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Optimal Policies for Status Update Generation in an
loT Device with Heterogeneous Traffic

George Stamatakis, Nikolaos Pappdember, IEEE, and Apostolos Traganitis

Abstract—A large body of applications that involve monitoring, To alleviate this problem, a new metric, called Age of
decision making, and forecasting require timely status updtes |nformation (Aol), was introduced in [5] to effectively cape
for their efficient operation. Age of Information (Aol) is a the requirement for timely status updating. As an example,

newly proposed metric that effectively captures this requiement. id . h ¢ itt les the state of
Recent research on the subject has derived Aol optimal polies consider a scenario where a transmitter samples the state o

for the generation of status updates and Aol optimal packet @ stochastic process(k), that evolves over discrete timie
queueing disciplines. Unlike previous research we focus olow- and sends status updates to a destination which is typiaally
end devices that typically support monitoring applicatiors in the  monitor or a controller. Status updates are transmittealiin
context of the Internet of Things. We acknowledge that these a queue which introduces random delays in their delivery

devices host a diverse set of applications some of which areoA . . . .
sensitive while others are not. Furthermore, due to their Iimited times. At any timek, if the freshest status update delivered at

computational resources they typically utilize a simple Fist-In  the destination was timestamp&g} (k), then the Aol at the
First-Out (FIFO) queueing discipline. We consider the prodem destination is, .
of optimally controlling the status update generation pro@ss Ak) =k — T (k) @)

for a system with a source-destination pair that communicas pance, the Aol is the amount of time elapsed since the moment
via a wireless link, whereby the source node is comprised of a

FIFO queue and serves two applications, one that is Aol serigie that the freshest QGllvered update was generated: .

and one that is not. We formulate this problem as a dynamic In order to achieve a low Aol value at the destination one
programming problem and utilize the framework of Markov — must ensure that the timestarfip (k) is as close to the current
Decision Processes to derive the optimal policy for the gersion  time k as possible, i.e., that information at the destination
of status update packets. Due to the lack of comparable metls is fresh. The authors in [5] showed that this depends on

in the literature we compare the derived optimal policies aginst . . . . .
baseline policies, such as the zero-wait policy. Results ditate the interplay between two different time intervals. Thetfirs

that baseline policies fail to capture the complex system ayamics  One is the time interval between the generation of sucaessiv
which determine the relationship between the frequency oftatus ~ status updates and the second one is the transmission delay
update generation and the resulting queueing delay and thus petween the sensor and the destination. The first one is
perform poorly. To the best of our knowledge, the derived opimal - \yithin the control of the transmitter while the second one is
policy does not exhibit a simple structure; thus, we utilizel the . L
baseline policies, whose operation is intuitive, to gain sight into generally a random Va”a*?'e whose distribution d_epends on
the inner workings of the optimal policy. the status update generation process. By shortening the tim
interval between the generation of successive status epdat
one generates status updates more frequently and, due to
congestion, transmission delays will increase. On therothe
Applications that offer monitoring, informed decision makhand, by increasing the interval between the generation®f s
ing, and forecasting services in cyber-physical systeieno cessive status updates, congestion decreases and cantyeque
rely on timely status updates [1], [2]. A large number of suchansmission delays will decrease. To minimize the expecte
applications has been developed in the context of InterRgjiye of Aol over time one has to find the optimal balance
of Things with examples that include, but are not limite@etween the status update generation interval and theingsul
to, smart cities, smart factories and grids, smart agticelt {5nsmission delays as presented in [5]. The role of Aol i lo
parking and traffic management, water management, e-Heaj{Bworks is considered in [6].
environment monitoring and education [1]. The prolifevati  Fyrther improvements, in terms of Aol, may be obtained by
of these applications is expected to have a profound impggiting for a closed-loop solution for the generation of ssat
on key sectors of economy, and this has spurred research pfates instead of the open loop control scheme presented
their particular operational requirements [3], [4]. A k@gult ahove, which is based on the selection of a single value for
in the field was the realization [5] that the objective of tlne he interval between successive status update generatjon [
status updating is not captured by metrics such as utilizatisection 1.2, The Role and Value of Information]. A closed

and delay, which are typically used in network design angop solution assumes the form of a policy for the generation

management. of status updates, which, given the current state of theistat
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|. INTRODUCTION



In this work, we study a system that is similar to the one pre-
sented above, with the main difference that the aforemeetio
gueue is shared between a flow of status update packets and\s
flow of non-status update packets. Considering the contglexi 6 0
of monitoring applications in the context of 10T we expect
that the deployed network equipment will definitely servéhbo
Aol-sensitive and Aol-insensitive applications via thensa
gueue. In our scenario generation of status update packets
is fully controlled by the transmitter while non-status apel
packets are generated by an application which is beyond g 1+ System model
control. All transmissions are subject to failure and upon a

failed transmission attempt, the head-of-line packet \wél i i . .
retransmitted up to a maximum number of times after whicteSUMe that time is slotted and the transmission of a single

it will be dropped. Furthermore, we assume that the Aol of ttféaCket occupies one time-slot. At the peglnnlng of #hth .
system is constrained to be less than a predefined thres dng-slot.S will commence the transmission of the hea‘?' ofline
value. In case this constraint is not satisfied the source non‘Ck?t' The transmission may succeed with probabﬂgt_)or_
will change temporarily the queue’s default First In FirsitO fail with probability 1 — Py, independently of the transmission

(FIFO) service policy, and its transmission scheme, sottieat outcomes in previous time-slots. We assume that all pagket
delivery of a fresh status update to the destination is guiaeal transmissions are acknowledged so that the success aefailu
rthe transmission will be known to the source node by the

and all outdated status update packets stored in the queueoz; ! ; o
dropped. end of thek-th time-slot. In the case of a failed transmission, a

