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In many production=distribution systems, materials !ow from one stage to another in %xed lot sizes. For example, a retailer orders a full
truckload from a manufacturer to qualify for a quantity discount; a factory has a material handling system that moves full containers of
parts from one production stage to the next. In this paper, we derive optimal policies for multi-stage serial and assembly systems where
materials !ow in %xed batches. The optimal policies have a simple structure, and their parameters can be easily determined. This research
extends the multi-echelon inventory theory in several ways. It generalizes the Clark-Scarf model by allowing batch transfers of inventories.
Rosling (1989) shows that assembly systems can be interpreted as serial systems under the assumption that there are no setup costs. We
show that the series interpretation still holds when materials !ow in %xed batches which satisfy a certain regularity condition. Finally,
Veinott (1965) identi%es an optimal policy for a single-location inventory system with batch ordering. This paper generalizes his result to
multi-echelon settings.

1. INTRODUCTION

In many production=distribution systems, materials !ow
from one stage to another in %xed lot sizes. For example, a
retailer orders a full truckload from a manufacturer to qual-
ify for a quantity discount; a factory has a material handling
system that moves full containers of parts from one pro-
duction stage to the next. In this paper, we derive optimal
policies for two multi-echelon problems where materials
!ow in %xed batches.

The %rst problem is a serial system with N stages. Cus-
tomer demand arises periodically at stage 1, stage 1 orders
from stage 2, 2 from 3, etc., and stage N orders from an out-
side supplier with unlimited stock. The demands in di5erent
periods are independent and identically distributed. When
demand exceeds the on-hand inventory at stage 1, the ex-
cess is backlogged. Each stage can only order a %xed, stage-
speci%c quantity or multiples thereof. The base quantities at
di5erent stages are coordinated in the sense that they satisfy
an integer-ratio constraint, i.e., the base quantity at stage i
is an integer multiple of the base quantity at stage i − 1.
The production-transportation leadtimes from one stage to
the next are constant. The system incurs holding and back-
order costs. The objective is to minimize the long-run aver-
age total cost in the system.

For the above serial problem, the optimal policy for each
stage is a reorder-point policy; i.e., whenever its echelon
stock (the inventory position of the subsystem consisting of
the stage and all its successor stages) falls to or below a
reorder point, order a minimum integer multiple of the base
quantity to increase the echelon stock to above the reorder
point. Note that this is precisely the echelon-stock (R; nQ)
policy where R is the reorder point and Q the base quantity.
It can also be seen as a generalized base-stock policy; i.e.,

each period an order is placed to keep the echelon stock
within an interval of length Q. (Thus, a generalized base-
stock policy orders up to an interval, while an ordinary
base-stock policy orders up to a point.)

The second problem considered in this paper is an
assembly system that produces a single end item from
several components. The assembly operation consists of
multiple steps involving a total of N distinct items (com-
ponents, subassemblies, and the end item). The assembly
structure is a tree; its root represents the end item and its
leaves are the components. Customer demand is for the
end item only, with complete backlogging. The demands in
di5erent periods are also independent and identically dis-
tributed. The production batch for each item is restricted to
be an item-speci%c base quantity or multiples thereof. The
procurement leadtimes for the components as well as the
production leadtimes for the subassemblies and the end item
are all constant. The objective is to minimize the long-run
average holding and backorder costs in the system.

Under one condition, the above assembly system is equi-
valent to a serial system with N stages. This requires rank
ordering the N items of the assembly system according to
their total leadtimes. The total leadtime for item i is the sum
of the leadtimes of the item and all its successor items. Thus
the end item is item 1, and the item with the longest total
leadtime is item N . Now consider an N -stage serial sys-
tem where stage i is associated with item i for all i. If the
base quantities in this serial system satisfy the integer-ratio
constraint; i.e., the base quantity of item i is an integer mul-
tiple of the base quantity of item i− 1 for all i, then the as-
sembly system is equivalent to the serial system. Under this
condition, the echelon-stock (R; nQ) policy, when modi%ed
slightly, remains optimal for the assembly system.
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The above serial model is a generalization of the Clark-
Scarf model that e5ectively assumes a base quantity of one
for every stage. It is perhaps fair to say that the Clark-Scarf
model is now well understood: Clark and Scarf (1960) show
that the base-stock policy is optimal in a %nite-horizon set-
ting, Federgruen and Zipkin (1984) extend this result to the
in%nite-horizon case with both discounted and average costs,
and Chen and Zheng (1994b) provide a simple way to show
the optimality of the base-stock policy. This paper suggests
that the base-stock policy, when modi%ed to accommodate
the base order quantities, is still optimal when every stage
orders in batches.

Compared with serial systems, assembly systems with
stochastic demand have attracted relatively less attention
in the literature. Schmidt and Nahmias (1985) characterize
an optimal policy for a system where two components are
assembled into one end item. Rosling (1989) shows that
a general assembly system (with any number of items) is
equivalent to a serial system, and thus the Clark-Scarf result
prevails. Both papers assume zero setup costs. This paper
extends this equivalence between assembly and serial sys-
tems to the batch-ordering case.

Many have studied the (R; nQ) policy. For single-location
inventory systems, Hadley and Whitin (1961) show that the
inventory position is uniformly distributed; Veinott (1965)
shows that the policy is optimal when the order quantity is
restricted to be integer multiples of Q; and Zheng and Chen
(1992) provide an optimization algorithm and a sensitivity
analysis. On the other hand, the policy has been proposed
as a reasonable heuristic for serial systems (e.g., De Bodt
and Graves 1985, Axsater and Rosling 1993, and Chen and
Zheng 1994a) as well as distribution systems (e.g., Axsater
1993a, Cachon 1995, and Chen and Zheng 1997). How-
ever, the (R; nQ) policy has received much less attention in
the context of assembly systems, except a brief mention in
Axsater and Rosling (1993). To this literature we make two
contributions: a generalization of Veinott’s optimality result
to multi-echelon systems and a demonstration that a heuris-
tic policy widely studied in the literature is actually optimal
under some plausible scenarios. (If demand is for a single
unit at a time, then the (R; nQ) policy degenerates into an
(R;Q) policy whereby each order is exactly Q units. We re-
fer the reader to Axsater (1993b) for a review of studies on
the (R;Q) policy in various multi-echelon systems.)

Finally, we all know that it is extremely diKcult to char-
acterize an optimal policy for a multi-echelon, stochastic in-
ventory system with setup costs at all echelons (see Clark
and Scarf 1962 for an example). The existence of setup costs
implies that replenishment must be carried out in batches.
If we ignore the setup costs but insist that every stage or-
der in %xed quantities, then we have a new formulation of
the problem. This paper demonstrates that under this new
formulation, it is sometimes tractable to identify an optimal
policy. (Although %xed order quantities may not be a perfect
substitute for the setup costs, they can accommodate aspects
that are not captured in the setup costs, e.g., the convenience
of standardized shipments.)

The rest of the paper has four sections. Section 2 states
a key observation and uses a simple example to illustrate
the methodology to be used throughout the paper. Section 3
characterizes an optimal policy for the serial system. Paral-
lel to §3, §4 deals with assembly systems. Section 4 extends
the results to continuous-time models, discusses a key as-
sumption made for assembly systems, and poses a few open
questions.

2. PRELIMINARIES

This section sets the stage for the later ones. We %rst present
an observation that is useful in characterizing optimal poli-
cies for inventory problems with batch ordering. This obser-
vation is then used to re-derive an existing optimal policy
for a single-location problem with batch ordering. Our pur-
pose is to familiarize the reader with the methodology used
in this paper.

Let I be the set of integers and R the set of real numbers.

LEMMA 1. Let G(·) : I →R be a function and Q a positive
integer. De'ne LG(y) = NQ

x=1G(y+ x); y∈I . Suppose that
LG(y) is quasiconvex and minimized at y=R which is a
'nite integer.

