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Optimal Policies for Status Update Generation in an
IoT Device with Heterogeneous Traffic

George Stamatakis, Nikolaos PappasMember, IEEE, and Apostolos Traganitis

Abstract—A large body of applications that involve monitoring,
decision making, and forecasting require timely status updates
for their efficient operation. Age of Information (AoI) is a
newly proposed metric that effectively captures this requirement.
Recent research on the subject has derived AoI optimal policies
for the generation of status updates and AoI optimal packet
queueing disciplines. Unlike previous research we focus onlow-
end devices that typically support monitoring applications in the
context of the Internet of Things. We acknowledge that these
devices host a diverse set of applications some of which are AoI
sensitive while others are not. Furthermore, due to their limited
computational resources they typically utilize a simple First-In
First-Out (FIFO) queueing discipline. We consider the problem
of optimally controlling the status update generation process
for a system with a source-destination pair that communicates
via a wireless link, whereby the source node is comprised of a
FIFO queue and serves two applications, one that is AoI sensitive
and one that is not. We formulate this problem as a dynamic
programming problem and utilize the framework of Markov
Decision Processes to derive the optimal policy for the generation
of status update packets. Due to the lack of comparable methods
in the literature we compare the derived optimal policies against
baseline policies, such as the zero-wait policy. Results indicate
that baseline policies fail to capture the complex system dynamics
which determine the relationship between the frequency of status
update generation and the resulting queueing delay and thus
perform poorly. To the best of our knowledge, the derived optimal
policy does not exhibit a simple structure; thus, we utilized the
baseline policies, whose operation is intuitive, to gain insight into
the inner workings of the optimal policy.

I. I NTRODUCTION

Applications that offer monitoring, informed decision mak-
ing, and forecasting services in cyber-physical systems, often
rely on timely status updates [1], [2]. A large number of such
applications has been developed in the context of Internet
of Things with examples that include, but are not limited
to, smart cities, smart factories and grids, smart agriculture,
parking and traffic management, water management, e-Health,
environment monitoring and education [1]. The proliferation
of these applications is expected to have a profound impact
on key sectors of economy, and this has spurred research on
their particular operational requirements [3], [4]. A key result
in the field was the realization [5] that the objective of timely
status updating is not captured by metrics such as utilization
and delay, which are typically used in network design and
management.
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To alleviate this problem, a new metric, called Age of
Information (AoI), was introduced in [5] to effectively capture
the requirement for timely status updating. As an example,
consider a scenario where a transmitter samples the state of
a stochastic process/ (:), that evolves over discrete time:,
and sends status updates to a destination which is typicallya
monitor or a controller. Status updates are transmitted through
a queue which introduces random delays in their delivery
times. At any time:, if the freshest status update delivered at
the destination was timestamped)" (:), then the AoI at the
destination is,

Δ(:) = : − )" (:) (1)

Hence, the AoI is the amount of time elapsed since the moment
that the freshest delivered update was generated.

In order to achieve a low AoI value at the destination one
must ensure that the timestamp)" (:) is as close to the current
time : as possible, i.e., that information at the destination
is fresh. The authors in [5] showed that this depends on
the interplay between two different time intervals. The first
one is the time interval between the generation of successive
status updates and the second one is the transmission delay
between the sensor and the destination. The first one is
within the control of the transmitter while the second one is
generally a random variable whose distribution depends on
the status update generation process. By shortening the time
interval between the generation of successive status updates,
one generates status updates more frequently and, due to
congestion, transmission delays will increase. On the other
hand, by increasing the interval between the generation of suc-
cessive status updates, congestion decreases and consequently
transmission delays will decrease. To minimize the expected
value of AoI over time one has to find the optimal balance
between the status update generation interval and the resulting
transmission delays as presented in [5]. The role of AoI in IoT
networks is considered in [6].

Further improvements, in terms of AoI, may be obtained by
opting for a closed-loop solution for the generation of status
updates instead of the open loop control scheme presented
above, which is based on the selection of a single value for
the interval between successive status update generation [7,
Section 1.2, The Role and Value of Information]. A closed
loop solution assumes the form of a policy for the generation
of status updates, which, given the current state of the status
update system, dictates whether a new status update should
be generated or not. An example of such a policy is the zero-
wait policy, first presented in [8] whereby a new status update
is generated only when the queue is empty, i.e., the previous
status update has been delivered successfully at the destination.
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In this work, we study a system that is similar to the one pre-
sented above, with the main difference that the aforementioned
queue is shared between a flow of status update packets and a
flow of non-status update packets. Considering the complexity
of monitoring applications in the context of IoT we expect
that the deployed network equipment will definitely serve both
AoI-sensitive and AoI-insensitive applications via the same
queue. In our scenario generation of status update packets
is fully controlled by the transmitter while non-status update
packets are generated by an application which is beyond its
control. All transmissions are subject to failure and upon a
failed transmission attempt, the head-of-line packet willbe
retransmitted up to a maximum number of times after which
it will be dropped. Furthermore, we assume that the AoI of the
system is constrained to be less than a predefined threshold
value. In case this constraint is not satisfied the source node
will change temporarily the queue’s default First In First Out
(FIFO) service policy, and its transmission scheme, so thatthe
delivery of a fresh status update to the destination is guaranteed
and all outdated status update packets stored in the queue are
dropped.

To the best of our knowledge, this is the first work to
consider the design of an optimal controller for the generation
of status updates for the wireless system under consideration.
Optimality here is taken with respect to a cost function that
is additive over time and depends on both the AoI of the
system and the cost related to the use of the mechanism that
guarantees a successful packet transmission. We formulatethe
problem at hand as a dynamic programming problem and
utilize the framework of Markov Decision Processes (MDP)
to derive optimal policies. Finally, we show by comparison
that for a wide range of scenarios well known policies from
the literature, such as the zero-wait policy, perform poorly for
the system under consideration.

The remainder of the paper is organized as follows. In
Section VII we present recent work related to the problem
described above. In Section II we present the system model
considered in this work. In Section III we formulate this
problem as a dynamic programming problem. In Section IV
we show that the dynamic program constitutes an MDP and
present the algorithms we use to derive the AoI optimal
policies. Finally, in Section VI we present numerical results
for the evaluation of the derived policies. Our conclusionsare
in Section VIII.