To the best of our knowledge, this is the first work t6etransmissi0n countey, will be incremented and the packet
consider the design of an optimal <,:ontroller for the gerienat will be retransmitted during the next time-slot. The senvélr

of status updates for the wireless system under considaratimake Up t0rmax —1 retransm|SS|onl attempts a.nd.'t will stop in
Optimality here is taken with respect to a cost function th pse of a SUCCESS. In casergf,.« failed transmission attempts
is additive over time and depends on both the Aol of th N pagket will be -dropped.. o
system and the cost related to the use of the mechanism thaf/ithin the duration of a time-slot, the application in Fig. 1
guarantees a successful packet transmission. We fornthiateWill generate a single application packet per time-slothwit
problem at hand as a dynamic programming problem aRkpbability P, while th(_e source node, which is in full control
utilize the framework of Markov Decision Processes (MDPJ the sensor, has tdecide whether to generate a fresh status
to derive optimal policies. Finally, we show by Comp‘.ﬂiscﬂﬂfpdate or r_lot. All packets generated within th_e dura_tlon o_f a
that for a wide range of scenarios well known policies frorfime-slot will be enqueued unless the queue is full, in which
the literature, such as the zero-wait policy, perform ppéot  c@se they will be dropped.
the system under consideration. Finally, we assume that the source node must satisfy a
The remainder of the paper is Organized as follows. I’,!-,’il’d Constraint on AOI, i.e.Ak Should alWayS be IeSS than
Section VII we present recent work related to the problef threshold valuen,. In caseA; becomes equal tdpmx,
described above. In Section Il we present the system mod¢ queue’s service policy will change temporarily from its
considered in this work. In Section Il we formulate thiglefault FIFO operation so that the source node may be able to
problem as a dynamic programming problem. In Section 18PPly the following three actions:) IThe head of line packet
we show that the dynamic program constitutes an MDP affddropped. 2 All status update packets currently in the queue
present the algorithms we use to derive the Aol optimafre dropped. BA fresh status update packet is sampled and
policies. Finally, in Section VI we present numerical résul transmitted with success probability 1 by the transmitfee.

for the evaluation of the derived policies. Our conclusians €mphasize that this type of transmission is available to the
in Section VIII. source node only when Aol reaches the threshold value. This

assumption is justified, from a technological point of viéwy,
the tremendous attention that both academia and industry sh
in the support for Ultra Reliable Low Latency communicaton
We consider a system that is comprised of a source nodéRLLC) within the 5G framework. URLLC communication
that transmits data to a destination nddehrough a wireless links are expected to have a successful packet deliveryofate
link. The source node consists of a sensor that generates dé to 1 — 107 [9] which is extremely close to our assumed
packets with status update information, an applicatiort thealue of 1. Furthermore, since this level of high reliapiliill
generates data packets witlon-status update information, most probably be achieved through redundancy and utiizati
a finite queue, and a transmittéc Subsequently, we will of excessive resources, such as transmission power, itlys on
use the termstatus updates to refer to packets conveyingnatural to assume that it comes with a high cost. Furtherldeta
status update information and the tempplication packets regarding the conditions that determine the set of avalabl
to refer to packets with non-status update information. THigcisions to the source node will be presented in Section IlI
system model along with its state variables, which will be At the end of thek-th time-slot a cosgy is induced to the
properly defined in Section Ill, is depicted in Fig. 1. Wesystem which is either equal to the Aol at the destination, or

II. SYSTEM MODEL



in caseA; = Amax €qual to a fixed cost value. Our objective idime it has spent waiting in the queue and under service.
to derive an optimal policyr* that decides on the generatioriThe process of updating the values aﬁ qg=12,...,0
of a fresh status update at the beginning of each time-slot @® packets move from one queue position to the next will be
that the expected value of the total discounted cost over presented later in this section. Furthermore, delay in&tion
infinite number of time-slots is minimized, i.e., for the application packets is irrelevant for the Aol of the
Nl system, thus whenever an application packet occupieg-the
7 = argmin lim E{Z ykgk|x()} (2) th position of the queue we assign countér the special
mEMN—eo | = value of —1. An additional advantage of this assignment is
significant reduction in the size of the state space. We note
ﬂere that counter@Z, qg=1,2,...,0, corresponding to empty
Heue—slots will assume a value of zero. Finally, we assume
ﬁwat wheneverA; becomes equal td,x € Z* the source
de will preemptively drop the packet currently under s&rv
along with all queued status updates and it will transmieaHr
status update through an error free but expensive chansel. A
a consequence of this assumptian, will be bounded above
by Amax, and the state space will be finite, as will become
apparent subsequently.
In this section we formulate a dynamic programming prob- The state of the system of Fig. 1, at the beginning ofithe

lem for the system considered. We begin with the descriptigR time slot, is determined by the values®f, ri anda?, g =
of the state, control and random variable spaces and proc
P procged 5 we use column vectar, = [Ay, i, a! ad?)m,

k7
with the system transition function, the state transitiosts whereT is the transpose operator, to refer collectively to the
and the system cost function, which is additive over tim

. ; - _ NState of the system arx to denote the set of all system states.

Fmal_ly, we give a ehort description about the optimal polic Control/Decision Space Description: Given its current state

and its charactenspc_s. ] . . xr the source node has to make a decision regarding the
State Space Description: We utilize the Aol meiric, denoted eneration of a fresh status update, the dropping of the tiead

Wf'thtAtk’ k :do’tl’ ' t (|jn Ft'.g' %&O:Y}aracteélzfe thde.frezhnesﬁne packet and the preemptive transmission of a fresh statu
ot stafus updates at destinat ol was defined in [5] as update. We denote the set of all possible decisions, termed
the time that has elapsed since the generation of the laBSSt?;ontrols with,

update that has been received By More specifically, letr,,
denote the generation time-stamp of theh status update,, U = {(u®,u?, uP) : u®,u?,u? € {0,1}, —~u” vV (u? Au® Au)}
be the time-slot that the:-th status update arrived at destina- ()
tion D and M, be the index of the last status update that where logical operators, v andA denote negation, inclusive
has received by the-th time-slot, i.e. My = max{m|r,, < k}, disjunction and conjunction respectively, whilé is a binary
thenAy = k—7a, . This representation af,, for a centralized variable indicating whether the sensor should generatatasst
control model, has the drawback that one must keep timgpdatex is a binary variable indicating whether the head of
stamps, which are typically represented either as larggérs |ine packet should be dropped at the end of the current time-
or as vectors comprised of multiple sub-fields, as part of tRet in case of another failed transmission artdis a binary
description of the system’s state which can be computationavariable indicating whether all status updates within thieree
inefficient. node should be dropped and a fresh status update should be
We can derive a different expression far. by noting preemptively transmitted t®. Predicate-u” Vv (u? A u® A
that whenk equals the time-slot of the last status updaig?) will evaluate to true either for” = 0 (-u? = 1) along
arrival, i.e., k = 1), , we haveAr =1, — 1y + 1. The with all combinations(u*, u?) € {0, 1}?, or for (u*,u?,u”) =
increment by one in the latter equatlon is due to the slotted, 1, 1). The latter control involves generating a fresh status
time assumption, whereby we account for the next time-slopdate ¢° = 1), dropping the head of line packetq= 1) as
in advance. We will subsequently use this deflnltlonAQr . well as dropping all queued status updates and preemptively
For the system of Fig. 1 the time interval;, — 7y, is transmitting the fresh status update by using the costly, ye
equal to the total time that thaf,-th status update spenterror free channelu’ = 1).
waiting in queue and under service by the transmitter. We At each system state only a subset of the controls iti
defineay, =7, — v, and thusA, Thy, =AMt 1. The Aol will be available to the source node. This subset is typjcall
will increase by one unit for each time-slot that passes Islled the constraint control set and is denoted With) < U.
beyondTM e, A =ap +1+6k, TM <k< TM ,where Table | categorizes the states based on their attributes and
or = k — er For the source node to have knowledge giresents the corresponding constraint control sets. F@- no
ap, for each status update delivered/io we associate with tional convenience we drop the time indexsince constraint
each queue position a countef, ¢ = 2,...,Q (see Fig. 1) control sets do not change over time.
that holds the total time spent waiting in queue for the statu System Random Variables: At the beginning of the&k +1)-
update currently occupying the queue position. For thaistath time-slot the system will make a transition to a new state
update currently under service, coun&érholds the aggregate xx+; as a result of the selected contrg] and two random

