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1 Introduction

In standard consumption-investment models agents are assumed to be fully rational expected

utility maximizers. Under the paradigm of constant relative risk aversion (CRRA) and a con-

stant investment opportunity set, Samuelson (1969) and Merton (1969) have shown that myopic

policies are optimal. In other words: (i) risk aversion does not a�ect the optimal mix of risky as-

sets and (ii) the investment horizon is irrelevant. Recently, several authors (Brennan, Schwartz

& Lagnado 1997, Kim & Omberg 1996, Campbell & Viceira 1999) have studied the impact

of stochastic opportunity sets on optimal portfolio choice. However, investors are assumed to

behave rationally and maximize expected utility.

This fact ignores the huge amount of evidence for anomalies in human behavior found by psy-

chologists. The �eld of behavioral �nance has evolved attempting to understand and explain

how emotions and cognitive errors inuence investors and the decision-making process. The

common belief in this �eld is that the study of psychology and other social sciences can shed

light on the eÆciency of �nancial markets as well as explain many stock market anomalies,

market bubbles, and crashes. Probably the most important exponent of behavioral �nance is

prospect theory, originating from the work of Kahneman & Tversky (1979).

Kahneman & Tversky (1979) found that contrary to expected utility theory, people treat gains

and losses di�erently and typically over- or underweight true probabilities. They also found that

individuals are much more distressed by prospective losses than they are happy with equivalent

gains. Moreover, individuals respond di�erently to equivalent situations depending on whether

the situation is presented in the context of losses or gains. Finally, they have found that people

will take more risks to avoid losses than to realize gains. Faced with gains investors are risk

averse, however when facing losses investors become risk seeking.

Although prospect theory has been around for at least two decades, relatively little is known

about the implications of loss aversion for optimal portfolio choice. A rigorous analysis is

complicated by the fact that the prospective value function displays non-di�erentiability (�rst-

order risk aversion) and is convex for losses and concave for gains. As a result, the traditional

dynamic programming approach based on the Hamilton-Jacobi-Bellman equation cannot be

applied. We extend the martingale methodology of Cox & Huang (1989) in order to derive

closed-form solutions for the optimal portfolio choice of a loss averse investor.

In particular, we are interested in the following questions:

1. What does loss aversion imply for portfolio choice? Does the pain experienced when stocks

perform poorly make a loss averse investor reluctant to allocate heavily to stocks?

2. Does the optimal portfolio choice of a loss averse investor exhibit time diversi�cation e�ects?

3. How does a loss averse investor behave when confronted with negatively skewed and lep-

tokurtic asset returns?

4. Can loss aversion provide an explanation for the equity premium puzzle?

Our results are as follows: �rst, under general security price processes, we show that the optimal



Optimal Portfolio Choice Under Loss Aversion 2

strategy for a loss averse investor can be decomposed in a probability maximizing strategy and

a growth strategy. A loss averse investor aims at maximizing the probability of reaching his

aspiration level (the reference point distinguishing gains and losses) and desires some additional

upside by investing part of his wealth in a growth strategy. The probability maximizing strategy

is equivalent to an investment in a binary cash-or-nothing call. The growth strategy is related

to the growth optimal portfolio.

Second, when asset prices follow a geometric Brownian motion, we derive closed-form solutions

for the optimal portfolio choice. When confronted with gains a loss averse investor behaves sim-

ilar to a portfolio insurer, aiming to retain wealth above the aspiration level. When confronted

with losses the investor maximizes the probability that terminal wealth exceeds the aspiration

level. This behavior is denoted as a break-even e�ect. Due to this e�ect a loss averse investor

always prefers a gamble over a sure rate of return when he is below his aspiration level. These

break-even e�ects demonstrate that a loss averse investor allocates more heavily to stocks when

behind on his investment.

Break-even e�ects are prevalent in human behavior. Let us illustrate this with a simple example.

Suppose an individual is to meet a liability due next week, e.g. pay the rent for housing. Assume

his current funds are insuÆcient to meet this obligation. Furthermore, we assume that the

individual does not receive any exogenous income over the course of the week (such as labor

income, or a donation from mom and dad). As he knows that currently he simply cannot ful�ll

his obligation, such an individual is inclined to gamble, e.g. by going to a casino. During the

week, as the individual still lacks the means to meet his obligation, he is likely to gamble even

more. The individual gambles since he \has not made peace with his losses".

In the original description of loss aversion risk seeking behavior in the domain of losses is always

accompanied by the possibility to break even. We extend the original formulation of Kahneman

& Tversky (1979) by distinguishing between gambles that allow the investor to break even and

gambles that lack this opportunity. We assume that the investor becomes risk averse again for

large losses, as the likelihood to break even becomes very small. This behavior is also documented

by Thaler & Johnson (1990) based on experiments. In the extended version of loss aversion, the

investor decreases his exposure to stocks again in bad states. In intermediate states the fraction

invested in stocks is increased as break-even e�ects dominate the behavior of the investor.

Finally, we study the e�ect of skewness and kurtosis in asset returns on the optimal portfolio

choice under loss aversion. In standard economic models for portfolio choice skewness and

kurtosis in asset returns are ignored. However, there is convincing evidence that stock returns are

fat-tailed and negatively skewed. We rely on a Gram-Charlier expansion of the lognormal density

function, rather than making explicit distributional assumptions. We investigate whether loss

aversion in combination with a skewed and fat-tailed return distribution can explain the equity

premium puzzle. Our �ndings indicate that break-even e�ects are ampli�ed in the presence of

skewness and kurtosis in stock returns.

In conclusion, our partial equilibrium results indicate that loss aversion can not explain the

participation puzzle. As a loss averse individual is confronted with losses, break-even e�ects

induce him to allocate heavily to stocks. Moreover, as relative risk aversion over gains is quite
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low, a loss averse investor even allocates heavily to stocks when confronted with gains. Our

�ndings contradict the intuition of Benartzi & Thaler (1995) that myopic loss aversion makes

the investor \reluctant to allocate heavily to stocks, due to the pain experienced when stocks

perform poorly." The main reason is that break-even e�ects persuade loss averse investors to

accept any gamble over a sure rate of return.

This paper provides three contributions. Besides deriving closed-form solutions for the optimal

portfolio choice under loss aversion we extend the martingale methodology of Cox & Huang

(1989) to allow for pseudoconcave utility functions. In this paper we apply this extended ap-

proach to the portfolio choice of a loss averse individual, however, other situations where the

utility function is pseudoconcave can be analyzed with our approach as well. Furthermore, we

are the �rst to derive closed-form solutions for the optimal portfolios when asset returns are

skewed and fat-tailed. The Gram-Charlier expansion utilized in this paper can also be used in

other situations.

Apart from methodological contributions, our paper also contributes to the literature on loss

aversion and the equity premium puzzle. Surprisingly, there is little research on optimal portfolio

choice under loss aversion, although it is a celebrated model in behavioral �nance. Benartzi &

Thaler (1995) were the �rst to consider the implication of loss aversion on portfolio choice. They

study a one-period model, and perform simulations to calculate the optimal mix of stocks and

bonds. Benartzi & Thaler (1995) reason that myopic loss aversion makes investors reluctant to

invest in stocks, even in the face of a substantial equity premium. Unfortunately, they do not

provide closed-form solutions for the optimal portfolio choice.

Barberis, Huang & Santos (2000) recently tried to make plausible that loss aversion can explain

the equity premium puzzle. Barberis et al. (2000) only derive the �rst-order conditions for equi-

librium prices and do not derive the optimal asset allocation under loss aversion. Furthermore,

they consider an in�nite horizon model and measure loss averse preferences intertemporally in a

discrete-time model. Moreover, they assume that the value function is piecewise linear, ignoring

risk aversion over gains. Finally, our results demonstrate that their explanation for the equity

premium puzzle stems mainly from the house money e�ect of Thaler & Johnson (1990) and not

so much from loss aversion.

Independently, Gomes (2000) also studied the portfolio choice problem under loss aversion. He

concludes that a loss averse investor will not hold stocks unless the expected equity premium is

quite high. The model studied by Gomes is quite di�erent from ours. He studies a single period

model, with only two states of the world. In a multi-state setting he has to rely on numerical

techniques. Moreover, he does not solve the problem to optimality but rather constructs the

solution part by part. Finally, he does not use the original value function proposed by Kahneman

& Tversky (1979) but an adjusted version.

This paper is organized as follows. In Section 2 we consider the general continuous-time economy

and discuss myopic loss aversion. In Section 3 we study the behavior of a loss averse investor

under general price uncertainty. Section 4 derives closed-form solutions for the optimal portfolio

choice under lognormal asset returns. We also study the impact of skewness and kurtosis on

the optimal portfolio choice. Section 5 discusses whether loss aversion may explain the equity
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premium puzzle. Section 6 concludes this paper.

2 Economic Setting

2.1 The Economy

In this section we formulate our economy and the dynamic investment problem. We consider a

�nite-horizon, [0; T ], economy.1 We assume that the investor trades K+1 assets continuously in

a market without transaction costs. The zero-th asset is a riskless money market account S0(t):

dS0(t) = r(t)S0(t)dt;

The prices of the remaining assets S = fSk(t)gKk=1 follow Ito processes with drift rate �k(t) and

volatility �k(t):

dSk(t) = �k(t)Sk(t)dt+ �k(t)Sk(t)dBt; k = 1; : : : ;K; (1)

where the interest rate r(�), the drift rates �(�) and the volatility matrix �(�) are adapted process

(possibly path-dependent).