(i) For any 'xed z ∈I ; G(z + xQ) is quasiconvex in
x∈I . Let xz be the unique integer so that R + 16z +
xzQ6R + Q. Then G(z+ xQ); as a function of x∈I ; is
minimized at x= xz.

(ii) For any x∈I ; de'ne

O[x] =

{
x; x6R+ Q;

x − nQ; x¿R+ Q;

where n is the largest integer so that x − nQ¿R. Then
NQ
x=1G(O[y+ x]) = LG(min{R; y}) which is quasiconvex

and nonincreasing in y∈I .

PROOF. (i) Take any z ∈I . Consider G(z+ xQ) as a func-
tion of x∈I . Note that

G(z + (x + 1)Q) − G(z + xQ)

= LG(z + xQ) − LG(z + xQ − 1): (1)

Take any x¡xz. Thus z + xQ6R. From (1) and the
quasiconvexity of LG, LG(z + xQ) − LG(z + xQ − 1)60 or
G(z + (x + 1)Q)6G(z + xQ) for all x¡xz. Similarly,
G(z + (x + 1)Q)¿G(z + xQ) for all x¿ xz. Therefore,
G(z + xQ) is quasiconvex in x and is minimized at x= xz.

(ii) If y6R then O[y + x] =y + x for x= 1; : : : ; Q,
which implies NQ

x=1 G(O[y + x]) = LG(y). Now take
any y¿R. Note that for each x= 1; : : : ; Q; O[y+ x]
is a unique and di5erent point in {R+ 1; : : : ; R+Q}.
Thus {O[y+ x]; x= 1; : : : ; Q}= {R + 1; : : : ; R + Q} or
NQ
x=1 G(O[y + x]) = LG(R). Combining these two cases,

NQ
x=1 G(O[y + x]) = LG(min{R; y}). Because LG(·) is qua-

siconvex and R is its minimum point, LG(min{R; y}) is
quasiconvex and nonincreasing in y.
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Next, we use the above result to re-derive an optimal
policy characterized by Veinott (1965). Consider a single-
location, periodic-review inventory problem with indepen-
dent and identically distributed demands. Assume that the
demands only take integer values. When demand exceeds
the on-hand inventory, the excess is backlogged. Each
order placed must be a positive integer multiple of Q, which
is itself a %xed positive integer. Let G(y) be the (condi-
tional) expected cost in a period given that the inventory
position at the beginning of the period after ordering is y.
(The inventory position is the on-hand inventory plus out-
standing orders minus backorders.) The planning horizon
is in%nite, and the objective is to minimize the long-run
average total cost. (The same approach can be used for the
in%nite-horizon, discounted case or the %nite-horizon case
with or without discounts.)

Assume that LG(y); y∈I , is quasiconvex and it is mini-
mized at y=R, a %nite integer. Thus Lemma 1 applies. To
determine an optimal policy for the above inventory prob-
lem, we %rst show that the long-run average cost of any
feasible policy is bounded below by a constant. We then
construct a feasible policy that actually achieves the lower
bound. Thus the constructed feasible policy is optimal.

Consider any feasible policy. Take any period t, and let yt
be the inventory position at the beginning of period t after
ordering. This period’s expected cost is G(yt). From

Lemma 1, G(yt)¿G(y′t) where y′t
def= yt + nQ where

n is the unique integer (positive or otherwise) so that
y′t ∈{R+ 1; : : : ; R+Q}. The long-run average cost of the
feasible policy must be greater than or equal to the long-run
average value of G(y′t). To determine the latter, consider
the stochastic process {y′t}. Let Dt be the demand in period
t. Note that under any feasible policy,

yt+1 =yt − Dt + mQ

for some nonnegative integer m. Because yt−y′t and yt+1−
y′t+1 are both integer multiples of Q,

y′t+1 =y′t − Dt + m′Q;

where m′ is an integer. Moreover, given y′t and Dt , the
value of m′ is unique because R + 16y′t+16R+Q. Be-
cause the demands in di5erent periods are independent, {y′t}
is a Markov chain. And it has a %nite state space, i.e.,
{R+ 1; : : : ; R+Q}. When the demand distribution satis%es
some mild conditions, the steady-state distribution of the
Markov chain is uniform. In this case, the long-run average
value of G(y′t) is

1
Q

R+Q∑
y=R+1

G(y);

which is a lower bound on the long-run average cost of
any feasible policy. (One suKcient condition for the uni-
form distribution is that the demand in each period takes
on the value 1 with positive probability. This is indeed a
mild condition satis%ed by most demand distributions. Let

us make this assumption for the sake of brevity. However,
the uniform distribution—possibly over a subset of the state
space—holds for general demand distributions. The results
in this paper can be easily extended to general demand dis-
tributions; see the appendix.)

The above lower bound can be achieved if the inventory
manager follows the (R; nQ) policy. It operates as follows.
At the beginning of each period, if the inventory position
is at or below R, the manager orders a minimum integer
multiple of Q to raise the inventory position to above R;
otherwise, no order is placed. It is easy to verify that under
this policy, y′t =yt for all t and thus the long-run average
cost is equal to the lower bound. As a result, the (R; nQ)
policy is optimal. This is precisely the policy characterized
by Veinott (1965) for the above single-location inventory
problem.

Note that our assumption—i.e., LG(·) is quasiconvex—is
slightly more general than Veinott’s original assumption that
G(·) is quasiconvex. The above analysis suggests that the
optimality of (R; nQ) policies is a direct consequence of the
shape of LG(·), not G(·). When linear holding and backorder
costs are incurred in each period, it is well known that G(·),
thus LG(·), is quasiconvex. The same still holds for certain
types of nonlinear backorder costs, see Chen and Zheng
(1993).

3. SERIAL SYSTEMS

In this section, we characterize an optimal policy for serial
inventory systems with batch ordering. The methodology is
essentially the same as the one used in the previous section
for single-location systems.

Consider a serial inventory system with N stages where
customer demand arises at stage 1 only, stage 1 replenishes
its inventory from stage 2, 2 from 3, etc., and stageN from an
outside supplier with unlimited stock. (The outside supplier
is also called stage N + 1.) Time is divided into equal inter-
vals called periods. We assume that the demands in di5er-
ent periods are independent, identically distributed, discrete
random variables. When the customer demand exceeds the
on-hand inventory at stage 1, the excess is backlogged. Each
order placed by stage i must be a positive integer multiple of
a stage-speci%c base quantity, Qi; i= 1; : : : ; N . These base
quantities represent the basic units of transportation (e.g.,
a full truckload) or production (e.g., a pallet). We assume
that they satisfy the following integer-ratio constraint:

Qi+1 = niQi; i= 1; : : : ; N − 1; (2)

where ni is a positive integer. The transportation=production
leadtimes from one stage to the next are %xed. The system
incurs holding and backorder costs. The objective is to min-
imize the long-run average total cost in the system.

De%ne the echelon inventory level at stage i to be the in-
ventories on hand at stages 1; : : : ; i plus inventories in transit
to stages 1; : : : ; i − 1 minus backorders at stage 1. In short,
the echelon inventory level at stage i is the net inventory
level in the subsystem consisting of stages 1; : : : ; i. De%ne
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the echelon inventory position at stage i to be the echelon
inventory level at stage i plus inventories in transit to stage i.