II. SYSTEM MODEL

We consider a system that is comprised of a source node
that transmits data to a destination node� through a wireless
link. The source node consists of a sensor that generates data
packets with status update information, an application that
generates data packets withnon-status update information,
a finite queue, and a transmitter(. Subsequently, we will
use the termstatus updates to refer to packets conveying
status update information and the termapplication packets
to refer to packets with non-status update information. The
system model along with its state variables, which will be
properly defined in Section III, is depicted in Fig. 1. We
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Fig. 1. System model.

assume that time is slotted and the transmission of a single
packet occupies one time-slot. At the beginning of the:-th
time-slot,( will commence the transmission of the head of line
packet. The transmission may succeed with probability%B or
fail with probability 1−%B, independently of the transmission
outcomes in previous time-slots. We assume that all packet
transmissions are acknowledged so that the success or failure
of the transmission will be known to the source node by the
end of the:-th time-slot. In the case of a failed transmission, a
retransmission counterA: will be incremented and the packet
will be retransmitted during the next time-slot. The serverwill
make up toA<0G−1 retransmission attempts and it will stop in
case of a success. In case ofA<0G failed transmission attempts
the packet will be dropped.

Within the duration of a time-slot, the application in Fig. 1
will generate a single application packet per time-slot with
probability%0, while the source node, which is in full control
of the sensor, has todecide whether to generate a fresh status
update or not. All packets generated within the duration of a
time-slot will be enqueued unless the queue is full, in which
case they will be dropped.

Finally, we assume that the source node must satisfy a
hard constraint on AoI, i.e.,Δ: should always be less than
a threshold valueΔmax. In caseΔ: becomes equal toΔmax,
the queue’s service policy will change temporarily from its
default FIFO operation so that the source node may be able to
apply the following three actions: 1) The head of line packet
is dropped. 2) All status update packets currently in the queue
are dropped. 3) A fresh status update packet is sampled and
transmitted with success probability 1 by the transmitter.We
emphasize that this type of transmission is available to the
source node only when AoI reaches the threshold value. This
assumption is justified, from a technological point of view,by
the tremendous attention that both academia and industry show
in the support for Ultra Reliable Low Latency communications
(URLLC) within the 5G framework. URLLC communication
links are expected to have a successful packet delivery rateof
up to 1 − 10−9 [9] which is extremely close to our assumed
value of 1. Furthermore, since this level of high reliability will
most probably be achieved through redundancy and utilization
of excessive resources, such as transmission power, it is only
natural to assume that it comes with a high cost. Further details
regarding the conditions that determine the set of available
decisions to the source node will be presented in Section III.

At the end of the:-th time-slot a cost6: is induced to the
system which is either equal to the AoI at the destination, or,
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in caseΔ: = Δmax equal to a fixed cost value. Our objective is
to derive an optimal policyc∗ that decides on the generation
of a fresh status update at the beginning of each time-slot so
that the expected value of the total discounted cost over an
infinite number of time-slots is minimized, i.e.,

c∗ = arg min
c∈Π

lim
#→∞

E

{
#−1∑

:=0

W:6: |G0

}

, (2)

where G0 represents the initial state of the system, which
corresponds to an empty queue,0 < W: < 1 indicates that
the importance of the induced costs reduces with time and
expectation is taken with respect to the joint sequence of the
system’s random variables which represent the arrival of an
application packet and the successful transmission of the head
of line packet.

III. PROBLEM FORMULATION

In this section we formulate a dynamic programming prob-
lem for the system considered. We begin with the description
of the state, control and random variable spaces and proceed
with the system transition function, the state transition costs
and the system cost function, which is additive over time.
Finally, we give a short description about the optimal policy
and its characteristics.

State Space Description: We utilize the AoI metric, denoted
with Δ: , : = 0, 1, . . . in Fig. 1, to characterize the freshness
of status updates at destination�. AoI was defined in [5] as
the time that has elapsed since the generation of the last status
update that has been received by�. More specifically, letg<
denote the generation time-stamp of the<-th status update,g′<
be the time-slot that the<-th status update arrived at destina-
tion � and": be the index of the last status update that�

has received by the:-th time-slot, i.e.,": = max{< |g′< ≤ :},
thenΔ: = :−g":

. This representation ofΔ: , for a centralized
control model, has the drawback that one must keep time-
stamps, which are typically represented either as large integers
or as vectors comprised of multiple sub-fields, as part of the
description of the system’s state which can be computationally
inefficient.

We can derive a different expression forΔ: by noting
that when : equals the time-slot of the last status update
arrival, i.e., : = g′

":
, we haveΔg′

":
= g′

":
− g":

+ 1. The
increment by one in the latter equation is due to the slotted
time assumption, whereby we account for the next time-slot
in advance. We will subsequently use this definition forΔg′

":
.

For the system of Fig. 1 the time interval,g′
":
− g":

, is
equal to the total time that the":-th status update spent
waiting in queue and under service by the transmitter. We
define0":

= g′
":
− g":

and thusΔg′
":

= 0":
+ 1. The AoI

will increase by one unit for each time-slot that passes by
beyondg′

":
, i.e.,Δ: = 0":

+ 1+ X: , g
′
":
≤ : ≤ g′

":+1
, where

X: = : − g′
":

. For the source node to have knowledge of
0":

for each status update delivered to�, we associate with
each queue position a counter0@

:
, @ = 2, . . . , & (see Fig. 1)

that holds the total time spent waiting in queue for the status
update currently occupying the queue position. For the status
update currently under service, counter01

:
holds the aggregate

time it has spent waiting in the queue and under service.
The process of updating the values of0

@

:
, @ = 1, 2, . . . , &

as packets move from one queue position to the next will be
presented later in this section. Furthermore, delay information
for the application packets is irrelevant for the AoI of the
system, thus whenever an application packet occupies the@-
th position of the queue we assign counter0

@

:
the special

value of −1. An additional advantage of this assignment is
a significant reduction in the size of the state space. We note
here that counters0@

:
, @ = 1, 2, . . . , &, corresponding to empty

queue-slots will assume a value of zero. Finally, we assume
that wheneverΔ: becomes equal toΔmax ∈ Z

+ the source
node will preemptively drop the packet currently under service
along with all queued status updates and it will transmit a fresh
status update through an error free but expensive channel. As
a consequence of this assumption,Δ: will be bounded above
by Δmax, and the state space will be finite, as will become
apparent subsequently.

The state of the system of Fig. 1, at the beginning of the:-
th time slot, is determined by the values ofΔ: , A: and0@

:
, @ =

1, 2, . . . , &. We use column vectorG: = [Δ: , A: , 0
1
:
, . . . , 0

&

:
]) ,

where) is the transpose operator, to refer collectively to the
state of the system and- to denote the set of all system states.