In order to meet his investment goals the investor chooses a portfolio consisting of the K risky

assets and the riskless money market account. We denote the fraction invested in risky asset

k at time t by wk(t) and the fraction invested in the riskless asset at t by w0(t). For any self-

�nancing portfolio the wealth Wt of the investor can be expressed as the following stochastic

process (using vector notation):

dWt = r(t)Wtdt+ (�(t)� �r(t))0w(t)Wtdt+ �(t)0w(t)WtdBt: (2)

where we substituted w0(t) = 1�Piwi(t). The initial wealth of the investor is denoted by W0.

Markets are assumed to be complete, implying the existence of a unique state price density (or

pricing kernel) �t, given by

�t = exp

�
�
Z t

0

r(s)ds

�
Zt;

where Zt denotes the Radon-Nikodym derivative of a change of probability measure de�ned by

Zt =
dQ

dP

= exp

�
�1

2

Z t

0

k�(s)k2ds�
Z t

0

�(s)0dBs

�
;

and �(t) = �
�1(t)(�(t) � � r(t)) denotes the market price of risk process. Note that � is an

invertible matrix, as we assumed that markets are complete.

1All stated processes are assumed to be well-de�ned and satisfy the appropriate regularity conditions. For

technical details the reader is refered to Karatzas & Shreve (1998).
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Alternatively, we may write the state price density process as

d�t

�t

= �r(t)dt� �(t)0dBt; �0 = 1: (3)

The pricing kernel �t relates future cash-ows C(Xs; s); s 2 (t; T ] to today's price Pt:

P (Xt; �) = Et

�Z T

t

�sC(Xs; s)

�t

ds

�
;

where � = T � t. For a zero-coupon bond with maturity � = T � t we have P (Xt; �) = Et

�
�T
�t

�
.

The state price density process (or pricing kernel) will play an important role in deriving the

optimal trading strategies.

Another important interpretation of the pricing kernel is due to Merton (1990). Merton shows

that the inverse of the pricing kernel is equal to the value of the growth-optimum portfolio.

The growth optimum portfolio, �t, is the strategy that maximizes the expected growth rate

of the portfolio (or the average continuously compounded return on the portfolio), i.e. �t =

argmax�t Et(log(WT )). Moreover, this portfolio is mean-variance eÆcient. When the investment

opportunity set is constant and utility is concave and di�erentiable, any optimal portfolio can

be represented in terms of simple combinations of the growth optimum portfolio and the riskless

asset (so-called two fund separation).

2.2 Myopic Loss Aversion

Optimal portfolio choice traditionally relies on rational behavior and risk aversion. Over the

past 30 years psychologists have found compelling evidence that people treat gains and losses

di�erently, and in particular that losses loom larger than gains. This behavior was formalized in

Kahneman and Tversky's prospect theory (Kahneman & Tversky 1979). Behavioral �nance has

promoted this theory as a descriptive theory for decision-making under uncertainty. Recently,

prospect theory has received a lot of attention in the �nancial literature. Benartzi & Thaler

(1995), Shumway (1997), and Barberis et al. (2000) try to explain the equity premium puzzle

with loss aversion, while Odean (1998) focuses on the disposition e�ect.2

Prospect theory was originated by the work of Kahneman & Tversky (1979) who presented a

number of choice problems to students and university faculty and found several violations of

expected utility theory.3 The main conclusions from these experiments are:

1. people care about changes in wealth rather than wealth itself;

2. people care about small risks;

2The disposition e�ect refers to the tendency of investors to sell winning investments too soon and hold losing

investments too long, see e.g. Shefrin & Statman (1985).
3This group of people may not seem representative for the average population. However, after the original

publication of Kahneman and Tversky similar experiments have been performed with other groups of people as

well.
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3. people are risk seeking in the domain of losses.

These �ndings are formalized in prospect theory: economic agents maximize an S-shaped value

function that is concave for gains, convex for losses and steeper for losses than for gains, and

apply decision weights over- and underweighting true probabilities (prospective rather than

expected values). In particular the value function is modeled as:

U(x) =

� �A (� � x)1 ; for x � �

+B (x� �)2 ; for x > �

(4)

where A1 > 0 and B2 > 0 to ensure that U(�) is an increasing function and 0 < 1; 2 � 1.

An illustration of the value function can be found in Figure 1.

Critical for the value function is the reference point distinguishing gains and losses. This refer-

ence point may represent the status quo of the investor (e.g. his current assets) or an aspiration

level. Another reasonable reference point may be some liability: an investor concerned with

his balance sheet might only experience a loss as the value of his assets falls below the value of

his liabilities. Odean (1998) uses the original purchase price of an asset as reference point. We

interpret the reference point as an aspiration level throughout and assume that it is constant.

Incorporating a stochastic reference point is straightforward and does not alter our conclusions

qualitatively.

In order to study the investment problem under loss aversion we refrain from using subjective

decision weights (Kahneman & Tversky 1979), and assume that agents maximize expected

values rather than prospective values. This assumption is also made by Shumway (1997) and

Barberis et al. (2000). Consequently, we model loss averse agents as expected utility maximizers.

Furthermore, we ignore consumption decisions since one of the implications of the framework of

Kahneman & Tversky (1979) is that investors have preferences over returns, rather than over

the consumption pro�le that these returns help provide.

A crucial notion in loss aversion is the evaluation frequency. We illustrate the impact of the

evaluation frequency on optimal asset allocation with a simple example. Consider an investor

who can invest in a risky asset in a discrete two-period economy. We assume that the investor

has the following utility function (which is a special case of (4))

U(x) =

� �2:25(�x)0:88 x < 0

x
0:88

x > 0

These parameter values are estimated by Kahneman & Tversky (1992) by conducting experi-

ments and using a nonlinear regression.

Suppose there is a risky asset worth $100 today. Over the course of the �rst year the price either

goes up to $110 with probability 1=2 or the price goes down to $95 with probability 1=2. It is

straightforward to verify that expected utility is negative, hence the investor will not buy this

asset. Suppose however, that over the second year returns are 10% and -5%, with probability 1=2

each, again. Over the two year horizon the stock has either gone up to $121 with probability

1=4, gone up to $104.50 with probability 1=2, or gone down to $90.25 with probability 1=4.
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Expected utility over the two year horizon is positive, hence the investor will want to buy the

security. This simple example shows that investment decisions are inuenced by the evaluation

frequency.

As this example illustrates, loss aversion implies that investors take di�erent decisions when

confronted with a single gamble or a sequence of gambles. The investor in our example is not

willing to accept a one-shot gamble, although he agrees to buy the asset if confronted with

the two-period gamble.4 Benartzi & Thaler (1999) conducted experiments in the context of

retirement savings decisions to study repeated investment decisions over time. The study of

Benartzi and Thaler demonstrates empirically that, when investors are loss-averse they are

willing to take more risk if they evaluate their performance infrequently.

How often do investors evaluate their performance? As Benartzi & Thaler (1995) point out

people �le taxes each year and many institutional investors are evaluated annually by regulating

authorities. An evaluation period of one year seems very plausible. Even when saving for

retirement a young investor may experience utility from gains and losses on his investments as

he checks his investment account. Benartzi & Thaler (1995) labeled the combination of loss

aversion and a short evaluation period myopic loss aversion. In their attempt to explain the

equity premium puzzle they consider myopic loss aversion as a crucial ingredient.

Our main purpose is to study the e�ect of loss-averse preferences on the demand for risky assets

and analyze whether loss aversion can explain the equity premium puzzle. We assume that the

horizon of our investor under consideration coincides with his evaluation period. This implies

that we use a rather short horizon and we only measure utility at the evaluation horizon. This

assumption allows us to express the utility function of a loss-averse agent in terms of wealth at

the �rst evaluation date. In the next we discuss and solve the portfolio optimization problem of

a loss-averse investor.

3 Portfolio Optimization Under Loss Aversion

In this section we solve the portfolio optimization problem of a loss averse investor and discuss

and analyze the properties of the solution. We make no assumptions on the distribution of the

asset returns throughout this section as we derive the optimal wealth pro�le of a loss averse

investor at his evaluation horizon. This general derivation provides insight in the structure of

the optimal strategy regardless of distributional assumptions. In the next section we specialize

to the case where asset prices follow geometric Brownian motions with constant interest rate

and market price of risk and we study some of the analytic properties of the optimal strategies

in more detail.

As the utility function of a loss-averse investor is nonconcave and nondi�erentiable the tradi-

tional stochastic dynamic programming approach and its associated Hamilton-Jacobi-Bellman

(HJB) equation cannot be utilized to derive the optimal portfolio. We shall apply the martin-

4Kahneman & Tversky (1981) stressed that the behavior captured by loss aversion only applies to one-shot

gambles.
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gale methodology to reduce the dynamic portfolio problem to an equivalent static optimization

problem. The martingale methodology was independently developed by Karatzas, Lehockzky &

Shreve (1987) and Cox & Huang (1989) under the complete market paradigm and time-additive

utility.5 The utility function is assumed to be continuous, increasing, and strictly concave. DuÆe

& Skiadas (1994) extended this approach to a more general setting with non-additive preferences

given through stochastic di�erential utility, however the utility function is still assumed to be

smooth.6

We extend the martingale methodology to allow for non-concave and non-di�erentiable utility

functions. This is especially important as the value function in loss aversion is neither concave

nor di�erentiable. We rely on pseudoconcavity of the value function (see Appendix A). Pseu-

doconcavity is suÆcient to guarantee existence of an optimal solution. Strict pseudoconcavity

ensures that the solution is unique. We apply our extended martingale methodology to study

the optimal portfolio selection problem under loss aversion, and we derive closed-form solutions

for the optimal dynamic trading strategies.