where x( represents the initial state of the system, whic
corresponds to an empty queue< y* < 1 indicates that
the importance of the induced costs reduces with time a
expectation is taken with respect to the joint sequence ef t
system’s random variables which represent the arrival of Q
application packet and the successful transmission of ¢lael h
of line packet.

IIl. PROBLEM FORMULATION



TABLE |
SET OF AVAILABLE CONTROLS AT DIFFERENT STATE SUBSETS

Subset of States Constraint Control Set (x) Description
Generate a fresh status update, drop the head of line pankegla
{xeX:A=Anx} {(1,1,1)} queued status updates, preemptively transmit a freshssigpdate

through the expensive channel.

The source node will not generate a fresh status update die twll
{x € X :A# Anax, T = Fmax» aQ # 0} {(0,1,0)} queue (1Q # 0), the head of line packet will be dropped at the end|of
the current time-slot in case thg,.x-th retransmission fails.

The source node may or may not generate a fresh status uplideetve

{x € X : A% Apax, 7 = Fimax, a2 =0} {(0,1,0), (1,1,0) } head of line packet will be dropped in case thgx-th retransmission
fails.
(x €X : A% Amaes 7 # Fnaxs a2 # 0} ((0,0,0)} The sensor cannot generate a fresh status update due toethe loging

full.
Otherwise {(0,0,0), (1,0,0) } The source may or may not generate a fresh status update.

events. The first one is the arrival of an application packealue of the retransmission countgris updated as follows,
which is represented by the binary random variaibl¢ and

the second one is the successful transmission of the head- | if @ =0 andu; =wi =0

of-line packet which is represented by the binary random 0, if (w=1oruf=1)anda; =u} =w{=0
variableW;. As mentioned in section Il, we assume that thee = 41, if (u;j =1lorw;=1)and

application in Fig. 1 will generate a single packet per time- (“i #0o0rul =1o0rwé=1)

slot with probability P,. Furthermore, the transmitter will

+1, if al #0andw$ =0 andu? = 0.
deliver a packet successfully with probability independently & “* Yk " )

of the transmission outcome in any previous time-slot. The,, (5) we see thaty,; will be set to zero when there is
o o o s

probability distributions of W}’ and W; are assumed to be ., hacket for the transmitter to transmit at the beginning of

independent of previous time-slots and identically dostred o (k + 1)-th time-slot. This may occur in two cases. Firstly,

for all time-slots. We use the random vecw = [W¢, Wi1" iy case there wasn't a packet under servig¢ € 0) and,
to collectively refer to the random variables of the system. additionally, there were no packet arrivals; = we = 0)
during thek-th time-slot. Secondly, in case the packet under
State Transition Function: Given xi, ux and the values service was either successfully transmitted or dropped=
for W; and W}, which will be known to the source nodel or u¢ = 1), the queue was empty:{ = 0 implies that all
by the end of thek-th time-slot, the system will make aqueue positions witly > 2 were also empty) and there were
transition to a new stat€,; = [Ags1, riet, ag, s - - ,akQH]T no packet arrivalga; = uj = w¢ = 0) during thek-th time-
This transition is determined by the discrete-time systegiot.
Xkt = f(xr,ur, Wr). Next we present the elements that On the other handy.; will be set to one if the packet being
comprise f(-). We begin withAz,; which is given by the transmitted at th&-th time-slot departed from the source node
following expression, either by being successfully transmitted or by being droppe
and there exists another packet for the transmitter to mméns
at the beginning of thék + 1)-th time-slot. This scenario will
occur either if the queue position with= 2 was occupied by
a packet during thé-th time-slot, i.e.ai # 0, orin case it was

1 if x; € Xa empty and a new packet arrived at the source node during the
’ . e k-th time-slot. Finally, the value of;,; will be incremented
_ s _ 1 _ _ ’ +
At = Akt 1 !f Xi & X, AN (W =0 OF ap = —1) by one if there exists a packet under service# 0 which
al +1, if xx ¢ Xa,,, andW? =1 andal # -1 s nei : o
kT k Armax k k ’ is neither transmitted successfully, nor is it dropped by th
) source node.

where Xa,., = {x € X : A = Anx}. Expression (4)

shows thatA,,; will be set to one whenever Aol become%mpty, and equal to the index valug of the last queue
equal to the maximum acceptable value &f, . This is position which is occupied by a packet,
due to the transmission of a fresh status update through an

{0, if {ge1,...,0 : a] #0} is empty

error free channel. Furthermore, from (4) we see that
max{g € 1,...,0 : a} # 0}, otherwise

Now, let N7* € {0,...,Q} be zero, in case the queue is

(6)

m
will be incremented by one in the cases of an unsuccesstﬁ’k -
packet transmission and that of a successful transmisdion o
an application packet. Finally, in the case of a successfrirthermore, letv;’ denote the number of application packets
transmission of a status updat;.; will be set toa} + 1 in queue at th&-th time-slot. _
which is equal to(TZ/\dk — 1) + 1. We can distinguish three groups of expressions related to

updating the queue delay counter valm€§1, qg=1,...,0.
Assuming that the queue in Fig. 1 can store at least one mdiee first group of expressions applies to the case where
packet besides the one currently under service@.e», 1,the x; € X, and is presented in Table 1. The second group