Control/Decision Space Description: Given its current state
G: the source node has to make a decision regarding the
generation of a fresh status update, the dropping of the headof
line packet and the preemptive transmission of a fresh status
update. We denote the set of all possible decisions, termed
controls, with,

* = {(DB, D3, D?) : DB, D3, D? ∈ {0, 1}, ¬D? ∨ (D? ∧ DB ∧ D3)}

(3)
where logical operators¬, ∨ and∧ denote negation, inclusive
disjunction and conjunction respectively, whileDB is a binary
variable indicating whether the sensor should generate a status
update,D3 is a binary variable indicating whether the head of
line packet should be dropped at the end of the current time-
slot in case of another failed transmission andD? is a binary
variable indicating whether all status updates within the source
node should be dropped and a fresh status update should be
preemptively transmitted to�. Predicate¬D? ∨ (D? ∧ DB ∧

D3) will evaluate to true either forD? = 0 (¬D? = 1) along
with all combinations(DB, D3) ∈ {0, 1}2, or for (DB, D3, D?) =

(1, 1, 1). The latter control involves generating a fresh status
update (DB = 1), dropping the head of line packet (D3 = 1) as
well as dropping all queued status updates and preemptively
transmitting the fresh status update by using the costly, yet
error free channel (D? = 1).

At each system stateG only a subset of the controls in*
will be available to the source node. This subset is typically
called the constraint control set and is denoted with* (G) ⊆ *.
Table I categorizes the states based on their attributes and
presents the corresponding constraint control sets. For nota-
tional convenience we drop the time index: since constraint
control sets do not change over time.

System Random Variables: At the beginning of the(: +1)-
th time-slot the system will make a transition to a new state
G:+1 as a result of the selected controlD: and two random
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TABLE I
SET OF AVAILABLE CONTROLS AT DIFFERENT STATE SUBSETS.

Subset of States Constraint Control Set* (G) Description

{G ∈ - : Δ = Δmax } {(1, 1, 1) }
Generate a fresh status update, drop the head of line packet and all
queued status updates, preemptively transmit a fresh status update
through the expensive channel.

{G ∈ - : Δ ≠ Δmax, A = Amax, 0
& ≠ 0} {(0, 1, 0) }

The source node will not generate a fresh status update due tothe full
queue (0& ≠ 0), the head of line packet will be dropped at the end of
the current time-slot in case theAmax-th retransmission fails.

{G ∈ - : Δ ≠ Δmax, A = Amax, 0
& = 0} {(0, 1, 0) , (1, 1, 0) }

The source node may or may not generate a fresh status update while the
head of line packet will be dropped in case theAmax-th retransmission
fails.

{G ∈ - : Δ ≠ Δmax, A ≠ Amax, 0
& ≠ 0} {(0, 0, 0) }

The sensor cannot generate a fresh status update due to the queue being
full.

Otherwise {(0, 0, 0) , (1, 0, 0) } The source may or may not generate a fresh status update.

events. The first one is the arrival of an application packet
which is represented by the binary random variable,0

:
and

the second one is the successful transmission of the head-
of-line packet which is represented by the binary random
variable,B

:
. As mentioned in section II, we assume that the

application in Fig. 1 will generate a single packet per time-
slot with probability %0. Furthermore, the transmitter will
deliver a packet successfully with probability%B independently
of the transmission outcome in any previous time-slot. The
probability distributions of,0

:
and ,B

:
are assumed to be

independent of previous time-slots and identically distributed
for all time-slots. We use the random vector,: = [,0

:
,,B

:
])

to collectively refer to the random variables of the system.

State Transition Function: Given G: , D: and the values
for ,B

:
and ,0

:
, which will be known to the source node

by the end of the:-th time-slot, the system will make a
transition to a new stateG:+1 = [Δ:+1, A:+1, 0

1
:+1

, . . . , 0
&

:+1
]) .

This transition is determined by the discrete-time system
G:+1 = 5 (G: , D: ,,: ). Next we present the elements that
comprise 5 (·). We begin withΔ:+1 which is given by the
following expression,

Δ:+1 =




1, if G: ∈ -Δmax

Δ: + 1, if G: ∉ -Δmax
and (,B

:
= 0 or 01

:
= −1)

01
:
+ 1, if G: ∉ -Δmax

and,B
:
= 1 and01

:
≠ −1,

(4)
where -Δmax

= {G ∈ - : Δ = Δmax}. Expression (4)
shows thatΔ:+1 will be set to one whenever AoI becomes
equal to the maximum acceptable value ofΔmax. This is
due to the transmission of a fresh status update through an
error free channel. Furthermore, from (4) we see thatΔ:

will be incremented by one in the cases of an unsuccessful
packet transmission and that of a successful transmission of
an application packet. Finally, in the case of a successful
transmission of a status update,Δ:+1 will be set to 01

:
+ 1

which is equal to(g′
":
− g":

) + 1.

Assuming that the queue in Fig. 1 can store at least one more
packet besides the one currently under service, i.e.,& > 1, the

value of the retransmission counterA: is updated as follows,

A:+1 =





0, if 01
:
= 0 andDB

:
= F0

:
= 0

0, if (FB
:
= 1 or D3

:
= 1) and02

:
= DB

:
= F0

:
= 0

1, if (D3
:
= 1 or FB

:
= 1) and

(02
:
≠ 0 or DB

:
= 1 or F0

:
= 1)

A: + 1, if 01
:
≠ 0 andFB

:
= 0 andD3

:
= 0.

(5)
From (5) we see thatA:+1 will be set to zero when there is
no packet for the transmitter to transmit at the beginning of
the (: + 1)-th time-slot. This may occur in two cases. Firstly,
in case there wasn’t a packet under service (01

:
= 0) and,

additionally, there were no packet arrivals(DB
:
= F0

:
= 0)

during the:-th time-slot. Secondly, in case the packet under
service was either successfully transmitted or dropped(FB

:
=

1 or D3
:
= 1), the queue was empty (02

:
= 0 implies that all

queue positions with@ ≥ 2 were also empty) and there were
no packet arrivals(02

:
= DB

:
= F0

:
= 0) during the:-th time-

slot.
On the other hand,A:+1 will be set to one if the packet being

transmitted at the:-th time-slot departed from the source node
either by being successfully transmitted or by being dropped
and there exists another packet for the transmitter to transmit
at the beginning of the(: + 1)-th time-slot. This scenario will
occur either if the queue position with@ = 2 was occupied by
a packet during the:-th time-slot, i.e.,02

:
≠ 0, or in case it was

empty and a new packet arrived at the source node during the
:-th time-slot. Finally, the value ofA:+1 will be incremented
by one if there exists a packet under service01

:
≠ 0 which

is neither transmitted successfully, nor is it dropped by the
source node.

Now, let #<
:
∈ {0, . . . , &} be zero, in case the queue is

empty, and equal to the index value@, of the last queue
position which is occupied by a packet,

#<
: =

{
0, if {@ ∈ 1, . . . , & : 0

@

:
≠ 0} is empty

max{@ ∈ 1, . . . , & : 0
@

:
≠ 0}, otherwise.

(6)

Furthermore, let# ?

:
denote the number of application packets

in queue at the:-th time-slot.
We can distinguish three groups of expressions related to

updating the queue delay counter values0
@

:+1
, @ = 1, . . . , &.