We explicitly incorporate a non-negativity constraint on the investor's wealth, as the utility func-

tion does not exhibit in�nite marginal utility at zero wealth.7 This complicates the derivation

of the optimal solution and renders an approach based on solving the HJB equation analytically

impossible. The investor aims at solving the following dynamic portfolio problem:

max E [U(T;WT )]

s.t. dWt = rWtdt+ (�� �r)0wtWtdt+ �
0
wtWtdBt

Wt � 0; 8 t 2 [0; T ]

(5)

The martingale methodology allows the problem to be restated as the following static optimiza-

tion problem.

max E [U(T;WT )]

s.t. E[�TWT ] � �0W0

WT � 0

(6)

The assumption of complete markets, a constant opportunity set and the absence of exogenous

sources of income (e.g. labor income) ensures that the optimally invested wealth will never reach

zero before time T (Cox & Huang 1989).8 As a result it suÆces to restrict terminal wealth only.

Proposition 1 characterizes the optimal solution. As the utility function is pseudoconcave,

existence of this solution is guaranteed.

5He & Pearson (1991) and Karatzas, Lehockzky, Shreve & Xu (1991) extended the martingale approach to an

incomplete market setting.
6Stochastic di�erential utility can be interpreted as a continuous-time limit of recursive utility studied by

Kreps & Porteus (1978) and Epstein & Zin (1989).
7Merton (1971) derived linear policies for HARA-utility functions. Sethi & Taksar (1988) have shown that

some of Merton's solutions are incorrect since bankruptcy problems are ignored. Explicit constraints are necessary

to prevent bankruptcy, and closed-form solutions are more diÆcult to derive.
8When an exogenous source of income is taken into account the optimally invested wealth may reach zero prior

to the horizon. For an analysis of this problem the reader is refered to El-Karoui & Jeanblanc-Picqu�e (1998).
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Proposition 1 The time T optimal wealth of a loss averse investor with 0 < 1 < 1 and

0 < 2 < 1 is

W (T ) =

(
� +

�
y�T
B2

�1=(2�1)
�T < �

0 �T � �

(7)

where � solves f(�) = 0 with

f(x) =
1� 2

2

�
1

yx

�
2
=(1�

2
)

(B2)
1=(1�2) � �yx+A�

1

and y � 0 satis�es E(�TW (T )) =�0W0.

In Figure 2 we display the optimal terminal wealth of a loss-averse (LA) agent and compare it

with a HARA agent and a constant relative risk averse (CRRA) agent. The HARA agent has

utility

U(WT ) = B (WT � �)2 ; (8)

with initial wealth W0 � � exp(�rT ). The HARA agent can always ensure that his ter-

minal wealth exceeds the aspiration level �, as he fully invests in the riskfree asset when

Wt = � exp(�rT ). The HARA investor, therefore, behaves similar to a portfolio insurer. The

benchmark CRRA investor has a relative risk aversion coeÆcient  = 2 and always invests a

constant fraction in stocks.

Note that terminal wealth is a discontinuous function of the growth optimal portfolio 1=�T . In

good states (low �T ) the loss-averse agent behaves like the CRRA agent. In moderate states the

investor behaves similar to a portfolio insurer (the optimal strategy for our HARA agent) with

oor �, as �rst-order risk aversion makes the investor averse against small changes in wealth.

In bad states (�T � �) the investor ends up with zero wealth. Since the investor is mostly

concerned with small changes in wealth (�rst-order risk aversion) relative to the threshold the

gambling behavior below the threshold (the investor is risk seeking below �) causes the investor

to incur large losses in these bad states.

The location of � depends on the preferences of the investor. As the reference point � increases

� decreases, and consequently the bad-states region increases. Accordingly, wealth in the good

states region should be increased to meet the higher oor. If the investor becomes more risk

averse over gains (i.e. 2 is decreased) � increases, and consequently the bad-states region

shrinks. Accordingly, wealth in the good states should be decreased. As �rst-order risk aversion

becomes more pronounced, i.e. (A1=B2) increases, � increases, and consequently the bad-

states region shrinks at the expense of the intermediate region. This can be understood by

realizing that, as �rst-order risk aversion becomes more pronounced, the investor cares more

about small risks and the intermediate region becomes more attractive.

We can interpret the optimal strategy of the LA investor as a combination of a binary option

and an investment in the growth optimal portfolio with a nonnegative, nonlinear payo�. The

binary option is a cash-or-nothing call on the growth optimal portfolio paying �, with a strike
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price equal to 1=�. This binary option is the optimal strategy for an investor that maximizes the

probability that terminal wealth exceeds � (or equivalently the investor minimizes the probability

of falling short of �), as the following proposition shows.9

Proposition 2 Assume that an investor aims at maximizing the probability of beating �. Then,

the optimal payo� function of the investor is a binary cash-or-nothing call option on the growth

optimal portfolio with strike price 1=�, i.e. the time T optimal wealth of the investor is:

W (T ) =

(
� �T � A

�
1
y

0 �T >
A
�
1
y

(9)

where y � 0 satis�es E(�TW (T )) =�0W0.

The second fund represents an investment in a binary asset-or-nothing call on the growth optimal

portfolio with a nonlinear payo� and a strike price equal to 1=�. The decomposition of the

optimal terminal wealth of the LA investor into a binary cash-or-nothing call option and an

investment in the growth optimal portfolio gives a nice interpretation to the optimal strategy

of a loss averse investor. The binary cash-or-nothing call gives rise to a probability maximizing

strategy as discussed above. The investment in the growth optimal portfolio (i.e. a binary

asset-or-nothing call on the growth optimal portfolio) will be labeled the growth strategy.

In this section we discussed the characteristics of the optimal solution without making assump-

tions about the security price processes. We showed that the optimal strategy, under general

security price processes, can be decomposed into a probability maximizing strategy and a growth

strategy. In the next section we specialize to lognormal state prices with constant interest rate

and market price of risk (i.e. we assume that asset prices follow geometric Brownian motions

with constant coeÆcients). We derive closed-form solutions for the optimal wealth and port-

folio policies and analyze the characteristics of these solutions. In particular we study the two

strategies derived in this section, the probability maximizing strategy and the growth strategy,

in more detail.

4 Optimal Portfolio Choice under Loss Aversion

4.1 Properties of the LA Strategy

In the previous section we characterized the optimal terminal wealth of a loss-averse investor

under general price processes. In this section we derive closed-form solutions for the optimal

policies when asset prices follow a geometric Brownian motion. We assume that interest rates

and the market price of risk are constant. We study whether loss aversion can explain the

equity premium puzzle, and in particular the participation puzzle.10 We also consider whether

9The probability maximizing strategy was recently studied by Browne (1999).
10The participation puzzle refers to the stylized fact that a large number or people do not hold stocks. Mankiw

& Zeldes (1991) show that the participation puzzle forms a large part of the equity premium puzzle.
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the claim of Benartzi & Thaler (1995) that a loss averse investor with a shorter evaluation period

allocates less to stocks holds true.

We �rst consider the characteristics of the optimal strategy of a loss averse investor. When

applying the martingale methodology the optimal strategies are not given in feedback form as

with stochastic dynamic programming. Instead, the optimal strategies are derived as a function

of the pricing kernel �t (or equivalently as a function of the growth optimal portfolio Zt = 1=�t).

Proposition 3 presents closed-form expressions for the optimal wealth and portfolio strategies at

time t < T .

Proposition 3 Consider a loss-averse investor. Assume, 0 < 1 < 0, 0 < 2 < 1, and r and �

are constants. Then:

(i) The time t optimal wealth is given by

W (t) = �e
�r(T�t)

N(d1(�)) +

�
B2

y�t

�1=(1�
2
)

e
�(t)

N(d2(�)) (10)

where N(�) denotes the cumulative standard normal distribution function and

d1(x) =
log
�
x
�t

�
+
�
r � 1

2
k�k2� (T � t)

k�k
p
(T � t)

d2(x) = d1(x) +
k�k
p
(T � t)

1� 2

�(t) =
2

1� 2

�
r +

1

2
k�k2

�
(T � t) +

1

2

�
2

1� 2

�2

k�k2(T � t)

and where � solves f(�) = 0 with

f(x) =
1� 2

2

�
1

yx

�2=(1�2)

(B2)
1=(1�2) � �yx+A�

1

(ii) The fraction of wealth invested in the risky assets is

w(t) =
(�0)�1�

W (t)

 
�e

�r(T�t)
�(d1(�))

k�k
p
(T � t)

+

�
B2

y�t

�1=(1�
2
)

e
�(t)

 
�(d2(�))

k�k
p
(T � t)

+
N(d2(�))

1� 2

!!
(11)

where N(�) denotes the cumulative standard normal distribution function and �(�) denotes
the standard normal density function.