TABLE Il
UPDATE OF DELAY COUNTERS WHENX € XA . -

al | | Conditions for transition | Description |
The first N,f queue positions will be occupied exclusively by
-1 g=1,..., N,f’ application packets since all status updates would have bee
dropped.
In the case of an application packet arrival, the new packiét v
. - I
-1 wd=1andg =N} +1 be placed in thg N/ + 1)-th queue position, andll\,\:‘k’l+ will
be set to -1.
V4
0 wi=0andg =N} +1 In the case of no application packet arrivai,\:’*iJrl will be set
to zero.
P For all remaining queue positions, up to taeth slot, aZ |
0 a=Ng+2.., Q will be set to zero to indicate that they are empty. ’
of expressions applies when both ¢ Xa,, and the packet costg(x, ug, wr) which is defined as,
that was transmitted at thie-th time-slot departed from the G e A
system either due to a successful transmission or because it g(xp, g, wi) = Amax> Tk omax (7)
was dropped by the transmittes?( = 1 or w§ = 1) and is Ags+1,  Otherwise

presented in Table Ill. The third group of equations presgnt,here wy is the realization of random vectd¥, at the k-
th time-slot andG,,,, is a virtual cost associated with the

s employment of the expensive channel wheneveke Xa,, -
51| -a — The value ofA;,; is completely determined by valueg, uy
aj, andwy, which are all known to the source node by the end
4 N

of the k-th time-slot.
We are interested in minimizing the total cost accumulated
over an infinite time horizon which is expressed as follows,

21— e N-1
1 Jr(x0) = lim E Kok upwolxop, (8
| k=0,1,... =
0 : : 1 ‘ ; : k wherex is the initial state of the system, expectatiBf}
9 2 3 4 3 6 T 8 is taken with respect to the joint probability distributiaf
Ao o™ T random variable$Vy, £k =0,1,... andvy is a discount factor,

Fig. 2. Evolution ofAg, a}, anda? over time for an example scenario with i.e.,0 <y <1, indicating that the importance of the induced
three status update arrivals &, 7>, and 73 and one departure at; when cost decreases with time. Finally,represents a policy, i.e., a
Ag Is set to one. sequence of functions = {uo, u1, ... }, where each function

in Table IV, applies in the case where both ¢ X, and A« Maps states to controls for theth stage. For a policyr
the packet that was transmitted at theh time-slot did not 0 belong to the set of all admissible policis functionss
depart from the source node which may occur if the packet wa§!St satisfy the constraint that for time-slotand statexy
neither transmitted successfully nor dropped. Fig. 2 depi€ontrols are selected exclusively from the &eix). _
the evolution ofAx, a} anda? over time for the following N order to minimize (8), we must find an optimal policy
example scenario. At time8, 1 and 2 the queue is empty 7 that applies the appropriate control at each state. This is a
of packets and the Aol is incremented byat the beginning Non-trivial problem since control decisions cannot be eew
of each new time-slot, starting from an initial value bfAt in isolation. One must balance the desire for low cost in the
time 7; a status-update enters the queue. By the end of ffeert-term with the risk of incurring high costs in the longr
same time-slot the status update transmission has failéd &' €xample, a short sighted source node would avoid adding
both Aol andal are incremented by 1. At time, a second @ fresh status update in a queue that already incl_udes @ statu
status-update packet enters the queue @nis set tol. By update. This is because the delay counter associated weith th
the end of this latter time-slot, at time/, the transmission fresh status update will start incrementing immediatelgraf
of the head-of-line packet has been successful. This sefsult itS generation and this will have a negative impact on cost
the second status-update to become the head-of-line pacRBf€ the packet reaches the destination. However, thisidaci
As < al+ 1, al « a2+1 anda? « 0, where (<) is the May lead to a queue filled with application packets and the
assignment operator. At time a new status-update enters thé:0! becoming equal tQAn, an event that will lead to the
queue. From time up to8 no successful packet transmissioffXCeSsive penaltgia,,,.
has occurred and all three counters are incrementedl at
the beginning of each time-slot. IV. AGE OPTIMAL POLICIES

Transition cost and additive cost functions: With every state  The dynamic program presented in section Il is charac-
transition, according to contral;, we associate a transitionterized by finite state, control, and probability spacesi- Fu



TABLE Il
EXPRESSIONS TO UPDATE DELAY COUNTERS WHENj ¢ XA, AND THE HEAD-OF-LINE PACKET DEPARTS

Conditions for transition

is|

Description |

All packets in the queue will be shifted towards the headira;
and, accordingly, the values alz must be shifted to the right

k+1

aZ” +1 aZ” >0andg=1,...,Nm -1 ie., aZ” — ajl. Especially for status updatee,‘frl > 0, the
corresponding countelzsz will be increased by one to indicate
that the packets will spend another time-slot in the system.
g+l g+l _ _ Application packets will also be shifted to the right altigbu
g ap =-landg=1... N7 ~1 the values ofz{ will not be incremented by one.
_1 WS =0 andwd = 1 andg = N™ Addition of_e_i newly arrived application packet at the firstpyn
k k k queue position.

Addition of a new status update at the first empty queue
1 u;=landN/" <Qandg = N;" position. Status updates are generated only when the qeele i
not full (N" < Q).
Addition of both a new status update and a new application
packet. We assume that status updates enter the queue| first.
There will always be enough queue slots for both packetsgive

- S = a — m - = m . .

! wp =1landwg =1andN;" <Q-1,andg = Ny +1 that status updates are generated only if there alreadysexis
an empty queue position and, in this case, we also have| the
departure of the head-of-line packet.

0 up =0andwg =0andg = N aZ counters will be set t® for all empty queue positions.
TABLE IV

EXPRESSIONS TO UPDATE DELAY COUNTERS WHEN THE HEAMF-LINE PACKET DOES NOT DEPART ANDX & XAy -

al, | Conditions for transition | Description |
Since no packet departed from the source node all packets in
the queue will remain in the same queue position. Coumgrs
q q — m >
ag +1 ag >0andg=1,.... Ny of status updates will be increased by one to account for|the
additional time-slot they will spend in the source node.
aZ a;c =-landg=1,....N/" Counters for application packets will not be incremented.
) An application packet arrival will be accommodated if theses
— S = a — m — = m e . .
! up =0andwg =1andN;" < Q- landg =N +1 at least one empty queue position during th¢h time-slot.

