

Table 8. These results show the robustness and reliability

of the proposed hybrid algorithm.

7 Conclusion

In this paper, we propose a fuzzy multi-objective bi-

level formulation of ESS planning problem in ADSs. A

multi-subgroup hierarchical chaos hybrid algorithm is

developed to deal with the bi-level mixed integer opti-

mization problem.

Based on the simulation results and discussions, several

final remarks and conclusions can be drawn as follows.

1) By means of the bi-level optimization, the proposed

planning model enables us to take full consideration of the

operation strategy of ESS, which contributes to obtaining a

more reasonable planning scheme.

2) By means of FCM and the multiple scenarios technique,

annual time-dependent forecasting data of REGs and load

demand can be processed into typical daily scenarios effec-

tively. These scenarios can capture the time-variable nature of

REGsand loaddemand, andease the computational burden.

3) Based on the current economic and technological

conditions of ESS, the costs of ESS play a decisive role in

the planning process of ESS in ADSs. But, the integrating

of ESSs will also bring other additional value.
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Fig. 14 Reserve capability of NaS in Scenario 5

Fig. 13 SOC of NaS in Scenario 5
Fig. 15 Convergence characteristics of MHCDEPSO, CDE, and

CPSO

Table 8 Results based on 30 independent runs by MHCDEPSO

MHCDEPSO Cost (103 ¥) Std

Max Min Average

47.8905 47.8640 47.8800 6.7541
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