Note that as �t goes to in�nity (and equivalently wealth goes to zero) the fraction invested in

stocks goes to zero (to avoid bankruptcy). As �t goes to zero (and equivalently wealth goes

to in�nity) the optimal fraction invested in stocks tends to the optimal policy of the constant

relative risk averse investor with  = 2.
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Figure 3 compares the optimal wealth at time t < T (10) prior to the investment horizon and

the relative exposure to stocks for the LA investor with the portfolio insurance policy and the

benchmark CRRA case. We assume that there is one risky asset (stocks). Figure 3(a) shows

that the optimal time-t wealth exhibits concavity in the intermediate region as the investor

begins to insure himself. Figure 3(b) reveals that the optimal fraction invested in stocks is

V-shaped. In good states the investor behaves similar to a portfolio insurer, investing more

heavily in the riskfree asset to establish the oor. However, as risk aversion ( = 0:88) is very

low, the benchmark investor holds a large portion of wealth in equities. Consequently, even the

loss averse agent invests heavily in stocks. Moreover, in bad states the investor increases his

exposure to stocks, as risk seeking over losses becomes more pronounced.

In the previous section we have shown that the optimal LA strategy can be decomposed into

a probability maximizing strategy and a growth strategy. Figure 4 shows the optimal fraction

invested in stocks as a function of the pricing kernel for each of these strategies. The growth

strategy dictates a diminishing stock position as the pricing kernel increases. The risk-taking

behavior is entirely caused by the probability maximizing strategy. As the investor only cares

about the probability that terminal wealth exceeds his aspiration level, stocks are more attractive

despite their higher volatility. We label this behavior as a break-even e�ect. The probability

maximizing strategy illustrates that \a person who has not made peace with his losses is likely

to accept gambles that would be unacceptable to him otherwise" (Kahneman & Tversky 1979).

Due to the probability maximizing behavior, the investor bets on a favorable realization of a

large equity investment, in bad states, to break even with his reference point. Since, in the

description of myopic loss aversion, risk seeking in the presence of losses is always accompanied

by an opportunity to break even with the reference point, the LA investor always bets on

this favorable realization. As the probability that terminal wealth exceeds the aspiration level

increases by accepting a gamble, the investor prefers this gamble over a sure rate of return.

These break-even e�ects contradict the intuition of Benartzi & Thaler (1995) that loss averse

investors shun stocks as the horizon shortens and that they are reluctant to allocate heavily to

stocks, due to the pain experienced when stocks perform poorly.

Figure 5 displays the optimal fraction invested in stocks for di�erent values of risk aversion over

gains 2 and the Sharpe-ratio �. The e�ect of higher risk aversion (Figure 5(a)) over gains is

obvious: a more risk averse investor allocates less to stocks. When 2 goes to zero the optimal

fraction invested in stocks tends to the optimal policy of the probability maximizer (Figure 4).

Figure 5(b) shows the e�ect of the Sharpe ratio on the optimal fraction invested in stocks. If

the Sharpe ratio declines the investor desires more protection as stocks yield less return per

unit of risk. In good states the investor decreases the exposure to stocks more heavily to gain

protection. Consequently, the break-even point (minimum fraction in stocks) occurs at a lower

value of the pricing kernel (higher wealth level). In bad states the investor more aggressively

increases his allocation to stocks to break even when confronted with a lower Sharpe-ratio.

As optimal wealth is a strictly decreasing function of the pricing kernel � we may also derive

the optimal strategies in feedback form. The optimal faction invested in stocks as function of

wealth is again V-shaped. The fraction invested in stocks is minimal at some critical wealth

level. Figure 6 shows these critical wealth levels as a function of time. If wealth falls below this
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critical value break-even e�ects dominate the behavior of the loss averse investor. When wealth

remains above the critical value the investor behaves prudent. In the presence of gains, the

demand for stocks increases as the investor becomes more wealthy (as in the portfolio insurance

strategy). In the presence of losses, the investor desires to break even with his reference point

by increasing his demand for stocks.

It should be noted that the critical path for small t is below the satiation level, �e�r(T�t), of

a probability maximizer. In this region the growth strategy obviously provides an additional

cushion. When the time to maturity shrinks the loss averse investor becomes more risk seeking

than a probability maximizer (as the critical level is above �e�r(T�t)) and the growth strategy

no longer provides a cushion. The critical wealth level represents the kink in the derived utility

function at time t. The martingale methodology of Cox & Huang (1989) also allows us to

determine this indirect utility function, even though it does not have the desired derivatives to

satisfy the HJB equation. Proposition 4 presents the indirect utility function for a loss-averse

agent.

Proposition 4 Consider a loss-averse investor. Assume, 0 < 1 < 0, 0 < 2 < 1, and r and

� are constants. Denote the time-t optimal wealth Wt = F (t; �t). Then, the indirect utility

function J(W; t) is given by:

J(W; t) = b
J(�t; t) = �A�1N(�d3(�)) +B

�
B2

y�t

�2=(1�2)

e
�(t)

N(d2(�)) (12)

where

d3(x) = d1(x) + k�k
p
(T � t)

Figure 7 shows the indirect utility function and its corresponding relative risk aversion function.

The relative risk aversion function (Figure 7(b)) is clearly discontinuous as the derived utility

function (Figure 7(a)) inherits the kink of the value function. Risk aversion is increasing below a

critical wealth level inducing the investor to increase the optimal fraction in stocks as wealth de-

creases. Above the critical wealth level the relative risk aversion function is decreasing, inducing

the investor to increase the fraction invested in stocks as wealth increases.

The optimal LA strategy can be fully understood from the behavior of the relative risk aversion

function. When wealth remains above the critical level, the investor is prudent. The optimal

policy exhibits time diversi�cation: at longer horizons the investor invests more in stocks. As

wealth falls below the critical level prior to the evaluation horizon, the investor's behavior is

dominated by a gambling attitude. The investor aims to break even with his aspiration level.

The optimal policy displays a reverse time diversi�cation e�ect: at shorter horizons the investor

allocates more heavily to stocks. As the investor's wealth is below his aspiration level, a shorter

horizon leaves less time to break even, and consequently the loss averse investor increases his

exposure to stocks.
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4.2 Break-even E�ects

We have seen that an LA investor always gambles at low levels of wealth in order to break even.

This can be attributed to the fact that in the description of loss aversion risk seeking in the

presence of losses is always accompanied by an opportunity to break even with the reference

point. Thaler & Johnson (1990) demonstrate empirically that there is an important distinction

between gambles that o�er the opportunity to break even and gambles that lack this opportunity.

Gambles that o�er the opportunity to break even may be acceptable to an investor, whereas

gambles that lack this opportunity are avoided. Thaler & Johnson (1990) �nd empirical evidence

that investors are risk seeking over gambles that allow them to break even, whereas they are

risk averse over gambles that lack this opportunity.

In this section we consider an extension of the value function of (Kahneman & Tversky 1979)

that takes this evidence into account. We assume that the investor becomes risk averse again for

large losses as the likelihood to break even is very small. In particular, we consider the following

modi�cation to (4):11

U(W ) =

8<:
1
W

 � 1
W

 �A (� �W )1 W �W

�A (� �W )1 W < W < �

+B (W � �)2 W � �

(13)

where  < 1 ensuring that the utility function is concave when W � W . Moreover, we choose

the utility function below W to display constant relative risk aversion. The additional constant

is chosen to ensure that the utility function is continuous. The utility function is pseudoconcave

again.

Proposition 5 characterizes the optimal solution

Proposition 5 Consider a loss-averse investor with utility (13). Assume, 0 < 1 < 0, 0 <

2 < 1,  < 1 and r and � are constants. Then:

(i) The time T optimal wealth is given by

W (T ) =

8<: � +
�
y�T
B2

�1=(
2
�1)

�T � �

(y�T )
1=(�1)

�T > �

(14)

where � solves f(�) = 0 with

f(x) =
1� 2
2

�
1

yx

�
2
=(1�

2
)

(B2)
1=(1�

2
)
� �yx+A(� �W )1 +

1


W 

�

�
1� 



�
(yx)

=(�1)

and y � 0 satis�es E(�TW (T )) =�0W0.

11Independently, Gomes (2000) proposed a similar utility function, however, he assumes that utility displays

increasing relative risk aversion for small levels of wealth.
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(ii) The time t optimal wealth is given by

W (t) = �e
�r(T�t)

N(d1(�)) +

�
B2

y�t

�1=(1�2)

e
�(t)

N(d2(�)) (15)

+ (y�t)
1=(�1)

e
�2(t)(1�N(d3(�))) (16)

where N(�) denotes the cumulative standard normal distribution function and

d1(x) =
log
�
x
�t

�
+
�
r � 1

2
k�k2� (T � t)

k�k
p
(T � t)

(17)

d2(x) = d1(x) +
k�k
p
(T � t)

1� 2

(18)

�(t) =
2

1� 2

�
r +

1

2
k�k2

�
(T � t) +

1

2

�
2

1� 2

�2

k�k2(T � t) (19)

and d3 and �2 equal d2 and � respectively with 2 replaced by :

(iii) The fraction of wealth invested in the risky assets is

w(t) =
(�0)�1�

W (t)

 
�e�r(T�t)�(d1(�))

k�k
p
(T � t)

+

�
B2
y�t

�1=(1�
2
)

e�(t)

 
�(d2(�))

k�k
p
(T � t)

+
N(d2(�))

1� 2

!!