The first group of expressions applies to the case where
G: ∈ -Δmax

and is presented in Table II. The second group
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TABLE II
UPDATE OF DELAY COUNTERS WHENG: ∈ -Δmax .

0
@

:+1
Conditions for transition Description

-1 @ = 1, . . . , #
?

:

The first # ?

:
queue positions will be occupied exclusively by

application packets since all status updates would have been
dropped.

-1 F0
:

= 1 and@ = #
?

:
+ 1

In the case of an application packet arrival, the new packet will

be placed in the(# ?

:
+ 1)-th queue position, and0

#
?

:
+1

:+1
will

be set to -1.

0 F0
:

= 0 and@ = #
?

:
+ 1 In the case of no application packet arrival,0

#
?

:
+1

:+1
will be set

to zero.

0 @ = #
?

:
+ 2, . . . , &

For all remaining queue positions, up to the&-th slot, 0@

:+1
will be set to zero to indicate that they are empty.

of expressions applies when bothG: ∉ -Δmax
and the packet

that was transmitted at the:-th time-slot departed from the
system either due to a successful transmission or because it
was dropped by the transmitter (D3

:
= 1 or FB

:
= 1) and is

presented in Table III. The third group of equations presented

k
. . .0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

∆0
τ1 τ2 τ3τ ′1

∆k

a1k

a2k

Fig. 2. Evolution ofΔ: , 01
:

, and02
:

over time for an example scenario with
three status update arrivals atg1, g2, and g3 and one departure atg′

1
when

Δ0 is set to one.

in Table IV, applies in the case where bothG: ∉ -Δmax
and

the packet that was transmitted at the:-th time-slot did not
depart from the source node which may occur if the packet was
neither transmitted successfully nor dropped. Fig. 2 depicts
the evolution ofΔ: , 01

:
and 02

:
over time for the following

example scenario. At times0, 1 and 2 the queue is empty
of packets and the AoI is incremented by1 at the beginning
of each new time-slot, starting from an initial value of1. At
time g1 a status-update enters the queue. By the end of the
same time-slot the status update transmission has failed and
both AoI and01

:
are incremented by 1. At timeg2 a second

status-update packet enters the queue and02
:

is set to1. By
the end of this latter time-slot, at timeg′

1
, the transmission

of the head-of-line packet has been successful. This results in
the second status-update to become the head-of-line packet,
Δ5 ← 01

4
+ 1, 01

5
← 02

4
+ 1 and 02

5
← 0, where (←) is the

assignment operator. At timeg3 a new status-update enters the
queue. From time6 up to8 no successful packet transmission
has occurred and all three counters are incremented by1 at
the beginning of each time-slot.

Transition cost and additive cost functions: With every state
transition, according to controlD: , we associate a transition

cost6(G: , D: , F:) which is defined as,

6(G: , D: , F: ) =

{
�Δmax

, if G: ∈ Δmax

Δ:+1, otherwise,
(7)

whereF: is the realization of random vector,: at the :-
th time-slot and�Δmax

is a virtual cost associated with the
employment of the expensive channel wheneverG: ∈ -Δmax

.
The value ofΔ:+1 is completely determined by valuesG: , D:
andF: , which are all known to the source node by the end
of the :-th time-slot.

We are interested in minimizing the total cost accumulated
over an infinite time horizon which is expressed as follows,

�c (G0) = lim
#→∞

E
,: ,

:=0,1,...

{
#−1∑

:=0

W:6(G: , D: , F: ) |G0

}

, (8)

where G0 is the initial state of the system, expectationE{·}
is taken with respect to the joint probability distributionof
random variables,: , : = 0, 1, . . . andW is a discount factor,
i.e., 0 < W < 1, indicating that the importance of the induced
cost decreases with time. Finally,c represents a policy, i.e., a
sequence of functionsc = {`0, `1, . . . }, where each function
`: maps states to controls for the:-th stage. For a policyc
to belong to the set of all admissible policiesΠ, functions`:

must satisfy the constraint that for time-slot: and stateG:
controls are selected exclusively from the set* (G: ).

In order to minimize (8), we must find an optimal policy
c∗ that applies the appropriate control at each state. This is a
non-trivial problem since control decisions cannot be viewed
in isolation. One must balance the desire for low cost in the
short-term with the risk of incurring high costs in the long run.
For example, a short sighted source node would avoid adding
a fresh status update in a queue that already includes a status
update. This is because the delay counter associated with the
fresh status update will start incrementing immediately after
its generation and this will have a negative impact on cost
once the packet reaches the destination. However, this decision
may lead to a queue filled with application packets and the
AoI becoming equal toΔmax, an event that will lead to the
excessive penalty�Δmax

.

IV. A GE OPTIMAL POLICIES

The dynamic program presented in section II is charac-
terized by finite state, control, and probability spaces. Fur-
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TABLE III
EXPRESSIONS TO UPDATE DELAY COUNTERS WHENG: ∉ -Δmax AND THE HEAD-OF-LINE PACKET DEPARTS.

0
@

:+1
Conditions for transition Description

0
@+1

:
+ 1 0

@+1

:
> 0 and@ = 1, . . . , #<

:
− 1

All packets in the queue will be shifted towards the head-of-line,
and, accordingly, the values of0@

:
must be shifted to the right,

i.e., 0@+1

:
→ 0

@

:
. Especially for status updates,0@+1

:
> 0, the

corresponding counters0@

:
will be increased by one to indicate

that the packets will spend another time-slot in the system.

0
@+1

:
0
@+1

:
= −1 and@ = 1, . . . , #<

:
− 1

Application packets will also be shifted to the right although
the values of0@

:
will not be incremented by one.

−1 DB
:
= 0 andF0

:
= 1 and@ = #<

:

Addition of a newly arrived application packet at the first empty
queue position.

1 DB
:
= 1 and #<

:
< & and@ = #<

:

Addition of a new status update at the first empty queue
position. Status updates are generated only when the queue is
not full (#<

:
< &).

−1 DB
:
= 1 andF0

:
= 1 and #<

:
≤ & − 1, and@ = #<

:
+ 1

Addition of both a new status update and a new application
packet. We assume that status updates enter the queue first.
There will always be enough queue slots for both packets given
that status updates are generated only if there already exists
an empty queue position and, in this case, we also have the
departure of the head-of-line packet.

0 DB
:
= 0 andF0

:
= 0 and@ = #<

:
0
@

:
counters will be set to0 for all empty queue positions.

TABLE IV
EXPRESSIONS TO UPDATE DELAY COUNTERS WHEN THE HEAD-OF-LINE PACKET DOES NOT DEPART ANDG: ∉ -Δmax .

0
@

:+1
Conditions for transition Description

0
@

:
+ 1 0

@

:
> 0 and@ = 1, . . . , #<

:

Since no packet departed from the source node all packets in
the queue will remain in the same queue position. Counters0

@

:
of status updates will be increased by one to account for the
additional time-slot they will spend in the source node.