We assume that all the replenishment activities in a period
occur at the beginning of the period. At stage i¿1, they
occur in the following sequence: An order from state i − 1
is received, an order is placed with stage i + 1, a shipment
is received from stage i+ 1, and a shipment is sent to stage
i − 1. For stage 1, order placement occurs at the beginning
of the period, while customer demand arrives during the
period. Let t− be the beginning of period t after all the
replenishment activities in the period have taken place. Let
t+ be the end of period t (after demand occurrence). De%ne

IPi(t) = echelon inventory position at stage i at t−;

IL−i (t) = echelon inventory level at stage i at t−;

ILi(t) = echelon inventory level at stage i at t+;

B(t) = backorder level at stage 1 at t+:

We assume that the system starts with a plausible initial
state, i.e., the initial on-hand inventory at stage i + 1 is a
nonnegative integer multiple of Qi; i= 1; : : : ; N − 1. This
is reasonable because the order size by stage i is always an
integer multiple of Qi, and thus there is no incentive to keep
a fraction of Qi at stage i+1. This initial condition, together
with the integer-ratio condition (2) that implies that both the
in-!ow and the out-!ow at stage i+ 1 are integer multiples
of Qi, suggests that the on-hand inventory at stage i + 1
is always an integer multiple of Qi. Because the on-hand
inventory at stage i + 1 at t− is IL−i+1(t) − IPi(t),

IL−i+1(t) − IPi(t) =mQi; i= 1; : : : ; N − 1; (3)

where m is a nonnegative integer.
Let gi(y) be the expected one-period cost incurred at stage

i in period t, given IPi(t) =y. The expected total cost in the
system in period t, given the echelon inventory positions at
all stages, is thus

N∑
i=1

gi(IPi(t)): (4)

Later, we will provide speci%c expressions for the gi(·) under
a plausible holding-backorder cost structure.

We proceed to establish a lower bound on the long-run
average value of (4). It is convenient to express (4) in a time-
shifted manner. Let Li, a nonnegative integer, be the lead-
time from stage i + 1 to i. Let Mi be the total leadtime at
stage i, i.e., Mi = Ni

j=1 Lj. Take any period t. Write IPi for
IPi(t − Mi); i= 1; : : : ; N , and IL−i for IL−i (t − Mi−1); i=
2; : : : ; N . The following is (4) shifted in time:

N∑
i=1

gi(IPi): (5)

Clearly, (4) and (5) have the same long-run average value.
Let D(t) be the customer demand in period t, a discrete

random variable. Let D[t1; t2) be the total demand in periods

t1; : : : ; t2−1. For i= 2; : : : ; N , writeDi forD[t−Mi; t−Mi−1).
Because the demands in di5erent periods are independent,
D2; : : : ; DN are independent. The following are well-known
inventory balance equations:

IL−i = IPi − Di; i= 2; : : : ; N: (6)

Moreover, from (3),

IL−i+1 − IPi =mQi; i= 1; : : : ; N − 1; (7)

where m is a nonnegative integer.
De%ne a sequence of functions recursively as follows. Let

G1(y) = g1(y); y∈I . For i= 1; : : : ; N , assume that Gi(·)
is de%ned and that LGi(y) def= NQi

x=1 Gi(y+ x) is quasiconvex
and minimized at y=Ri, a %nite integer. Thus Gi(·) satis%es
the conditions of Lemma 1. De%ne Oi[·] as in Lemma 1 by
replacing R and Q with Ri and Qi respectively. De%ne

Gi+1(y) = gi+1(y) + EGi(Oi[y − Di+1]);

y∈I ; i= 1; : : : ; N − 1:

The above assumptions will be veri%ed later under a speci%c,
plausible cost structure.

LEMMA 2. Gi(IPi)¿Gi(Oi[IL−i+1]); i= 1; : : : ; N − 1:

PROOF. LetOi[IL−i+1] =y. Thus y6Ri+Qi. From the de%ni-
tion ofOi[·] and (7), y−IPi is an integer multiple ofQi. From
Lemma 1(i), Gi(IPi + xQi), as a function of x∈I , is quasi-
convex and minimized at x= x∗, where x∗ is the unique inte-
ger with Ri+16 IPi+x∗Qi6Ri+Qi. Therefore, the lemma
follows if y= IPi + x∗Qi. Otherwise, if y¡IPi + x∗Qi thus
y6Ri, then y= IL−i+1 and (7) implies that IPi6y. In this
case, the lemma follows because Gi(IPi + xQi) is nonin-
creasing in x for x¡x∗.

We next derive a lower bound on the long-run average
value of (5). Note that

C def= E

[
N∑
i=1

gi(IPi)|IPN
]

= E

[
N∑
i=2

gi(IPi) + G1(IP1)|IPN
]

¿ E

[
N∑
i=2

gi(IPi) + G1(O1[IL−2 ])|IPN
]

= E

[
N∑
i=3

gi(IPi) + g2(IP2) + G1(O1[IP2 − D2])|IPN
]

=E

[
N∑
i=3

gi(IPi) + G2(IP2)|IPN
]
; (8)

where the inequality follows from Lemma 2, the %rst equal-
ity from the de%nition of G1(·), the second equality from
(6), and the third equality from the de%nition of G2(·) and
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the fact that D2 is independent of IP2 and IPN . Repeating the
above procedure, we have

C¿GN (IPN ): (9)

We can think of IPN as the inventory position of a single-
location inventory system. As we have shown in the previous
section, the long-run average value of GN (IPN ) is bounded
below by

C∗ def=
1
QN

RN+QN∑
y=RN+1

GN (y):

THEOREM 1. C∗ is a lower bound on the long-run average
costs of all feasible policies in the serial system.

The lower bound in Theorem 1 can be achieved. Con-
sider the following feasible policy. Whenever the echelon
inventory position of stage i; i= 1; : : : ; N , is at or below
Ri, stage i + 1 ships an integer multiple of Qi to stage i to
bring the echelon inventory position of stage i into the in-
terval {Ri + 1; : : : ; Ri + Qi}; and if the on-hand inventory
at stage i + 1 is insuKcient, then ship as much as possible.
This policy is called an echelon-stock (R; nQ) policy. (An
alternative way to describe the policy is to allow each up-
stream stage to backlog orders from the downstream stage in
case of a stockout. Under the echelon-stock (R; nQ) policy,
every stage orders to bring its echelon stock, which is its
echelon inventory position plus its outstanding orders that
are backlogged at the upstream stage, into the critical inter-
val.)

THEOREM 2. For the serial system; it is optimal to use the
echelon-stock (Ri; nQi) policy at stage i; i= 1; : : : ; N . The
minimum long-run average cost is C∗.

PROOF. It suKces to show that the echelon-stock (R; nQ)
policy achieves a long-run average cost equal toC∗. Because
stage i follows an (Ri; nQi) policy based on its echelon in-
ventory position, IPi =Oi[IL−i+1] in the long run. Therefore,
Lemma 2 becomes an equality. Consequently, both (8) and
(9) are equalities. From the single-location model consid-
ered in the previous section, the (RN ; nQN ) policy at stage
N achieves the lower bound C∗.

The optimal (R; nQ) policy is easy to compute. The re-
order points Ri are the minimum points of N quasiconvex
functions LGi(·). The computational procedure is bottom-up:
First compute R1, which is used to determine G2(·) thus
LG2(·); then compute R2, so on and so forth. This is remi-
niscent of the Clark-Scarf (1960) model where the optimal
base-stock levels are also determined sequentially. A key
observation from the Clark-Scarf model is that an N -stage
serial system can be decomposed into N newsboy problems
if a proper induced-penalty cost is charged to every up-
stream stage for not meeting an order from the downstream
stage. The same observation holds here. Suppose we charge

the following induced-penalty cost to stage i + 1:

Gi(Oi[IL−i+1]) − min
m∈I

Gi(IL−i+1 + mQi); (10)

which, under the (Ri; nQi) policy at stage i, is equal to

Gi(IPi) − min
m′∈I

Gi(IPi + m′Qi):

The above expression has an intuitive interpretation: The
%rst term is the actual cost at stage i, while the second term
is the minimum cost at stage i if stage i+1 has ample stock.
The di5erence can thus be attributed to the lack of inven-
tory at stage i + 1. Under this induced-penalty cost, stage
i + 1’s expected cost, given its echelon inventory position
IPi+1 =y, is

G̃i+1(y) def= gi+1(y) + E
{
Gi(Oi[y − Di+1])

−min
m∈I

Gi(y − Di+1 + mQi)
}
:

Because Nz+Qi
x=z+1 minm∈I Gi(y − Di+1 + x + mQi) = LGi(Ri)

for all z; y and Di+1 (Lemma 1),

Qi+1∑
x=1

G̃i+1(y + x) = LGi+1(y) − ni LGi(Ri):

Because LGi+1(y) is quasiconvex and minimized at y=Ri+1,
NQi+1
x=1 G̃i+1(y+ x) is also quasiconvex and minimized at the

same point. Now assume that stage i + 2 has ample stock.
The problem facing stage i + 1 is exactly the same as the
single-location problem analyzed in §2 with a one-period
cost function G̃i+1(·). Consequently, the optimal policy at
stage i+1 is the (Ri+1; nQi+1) policy with a long-run average
cost

LGi+1(Ri+1) − ni LGi(Ri)
Qi+1

=
LGi+1(Ri+1)
Qi+1

−
LGi(Ri)
Qi

:

The sum of the above cost across all stages is C∗. There-
fore, the induced-penalty costs (10) decompose the N -stage
problem into N single-stage problems.