+
(�0)�1�

W (t)
(y�t)

1=(�1)
e�2(t)

 
1�N(d3(�))

1� 
�

�(d3(�))

k�k
p
(T � t)

!

where N(�) denotes the cumulative standard normal distribution function and �(�) denotes
the standard normal density function.

Note that as �t goes to in�nity (and equivalently wealth goes to zero) the fraction invested

in stocks converges to the optimal policy of a constant relative risk averse investor with risk

aversion coeÆcient . As �t goes to zero (and equivalently wealth goes to in�nity) the fraction

invested in stocks tends to the optimal policy of a constant relative risk averse investor with risk

aversion coeÆcient 2.

Figure 8 shows the optimal fraction invested in stocks relative to the benchmark CRRA investor

for both the standard LA investor and the extended LA investor. In intermediate states the

extended loss averse investor starts to gamble as break-even e�ects dominate the policy. In bad

states the investor decreases his exposure to stocks as break-even e�ects are no longer sensible

and risk aversion dominates again. It should be noted, however, that the equity premium puzzle

cannot be explained by this extended description of loss aversion. In bad states, the utility

function is equivalent to a power utility function. It is widely known that constant relative risk

aversion cannot explain the equity premium puzzle, unless the relative risk aversion coeÆcient

is extremely large (Mehra & Prescott 1985).
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4.3 Impact of skewness and kurtosis

In the previous section we derived closed-form solutions for the portfolio choice of a loss-averse

investor under the assumption that asset prices are i.i.d. lognormally distributed. There is

a vast amount of empirical evidence that asset returns are negatively skewed and leptokurtic.

Fama (1965) was the �rst to show that stock returns (at a daily basis) exhibit fat tails. Sample

estimates of skewness for stock index returns tend to be negative, while sample estimates of

excess kurtosis for stock returns on indexes are positive. Table 1 shows sample statistics for

monthly returns on the S&P500 from January 1990 to December 1999.

Table 1: Summary Statistics for S&P Returns, 1990-1999

Mean Std. Dev. Skewness Excess Kurtosis

S&P 500 14.25% 46.58% -0.82 2.21

Statistics are based on monthly returns (annualized).

In this section we study the impact of skewness and kurtosis on the optimal portfolio choice of

a loss averse investor. Rather than relying on distributional assumptions such as a Student-t

distribution or on other departures from normality such as jump-di�usion models, we adopt a

Gram-Charlier expansion of the lognormal density function. The Gram-Charlier expansion was

�rst introduced in �nance by Jarrow & Rudd (1982). The advantages of using a Gram-Charlier

expansion are:

1. we do not have to make distributional assumptions, which can be hard to defend and

estimate from historical data; instead we can rely on sample estimates for skewness and

excess kurtosis;

2. we are able to derive closed-form solutions for the optimal portfolio choice of a loss averse

investor when asset returns are skewed and fat-tailed.

The Gram-Charlier expansion provides a parsimonious representation of a distribution with

skewness and kurtosis. It generates an approximate density function for a standardized random

variable. For the lognormal density function, the Gram-Charlier expansion is given by:

f(z;�; k) = (1 + �(z3 � 3z) + Æ(z4 � 6z2 + 3))�(z); (20)

where z = (log(x) � �)=�, � = �=6, Æ = �=24 and �; � denote skewness and kurtosis of log(x)

respectively, and �(�) denotes the standard normal density function. Equation (20) is often

viewed as an approximation to an arbitrary density function with nonzero higher moments,

however, for moderate values of � and � it is a density function in itself. An extensive treatment

of the Gram-Charlier expansion can be found in Johnson, Kotz & Balakrishnan (1994).

First, we �rst consider the impact of skewness and kurtosis on the optimal policy for our HARA

investor.

Proposition 6 Consider a HARA investor with utility (8). Let � and Æ denote scaled skewness

and kurtosis respectively. Then
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(i) The time T optimal wealth is given by

W (T ) = � +

�
B2

y�T

�1=(1�2)

(21)

where y � 0 satis�es E(�TW (T )) =�0W0.

(ii) The time t optimal wealth is given by

W (t) = �e
�r(T�t)

Q1(�; �; Æ) +

�
B2

y�t

�1=(1�2)

e
�(t)

Q1(2�=(1 � 2); �; Æ) (22)

where Q1(�; �; Æ) = 1 + ��
3 + Æ�

4 and

�(t) =
2

1� 2

�
r +

1

2
k�k2

�
(T � t) +

1

2

�
2

1� 2

�2

k�k2(T � t)

N(�) denotes the cumulative standard normal distribution function and �(�) denotes the

standard normal density function.

(iii) The fraction of wealth invested in the risky assets is (in feedback form):

wt =
(�0)�1�

1� 2

 
1� �e

�r(T�t)

W (t)
Q1(�; �; Æ)

!
(23)

Since Q1(�; �; Æ) = 1+��3+Æ�4; the optimal policy is inuenced by the skewness and kurtosis of

asset returns only through the products ��3 and k�4 respectively. As these values are quite small,

skewness and kurtosis have hardly any impact on the optimal portfolio choice for the HARA

investor. For the benchmark CRRA investor the optimal portfolio is even independent of the

skewness and kurtosis of asset returns.12 When the investor exhibits loss averse preferences this

is no longer true and skewness and kurtosis have a substantial impact on the optimal strategy.

The next proposition presents a closed-form expression for the optimal fraction invested in wealth

when asset returns exhibit skewness and kurtosis.

Proposition 7 Assume that the investor is loss averse with 0 < 1 < 1. Let � and k denote

scaled skewness and kurtosis respectively. Then,

(i) The time t optimal wealth is given by

W (t) = �e
�r(T�t)

G(d1(�); �) +

�
B2

y�t

�1=(1�2)

e
�(t)

G(d2(�); ��) (24)

12The optimal policy for the benchmark CRRA investor is given by Proposition 6 where � = 0.
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where � = 2=(1� 2)

d1(x) =
log
�
x
�t

�
+
�
r � 1

2
k�k2� (T � t)

k�kp(T � t)

�(x) = d1(x) + �; d2(x) = a(x)� ��

�(t) =
2

1� 2

�
r +

1

2
k�k2

�
(T � t) +

1

2

�
2

1� 2

�2

k�k2(T � t)

G(x; �) = N(x)Q1(�; �; Æ)� �(x)Q2(�(x); �; �; Æ)

Q1(�; �; Æ) = 1 + ��
3 + Æ�

4

Q2(�; �; �; Æ) = �

�
(�+ �)2 � �� � 1

�
+ Æ

�
�((�+ �)2 � �� � 3) + �(�2 � 1)

�
and where � solves f(�) = 0 with

f(x) =
1� 2

2

�
1

x

�2=(1�2)

(B2)
1=(1�

2
) � �x+A�


1

(ii) The fraction of wealth invested in the risky assets is

w(t) =
(�0)�1�

W (t)

 �
B2

y�t

�1=(1�
2
)

e
�(t)

 
G(d2(�); ��)

(1� 2)
+

	(�(�); ��; �; Æ)

k�k
p
(T � t)

!
+ (25)

+
�e

�r(T�t)

k�k
p
(T � t)

	(�(�); �; �; Æ)

!
(26)

where �(�) denotes the standard normal density function and

	(�; �; �; Æ) = �(�� �)(Q1(�; �; Æ)�Q
0

2(�; �; �; Æ) + (�� �)Q2(�; �; �; Æ))

= �(�� �)(1 + �(�3 � 3�) + Æ(�4 � 3�2 � 3�+ 3) + 3Æ�(1� �))

Figure 9(a) shows the fraction invested in stocks for a loss averse investor relative to the bench-

mark CRRA investor for di�erent values of negative skewness. The main conclusion is that the

break-even e�ects are more pronounced as negativily skewed returns make the occurrence of

bad states more likely. In the good states region the impact of skewness is relatively small and

induces the investor to lower his exposure to stocks. Note that the break-even e�ect is no longer

monotonic as in the lognormal case discussed in the previous section. This non-monotonic e�ect

is caused by the fact that the density function is no longer unimodal.

Figure 9(b) shows the fraction invested in stocks for a loss averse investor relative to the bench-

mark CRRA investor for di�erent values of excess kurtosis. We may conclude that excess kurtosis

ampli�es the break-even e�ects. Again, in the good states region the impact of excess kurtosis is

relative small and induces the investor to lower his exposure to stocks. A similar decomposition

of the optimal strategy as in the previous section, shows that the excess kurtosis and negative

skewness mainly inuence the probability maximizing strategy, whereas the growth strategy is

almost independent of skewness and kurtosis in asset returns.
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5 Loss Aversion and The Equity Premium Puzzle

One of the most striking puzzles in �nance, is the question why, historically, the equity premium

has been so high and interest rates so low. Standard economic models fail to explain this high

equity premium, as was �rst observed by Mehra & Prescott (1985). This stylized fact is termed

the equity premium puzzle, and over the last decade a stream of literature has attempted to

explain it. Possible explanations include market imperfections (Basak & Cuoco 1998), incom-

pleteness (Constantinides & DuÆe 1996), and alternative assumptions on preferences such as

habit formation (Campbell & Cochrane 1999) and loss aversion (Barberis et al. 2000, Benartzi

& Thaler 1995).