0
@

:
0
@

:
= −1 and@ = 1, . . . , #<

:
Counters for application packets will not be incremented.

−1 DB
:
= 0 andF0

:
= 1 and #<

:
≤ & − 1and@ = #<

:
+ 1

An application packet arrival will be accommodated if therewas
at least one empty queue position during the:-th time-slot.

1 DB
:
= 1 and #<

:
≤ & − 1 and@ = #<

:
+ 1

A fresh status update will enter the queue before a new
application packet. Given that fresh status updates are generated
only when there exists at least one empty queue position there
will always be place for the fresh status update. Application
packets that find the queue full will be dropped.

−1, DB
:
= 1 andF0

:
= 1 and #<

:
≤ & − 2and@ = #<

:
+ 2

There will be enough queue positions to accommodate both a
fresh status update and an application packet only if there were
two empty queue slots during the:-th time-slot.

0, @ = #<
:
+ 2, . . . , & Counters0@

:+1
will be set to zero for all empty queue positions.

thermore, transitions between states depend onG: , D:, and
F: but not on their past values. Additionally, the probability
distribution of the random variables is invariant over time.
Finally, the cost associated with a state transition is bounded
and the cost function� (·) is additive over time. Due to its
structural properties the dynamic system at hand constitutes a
Markov Decision Process (MDP) [10] which is described by
its state transition probabilities,

?8 9 (D) = %{G:+1 = 9 |G: = 8, D: = D} =
∑

(FB
:
,F0

:
) ∈,9

%{,B
: = FB

:}%{,
0
: = F0

: } (9)

where, 8, 9 ∈ -, D ∈ * (8), (FB
:
, F0

:
) ∈ {0, 1}2 and , 9 =

{(FB
:
, F0

:
) ∈ {0, 1}2 : 9 = 5 (8, D, [FB

:
, F0

:
]) )}. From this point

on we will utilize the MDP notation?8 9 (D) that presents the
probability for the system to make a transition to state9 given
that the system is in state8 and decisionD was made.

For the MDP under consideration, given that0 < W < 1,
there exists an optimal stationary policyc = {`, `, . . . },
i.e., a policy that applies the same control function` at all

stages [10, Sec. 2.3]. What is more, the control function`

will be independent of the initial state of the system and
deterministic [10], i.e., each time the system is in state8, `(8)
applies the same controlD. We will refer to a stationary policy
c = {`, `, . . . } as stationary policỳ . Our objective is to find
a stationary policỳ ∗, from the set of all admissible stationary
policiesM ⊆ Π, that minimizes the total cost in (8), i.e.,

`∗ = arg min
`∈M

�` (8), for all 8 ∈ (. (10)

Let �∗ be the total cost attained when the optimal policy`∗

is used, then, for the MDP at hand,�∗ satisfies the Bellman
equation,

�∗ (8) = min
D∈* (8)

=∑

9=1

?8 9 (D) [6(8, D, 9) + W�
∗ ( 9)] , for all 8 ∈ (,

(11)

where= is the cardinality of the state space. Equation (11)
describes a system of= non-linear equations, the right hand
side of which is a contraction, due toW < 1, with a unique
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fixed point located at�∗ (8). Due to the contraction property,
one can derive both�∗ and `∗ via iterative methods.

In this work we utilize the Optimistic Policy Iteration (OPI)
algorithm [10]–[12] to approximate the optimal policỳ∗ and
the optimal infinite horizon cost�∗ for the problem under
consideration. Part of the OPI algorithm is the Approximate
Policy Evaluation (APE) [10]–[12] algorithm, used to evaluate
the infinite horizon cost for the sequence of policies produced
by the OPI in the process of approximating̀∗. APE is
presented in Algorithm 1. APE requires as input a stationary
policy ` that maps each state8 ∈ - to a single control
D ∈ * (8) and returns an approximation of the infinite horizon
cost �` for that policy. Optionally, if prior estimates for the
values of�` exist, one may provide a�` in tabular form with
preset cost values for each state8 ∈ - , otherwise, APE will
initialize arbitrarily the�`. APE will apply the transformation
presented in the 5-th line of Algorithm 1 to each state and
will produce � ′` whose values are a closer estimate to the
true values to the infinite horizon cost of policỳ. Formally,
the values of�` will converge to the infinite horizon cost
of policy ` only after an infinite number of repetitions. In
practice, however, a finite number of repetitions is required for
the algorithm to terminate and heuristically chosen valueslead
to an accurate calculation of�` as indicated by analysis and
computational experience [10]. In Algorithm 1 repetitionsstop
when max

8∈-
|� ′` (8) − �` (8) | becomes smaller than a predefined

thresholdn [11].

Algorithm 1 Approximate Policy Evaluation
Require: ` ∈ M

1: Initialize �` (8) ∈ R, ∀8 ∈ - arbitrarily if not given as
input

2: Initialize n to a small value
3: repeat
4: for all 8 ∈ - do
5: � ′` (8) ←

∑=
9=0 ?8 9 (`(8)) [6(8, `(8), 9) + W�` ( 9)]

6: end for
7: � ← max

8∈-
|� ′` (8) − �` (8) |

8: �` ← � ′`
9: until � < n

10: Return�`

The OPI procedure is presented in Algorithm 2. OPI begins
with arbitrarily initialized values for the policỳ and its
infinite horizon cost�. The values stored in tabular form
will be updated iteratively and eventually will converge to`∗

and �∗. The major operation of the OPI algorithm, besides
calling APE, is presented in Line 5 and is called thepolicy
improvement step because its execution results in an improved
policy `′, i.e., a policy that has a smaller infinite horizon
cost compared to the previous policỳ. Subsequently, APE
is called with the improved policỳ ′ and � as input. In this
case� is provided as a better initial guess for the infinite
horizon cost for policỳ ′ compared to an arbitrarily set table
of values and as a result the call to APE will terminate
faster. Upon termination APE will return an approximation
for the infinite horizon cost of the improved policỳ′ which

will be subsequently used to derive an improved policy by
the policy improvement step. According to the Bellman’s
optimality principle [7], [12], unless policỳ < is the optimal
policy, the policy improvement step will always result in an
improved policy, thus, Algorithm 2 will terminate in case a
policy improvement step does not result in an improved policy,
i.e., `′ = `. Detailed analysis of the OPI and APE algorithms
and their convergence properties can be found in [7], [10]–
[12]. Finally, we note that the APE algorithm is also used to
evaluate the infinite horizon cost for three heuristic policies
that we will present in the next section.