A fresh status update will enter the queue before a new
application packet. Given that fresh status updates arergtenl
1 up=landN" <Q-landg=N+1 only when there exists at least one empty queue positior ther
will always be place for the fresh status update. Applicat
packets that find the queue full will be dropped.

There will be enough queue positions to accommodate both a
-1, ug=landwg =1andN/" < Q-2andg=N;"+2 fresh status update and an application packet only if theme
two empty queue slots during theth time-slot.

0, q=N"+2,...,0 CounterSaZH will be set to zero for all empty queue positions.

[

thermore, transitions between states dependv,gnu,, and stages [10, Sec. 2.3]. What is more, the control funcgion
wy but not on their past values. Additionally, the probabilityill be independent of the initial state of the system and
distribution of the random variables is invariant over timeleterministic [10], i.e., each time the system is in siaj®(i)
Finally, the cost associated with a state transition is bedn applies the same contral We will refer to a stationary policy
and the cost functiod(-) is additive over time. Due to its = = {u, u, ... } as stationary policy:. Our objective is to find
structural properties the dynamic system at hand conssitat a stationary policy:*, from the set of all admissible stationary
Markov Decision Process (MDP) [10] which is described bpgolicies M C II, that minimizes the total cost in (8), i.e.,
its state transition probabilities,
u* =arg minJ, (i), foralli € S. (20)
pij(u) = P{xpn = jlxx =i, ug =u}= HeM
Z P{W = wi}P{W = wi}  (9) !_et J* be the total cost attained when the_optimal policy
(wi )W, is use_d, then, for the MDP at handf; satisfies the Bellman
equation,
where,i,j € X, u e U@), (wi,w)) eT {0,1}> and W, = .
{w3,w?) €{0,1}*: j = f(i,u, [ws,w¢]")}. From this point . .. _ . N .o py .
on \;(ve Vlili” utilize the MDP notati%rpfj(u) that presents the S0 = urer%}r(li) JZ_;””(”) g, ) +y77(D], forall i €5,
probability for the system to make a transition to statgven (11)
that the system is in stateand decisioru was made.
For the MDP under consideration, given tltatk y < 1, wheren is the cardinality of the state space. Equation (11)
there exists an optimal stationary poliey = {u,u,...}, describes a system af non-linear equations, the right hand
i.e., a policy that applies the same control functjprat all side of which is a contraction, due to < 1, with a unique



fixed point located at*(i). Due to the contraction property,will be subsequently used to derive an improved policy by

one can derive both* and y* via iterative methods. the policy improvement step. According to the Bellman’s
In this work we utilize the Optimistic Policy Iteration (OPI optimality principle [7], [12], unless policy,, is the optimal

algorithm [10]-[12] to approximate the optimal poligy and policy, the policy improvement step will always result in an

the optimal infinite horizon cosi* for the problem under improved policy, thus, Algorithm 2 will terminate in case a

consideration. Part of the OPI algorithm is the Approximatgolicy improvement step does not result in an improved pplic

Policy Evaluation (APE) [10]-[12] algorithm, used to evalle i.e., u’ = u. Detailed analysis of the OPI and APE algorithms

the infinite horizon cost for the sequence of policies preducand their convergence properties can be found in [7], [10]-

by the OPI in the process of approximating. APE is [12]. Finally, we note that the APE algorithm is also used to

presented in Algorithm 1. APE requires as input a stationaeyaluate the infinite horizon cost for three heuristic gesc

policy u that maps each state € X to a single control that we will present in the next section.

u € U(i) and returns an approximation of the infinite horizon _ _ . :

costJ, for that policy. Optionally, if prior estimates for theAlgorithm 2 Optimistic Policy Iteration

values of/, exist, one may provide &, in tabular form with ~ 1: Initialize arbitrarily J(i) € R and u(i) € U(i), Vi € X.

preset cost values for each state X, otherwise, APE will  2: repeat

initialize arbitrarily theJ,,. APE will apply the transformation 3:  policy_is_stable« true

presented in the 5-th line of Algorithm 1 to each state and: for all i € X do

will produce J;, whose values are a closer estimate to thes: W (i) « arg IEI}}?_)[Z;L()pij(/l(i))(g(inu(i)vj) +
true values to the infinite horizon cost of poligy Formally, yIU)] Hee

the values ofJ, will converge to the infinite horizon cost . if 4 (i) # u(i) then

of policy p only after an infinite number of repetitions. In -. policy_is_stablec false

practice, however, a finite number of repetitions is requfog . end if

the algorithm to terminate and heuristically chosen valead 4. onq for

to an accurate calculation df, as indicated by analysis and ;. ;7 APE(/, J)
computational experience [10]. In Algorithm 1 repetiticgtep ;. o

when I_nz)l(X|J;l(i) - Ju(i)| becomes smaller than a predefined,. \niil policy_is_stable

IAS]
thresholde [11]. 13: Returny ~ p* andJ ~ J*

Algorithm 1 Approximate Policy Evaluation
Require: ue M
1: Initialize J,(i) € R, Vi € X arbitrarily if not given as

V. HEURISTICPOLICIES
To the best of our knowledge, the derived optimal policy

input : )
2 Initialize € to a small value could not be characterized by a simple threshold-based-stru
3: repeat ture; thus, to provide insight into the inner workings of the

4: forall ieXdo optimal policy we introduce three heuristic policies whose

5 I1,() Z;’:opij(#(l'))[g(i,,u(i),j) +yJ, ()] intuitive ope_rat|0n Qllows us to rgach conclu.S|ons aboet th
6 end for way the optimal policy operates via comparative perforneanc
7D e maxlJy () = Ju()] results. . o
& ] e tJE,X The first heuristic policy is theero-wait policy, denoted