Campbell & Cochrane (1999) and Barberis et al. (2000) have recently come up with plausible

explanations for the equity premium puzzle. Campbell & Cochrane (1999) study a model with

habit formation. As people form consumption habits over time, they become averse against a

decline in their standard of living. This might induce an individual to be reluctant to investing

in the stock market, as he fears a recession. However, as most of the stock market is owned by

institutional investors, consumption habits may not produce the complete picture. The model

of Campbell & Cochrane (1999) is based on a complete and perfect market, and can replicate

the equity premium, the predictability of asset returns, and a nearly constant interest rate.

Barberis et al. (2000) consider a combination of prospect theory and the house money e�ect of

Thaler & Johnson (1990) to resolve the equity premium puzzle. Apart from consumption the

investor additionally has preferences over gains and losses from investing in the stock market.

The model of Barberis et al. (2000) is related to the model studied by Campbell & Cochrane

(1999) as both imply time-varying risk aversion. Such an economy is labeled a moody investor

economy by Bekaert & Grenadier (1999). The model of Barberis et al. (2000) reproduces the

equity premium, predictability of asset returns, and a nearly constant interest rate. Crucial in

the analysis of Barberis et al. (2000) is the house money e�ect observed by Thaler & Johnson

(1990).

Thaler & Johnson (1990) extend the work of Kahneman & Tversky (1979) to study how risk

aversion is e�ected by prior gains and losses. Using real money experiments they �nd evidence

for (i) increased risk aversion after prior losses, (ii) risk seeking after prior gains, and (iii) changes

in risk-taking behavior when one outcome can allow decision-makers to break even. The �rst

two observations are labeled as the house money e�ect refering to the `gambling parlance of

\playing with the house money"'. Barberis et al. (2000) conclude that \loss aversion cannot by

itself explain the equity premium", without time-varying risk aversion as induced by the house

money e�ect.

Mankiw & Zeldes (1991) show that the equity premium puzzle can largely be attributed to a

participation puzzle. The participation puzzle refers to the stylized fact that a large fraction of

households do not hold stocks. Can loss aversion explain the equity premium or the participation

puzzle? Based on our closed-form solutions the answer to this question is negative. As a loss

averse individual is confronted with losses break-even e�ects induce him to allocate heavily

to stocks. Moreover, as relative risk aversion over gains is quite low, a loss averse investor

even allocates heavily to stocks when confronted with gains. Therefore, we believe that a
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representative agent model with loss aversion cannot explain the equity premium, given the

estimated parameter of Kahneman & Tversky (1992).

Our extended description of loss aversion cannot resolve the equity premium puzzle either as the

optimal policy in bad states tends to the optimal policy under constant relative risk aversion.

It is widely known that constant relative risk aversion cannot explain the equity premium,

unless the relative risk aversion coeÆcient is extremely large. Even in the presence of negatively

skewed and fat-tailed stock returns the equity premium puzzle (or the participation puzzle)

cannot be resolved. Although skewness and kurtosis have a substantial e�ect on the optimal

portfolio choice of a loss averse investor, they mainly aggravate the break-even e�ects causing

the investor to drastically increase his exposure to stocks.

Our analysis of the optimal portfolios of loss averse investors contradict the intuition of Benartzi

& Thaler (1995) that myopic loss aversion makes the investor \reluctant to allocate heavily to

stocks, due to the pain experienced when stocks perform poorly." In a one period portfolio

optimization model with loss averse preferences, Benartzi & Thaler (1995) �nd, based on sim-

ulations, that myopic loss averse investors do not want to invest in stocks, even in the face of

a substantial equity premium. Additionally, they claim that a shorter evaluation period makes

stocks less attractive to a loss averse investor. These results seem to indicate that myopic loss

aversion may explain the participation puzzle.

How can we resolve the seeming discrepancy between the conclusions of Benartzi & Thaler

(1995) versus Barberis et al. (2000) and our closed-from solutions? It should be noted that our

model is somewhat di�erent from the one-period model considered by Benartzi & Thaler (1995).

In our continuous-time model the investor can rebalance his portfolio continuously, while in the

one-period model of Benartzi & Thaler (1995) the investor can only decide on an investment

strategy today, without rebalancing afterwards. Benartzi & Thaler (1995) determine the optimal

fraction invested in stocks for a loss averse investor in their one-period model, using historical

stock returns from 1926 to 1990. They conclude that portfolios with 30 percent to 55 percent

stocks are optimal, apparently resolving the equity premium puzzle.

We are concerned about the robustness of this result. Rather than solving the one-period model

of Benartzi & Thaler (1995) once for a certain historical data set, we consider the impact of

di�erent equity premiums. As in Benartzi & Thaler (1995) the evaluation period is one year

and the initial wealth equals the aspiration level �. For a �xed Sharpe-ratio we draw 10,000

stock returns from a lognormal distribution. We determine the optimal fraction invested in

stocks numerically, and repeat this procedure for di�erent values of the Sharpe-ratio. To avoid

bankruptcy in the buy-and-hold model, we do not allow for borrowing and consequently the

investor cannot allocate more than 100% to stocks.

The results are given in Figure 10. Note the clear discontinuity at a Sharpe-ratio of 0:27.

For larger values of the Sharpe ratio the investor allocates 100% of his wealth to stocks. This

discontinuity should not be surprising as we have shown previously in our continuous-time model,

that terminal wealth is a discontinuous function of �T . Here we obtain a similar result. However,

as we only consider buy-and-hold strategies, the fraction invested in stocks is also discontinuous.

Since historically the Sharpe-ratio has been around 0:50 in the US, myopic loss aversion cannot
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explain the equity premium puzzle, as the investor would dedicate his entire wealth to stocks.

Given our discussion in this section and the analysis in this paper, we conclude that myopic loss

aversion in itself is not likely to explain the equity premium, given the parameters of Kahneman

& Tversky (1979). Loss aversion induces break-even e�ects. These break-even e�ects provide

an incentive to allocate heavily to stocks, as the investor aims to maximize the probability that

his wealth at the evaluation horizon exceeds his aspiration level. Another concern is the low

risk aversion over gains, 2 = 0:88. Even if the investor is confronted with gains, this low

risk aversion implies a large equity position. It should be noted that the parameters for utility

function (4) estimated by Kahneman & Tversky (1992) apply to an experimental situation rather

than observed investment behavior.

6 Conclusions

In this paper we studied the investment behavior of a loss averse investor. We derived closed-

form solutions for the optimal portfolio choice under lognormal returns and when returns exhibit

skewness and kurtosis. This paper provides three contributions:

1. we derive closed-form solutions for the optimal portfolio choice under loss aversion;

2. we extend the martingale methodology of Cox & Huang (1989) to allow for pseudoconcave

utility functions;

3. we derive closed-form solutions for optimal portfolio choice when returns are skewed and

fat-tailed.

Our main conclusions are:

1. When confronted with gains a loss averse investor behaves similar to a portfolio insurer

trying to keep wealth from falling below his aspiration level.

2. When confronted with losses a loss averse investor behaves similar to a probability maxi-

mizer, caring only about the probability that terminal wealth exceeds his aspiration level.

This probability maximizing behavior can interpreted as a break-even e�ect.

3. The equity premium puzzle cannot be explained in a representative agent model with loss

aversion, due to (i) break-even e�ects, and (ii) small risk aversion over gains

We believe that our �ndings may shed light on the discussion about loss aversion and the equity

premium puzzle, initiated by Benartzi & Thaler (1995) and recently further analyzed by Barberis

et al. (2000). Loss averse investors behave similar to probability maximizers when confronted

with losses. Accordingly, such investors are only concerned about the probability that terminal

wealth exceeds the aspiration level regardless of the volatility of asset returns. Consequently,

since stock returns are more volatile than bond returns, a substantial investment in stocks yields

a higher probability that terminal wealth will exceed the aspiration level.



Optimal Portfolio Choice Under Loss Aversion 22

These break-even e�ects are implicitly contained in the description of prospect theory by Kah-

neman & Tversky (1979). However, such e�ects were not anticipated by Benartzi & Thaler

(1995) and Barberis et al. (2000). Furthermore, we believe that these break-even e�ects may

help explain the disposition e�ect (Shefrin & Statman 1985), although we do not discern between

realized returns and expected returns. The desire to break even may explain why investors hold

losing investments too long. A �rst step in this direction is taken by Odean (1998) who performs

an empirical study. Further research is necessary to conclude that loss aversion can explain the

disposition e�ect.
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A Pseudoconcave Functions

In this appendix we briey discuss pseudoconcavity and show that utility function (4) is a pseudo-

concave function. Pseudoconcavity is a useful concept in economics as it allows a generalization

of many results originally derived for di�erentiable and concave utility functions. Pseudocon-

cavity of the utility function is suÆcient to guarantee existence of an optimal solution. Strict

pseudoconcavity ensures uniqueness of the optimal solution. For a general treatment of pseu-

doconcavity and applications in economics the interested reader is refered to Avriel, Diewert,

Schaible & Zang (1988).

De�nition 1 introduces the notion of pseudoconcavity.