It is interesting to note that di5erent induced-penalty costs
have been used in the literature for multi-echelon inventory
problems with %xed ordering costs (thus batch transfers).
For example, one can charge the following induced-penalty
cost to stage i + 1:

Gi(min{si; IL−i+1}) − Gi(si);

where si is some constant. This type of induced-penalty cost
has been used (a) by Clark and Scarf (1962) to decompose
the dynamic program for a two-stage serial system, (b) by
Chen and Zheng (1994b) to establish lower bounds on min-
imum costs in various multi-echelon systems, and (c) by
Chen and Zheng (1998) to derive approximate cost func-
tions that lead to near-optimal control parameters in serial
systems. Note that in (a) and (b), si is obtained by solv-
ing a single-location (s; S) model, while in (c), si =Ri. The
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Figure 1. The G-function and two types of induced-
penalty functions.

induced-penalty costs in (10), however, lead to the optimal
policy. Figure 1 depicts these two types of induced-penalty
costs in a serial system with R1 = 8 and Q1 = 5.

We pause here to note that it is not a novel idea to use
echelon-stock (R; nQ) policies in serial systems; see, e.g.,
De Bodt and Graves (1985), Axsater and Rosling (1993),
Chen and Zheng (1994a, 1998). What we have shown here
is that this class of policies is actually optimal when the
material !ow is regulated by %xed lot sizes.

For the remainder of this section, we show that the
assumptions made earlier about Gi(·); i= 1; : : : ; N , are sat-
is%ed under a plausible holding-backorder cost structure.
Suppose the system incurs linear holding and backorder
costs. Let
Hi = installation holding cost at stage i per unit per period,
hi = echelon holding cost at stage i per unit per period,

=Hi − Hi+1¿0, with HN+1 = 0,
p = backorder penalty cost (at stage 1) per unit per period,

p¿0.
(At %rst glance, it seems restrictive to assume hi¿0 for
i= 1; : : : ; N . It is not. If hN =HN = 0, then we can keep
in%nite inventory at stage N and treat the stage as the new
outside supplier of the system. If hi60 for some i¡N ,
then no inventories should be kept at stage i + 1. In other
words, any shipment to stage i+ 1 should be sent to stage i
directly. This e5ectively eliminates stage i+ 1. Continue in
this fashion as long as there is a stage with a nonpositive
echelon holding cost rate. This will lead to a serial model
with positive echelon holding cost rates at all stages.)

We follow the convention of assessing holding and back-
order costs based on the period-ending inventory levels.
Note that the installation (on-hand) inventory at stage i at
t+, i¿ 2, can be written as ILi(t)− ILi−1(t), and the instal-
lation (on-hand) inventory at stage 1 at t+ is IL1(t) + B(t).
(Thus the inventories in transit to stage i − 1 are part
of the installation inventory of stage i. This is standard.)
Charging Hi for each unit of installation inventory at stage
i; i= 1; : : : ; N , and p for each unit of customer backorders,
we have the following holding and backorder costs in
period t:

N∑
i=2

Hi[ILi(t) − ILi−1(t)] + H1[IL1(t) + B(t)] + pB(t)

=
N∑
i=1

hiILi(t) + (p+ H1)B(t):

Call h1IL1(t) + (p+H1)B(t) the cost at stage 1 and
hiILi(t) the cost at stage i, i= 2; : : : ; N . Because IL1(t +
L1) = IP1(t) −D[t; t + L1], where D[t1; t2] denotes the total
demand in periods t1; : : : ; t2, the expected one-period cost
at stage 1, given IP1(t) =y, is

g1(y) = E[h1(y − D[t; t + L1])

+(p+ H1)(y − D[t; t + L1])−];

where (x)− = max{−x; 0}. Similarly, because ILi(t+Li)
= IPi(t) − D[t; t + Li] for i= 2; : : : ; N , we have

gi(y) =E[hi(y − D[t; t + Li])]; i= 2; : : : ; N:

We next verify the assumptions made earlier about Gi(·);
i.e., LGi(·) is quasiconvex and is minimized at a %nite point.
Let !1 be the expected value of D[t; t + L1] and de%ne

Gd1 (y) = h1(y − !1)+ + (p+ H2)(y − !1)−; y∈I :

For i= 2; : : : ; N , let !i be the expected value of D[t; t + Li)
and de%ne

Gdi (y) = hi(y − !i)+ + (p+ Hi+1)(y − !i)−

− (h2 + · · · + hi)!; y∈I ;

where ! is the expected demand in one period. Note that
Gd1 (y) can be interpreted as the holding and backorder costs
in an EOQ model (with backorders) with holding cost rate
h1, backorder cost rate p + H2, and leadtime demand !1,
given that the inventory position is y. Similar interpretations
can be made for Gdi (·); i= 2; : : : ; N .

LEMMA 3. LGi(·) is convex and Gi(y)¿Gdi (y); ∀y∈I ;
i= 1; : : : ; N .

PROOF. It is clear that G1(·) is convex and G1(y)¿Gd1 (y),
∀y∈I (Jensen’s inequality). Thus the lemma holds for
i= 1. Now take any i¿1 and suppose the lemma holds
for i. We next show that it also holds for i + 1.
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By de%nition,

LGi+1(y) = hi+1

Qi+1∑
x=1

(y + x − !i+1 − !)

+
Qi+1∑
x=1

EGi(Oi[y + x − Di+1]):

(Recall that Di+1 is the total demand in periods t; : : : ; t +
Li+1−1 and its mean is !i+1. So the mean of D[t; t+Li+1] is
!i+1 + !.) The %rst term on the right side is clearly convex
in y. From Lemma 1 (ii), we can write the second term as

ni−1∑
z=0

Qi∑
x=1

EGi(Oi[y + x + zQi − Di+1])

=
ni−1∑
z=0

E LGi(min{Ri; y + zQi − Di+1});

which is convex in y because Ri is a minimum point of
LGi(·). In sum, LGi+1(·) is convex.

It remains to show that Gi+1(y)¿Gdi+1(y) for all y∈I .
First, note that if y6Ri + Qi then Oi[y] =y; otherwise, if
y¿Ri+Qi then Oi[y] =y−nQi for some positive integer n
and thus Oi[y]¡y. Combining these two cases and noting
that (x)− is a nonincreasing function, we have

(Oi[y])−¿(y)−: (11)

On the other hand, from the de%nition of Gdi (y), we have

Gdi (y)¿(p+ Hi+1)(y − !i)− − (h2 + · · · + hi)!

¿(p+ Hi+1)(y)− − (h2 + · · · + hi)!;

where the second inequality follows because !i¿0 and (x)−

is a nonincreasing function. The inductive assumption, the
above inequality, and (11) lead to

Gi(Oi[y])¿Gdi (Oi[y])¿(p+ Hi+1)(y)−

− (h2 + · · · + hi)!:

Using the above inequality in the de%nition of Gi+1(y), we
have

Gi+1(y)¿hi+1(y − !i+1 − !) + (p+ Hi+1)E(y − Di+1)−

− (h2 + · · · + hi)!