) K H with u., whereby the sensor will generate a status update

9: until D <€

10: ReturnJ, either when the queue is empty or, mandatorily, whegr

Xa,..- In both of these cases the status update will spend zero
time waiting in queue. The zero-wait policy presented here
The OPI procedure is presented in Algorithm 2. OPI begins a slight variation of the well-known zero-wait policy [5]

with arbitrarily initialized values for the policy: and its Recently, the authors in [13] verified that the zero-waiti@ol
infinite horizon cost/. The values stored in tabular formis suboptimal through experimental evaluation in two vitrel
will be updated iteratively and eventually will convergeid scenarios. The results presented in the next section serve a
and J*. The major operation of the OPI algorithm, besidesimilar purpose for the 10T scenario we consider. The second
calling APE, is presented in Line 5 and is called {micy heuristic policy is themax-sampling rate policy, denoted with
improvement step because its execution results in an improved,, whereby the sensor will generate a status update in all
policy p’, i.e., a policy that has a smaller infinite horizorstates that this is permitted, i.e., in all statesvhere U(x)
cost compared to the previous poligy Subsequently, APE includes a controk with * = 1 the max-sampling policy

is called with the improved policy” andJ as input. In this will select that specific control. The third heuristic pglic
caseJ is provided as a better initial guess for the infinités the never-sample policy, denoted withy,, whereby the
horizon cost for policyu’ compared to an arbitrarily set tablesource node will never generate a status update unlesssthis i
of values and as a result the call to APE will terminatmandatory, i.e., whemne X, _, . The main characteristic of the
faster. Upon termination APE will return an approximatiomever-sample policy is the periodicity af and transition cost
for the infinite horizon cost of the improved poligy which values. More specificallyd will start with a value of one and




TABLE V zero-wait policy is nearly optimal, as has been already show

BASIC SCENARIO PARAMETERS in the literature [8]. This indicates that for a low value of
| Description | Parameter] Value | P, the queue will often be empty of packets and a new
Oueue Size 0 7 status update will be generated frequently enough to avoid
Aol Threshold | Apax 10 using the expensive channel. On the other hand, the max-
Max. Féiggﬂzn‘ésiﬁ:m':‘;r‘ggg (;Zm 130 sampling policy performs poorly because it constantly ﬂhls _
Discount Factor M 0.99 gueue with status updates that consequently suffer lontingai

times. However, both the zero-wait and the max-sampling
policies, as well as the optimal policy, achieve a much lower
will be incremented by one at each time-slot until, everijyial cost compared to the never-sample policy. This result aidie
it becomes equal td,,x. The cost for these state transitionsthat, unlike the never-sample policy, these policies ss&ftdly
g(xp, ur, wy), is imposedat the end of each time slot and its avoid high cost state transitions and especially the freque
value is determined by the second branch of (7). Once thee of the expensive channel. This indication will become
thresholdA .« is reached, a status update will be transmittetiore concrete subsequently when we present results related
through the expensive channel, resulting in a transitiost cdo the frequency of usage of the expensive channel. When
of Ga,,, and A will become equal to one again. Fig. 3P, = 0.4, both zero-wait and max-sampling policies perform
presentsA; and g(xg,ux, wy) for the never-sample policy much worse than the optimal policy, a result that exhibits
when Ap.x = 10 and G, = 20. The total cost over eachthe inability of these policies to capture the trade-offimsn

the arrival rates for status and application packets. Whgn
Ga is equal t00.6 or 0.8 the max-sampling policy is a better
0 il approach to the optimal policy than the zero-wait policyisTh
is due to the fact that application packets arrive at the gueu

15 8 with a high probability in each time-slot thus reducing the
probability of an empty queue. As a result the zero-waitgyoli
10| Bmax . will generate status updates less frequently and, consdgue

will resort to the use of the expensive channel more often.
Finally, for P, = 1, the optimal policy as well as all heuristic
! policies achieve similar costs. This indicates that theugue
ol i | is always full with application packets and this causes the
0 5 10 15 20 3 30 3 frequent use of the expensive channel by all policies in a way
k that resembles the operation of the never-sample poliay. Fo
this latter policy, we see from Fig. 4a that its performancesd

not change withP, since it exclusively utilizes the expensive

[$2
T
|

‘7Ak . g(zk,uhwk)‘

Fig. 3. Aol and transition cost for the never-sample polidyewA,,x = 10

andGy,,, = 20. channel.
Figures 4b to 4d presetixo) for decreasing values of the
period is given by, probability to successfully transmi®,. With the exception of
A the never-sample policy, Figures 4a to 4d depict that, for a
Amax (Amax +1) specific value ofP,, a decrement iP, results in an increased
Cp= D c+Gay, = T2 1 4Gy, (12) SP a ac s
pour 2 costJ(xp) for all policies. As expected, unsuccessful packet

: i transmissions increase the waiting time of all packets & th
Never-sample policy exhibits the worst expected cost among . .
. . ; gtleue and often result in packet drops, which cause eveerlarg
all possible policies due to its complete lack of control ove : "
: ...~ Vvalues ofAg, i.e., larger transition costs, and eventually lead to
the status update process. In this work we also utilize ist cq .
" . —amore frequent use of the expensive channel. The frequent us
value as an indicator of how often the other three poI|C|e§ . : . )
: ot the expensive channel is also indicated by Fig. 4d whére al
make use of the expensive channel. - .
policies achieve a cost close to that of the never-sampieypol
even for relatively small values @f,. Summing it up, we have
that the zero-wait policy approximates the optimal polioy f
In this section we evaluate numerically the cost efficienaglatively low values ofP, and Py, while the max-sampling
of the optimal policyu* for the system under consideration. polixy is a better approximation to the optimal policy fordar
We consider the system of Fig. 1 configured with the sgalues ofP, and Py. Finally, there exists a range of values of
of parameter values presented in Table V. kgtdenote the P, andP;, as depicted in Figures 4a to 4d, for which both the
initial state of the system, whereby the system is empty néro-wait and max-sampling policies are poor approxinmatio
packets and\ = 0, then Fig. 4a presents the infinite horizorof the optimal policy. Unfortunately, the optimal policy e®
cost of all policies, i.e.J,~,J;,Jm, J, for increasing values not accept a simple threshold-based formulation that could
of the arrival probabilityP, and a successful transmissiorfacilitate understanding of its inner working for this rangf
probability of P, = 0.8. In Fig. 4a and all subsequent figurevalues ofP, and Ps.
we useJ(xo) to refer to the cost associated with any policy. To verify the assumption that the significant increase in

We note from Fig. 4a that wheR, = 0 or P, = 0.2 the J(xp) is due to the more frequent use of the expensive channel