Algorithm 2 Optimistic Policy Iteration
1: Initialize arbitrarily � (8) ∈ R and `(8) ∈ * (8), ∀8 ∈ - .
2: repeat
3: policy is stable← true
4: for all 8 ∈ - do
5: `′(8) ← arg min

D∈* (8)
[
∑=

9=0 ?8 9 (`(8)) (6(8, `(8), 9) +

W� ( 9))]

6: if `′(8) ≠ `(8) then
7: policy is stable← false
8: end if
9: end for

10: � ← APE(̀ ′, �)
11: ` ← `′

12: until policy is stable
13: Return` ≈ `∗ and � ≈ �∗

V. HEURISTIC POLICIES

To the best of our knowledge, the derived optimal policy
could not be characterized by a simple threshold-based struc-
ture; thus, to provide insight into the inner workings of the
optimal policy we introduce three heuristic policies whose
intuitive operation allows us to reach conclusions about the
way the optimal policy operates via comparative performance
results.

The first heuristic policy is thezero-wait policy, denoted
with `I , whereby the sensor will generate a status update
either when the queue is empty or, mandatorily, whenG ∈

-Δmax
. In both of these cases the status update will spend zero

time waiting in queue. The zero-wait policy presented here
is a slight variation of the well-known zero-wait policy [5].
Recently, the authors in [13] verified that the zero-wait policy
is suboptimal through experimental evaluation in two wireline
scenarios. The results presented in the next section serve a
similar purpose for the IoT scenario we consider. The second
heuristic policy is themax-sampling rate policy, denoted with
`<, whereby the sensor will generate a status update in all
states that this is permitted, i.e., in all statesG where* (G)
includes a controlD with DB = 1 the max-sampling policy
will select that specific control. The third heuristic policy
is the never-sample policy, denoted with`=, whereby the
source node will never generate a status update unless this is
mandatory, i.e., whenG ∈ -Δmax

. The main characteristic of the
never-sample policy is the periodicity ofΔ and transition cost
values. More specifically,Δ will start with a value of one and
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TABLE V
BASIC SCENARIO PARAMETERS

Description Parameter Value

Queue Size & 4
AoI Threshold Δmax 10

Max. Retransmission Number Amax 4
Expensive channel cost �Δmax 100

Discount Factor W 0.99

will be incremented by one at each time-slot until, eventually,
it becomes equal toΔmax. The cost for these state transitions,
6(G: , D: , F: ), is imposedat the end of each time slot and its
value is determined by the second branch of (7). Once the
thresholdΔmax is reached, a status update will be transmitted
through the expensive channel, resulting in a transition cost
of �Δmax

, and Δ will become equal to one again. Fig. 3
presentsΔ: and 6(G: , D: , F:) for the never-sample policy
when Δmax = 10 and �Δmax

= 20. The total cost over each

0 5 10 15 20 25 30 35

0

5

10

15

20

. . .

∆max

G∆max

k

∆k g(xk, uk, wk)

Fig. 3. AoI and transition cost for the never-sample policy whenΔmax = 10
and�Δmax = 20.

period is given by,

�? =

Δmax∑

2=2

2 + �Δmax
=
Δmax (Δmax + 1)

2
− 1 + �Δmax

. (12)

Never-sample policy exhibits the worst expected cost among
all possible policies due to its complete lack of control over
the status update process. In this work we also utilize its cost
value as an indicator of how often the other three policies
make use of the expensive channel.

VI. RESULTS

In this section we evaluate numerically the cost efficiency
of the optimal policy`∗ for the system under consideration.

We consider the system of Fig. 1 configured with the set
of parameter values presented in Table V. LetG0 denote the
initial state of the system, whereby the system is empty of
packets andΔ0 = 0, then Fig. 4a presents the infinite horizon
cost of all policies, i.e.,�`∗ , �I , �<, �= for increasing values
of the arrival probability%0 and a successful transmission
probability of %B = 0.8. In Fig. 4a and all subsequent figures
we use� (G0) to refer to the cost associated with any policy.
We note from Fig. 4a that when%0 = 0 or %0 = 0.2 the

zero-wait policy is nearly optimal, as has been already shown
in the literature [8]. This indicates that for a low value of
%0 the queue will often be empty of packets and a new
status update will be generated frequently enough to avoid
using the expensive channel. On the other hand, the max-
sampling policy performs poorly because it constantly fillsthe
queue with status updates that consequently suffer long waiting
times. However, both the zero-wait and the max-sampling
policies, as well as the optimal policy, achieve a much lower
cost compared to the never-sample policy. This result indicates
that, unlike the never-sample policy, these policies successfully
avoid high cost state transitions and especially the frequent
use of the expensive channel. This indication will become
more concrete subsequently when we present results related
to the frequency of usage of the expensive channel. When
%0 = 0.4, both zero-wait and max-sampling policies perform
much worse than the optimal policy, a result that exhibits
the inability of these policies to capture the trade-off between
the arrival rates for status and application packets. When%0

is equal to0.6 or 0.8 the max-sampling policy is a better
approach to the optimal policy than the zero-wait policy. This
is due to the fact that application packets arrive at the queue
with a high probability in each time-slot thus reducing the
probability of an empty queue. As a result the zero-wait policy
will generate status updates less frequently and, consequently,
will resort to the use of the expensive channel more often.
Finally, for %0 = 1, the optimal policy as well as all heuristic
policies achieve similar costs. This indicates that the queue
is always full with application packets and this causes the
frequent use of the expensive channel by all policies in a way
that resembles the operation of the never-sample policy. For
this latter policy, we see from Fig. 4a that its performance does
not change with%0 since it exclusively utilizes the expensive
channel.

Figures 4b to 4d present� (G0) for decreasing values of the
probability to successfully transmit,%B. With the exception of
the never-sample policy, Figures 4a to 4d depict that, for a
specific value of%0, a decrement in%B results in an increased
cost � (G0) for all policies. As expected, unsuccessful packet
transmissions increase the waiting time of all packets in the
queue and often result in packet drops, which cause even larger
values ofΔ: , i.e., larger transition costs, and eventually lead to
a more frequent use of the expensive channel. The frequent use
of the expensive channel is also indicated by Fig. 4d where all
policies achieve a cost close to that of the never-sample policy
even for relatively small values of%0. Summing it up, we have
that the zero-wait policy approximates the optimal policy for
relatively low values of%0 and %B, while the max-sampling
polixy is a better approximation to the optimal policy for larger
values of%0 and%B. Finally, there exists a range of values of
%0 and%B, as depicted in Figures 4a to 4d, for which both the
zero-wait and max-sampling policies are poor approximations
of the optimal policy. Unfortunately, the optimal policy does
not accept a simple threshold-based formulation that could
facilitate understanding of its inner working for this range of
values of%0 and%B.