¿hi+1(y − !i+1) + (p+ Hi+1)(y − !i+1)−

− (h2 + · · · + hi+1)!

= hi+1(y − !i+1)+ + (p+ Hi+2)(y − !i+1)−

− (h2 + · · · + hi+1)!

=Gdi+1(y);

where the second inequality is Jensen’s.

Lemma 3 implies that LGi(·) is quasiconvex and mini-
mized at a %nite point because lim|y|→+∞ Gdi (y) = +∞,
i= 1; : : : ; N . This completes the section.

4. ASSEMBLY SYSTEMS

This section is parallel to §3. We %rst describe an assem-
bly system where the materials !ow in %xed batches. We
then introduce several key assumptions, among which are
several properties of the one-period cost function. Based on
these assumptions, we establish a lower bound on the long-
run average costs of all feasible replenishment policies. We
then present a feasible policy that achieves the lower bound.
Finally, we verify the assumed properties of the one-period
cost function under a speci%c holding-backorder cost struc-
ture.

Consider the following assembly system. Several
components are purchased from outside suppliers. These
components are assembled into intermediate products, or
subassemblies, which are further assembled into other sub-
assemblies, so on and so forth until a %nished product (or
end item) is produced. We assume that the system produces
only one end item. The system has N distinct items: the
components, the subassemblies, and the end item. The as-
sembly structure is a tree where the root represents the end
item, the leaves are the components, and each item (except
the end item) has exactly one successor. We assume that
the component suppliers have unlimited stock and each
order for a component arrives after a %xed leadtime. The
production leadtimes for the other items (subassemblies and
the end item) are also %xed. The customer demand is for
the end item only, and the demands in di5erent periods are
independent, identically distributed, discrete random vari-
ables. When the demand exceeds the on-hand inventory of
the end item, the excess demand is backlogged and %lled as
soon as the %nished-good inventory becomes available. The
system incurs holding and backorder costs. The objective is
to minimize the long-run average total cost in the system.

The items are numbered 1; : : : ; N with item 1 being the
end item. Let
s(i) = the immediate successor of item i, with s(1) = 0,
S(i) = the set consisting of item i and all its successors,
P(i) = the set of the immediate predecessors of item i.
Note that S(1) = {1} and P(i) = ∅ if i is a component. We
de%ne the units of the items so that one unit of item i requires
exactly one unit of item j for all (i; j) with j∈P(i).

Let Li, a %xed nonnegative integer, be the leadtime for
item i; i= 1; : : : ; N . If item i is a component, then Li is the
procurement leadtime; otherwise, if item i is a subassem-
bly or the end item, then Li is the number of periods re-
quired to produce the item. Following Rosling (1989), we
de%ne Mi to be the total leadtime associated with item i; i.e.,
Mi = Nj∈S(i)Lj. Thus Mi is the total assembly time required
to produce item i and all its successors. For convenience,
we number the items so that Mi is nondecreasing in i and if
item i is a successor of item j then i¡j. (Thus the end item
is item 1.) De%ne li =Mi −Mi−1; i= 1; : : : ; N; with M0 = 0.
Clearly, li¿ 0 for all i. Figure 2 depicts an assembly system
with %ve items. Items 3, 4, and 5 are components, and item 2
is a subassembly. Associated with each item are a circle and
a triangle: The circle marks the source of the item, the trian-
gle represents the stockpile of the item, and the length of the
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Figure 2. An assembly system.

arrow linking the two represents the assembly=procurement
leadtime. The circle associated with item i is connected to
the triangle associated with item 1 through a chain of ar-
rows. The total length of these arrows is the total leadtime
associated with item i. Note that the items are indexed ac-
cording to their total leadtimes.

A unique feature of our assembly system is that each
order for item i must be a positive integer multiple of a %xed
base quantity, Qi, which is a positive, item-speci%c integer,
i= 1; : : : ; N . These base quantities represent the basic units
of transportation or production. The following assumption
is critical:

Qi+1 = niQi; i= 1; : : : ; N − 1; (12)

where ni is a positive integer. Therefore, we require that the
base quantities for the items do not decrease with their total
leadtimes. This is a strong assumption. Note that to some ex-
tent the base quantities are a consequence of the setup costs,
which are not modeled explicitly here. A larger setup cost
leads to a larger base quantity. Therefore, the assumption
is plausible when a longer total leadtime is associated with
a larger setup cost. A special case of the above assumption
is ni = 1 for all i, i.e., all the items share a common base
quantity. This is true in some production environments. (In
§5, we suggest a solution for assembly systems that do not
satisfy (12).)

We next de%ne key variables to describe the inventory
state of the system. The following terminology is useful.
When a unit of item i is being assembled to produce a unit
of item j, we say that one unit of item i is leaving and
one unit of item j is arriving. The units of a component
that are in transit from an outside supplier are also called
arriving. The units of an item that are neither leaving nor
arriving are the on-hand units of the item. Therefore, the
components and subassemblies can have arriving, on-hand,
and leaving units, while the end item can only have arriving
and on-hand units. For example, in Figure 2, suppose we
take one unit of item 4 and one unit of item 5 and start
assembling them into one unit of item 2. Then we say the
following: One unit of item 4 is leaving, one unit of item 5
is leaving, and one unit of item 2 is arriving. To determine
the arriving, on-hand, and leaving units associated with an
item, one can visually stand at the triangle associated with
the item and determine the inbound, on-hand, and outbound
units, respectively. The installation inventory of an item is
its on-hand units plus leaving units. The echelon inventory
level of item i is the sum of the installation inventories of the
items in S(i) minus the customer backorders. The echelon
inventory position of item i is the echelon inventory level of
the item plus the arriving units of the item. As for the serial
model considered in the previous section, we assume that all
the replenishment decisions in a period, i.e., how many units
of each item to produce=acquire, are made at the beginning
of the period, and that customer demand arrives during the
period. Similarly, write t− for the beginning of period t after
all the replenishment decisions in the period have been made,
and t+ for the end of the period after customer demand. We
use ILi(t) to denote the echelon inventory level of item i
at t+; IL−i (t) to denote the echelon inventory level of item
i at t−, and IPi(t) to denote the echelon inventory position
of item i at t−. One can use Figure 2 to visualize these
inventory variables. Consider item 3. As mentioned earlier,
the circle associated with item 3 is connected to the triangle
associated with the end item through a chain of arrows.
Think of this chain as a pipeline %lled with inventories. Then
IP3(t) is the total net inventory in the pipeline. The echelon
inventory level of item 3 is, however, associated with a
shorter pipeline, one that starts from the triangle associated
with item 3.

Note that the echelon inventory level of an item does not
include any units of the item that are arriving. Following
Chen and Zheng (1994b), we de%ne the extended echelon
inventory level of item i to be the echelon inventory level
of the item plus those arriving units of the item that have
completed the %rst li periods of the assembly=procurement
operation. Note that the leadtime to produce=acquire item i
is Li periods and Li =Mi−Ms(i)¿Mi−Mi−1 = li. Therefore,
if we start producing=acquiring one unit of item i in period t,
then this unit becomes part of the echelon inventory level of
item i in period t+Li, but it becomes part of the extended
echelon inventory level of item i earlier, in period t+li.
Clearly, if s(i) = i−1; then Li = li and thus item i’s extended
echelon inventory level is the same as its echelon inventory
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level. This is always true for the end item. For example,
in Figure 2, we have s(i) = i − 1 for i= 1; 2 and s(i)¡
i−1 for i= 3; 4; 5. Therefore, the extended echelon inventory
levels of items 3, 4, and 5 are di5erent from their echelon
inventory levels. As mentioned above, there is a pipeline
connecting the circle associated with item 3 with the triangle
associated with item 1. The extended echelon inventory level
of item 3 is the total net inventory in a truncated pipeline that
begins at the dotted line. Let ELi(t) be the extended echelon
inventory level of item i at t−. The following inventory
balance equations are useful:

ELi(t+ li) = IPi(t)−D[t; t+ li); i= 1; : : : ; N; (13)

and

ILi(t+Li) =ELi(t+ li) − D[t+ li; t+Li]; i= 1; : : : ; N:

(14)

We assume that the system begins with a plausible initial
state. Let the %rst period be period 0. Note that the initial
on-hand inventory of item i (¿1) is IL−i (0)−IPs(i)(0), which
satis%es

IL−i (0) − IPs(i)(0) =miQs(i); ∀i �= 1; (15)

where mi is a nonnegative integer. This assumption is
reasonable because each order for item s(i) is an integer
multiple of Qs(i), and thus there is no incentive to keep an
on-hand inventory of item i that is a fraction of Qs(i). We
also assume that the system is balanced initially. For all
i¡N; if i+ 1 =∈ P(i) then

ELi+1(0) − IPi(0) =m′
iQi; (16)

where m′
i is an integer (positive or otherwise). This assump-

tion has the following intuitive interpretation. Consider the
assembly system depicted in Figure 2. Take i= 2. Clearly,
i+1 = 3 =∈ P(2) = {4; 5}. As noted earlier, the extended ech-
elon inventory level of item 3 is the total net inventory in a
truncated pipeline from the dotted line to the triangle asso-
ciated with item 1. On the other hand, the echelon inventory
position of item 2 is the total net inventory in the pipeline
from the circle associated with item 2 to the triangle asso-
ciated with item 1. The left side of (16) is the di5erence
between the total inventories in these two pipelines. (Note
that the two pipelines have the same length.) When the dif-
ference is an integer multiple of Q2, it is possible for the
system to initiate a production batch of item 2 so as to bal-
ance the inventories in the two pipelines. It is meaningful
to try to balance the inventories in the di5erent pipelines,
because these inventories will eventually “merge,” on a one-
to-one basis, into a single stream of %nished goods. Also
note that when all the items share a common base quantity,
(15) implies (16). The above initial conditions lead to the
following two lemmas.

LEMMA 4. The on-hand inventory of item i; which is
IL−i (t) − IPs(i)(t) at t−; is always a nonnegative integer
multiple of Qs(i); i= 2; : : : ; N .

PROOF. Note that the on-hand inventory of item i is de-
creased by multiples of Qs(i) and increased by multiples of
Qi, which is itself an integer multiple of Qs(i) (see (12)).
The lemma thus follows from (15).

LEMMA 5. For all i¡N with i+ 1 =∈ P(i); ELi+1(t)− IPi(t)
is always an integer multiple of Qi.

PROOF. Note that bothELi+1(t) and IPi(t) are simultaneously
decreased by the customer demand. The former is increased
by multiples of Qi+1, and the latter is increased by multiples
of Qi. The lemma thus follows from the initial condition in
(16) and the integer-ratio condition in (12).

As mentioned earlier, the system incurs holding and back-
order costs. Suppose that these costs can be assessed in the
following manner. Let gi(y) be the expected cost associated
with item i in period t given IPi(t) =y; i= 1; : : : ; N . We
assume that

gi(y) is nondecreasing in y; i= 2; : : : ; N: (17)

The expected total cost in the system in period t, given the
echelon inventory positions of all items, is thus

N∑
i=1

gi(IPi(t)):

As in §3, it is convenient to introduce a time shift in
the above expression. Take any period t. Write IPi for
IPi(t −Mi); i= 1; : : : ; N . Write IL−i for IL−i (t −Mi−1) and
ELi for ELi(t−Mi−1); i= 2; : : : ; N . We proceed to establish
a lower bound on the long-run average value of

N∑
i=1

gi(IPi): (18)

De%ne a sequence of functions recursively as fol-
lows. (Here further assumptions are made about the
one-period cost functions.) Let G1(y) = g1(y); ∀y∈I .
For i= 1; : : : ; N; assume that Gi(·) is de%ned and that
LGi(y) def= NQi

x=1Gi(y+ x) is quasiconvex and minimized at
y=Ri; a %nite integer. Thus Gi(·) satis%es the conditions
of Lemma 1. De%ne Oi[·] as in Lemma 1 by replacing R
and Q with Ri and Qi; respectively. De%ne

Gi+1(y) = gi+1(y)+EGi(Oi[y − Di+1]);

y∈I ; i= 1; : : : ; N − 1;

whereDi+1 denotesD[t−Mi+1; t−Mi); the total customer de-
mand in periods t−Mi+1; : : : ; t−Mi−1; for i= 1; : : : ; N−1.

We next introduce a sequence of variables that help es-
tablish a linkage between the assembly system and the serial
system considered in the previous section. Let IPN = IPN .
Suppose IPi is de%ned, i= 2; : : : ; N . Let

ELi = IPi − Di: (19)
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De%ne IPi−1 = min{IPi−1; ELi} for i= 2; : : : ; N . Now we
have the IP1; : : : ; IPN and EL2; : : : ; ELN . Since IPi¿ IPi for
all i by de%nition, we have from (13) and (19) that

ELi¿ELi; i= 2; : : : ; N: (20)

LEMMA 6. IP1 = IP1.

PROOF. Based on the above recursive de%nition of IPi,

IP1 = min{IP1; EL2}
= min{IP1; IP2 − D2}
= min{IP1; IP2 − D2; EL3 − D2}
= · · ·
= min{IP1; IPi − Di − · · · − D2; i= 2; : : : ; N}:

It suKces to show that for any i= 2; : : : ; N; IPi−Di− · · ·−
D2¿ IP1. Take any i= 2; : : : ; N . Let S(i) = {i1; i2; : : : ; in} for
some positive integer n with i= i1¿i2¿ · · ·¿in = 1. (The
end item, or item 1, is always a member of S(i).) Note that
im+1 is the immediate successor of im for m= 1; : : : ; n − 1.
Because

Di + · · · + D2 =D[t −Mi; t−Mi−1)

+ · · ·+D[t−M2; t−M1)

=D[t −Mi; t −M1)

=D[t −Mi1 ; t −Mi2 )+D[t −Mi2 ; t −Mi3 )

+ · · ·+D[t −Min−1 ; t −Min);

we have

IPi − Di − · · · − D2 = IPi1 (t −Mi1 ) − D[t −Mi1 ; t −Mi2 )

−D[t −Mi2 ; t −Mi3 )

− · · · − D[t −Min−1 ; t −Min)

= IL−i1 (t −Mi2 ) − D[t −Mi2 ; t −Mi3 )

− · · · − D[t −Min−1 ; t −Min)

¿ IPi2 (t −Mi2 ) − D[t −Mi2 ; t −Mi3 )

− · · · − D[t −Min−1 ; t −Min)

¿ · · ·
¿ IPin−1 (t −Min−1 )

−D[t −Min−1 ; t −Min)

= IL−in−1
(t −Min)

¿ IP1;

where the inequalities follow because the echelon inventory
level (at the beginning of a period) of an item is at least
as large as the echelon inventory position of its immediate
successor.

LEMMA 7. ELi+ 1 − IPi =miQi; where mi is an integer;
i= 1; : : : ; N − 1.

PROOF. We %rst prove the lemma for i=N−1. By de%nition,
ELN = IPN−DN = IPN−DN =ELN , where the last equality
is from (13). If N − 1 = s(N ), then ELN = IL−N , and thus
ELN − IPN−1 is the on-hand inventory of item N , which
is an integer multiple of QN−1 (Lemma 4). Otherwise, if
N − 1 �= s(N ), then the lemma follows from Lemma 5.