VI. RESULTS
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Fig. 4. Comparative plots for the optimal, zero-wait, maxaple and never-sample policies in terms/dfxy), i.e., the infinite horizon cost starting from an
empty system with\y = 0, for different values of the arrival probability for appliton packetsP,, and the probability for a successful transmissign

whenP, increases or wheR; decreases, we present in Fig. Markov process can be grouped in a finite number of disjoint
the aggregate steady state probability of the system baingsubsets so that all transitions from one subset lead to the
a state that will result in using the expensive channel,te next [15]. This is clearly shown in Fig. 3 where a transition
aggregate steady state probability to be in a stageX,, . from a state with Aol equal t& will always lead to a state
We note that giverp;;(u) for the MDP, as defined in (9), with Aol equal to A + 1 unlessA equals Ay, in which

and the three stationary policigs’, u, and u, one can case a transition will lead to a state with equal to one.
derive the transition probability matri®, for the resulting Therefore, by grouping states according to their Aol we can
stochastic system as controlled by the provided policy. Fdeduce the periodic character of the Markov process. Howeve
example, the elements &f under the optimal policy are givenone can see from Fig. 3 that the system will visit a state
by Pij = pij(u*(i)), for all i,j € X. To derive a steady with Aol equal to Ay, Once everyAp,, transitions. From
state probability vector we focus on the recurrent class tifis observation we can derive that it will spemdA,x of
states that includes the initial statg. Now let P, denote its time in states where the expensive channel is used. For
the transition probability matrix for this recurrent clasé the scenarios in Fig. &, would be equal to 0.1. Figs. 5a-d
states, then we derive, the steady state probability vectorexhibit that for large values of, or low values ofP; all

of P,, as the normalized eigenvector Bf that corresponds policies behave the same way as the never-sample policy, i.e
to P,’s eigenvaluel which is equal to one [14]. Finally, the they depend on the expensive channel. Finally, we note that
aggregate steady state probability of the system to be inakthough all policies have the same steady state probatulit
state that will result in using the expensive channel is givaise the expensive channel whép = 1, as depicted in all

by, 7. = DixeXayy, M) cases of Fig. 5, they do not attain the same valud (af).

The zero-sample policy is not amenable to the analysi§is is due to the discount factgr being strictly less than
presented above due to the periodic character of the negultPne, which results in early transition costs having a larger
Markov process. More specifically, the states of the resgltiimpact onJ(xo) compared to the transition costs for larger
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Fig. 5. Steady state probability to make use of the expenshannel, i.e., the sum of steady state probabilities forsttesx where A = Apx. The
never-sample policy is not amenable to the same probabilisilysis as the other three policies due to its periodaratter, yet the system will spen@%
of its time using the expensive channel as is clearly showrign 3.

values. More specifically, during the early stages, whetbby 101
system begins with an empty queue, the optimal, zero-wdlit an 1k I
max-sampling policies make better decisions compareddo th IR W
never-sample policy and thus achieve relatively lower @alu 0.8 a
of J(x0). M

Fig. 6 presents the impact of an increas&af  to the cost s 061 |
J(xo) when P, = 0.8. More specifically, we seG 4, = 1000 = 04l |
and note that the cost of the never-sample policy increages b
an order of magnitude. Comparing the results in Fig. 6 with 0oL |
those in Fig. 4a one can identify that for low values Rf H H
costGa,, has a small effect on the cost of all policies, with o eall DDU 0 tte - tole
the exception of the never-sample policy. This is justifigd b 0 02 04 06  os j
the fact that these policies resort infrequently to the dsb® P,
expensive channel whehy, is low as has already be shown in ‘UDOptimalDDZero Wait [0 Max Sampling 18 Never Sample

Fig. 5. On the other hand, for larger valuesRyf we observe Fig, 6. Expected infinite horizon cost for all policies whére tvirtual cost
a steep increment in cost which is due to the extensive UseG:Lf associated with the use of the preemptive transmission améin is
the expensive channel. increased.

Fig. 7 presents the effect of a progressive increase in tee si
of the queue on cost(xy) for the optimal, zero-wait and max-
sampling policies. More specifically, we increase the valtie the corresponding scenario of Fig. 6 one can see that the cost
Q progressively from 4 to 8, while having,,,, = 1000, of the max-sampling policy fo@ = 8 has more than doubled
P, =0.8 and P, = 0.4. Comparing the results of Fig. 7 withcompared to the scenario with = 4 due to the increased
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Fig. 7. Expected infinite horizon cost for the three policidsen the size of
the queue increases.

VII. RELATED WORK
In this section we present related work divided in two
categories. The first category includes works that follow a

waiting times caused by the larger number of status updafeueing theoretic approach to the performance analysis an
that enter the queue. Similarly, the cost for the optimalgyol ©OPtimization of communication systems with respect to Aol
has also increased significantly because the state spatieefor@nd Aol related metrics while the second category includes
increased queue size scenario involves many states witjha Hvorks that focus on scheduling with respect to Aol.

cost expectancy, i.e., states with a large number of agjgita !N [16] the Aol in a general multi-clas3//G/1 queue-
packets that would incur increased waiting times and moid System is studied. In addition, the exact peak-age-
frequent use of the expensive channel. To avoid these stegesOf-information (PAol) expressions for botf//G/1 and
controller has to make decisions that involve a more frequel{/G/1/1 systems are obtained. The work in [17] studied the
generation of status updates so as to avoid using the expensfatus age of update packets transmitted through a network.
channel frequently. However, these decisions involve diighThe authors modeled a network as &y M /co model, and
values of A, compared to the scenario with the same setipey derived the expression for the average Aol. The PAol
but a smaller queue, i.e., higher transition costs. On therotin anM/M/1 queueing system with packet delivery errors is
hand, the cost for the zero-wait policy remains at relayivee  considered in [18].

same level as that for a smaller queue size since the zeto-wail & work in [19] considers multiple independent sources
policy takes control actions only when the queue is empfj@t transmit status updates to a monitor through simple
The rate with which the queue becomes empty depends G#ues. A new simplified technique for evaluating the Aol in
the values forP, and P, rather than the size of the queuefinite-state continuous-time queueing systems is derivée.

thus it was expected that the zero-wait policy would not gechnique is based on stochastic hybrid systems and makes
affected by an increment of the queue size. Aol evaluation to be comparable in complexity to finding the

stationary distribution of a finite-state Markov chain. BO]