To verify the assumption that the significant increase in
� (G0) is due to the more frequent use of the expensive channel
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(b) %B = 0.6
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(c) %B = 0.4
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(d) %B = 0.2

Fig. 4. Comparative plots for the optimal, zero-wait, max-sample and never-sample policies in terms of� (G0), i.e., the infinite horizon cost starting from an
empty system withΔ0 = 0, for different values of the arrival probability for application packets%0 and the probability for a successful transmission%B.

when%0 increases or when%B decreases, we present in Fig. 5
the aggregate steady state probability of the system being in
a state that will result in using the expensive channel, i.e., the
aggregate steady state probability to be in a stateG ∈ -Δmax

.
We note that given?8 9 (D) for the MDP, as defined in (9),
and the three stationary policies̀∗, `I and `< one can
derive the transition probability matrix%, for the resulting
stochastic system as controlled by the provided policy. For
example, the elements of% under the optimal policy are given
by %8 9 = ?8 9 (`

∗ (8)), for all 8, 9 ∈ - . To derive a steady
state probability vector we focus on the recurrent class of
states that includes the initial stateG0. Now let %A denote
the transition probability matrix for this recurrent classof
states, then we derivec, the steady state probability vector
of %A , as the normalized eigenvector of%A that corresponds
to %A ’s eigenvalue_ which is equal to one [14]. Finally, the
aggregate steady state probability of the system to be in a
state that will result in using the expensive channel is given
by, c4 =

∑
G∈-Δmax

c(G) .

The zero-sample policy is not amenable to the analysis
presented above due to the periodic character of the resulting
Markov process. More specifically, the states of the resulting

Markov process can be grouped in a finite number of disjoint
subsets so that all transitions from one subset lead to the
next [15]. This is clearly shown in Fig. 3 where a transition
from a state with AoI equal toΔ will always lead to a state
with AoI equal to Δ + 1 unlessΔ equalsΔmax, in which
case a transition will lead to a state withΔ equal to one.
Therefore, by grouping states according to their AoI we can
deduce the periodic character of the Markov process. However,
one can see from Fig. 3 that the system will visit a state
with AoI equal toΔmax once everyΔmax transitions. From
this observation we can derive that it will spend1/Δmax of
its time in states where the expensive channel is used. For
the scenarios in Fig. 5c4 would be equal to 0.1. Figs. 5a-d
exhibit that for large values of%0 or low values of%B all
policies behave the same way as the never-sample policy, i.e.,
they depend on the expensive channel. Finally, we note that
although all policies have the same steady state probability to
use the expensive channel when%0 = 1, as depicted in all
cases of Fig. 5, they do not attain the same value of� (G0).
This is due to the discount factorW being strictly less than
one, which results in early transition costs having a larger
impact on� (G0) compared to the transition costs for larger:
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(a) %B = 0.8
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(b) %B = 0.6
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(c) %B = 0.4
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Fig. 5. Steady state probability to make use of the expensivechannel, i.e., the sum of steady state probabilities for allstatesG whereΔ = Δmax. The
never-sample policy is not amenable to the same probabilistic analysis as the other three policies due to its periodic character, yet the system will spend10%
of its time using the expensive channel as is clearly shown inFig. 3.

values. More specifically, during the early stages, wherebythe
system begins with an empty queue, the optimal, zero-wait and
max-sampling policies make better decisions compared to the
never-sample policy and thus achieve relatively lower values
of � (G0).

Fig. 6 presents the impact of an increase of�Δmax
to the cost

� (G0) when%B = 0.8. More specifically, we set�Δmax
= 1000

and note that the cost of the never-sample policy increases by
an order of magnitude. Comparing the results in Fig. 6 with
those in Fig. 4a one can identify that for low values of%0

cost�Δmax
has a small effect on the cost of all policies, with

the exception of the never-sample policy. This is justified by
the fact that these policies resort infrequently to the use of the
expensive channel when%0 is low as has already be shown in
Fig. 5. On the other hand, for larger values of%0 we observe
a steep increment in cost which is due to the extensive use of
the expensive channel.

Fig. 7 presents the effect of a progressive increase in the size
of the queue on cost� (G0) for the optimal, zero-wait and max-
sampling policies. More specifically, we increase the valueof
& progressively from 4 to 8, while having�Δmax

= 1000,
%B = 0.8 and%0 = 0.4. Comparing the results of Fig. 7 with
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Fig. 6. Expected infinite horizon cost for all policies when the virtual cost
�Δmax associated with the use of the preemptive transmission mechanism is
increased.

the corresponding scenario of Fig. 6 one can see that the cost
of the max-sampling policy for& = 8 has more than doubled
compared to the scenario with& = 4 due to the increased
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Fig. 7. Expected infinite horizon cost for the three policieswhen the size of
the queue increases.

waiting times caused by the larger number of status updates
that enter the queue. Similarly, the cost for the optimal policy
has also increased significantly because the state space forthe
increased queue size scenario involves many states with a high
cost expectancy, i.e., states with a large number of application
packets that would incur increased waiting times and more
frequent use of the expensive channel. To avoid these statesthe
controller has to make decisions that involve a more frequent
generation of status updates so as to avoid using the expensive
channel frequently. However, these decisions involve higher
values ofΔ: compared to the scenario with the same setup
but a smaller queue, i.e., higher transition costs. On the other
hand, the cost for the zero-wait policy remains at relatively the
same level as that for a smaller queue size since the zero-wait
policy takes control actions only when the queue is empty.
The rate with which the queue becomes empty depends on
the values for%B and %0 rather than the size of the queue,
thus it was expected that the zero-wait policy would not be
affected by an increment of the queue size.

Finally, Fig. 8 presents the evolution of cost� (G0) asΔmax

increases. More specifically, we increase the value ofΔmax

progressively from 6 to 22, while keeping�Δmax
= 1000,

%B = 0.8, %0 = 0.4 and & = 4. Comparing the results in
Fig. 8 with the corresponding scenario of Fig. 6 we see that by
relaxing the constraint imposed byΔmax the cost for all three
policies is significantly reduced. Furthermore, whenΔmax is
within the range of values of6 to 12 the cost obtained by using
the optimal policy is significantly smaller compared to that
achieved by the zero-wait and max-sampling policies. This is
mainly because for low values ofΔmax cost� (G0) is dominated
by the cost induced by the URLLC mechanism. The results
indicate that the optimal policy succeeds in avoiding the use
of URLLC mechanism contrary to the baseline policies. For
larger values ofΔmax the optimal policy still performs better
as indicated by the embedded figure within Fig. 8 and, since
the cost of the URLLC mechanism is induced less often in
this case, the results indicate that the optimal policy performs
better in terms of AoI.
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Fig. 8. Expected infinite horizon cost for three policies as the value ofΔmax

increases.

VII. R ELATED WORK

In this section we present related work divided in two
categories. The first category includes works that follow a
queueing theoretic approach to the performance analysis and
optimization of communication systems with respect to AoI
and AoI related metrics while the second category includes
works that focus on scheduling with respect to AoI.