De�nition 1 Let f : C ! IR, where C � IRn is an open convex set. The function f is called

pseudoconcave if for x; y 2 C, and 0 < � < 1:

f(x) > f(y)) f(�x+ (1� �)y) � f(y) + (1� �)�b(x; y);

where b(x; y) is a positive number depending, in general, on x and y.

If f is pseudoconcave, then �f is pseudoconvex. A function which is both pseudoconcave and

pseudoconvex is called pseudomonotonic (or pseudolinear). It is easy to prove the following

lemma.

Lemma 1 Let f : (a; b) ! IR be a one-dimensional strictly increasing function. Then, the

function f is pseudomonotonic.

Proof: Choose x; y 2 (a; b) such that f(x) > f(y). Since f is strictly increasing we conclude

that x > y. Take 0 < � < 1 and de�ne b(x; y) = (x� y)�, where � > 0 and

� � f(�x+ (1� �)y)� f(y)

�(1� �)(x� y)
;

hence b(x; y) is a positive number. Then it follows that

f(y) + (1� �)�b(x; y) � f(�x+ (1� �)y);

proving that f is pseudoconcave. The proof that f is pseudoconvex is analogous. 2

It is now straightforward to proof the following result.

Proposition 8 Utility function (4) is pseudomonotonic.

Proof: Since (4) is strictly increasing, we conclude from Lemma 1 that the function (4) is

pseudomonotonic. 2

Since the function (4) is pseudomonontonic it is, in particular, pseudoconcave.
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Let us briey discuss the implications of pseudoconcavity in convex optimization. Consider the

following convex optimization problem:

max f(x)

s.t. gi(x) � 0; i = 1; : : : ;m;

hj(x) = 0; j = 1; : : : ; p:

Mangasarian (1965) (in case of smooth functions) and Diewert (1981) (in case of nonsmooth

functions) have shown that if f is pseudoconcave, gi is pseudoconvex (for all i), and hj is

pseudomonotonic (for all j) then the �rst order conditions for the Lagrangian of the above

problem imply a global optimum. If the function f is strictly pseudoconcave this global optimum

is unique.

B Mathematical Proofs

Proof of Proposition 1

Problem (6) is a convex optimization problem with a pseudoconcave objective function. The

convex-duality approach (see, e.g. Karatzas & Shreve (1998)) can easily be adapted to allow for

pseudoconcave utility functions. The Legendre-Fenchel transform (or convex conjugate) for (6)

is de�ned by

U
�(�T ) = max

W�0
fU(W )� y�TWg ; (27)

where �T � 0 denotes the pricing kernel. We �rst consider the solution to this pointwise

maximization problem for all �T , and show that (7) solves this problem. Then, we show that

the solution to the pointwise maximization problem (27) also solves (6).

Let us denote the part of the utility function below � by U1(W ) and the part above � by U2(W ).

If W � �; the optimally invested wealth W
� should satisfy the following Karush-Kuhn-Tucker

(KKT) conditions

U
0

1(W
�) = y�T � �; W

� � 0;

�W
� = 0; � � 0;

where � denotes the Lagrange multiplier associated with the nonnegativity constraint on wealth.

Solving for the KKT conditions we obtain

W
� = max

(
� �

�
A1

y�T

�1=1�
1

; 0

)
:=W

�
1 :

Similarly, if W � �; the optimally invested wealth W
� should satisfy U

0
2(W

�) = y�T and we

obtain

W
� = � +

�
B2

y�T

�1=1�2

:=W
�

2
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Since U(W )� y�TW is not concave, we need to compare the two local maxima W �
1 and W

�
2 to

determine the global maximum. If

U(W �

1 )� y�TW
�

1 � U(W �

2 )� y�TW
�

2 (28)

the optimal solution is given by W �
2 : Since 0 < 1 < 1 and 0 < 2 < 1 it is not diÆcult to verify

W
�
2 is the optimal solution if �T � A1

y
�

1
�1. For �T >

A1
y
�

1
�1 we should compare the values

of W �
1 = 0 and W

�
2 . From (28) we may conclude that W �

2 is optimal if �T � �, where � satis�es

f(�) = 0; with

f(x) =
1� 2

2

�
1

yx

�2=(1�2)

(B2)
1=(1�

2
) � �yx+A�


1
:

Let us denote the optimal solution of (27) by W �(T ). Now let W (T ) be any candidate optimal

solution, satisfying the static budget equation in (6). Then, we have

E[U(T;W �

T )]�E[U(T;WT )] =

E[U(T;W �
T )]�E[U(T;WT )]� y�0W0 + y�0W0 �

E[U(T;W �

T )]�E[U(T;WT )]� yE[�TW
�

T ] + yE[�TWT ] =

E[U�(�T )]�E[U�(�T )] � 0

where the �rst inequality follows from the fact that the static budget equation holds with equality

for W �

T and with inequality for WT . The second inequality follows from the fact that W �

T is the

optimal solution to (27). Hence, we conclude that W �(T ) is the optimal solution of the static

problem (6). This concludes the proof. 2

Proof of Proposition 2

Consider the probability maximizing problem

max AP (WT � �)

s.t. E[�TWT ] � �0W0;

WT � 0;

(29)

where A is some positive constant. We can reformulate this problem as a utility maximization

problem with utility

U(T;WT ) =

�
0 if WT < �

A if WT � �:

The Legendre-Fenchel transform is given U
�(�T ) = maxW�0fA1fWT��g � y�TWg, and y solves

E(�TWT ) = �0W0. Solving for this problem, it is not diÆcult to conclude that the optimum is

given by:

W
� =

(
� if �T <

A
�
1
y

0 if �T � A
�
1
y

This terminal wealth pro�le is the payo� of a binary cash or nothing call on the growth optimal

portfolio Zt = 1=�t with strike price 1=�� = A=(�y). A similar argument as in the proof of

Proposition 1 demonstrates that W � is the optimal solution to (29). This concludes the proof.

2
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Proof of Proposition 3

(i) Applying Ito's Lemma it is straightforward to show that �tWt is a martingale. Therefore

Wt =
1

�t

Et[�TWT ] =
1

�t

Et

"
�T

 
� +

�
y�T

B2

�1=(
2
�1)
!
1
f�T�

��g

#
; (30)

where we substituted (7). Since r and � are constant, and the asset prices follow geometric

Brownian motions, the pricing kernel log(�T ) is normally distributed with mean

log(�t)� (r +
1

2
k�k2)(T � t)

and variance k�k2(T � t). After some straightforward calculus we obtain (10).

(ii) We have two alternative characterizations for wealth at time t. Reformulating (10) as

a stochastic process and equating the di�usion part of this stochastic process with the

di�usion part of the wealth process (2) we obtain an explicit expression for the fraction of

wealth invested in the risky assets.

For ease of notation we de�ne wealth as Wt =: F (t; �t). Using Ito's Lemma and (3) we

obtain:

dWt = G(t; �t)dt�
@F (t; �t)

@�t

�t�
0
dBt; (31)

for some G(t; �t) (note that we are only interested in the di�usion part). Comparing the

di�usion part of (2) with the di�usion part of (31) we obtain the following expression for

the optimal fraction invested in the risky assets:

wt = �(�0)�1�0

Wt

�
@F (t; �t)

@�t

�t

�
: (32)

Substituting (10) in (32) yields the expression in (11). 2

Proof of Proposition 4

Denote time-t wealth as a function of the pricing kernel �t by Wt = F (t; �t). Cox & Huang

(1989) showed that the indirect utility function J(W; t) is given by

J(W; t) := Ĵ(F�1(W; t); t) = Et[U(W
�

T )]; (33)

where W �

T denotes the optimal terminal wealth of the investor. Substituting (4) and (7) in (33)
we have

Ĵ(F�1(W; t); t) = Et

"
�A�11

f�
T
>��g +B

�
y�T
B2

�
2
=(

2
�1)

1
f�
T
���g

#
:

Since the pricing kernel log(�T ) is normally distributed with mean

log(�t)� (r +
1

2
k�k2)(T � t)
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and variance k�k2(T � t), it is straightforward to derive the expression in (12). 2

Proof of Proposition 5

(i) The proof is similar to the proof of Proposition 1. Solving for the pointwise maximization

problem

U
�(�T ) = max

W�0
fU(W )� y�TWg ; (34)

we obtain the following local maxima:

W
�

0 = (y�T )
1=(�1)

W
�
1 = max

(
� �

�
A1

y�T

�1=1�1

; W

)

W
�

2 = � +

�
B2

y�T

�1=1�2

Comparing the corresponding optimal values, by substituting in 34, we may conclude that
W

�
2 is optimal when �T � �

�, where �� satis�es f(�) = 0 with

f(x) =
1� 2
2

�
1

yx

�
2
=(1�

2
)

(B2)
1=(1�

2
)
� �yx+A(� �W )1 +

1


W 

�

�
1� 



�
(yx)

=(�1)

If �T � �
� the optimal solution is characterized by W

�
0 . Applying a similar line of reason-

ing as in the proof of Proposition 1 we conclude that the optimal solution to the static

optimization problem with utility (13) is given by (14).

(ii) The proof is analogous to the proof of part (i) in Proposition 3. Wealth at time t satis�es

Wt =
1

�t

Et[�TWT ] =
1

�t

Et

"
�T

 
� +

�
y�T

B2

�1=(2�1)
!
1f�

T
���g + (y�T )

1=(�1) 1f�
T
>��g

#
;

(35)

where we substituted (14). Furthermore, the pricing kernel log(�T ) is normally distributed.