Finally, Fig. 8 presents the evolution of coBixy) asAmax  the stationary distributions of Aol and the PAol are conside
increases. More specifically, we increase the valueAgfy The authors derived explicit formulas for the Laplace{§é&s
progressively from 6 to 22, while keepin@a,, = 1000, transforms of the stationary distributions of the Aol and
P; = 0.8, P, = 0.4 and Q = 4. Comparing the results in PAol in FCFSM/GI/1 and GI/M/1 queues. Yates in [21]
Fig. 8 with the corresponding scenario of Fig. 6 we see that kynployed stochastic hybrid systems to enable evaluatiaifi of
relaxing the constraint imposed liy,.x the cost for all three moments of the age as well as the moment generating function
policies is significantly reduced. Furthermore, whep,x is of the age in any network that can be described by a finite-stat
within the range of values @fto 12 the cost obtained by using continuous-time Markov chain.
the optimal policy is significantly smaller compared to that In [22], the authors introduce the metrics of Cost of Update
achieved by the zero-wait and max-sampling policies. This Delay (CoUD) and Value of Information of Update (VolU) in
mainly because for low values af,,x costJ(xo) is dominated order to characterize the cost of having stale informatibn a
by the cost induced by the URLLC mechanism. The resulésremote destination and to capture the reduction of CoUD
indicate that the optimal policy succeeds in avoiding the usipon reception of an update respectively. The works in [23]-
of URLLC mechanism contrary to the baseline policies. F¢25] consider setups with nodes with heterogeneous tratffic a
larger values ofA,,x the optimal policy still performs better the interplay between Aol and throughput/delay is studied.
as indicated by the embedded figure within Fig. 8 and, sinceln [26], the average Aol for aM /M /1/2 queueing system
the cost of the URLLC mechanism is induced less often imith packet deadlines is studied.
this case, the results indicate that the optimal policy grens The work in [27] studied the optimal control of status up-
better in terms of Aol. dates from a source to a remote monitor. The main differences
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with our work is that their transmitter will generate a nevin order to minimize the average Aol at the destination urder
status update only when the previously generated status@ipatonstraint on the average number of transmissions at threesou
has reached the destination and its arrival has been acknavdde. The works [41]-[43], introduce a deep reinforcement
edged. No packet losses are considered and the authorg|of [2d&rning-based approach that can learn to minimize the Aol.
completely disregard the existence of application traffiatt  Similar to our work, the authors in [44] consider a single-
shares the same queue with the status update packets. Their Low-Power Wide-Area network where an loT device
controller decides on the optimal time that the transmitt@ransmits status updates to a base station following a Ftedc
has to wait before transmitting a fresh status update. lyinalAutomatic Repeat reQuest (TARQ) protocol that supports
the optimization objective of their work takes the form of @reemption, i.e., the 10T device may conduct up to a given
constrained semi-Markov decision process where the iafinlilumber of transmission attempts before dropping a status
horizon undiscounted average of an Aol based penalty fomctiupdate or it will preemptively drop a packet in the case of
is minimized. a new status update arrival. However, the focus of their work

Next we present works that focus on scheduling. The woik on the Aol-energy tradeoff and how it affects the average
in [28] considers a wireless broadcast network with a based peak Aol and the corresponding energy metrics, whereas
station sending time-sensitive information to a number @fe consider the problem of optimally controlling status ated
nodes. A discrete-time decision problem is formulated td firgeneration when the same queue is shared between two flows
a scheduling policy that minimizes the expected weighted swnly one of which is Aol-sensitive.
of Aol for all nodes in the network. The authors in [29] |n [45] the authors rely on the concept of Aol to offer
consider a stream of status updates where each updateds e alternative approach to the problem of accuracy, degisio
of high priority or an ordinary one. Then, a transmissiorigyol making, and lifespan of devices in an loT network. The author
that treats updates depending on their priority is conetdler yiilize correlated information in order to increase thelmacy
The arrival processes of the two kinds of updates are modelsitiecisions and the lifespan for battery-powered devices a
as independent Poisson processes while the service tiraesraguce the contention for the shared channel. More spdbifica
modeled as two exponentials. In [30] the optimal samplingie authors analyzed two correlated information sources an
problem for maximizing the freshness of received samplesdiowed how the different spatial-temporal variation of the
formulated as an MDP in a system comprised of samplejpserved physical phenomenon influences the optimal use of
a wireless link and a receiver. The work in [31] considefsatus updates from the two sources.
a problem of sampling a Wiener process, the samples argn [46] the authors study a system whereby a source is
forwarded to a remote estimator via a channel that consigliguipped with a Last-In First Out queue and transmits status
of a queue with random delay. The estimator reconstructy,gdates to the destination. Both generation and transnissi
real-time estimate of the signal. The optimal samplingt6g® o status updates are associated with power costs and a power
that minimizes the mean square estimation error subject tQ@hstraint is set on the system’s expected power consumptio
sampling frequency constraint is studied. At each decision stage the controller has to decide whether

In [32] the problem of Aol minimization for single-hop o spend energy in order to generate a fresh status update and
flows in a wireless network, under interference constraints \ynether to spend the necessary energy in order to transenit th
a time varying channel is considered. A class of distributegyrrently available status update.
scheduling policies, where a transmission is attempted ove aqgitional references can be found in the survey [47].
each link with a certain attempt probability is studied. Aol
minimization for a network under general interference con- VIIl. CONCLUSION
straints and a time varying channel is studied in [33] and [34
with known and unknown channel statistics respectivelye Th In this work, we consider the problem of optimally con-
work in [35] proposed a real-time algorithm for schedulingrolling the generation of status updates for an loT system
traffic with hard deadlines that provides guarantees on bdttat serves the data traffic of two applications, one that is
throughput and Aol. The work in [36] considered a set ohol sensitive and one that is not through a single queue.
transmitters, where each transmitter contains a given eumbVe utilize the framework of MDPs to derive optimal status
of status packets and all share a common channel. The problgodate generation policies for a wide range of configuration
of scheduling transmissions in order to minimize the overaind compare them against two baseline policies, the zeito-wa
Aol is considered. The authors in [37] study an Aol minimizapolicy and the max-sampling policy. The comparative result
tion problem, where multiple flows of update packets are seclearly exhibit that both baseline policies are suboptimal
over multiple servers to their destinations. The authof8&), because they disregard the effect on Aol of the non-status
considered an alternative metric, the effective age, ireotd update packet arrivals and the unsuccessful transmissfons
achieve lower estimation error in a remote estimation bl limitation of the current work is that the modeling frame-
The problem they considered for developing an effective ag@rk of MDPs is plagued with the curse of dimensionality
is the remote estimation of a Markov source. which prohibits the efficient derivation of optimal polisiéor

The work in [39] considers a sequential estimation and selarge scale systems.As part of a future work we will apply
sor scheduling problem in the presence of multiple commurgpproximate dynamic programming techniques on the current
cation channels. In [40], scheduling the transmission atust problem with the intention to derive near optimal policies i
updates over an error-prone communication channel isesiluda computationally efficient way.
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