In [16] the AoI in a general multi-class"/�/1 queue-
ing system is studied. In addition, the exact peak-age-
of-information (PAoI) expressions for both"/�/1 and
"/�/1/1 systems are obtained. The work in [17] studied the
status age of update packets transmitted through a network.
The authors modeled a network as an"/"/∞ model, and
they derived the expression for the average AoI. The PAoI
in an "/"/1 queueing system with packet delivery errors is
considered in [18].

The work in [19] considers multiple independent sources
that transmit status updates to a monitor through simple
queues. A new simplified technique for evaluating the AoI in
finite-state continuous-time queueing systems is derived.The
technique is based on stochastic hybrid systems and makes
AoI evaluation to be comparable in complexity to finding the
stationary distribution of a finite-state Markov chain. In [20]
the stationary distributions of AoI and the PAoI are considered.
The authors derived explicit formulas for the Laplace-Stieltjes
transforms of the stationary distributions of the AoI and
PAoI in FCFS"/��/1 and��/"/1 queues. Yates in [21]
employed stochastic hybrid systems to enable evaluation ofall
moments of the age as well as the moment generating function
of the age in any network that can be described by a finite-state
continuous-time Markov chain.

In [22], the authors introduce the metrics of Cost of Update
Delay (CoUD) and Value of Information of Update (VoIU) in
order to characterize the cost of having stale information at
a remote destination and to capture the reduction of CoUD
upon reception of an update respectively. The works in [23]–
[25] consider setups with nodes with heterogeneous traffic and
the interplay between AoI and throughput/delay is studied.

In [26], the average AoI for an"/"/1/2 queueing system
with packet deadlines is studied.

The work in [27] studied the optimal control of status up-
dates from a source to a remote monitor. The main differences
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with our work is that their transmitter will generate a new
status update only when the previously generated status update
has reached the destination and its arrival has been acknowl-
edged. No packet losses are considered and the authors of [27]
completely disregard the existence of application traffic that
shares the same queue with the status update packets. Their
controller decides on the optimal time that the transmitter
has to wait before transmitting a fresh status update. Finally,
the optimization objective of their work takes the form of a
constrained semi-Markov decision process where the infinite
horizon undiscounted average of an AoI based penalty function
is minimized.

Next we present works that focus on scheduling. The work
in [28] considers a wireless broadcast network with a base
station sending time-sensitive information to a number of
nodes. A discrete-time decision problem is formulated to find
a scheduling policy that minimizes the expected weighted sum
of AoI for all nodes in the network. The authors in [29]
consider a stream of status updates where each update is either
of high priority or an ordinary one. Then, a transmission policy
that treats updates depending on their priority is considered.
The arrival processes of the two kinds of updates are modeled
as independent Poisson processes while the service times are
modeled as two exponentials. In [30] the optimal sampling
problem for maximizing the freshness of received samples is
formulated as an MDP in a system comprised of sampler,
a wireless link and a receiver. The work in [31] considers
a problem of sampling a Wiener process, the samples are
forwarded to a remote estimator via a channel that consists
of a queue with random delay. The estimator reconstructs a
real-time estimate of the signal. The optimal sampling strategy
that minimizes the mean square estimation error subject to a
sampling frequency constraint is studied.

In [32] the problem of AoI minimization for single-hop
flows in a wireless network, under interference constraintsand
a time varying channel is considered. A class of distributed
scheduling policies, where a transmission is attempted over
each link with a certain attempt probability is studied. AoI
minimization for a network under general interference con-
straints and a time varying channel is studied in [33] and [34]
with known and unknown channel statistics respectively. The
work in [35] proposed a real-time algorithm for scheduling
traffic with hard deadlines that provides guarantees on both
throughput and AoI. The work in [36] considered a set of
transmitters, where each transmitter contains a given number
of status packets and all share a common channel. The problem
of scheduling transmissions in order to minimize the overall
AoI is considered. The authors in [37] study an AoI minimiza-
tion problem, where multiple flows of update packets are sent
over multiple servers to their destinations. The authors in[38],
considered an alternative metric, the effective age, in order to
achieve lower estimation error in a remote estimation problem.
The problem they considered for developing an effective age
is the remote estimation of a Markov source.

The work in [39] considers a sequential estimation and sen-
sor scheduling problem in the presence of multiple communi-
cation channels. In [40], scheduling the transmission of status
updates over an error-prone communication channel is studied

in order to minimize the average AoI at the destination undera
constraint on the average number of transmissions at the source
node. The works [41]–[43], introduce a deep reinforcement
learning-based approach that can learn to minimize the AoI.

Similar to our work, the authors in [44] consider a single-
hop Low-Power Wide-Area network where an IoT device
transmits status updates to a base station following a Truncated
Automatic Repeat reQuest (TARQ) protocol that supports
preemption, i.e., the IoT device may conduct up to a given
number of transmission attempts before dropping a status
update or it will preemptively drop a packet in the case of
a new status update arrival. However, the focus of their work
is on the AoI-energy tradeoff and how it affects the average
and peak AoI and the corresponding energy metrics, whereas
we consider the problem of optimally controlling status update
generation when the same queue is shared between two flows
only one of which is AoI-sensitive.

In [45] the authors rely on the concept of AoI to offer
an alternative approach to the problem of accuracy, decision-
making, and lifespan of devices in an IoT network. The authors
utilize correlated information in order to increase the accuracy
of decisions and the lifespan for battery-powered devices and
reduce the contention for the shared channel. More specifically
the authors analyzed two correlated information sources and
showed how the different spatial-temporal variation of the
observed physical phenomenon influences the optimal use of
status updates from the two sources.

In [46] the authors study a system whereby a source is
equipped with a Last-In First Out queue and transmits status
updates to the destination. Both generation and transmission
of status updates are associated with power costs and a power
constraint is set on the system’s expected power consumption.
At each decision stage the controller has to decide whether
to spend energy in order to generate a fresh status update and
whether to spend the necessary energy in order to transmit the
currently available status update.

Additional references can be found in the survey [47].

VIII. C ONCLUSION

In this work, we consider the problem of optimally con-
trolling the generation of status updates for an IoT system
that serves the data traffic of two applications, one that is
AoI sensitive and one that is not through a single queue.
We utilize the framework of MDPs to derive optimal status
update generation policies for a wide range of configurations
and compare them against two baseline policies, the zero-wait
policy and the max-sampling policy. The comparative results
clearly exhibit that both baseline policies are suboptimal
because they disregard the effect on AoI of the non-status
update packet arrivals and the unsuccessful transmissions. A
limitation of the current work is that the modeling frame-
work of MDPs is plagued with the curse of dimensionality
which prohibits the efficient derivation of optimal policies for
large scale systems.As part of a future work we will apply
approximate dynamic programming techniques on the current
problem with the intention to derive near optimal policies in
a computationally efficient way.
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