Now suppose the lemma holds for i + 1. We next show
that it also holds for i. Because ELi+1 = IPi+1 − Di+1 and
IPi+1 = min{IPi+1; ELi+2} by de%nition, it suKces to show
that both IPi+1 − Di+1 − IPi and ELi+2 − Di+1 − IPi are
integer multiples of Qi. Because the lemma holds for i+ 1,
i.e., ELi+2 − IPi+1 is an integer multiple of Qi+1, which
is itself an integer multiple of Qi, it suKces to show that
IPi+1 − Di+1 − IPi is an integer multiple of Qi. Note that
IPi+1 − Di+1 =ELi+1 (see (13)). Now if i + 1∈P(i), then
ELi+1 − IPi = IL−i+1 − IPi represents the on-hand inventory
of item i+1, which is an integer multiple of Qi (Lemma 4).
Otherwise, if i+1 �∈P(i), then ELi+1 − IPi is still an integer
multiple of Qi (Lemma 5). This completes the proof.

COROLLARY 1. ELi+1−IPi is a nonnegative integer multiple
of Qi; i= 1; : : : ; N − 1.

PROOF. Follows from Lemma 7 and the fact that
IPi = min{IPi; ELi+1}.

Now we are ready to present the series analogy. Consider
a serial system withN stages. The leadtime at stage i is li and
the base quantity at stage i is Qi; i= 1; : : : ; N . The demand
process is the same as in the assembly system. Equation
(19) and Corollary 1 establish that the inventory variables
IPi and ELi can be replicated in the serial system. That is,
the echelon inventory position at stage i is IPi, the echelon
inventory level (at the beginning of a period) at stage i is
ELi, and ELi+1 − IPi is the on-hand inventory at stage i+ 1.
As a result, several results obtained in the previous section
can be carried over here. In particular:

LEMMA 8. Gi(IPi)¿Gi(Oi[ELi+1]); i= 1; : : : ; N − 1.

PROOF. Similar to Lemma 2.

This lemma can then be used to establish a lower bound
on the long-run average value of (18). Note that

C def= E

[
N∑
i= 1

gi(IPi)|IPN
]

= E

[
N∑
i= 2

gi(IPi) + G1(IP1)|IPN
]

¿E

[
N∑
i= 3

gi(IPi) + g2(IP2) + G1(O1[EL2])|IPN
]
;

(21)
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¿E

[
N∑
i= 3

gi(IPi) + g2(IP2) + G1(O1[IP2 − D2])|IPN
]

(22)

= E

[
N∑
i= 3

gi(IPi) + G2(IP2)|IPN
]
;

where the %rst equality follows becauseG1(·) = g1(·); IP1 =
IP1 and IPN = IPN ; the %rst inequality follows from Lemma
8; and the second inequality follows because g2(·) is non-
decreasing and IP26 IP2. Repeating the above procedure,

C¿GN (IPN ) =GN (IPN );

the long-run average value of which is greater than or
equal to

C∗ =
1
QN

RN+QN∑
y= RN+1

GN (y);

see §2. Therefore, we have the following theorem.

THEOREM 3. C∗ is a lower bound on the long-run average
costs of all feasible policies in the assembly system.

The lower bound in Theorem 3 can be achieved. Con-
sider the following feasible policy. Whenever the echelon
inventory position of item i; IPi, falls to or below Ri, pro-
duce the maximum integer multiple of Qi so that IPi does
not exceed Ri +Qi and ELi+1, the extended echelon inven-
tory level of item i+ 1 (with ELN+1 = +∞). Of course, the
production quantity is constrained by the on-hand invento-
ries of the immediate predecessors of item i. If before the
production decision IPi is already greater than or equal to
ELi+1, then no production for item i is initiated. Note that
if item i + 1 is a predecessor of item i, then IPi can never
exceed ELi+1, which now becomes the echelon inventory
level of item i + 1. In this case, we need only the control
parameters Ri and Qi to make the replenishment decisions
for item i. Otherwise, if item i + 1 is not a predecessor of
item i, then ELi+1 serves as an additional control parameter.
Call the above policy the modi'ed echelon-stock (Ri; nQi)
policy.

THEOREM 4. For the assembly system; it is optimal to use
the modi'ed echelon-stock (Ri; nQi) policy to replenish
item i; i= 1; : : : ; N . The minimum long-run average cost
is C∗.

PROOF. Under the above policy, IPi = IPi and ELi =ELi
for all i in the long run. This is true for i=N by de%ni-
tion. Because the order-up-to level for item N − 1 never
exceedsELN ; IPN−16ELN . Thus, IPN−1 = IPN−1 by de%ni-
tion, which implies ELN−1 =ELN−1, so on and so forth. The
policy also implies IPi =Oi[ELi+1]. This follows because
ELi+1−IPi is a nonnegative integer multiple of Qi by Corol-
lary 1 and the fact that IPi = IPi and ELi+1 =ELi+1. With
these observations, the inequalities in (21) and (22) both

become equalities. Finally, as shown in §2, the (RN ; nQN )
policy for item N achieves the minimum long-run average
value of GN (IPN ); C∗. Therefore, the modi%ed echelon-
stock (R; nQ) policy is optimal.

For the remainder of this section, we show that the as-
sumptions made earlier about the one-period cost functions,
gi(·) for i= 1; : : : ; N , are true under a plausible holding-
backorder cost structure. The assumptions to be veri%ed are
(17) and that Gi(·) satisfy the conditions of Lemma 1. We
consider the standard cost structure with linear holding and
backorder costs. Let
Hi = installation holding cost for item i per unit per period,
hi = echelon holding cost for item i per unit per period,

i.e., hi =Hi − Nj∈P(i) Hj ¿ 0;
p= backorder cost for item 1 (end item) per unit per period,

p ¿ 0.
When each assembly operation is value adding and the

holding costs are primarily the costs of capital tied up in the
products, it is plausible to assume that every item has a pos-
itive echelon holding cost. If this is untrue—i.e., some items
have nonpositive echelon holding costs—then one should
follow an approach developed by Rosling (1989) to rede%ne
the system so that every item has a positive echelon holding
cost.

We follow the convention of assessing holding and back-
order costs at the end of each period. At the end of period t,
the installation inventory of item i(¿1) is ILi(t)− ILs(i)(t),
the installation inventory of item 1 is [IL1(t)]+, and the cus-
tomer backorder level is [IL1(t)]−. Charging Hi for each
unit of installation inventory of item i and p for each unit
of customer backorders, we have the total cost in period t:

N∑
i= 2

Hi[ILi(t) − ILs(i)(t)] + H1[IL1(t)]+ + p[IL1(t)]−

=
N∑
i= 1

hiILi(t) + (p+ H1)[IL1(t)]−:

De%ne

g1(y) = E[h1(y − D[t; t + L1])

+(p+ H1)(y − D[t; t + L1])−]; y∈I ;

and

gi(y) =E[hi(y − D[t; t + Li])]; y∈I ; i= 2; : : : ; N:

From (13) and (14),

ILi(t + Li) = IPi(t) − D[t; t + Li]; i= 1; : : : ; N:

Thus, given the echelon inventory positions IPi, the expected
total cost in a period in the system is NN

i= 1gi(IPi). Clearly,
gi(y) is increasing in y for i= 2; : : : ; N . Thus (17) is satis-
%ed. Following §3, one can easily show that the Gi(·) also
satisfy the conditions of Lemma 1.
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5. CONCLUDING REMARKS

The paper has so far focused on discrete-time models,
but the results, also hold for continuous-time models with
compound Poisson demand. We need to make only a few
changes. Below, we highlight the necessary changes with
the serial model.

Consider an N -stage serial system. Suppose that cus-
tomers arrive at stage 1 according to a Poisson process with
mean arrival rate $. Each customer demands a random quan-
tity, and the demand sizes of di5erent customers are inde-
pendent and identically distributed. Moreover, the demand
sizes are independent of the arrival process. In short, the
demand process is compound Poisson. An optimal policy
for this system can be obtained by properly reinterpreting
the notation in §3. Here the leadtimes Li are allowed to be
any nonnegative real numbers. The inventory variables are
de%ned for any time epoch, and it is no longer necessary
to distinguish between IL−i (t) and ILi(t). The initial condi-
tion (3) is still required. The cost function gi(y) should be
interpreted as the expected rate at which the costs at stage
i accrue given its echelon inventory position y. The rest is
essentially identical to the discrete-time case.

The integer-ratio assumption made earlier for assembly
systems clearly limits the applicability of the results. When
the integer-ratio constraint is violated, it is likely that the
series analogy collapses. Below, we suggest an intuitively
appealing approach to deal with this situation. Consider, for
example, the simplest assembly system with three items.
Items 2 and 3 are assembled into a %nal product, item 1. As
before, the items are indexed by their total leadtimes. Thus
item 3 has the longest total leadtime. Now suppose the
base quantities associated with these items do not sat-
isfy the integer-ratio constraint. In particular, assume that
Q1 = 2; Q2 = 8, and Q3 = 4. (Notice that the base quantities
are all integer powers of two. The deterministic multi-
echelon inventory literature, together with some evidence
reported in Chen and Zheng 1998, suggests that power-
of-two order quantities are often close to being optimal.)
To determine a reasonable replenishment policy for this
system, one can increase Q3 to 8 so that the new base
quantities satisfy the integer-ratio condition. For this new
system, determine the optimal (modi%ed) echelon-stock
(R; nQ) policy as in §4. This policy is clearly feasible for
the original system. In particular, each order for item 3 is
now a multiple of 8 and thus is a multiple of 4. Our conjec-
ture is that this policy is close to optimality. The intuition
is that when a downstream item is replenished in multiples
of 8, there does not seem to be any compelling reason to
replenish an upstream item in fractions of 8. The same idea
can be applied to general assembly systems that violate the
integer-ratio condition.

We conclude this paper with a few open questions. We
have shown the optimality of (R; nQ) policies only in serial
and assembly systems. These results are unlikely to hold
for distribution systems. In fact, no optimal policies exist
for such systems; see Clark and Scarf (1962) for a brief
explanation of the diKculties. However, it is still interest-

ing to see if (R; nQ) policies are close to being optimal.
(On this question, Chen and Zheng 1997 provide some
numerical evidence by comparing the performance of
(R; nQ) policies with a lower bound in one-warehouse
multi-retailer systems.) Another possible extension is
nonstationary demands in the spirit of Veinott (1965).
Finally, installation stock (R; nQ) policies pose yet another
interesting question: Are they optimal when every stage has
access only to the local inventory information?

APPENDIX

Consider the following Markov chain {Yt}∞t=1 with state
space S = {R+ 1; : : : ; R+ Q}, where R is an integer and Q
a positive integer. The transition from one state to the next
is determined by

Yt+1 =Yt − dt + mQ;

where d1; d2; : : : are i.i.d. random variables that take on non-
negative integer values and m is the unique integer (nonneg-
ative) so that Yt+1 ∈ S. This appendix is concerned with the
steady state distribution of this Markov chain without any
restriction on the distribution of dt .

Let f(·) be the probability mass function of dt . The one-
step transition probability from state i to j is thus

aij =
∞∑
n=0

f(nQ + i − j); i; j∈ S:

Let P= (aij) be the transition matrix. Let (= ((1; (2; : : : ;
(Q). It is well known that the uniform distribution
(= (1=Q; 1=Q; : : : ; 1=Q) is a solution to the balance equa-
tions (= (P. If the Markov chain is irreducible, then the
uniform distribution is the unique steady state distribution.
(Hadley and Whitin 1961 consider this case, which holds if
f(1)¿0, a condition mentioned in §2.) Below, we suppose
that the Markov chain is reducible. In this case, the state
space is partitioned into transient subsets and recurrent
subsets.

Take any i; j∈ S. Suppose j can be reached from i. Then
there exist values of d1; d2; : : : ; dn for some positive integer
n so that

j= i − (d1 + d2 + · · · + dn) + mQ

for some integer m¿0. That is, j can be reached from i in n
steps. Now take any integer ) so that i + ); j + )∈ S. Note
that

(j + )) = (i + )) − d̂+ mQ;

where d̂=d1 + d2 + · · · + dn, the total demand in the n
periods. Therefore j + ) can also be reached from i + )
in the same n steps. This observation shows that if states i
and j communicate then i+) and j+), given both are in S,
also communicate. Consequently, the states in any recurrent
subset must be equally spaced; i.e., each recurrent subset
can be expressed as {r + Y; r + 2Y; : : : ; r + qY} for some
integers r;Y and q with Y¿1; R − Y¡r6R and q being
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the largest integer so that r + qY6R + Q. Note that there
may be many recurrent subsets. Let the initial state of the
Markov chain be in a particular recurrent subset S0. Clearly,
the Markov chain will remain in S0 forever. Let

S0
def= {r + Y; r + 2Y; : : : ; r + qY}:
We consider two cases:
Case 1. q= 1. In this case, there is only one recurrent

state, i.e., S0 = {r + Y}. The Markov chain remains in this
state forever. Of course, the steady state distribution is uni-
form (over S0). Moreover, one can show that dt must be
in multiples of Q. To see this, simply note that in order to
make the one-step transition from state r+ Y back to itself,
we must have r + Y − dt + mQ= r + Y; m¿0 integer.
Case 2. q¿2. In this case,Qmust be an integer multiple of

Y. This is easy to show. First, note that r+2Y can be reached
from r+Y in n periods for some n¿1. Let d̂¿0 be the total
demand in these n periods. Thus r+ 2Y = r+ Y− d̂+mQ
for some positive integer m, or

d̂=mQ − Y; m¿1: (23)

Now suppose the current state of the Markov chain is r+qY.
Following the same sample path for those n periods, the
Markov chain arrives at the state r+qY− d̂+m′Q for some
nonnegative integer m′. Of course, this new state must still
be in S0. Let it be r + kY∈ S0. Thus

R¡r + qY −d̂+ m′Q= r + kY¡R+ Q; (24)

where the second inequality is strict because of the fol-
lowing. Suppose, to the contrary, the new state is R + Q.
Therefore, r + qY =R + Q. From r + qY − d̂ + m′Q=
R+Q= r+ qY, we haved̂=m′Q. Using this in (23) leads
to (m−m′)Q=Y, a contradiction because both Y and Q are
positive integers, with Y¡Q because of q¿2. Combining
(23) and (24),

qY + m′Q=mQ − Y + kY: (25)

On the other hand, from (23),

r + qY −d̂+ mQ= r + qY + Y:

Note that from the de%nition of q and the fact that Y¡Q,

R+ Q¡r + qY + Y¡R+ 2Q:

Therefore,

R+ Q¡r + qY −d̂+ mQ¡R+ 2Q:

Comparing the above inequalities with the ones in (24), we
have m=m′ + 1. Using this in (25) reveals that Q is an
integer multiple of Y.

We can further show that dt is in multiples of Y. To see
this, consider the one-step transition from state r + Y. The
next state is r + Y − dt + mQ= r + kY for some integers
m and k with m¿0 and 16k6q. Because Q is an integer
multiple of Y, so is dt . It is then straightforward to show that
the steady-state distribution of the Markov chain is uniform
over the states in S0.

Optimization and Optimality Issues

Consider the single-location inventory problem in §2. Re-
call that LG(y) is assumed to be quasiconvex and is mini-
mized at y=R. Suppose the Markov chain {y′t } is reducible.
Then, from the above analysis, the long-run average value of
G(y′t ) is

Y
Q

q∑
k=1

G(r + kY);

where Y, q, and r are integers with Y¿1, q¿1, and r
being determined by the initial inventory position (if q = 1
set Y = Q). As in §2, this long-run average value is lower
bound on the long-run average cost of any feasible policy.
Moreover, the lower bound is achieved by the (R; nQ) pol-
icy (with the R de%ned above). Notice that for the reducible
case, there are multiple optimal reorder points (the one de-
%ned above is one of them). In sum, the single-location re-
sults apply to general demand distributions. The same is true
for the multi-echelon results because a multi-echelon system
is eventually reduced to a single-location problem, and the
lower-bounding arguments do not depend on the demand
distribution.
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