After some straightforward calculus we obtain (15).

(iii) The proof is analogous to the proof of part (ii) in Proposition 3. Denote wealth by Wt =

F (t; �t), the optimal fraction invested is given by:

wt = �(�0)�1�0

Wt

�
@F (t; �t)

@�t

�t

�
: (36)

Substituting (15) in (36) yields the expression in (17). 2
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Proof of Proposition 6

(i) The proof is similar to the proof of Proposition 1. Solving for the pointwise maximization

problem

U
�(�T ) = max

W�0
fU(W )� y�TWg ; (37)

we obtain the following optimum:

W
� = � +

�
B2

y�T

�1=(1�2)

: (38)

Applying a similar line of reasoning as in the proof of Proposition 1 we conclude W � is the

optimal solution to the static optimization problem with utility (8) is given by (21).

(ii) The proof is analogous to the proof of part (i) in Proposition 3. Wealth at time t satis�es

Wt =
1

�t

Et[�TWT ];=
1

�t

Et

"
�T � +

�
B2

y�T

�1=(1�2)
#
; (39)

where we substituted (21). As we used a Gram-Charlier expansion of the lognormal density

function, the pricing kernel log(�T ) has the following density function:

f(zT ;�; k) = (1 + �(z3T � 3zT ) + Æ(z4T � 6z2T + 3))�(zT ); (40)

where zT = (log(�T ) � �)=�, � = �=6, Æ = �=24 and �; � denote skewness and kurtosis

of log(�T ) respectively, and � = log(�t) � (r + 1
2
k�k2)(T � t), � = k�kpT � t denote the

mean and standard deviation of log(�T ). After some tedious but straightforward calculus

we obtain (22).

(iii) The proof is analogous to the proof of part (ii) in Proposition 3. Denote wealth by Wt =

F (t; �t). The optimal fraction invested in the risky assets is given by:

wt = �(�0)�1�0

Wt

�
@F (t; �t)

@�t

�t

�
: (41)

Substituting (22) in (41) yields the expression in (23). 2

Proof of Proposition 7

(i) The proof is analogous to the proof of part (i) in Proposition 3. Wealth at time t satis�es

Wt =
1

�t

Et[�TWT ] =
1

�t

Et

"
�T

 
� +

�
y�T

B2

�1=(
2
�1)
!
1f�T���g

#
; (42)
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where we substituted (7). As we used a Gram-Charlier expansion of the lognormal density

function, the pricing kernel log(�T ) has the following density function:

f(zT ;�; k) = (1 + �(z3T � 3zT ) + Æ(z4T � 6z2T + 3))�(zT ); (43)

where zT = (log(�T ) � �)=�, � = �=6, Æ = �=24 and �; � denote skewness and kurtosis

of log(�T ) respectively, and � = log(�t) � (r + 1
2
k�k2)(T � t), � = k�kpT � t denote the

mean and standard deviation of log(�T ). After some tedious but straightforward calculus

we obtain (24).

(ii) The proof is analogous to the proof of part (ii) in Proposition 3. Denote wealth by Wt =

F (t; �t). The optimal fraction invested in the risky assets is given by:

wt = �(�0)�1�0

Wt

�
@F (t; �t)

@�t

�t

�
: (44)

Substituting (24) in (44) yields the expression in (25). 2
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Figure 1: Utility for Loss Averse Agent
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This �gure shows the value function of a loss-averse agent. The parameters used are 
1
= 

2
= 0:88,

A = 2:25, B = 1:0, and � = 1:0.

Figure 2: Optimal Terminal Wealth
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This �gure shows the optimal terminal wealth of a loss-averse agent (solid plot), a HARA agent (dashed

plot) and a CRRA agent (dotted plot).
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Figure 3: Optimal Intermediate Wealth and Optimal Portfolio
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Figure (a) shows the optimal intermediate wealth of a loss averse agent (solid plot), a CRRA agent

(dotted plot), and a HARA investor (dashed plot). Figure (b) shows the optimal fraction invested in

stocks for a loss-averse investor relative to the fraction invested by the benchmark CRRA agent. The

parameters used are  = 
1
= 

2
= 0:88, A = 2:25, B = 1:0, W0 = 1:0, � = 1:0, r = 0:05, jjkjj = 0:4,

T = 1, t = 0:5, �
0
= 1. Then, ~� = 1:21.

Figure 4: Optimal Fraction Invested in Stocks
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This �gure shows the optimal fraction invested in stocks for a loss averse agent (solid plot), the proba-

bility maximizing strategy (dotted plot), and the growth strategy (dashed plot). The parameters used

are  = 
1
= 

2
= 0:88, A = 2:25, B = 1:0, W0 = 1:0, � = 1:0, r = 0:05, jjkjj = 0:4, T = 1, t = 0:5,

�
0
= 1.
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Figure 5: Impact of Risk Aversion and Sharpe Ratio
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Figure (a) shows the optimal fraction invested in stocks for di�erent risk aversion levels over gains:


2
= 0:12 (dashed plot), 

2
= 0:5 (dotted plot), and 

2
= 0:88 (solid plot). Figure (b) shows the

optimal fraction invested in stocks for di�erent Sharpe ratios: � = 0:2 (dashed plot), � = 0:4 (solid

plot), and � = 0:6 (dotted plot). The parameters used are  = 
1
= 

2
= 0:88, A = 2:25, B = 1:0,

W0 = 1:0, � = 1:0, r = 0:05, T = 1, t = 0:5, �
0
= 1.

Figure 6: Critical Path
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This �gure shows the critical path (solid plot) and the satiation level of a probability maximizer (dotted

plot). If wealth falls below the critical value break-even e�ects dominate the behavior of the loss averse

investor. When wealth remains above the critical value the loss averse investor behaves as a portfolio

insurer. The parameters used are  = 
1
= 

2
= 0:88, A = 2:25, B = 1:0, W0 = 1:0, � = 1:0, r = 0:05,

jjkjj = 0:4, T = 1, �
0
= 1.



O
p
tim

a
l
P
o
rtfo

lio
C
h
o
ice

U
n
d
er

L
o
ss

A
v
ersio

n
3
5

F
ig
u
re

7
:
In
d
irect

U
tility

0
0.5

1
1.5

2
2.5

−
2

−
1.5

−
1

−
0.5 0

0.5 1

1.5
Indirect Utility

W
t

(a
)

0
0.5

1
1.5

2
2.5

0

0.5 1

1.5 2

2.5 3

3.5

Relative Risk−Aversion

W
t

(b
)

F
ig
u
re

(a
)
sh
o
w
s
th
e
in
d
irect

u
tility

fu
n
ctio

n
a
t
tim

e
t
=
0
:9
.
F
ig
u
re
(b
)
sh
o
w
s
th
e
rela

tiv
e
risk

a
v
ersio

n

fu
n
ctio

n
o
f
th
e
in
d
irect

u
tility

fu
n
ctio

n
a
t
tim

e
t
=
0
:9
.
T
h
e
p
a
ra
m
eters

u
sed

a
re


=

1
=

2
=
0
:8
8
,

A
=
2
:2
5
,
B
=
1
:0
,
W

0
=
1
:0
,
�
=
1
:0
,
r
=
0
:0
5
,
jjk

jj
=
0
:4
,
T
=
1
,
�
0
=
1
.

F
ig
u
re

8
:
O
p
tim

a
l
F
ra
ctio

n
In
v
ested

in
S
to
ck
s:

E
x
ten

d
ed

L
o
ss

A
v
ersio

n

0.5
1

1.5
2

2.5
0

0.5 1

1.5

q(t)

ξ
t

T
h
is
�
g
u
re

sh
o
w
s
th
e
o
p
tim

a
l
fra

ctio
n
in
v
ested

in
sto

ck
s
fo
r
a
lo
ss

a
v
erse

a
g
en
t
(so

lid
p
lo
t),

a
n
d
a
n

ex
ten

d
ed

lo
ss
a
v
erse

a
g
en
t
(d
o
tted

p
lo
t).

T
h
e
p
a
ra
m
eters

u
sed

a
re


=

�
1
:0
,

1
=

2
=
0
:8
8
,
A
=
2
:2
5
,

B
=
1
:0
,
W

0
=
1
:0
,
�
=
1
:0
,
W

=
0
:5
,
r
=
0
:0
5
,
jjk

jj
=
0
:4
,
T
=
1
,
t
=
0
:5
,
�
0
=
1
.



Optimal Portfolio Choice Under Loss Aversion 36

Figure 9: Impact of Skewness and Kurtosis

0.5 1 1.5 2 2.5
0

0.5

1

1.5

q(t)

ξ
t

(a)

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

q(t)

ξ
t

(b)

Figure (a) shows the optimal fraction invested in stocks relative to the fraction invested by the benchmark

CRRA agent for di�erent values for skewness: � = 0:0 (solid plot), � = �0:4 (dashed plot), � = �1:2
(dotted plot). Figure (b) shows the optimal fraction invested in stocks relative to the fraction invested

by the benchmark CRRA agent for di�erent values of excess kurtosis: � = 0:0 (solid plot), � = 0:7

(dashed plot), � = 1:7 (dotted plot). The parameters used are  = 
1
= 

2
= 0:88, A = 2:25, B = 1:0,

W0 = 1:0, � = 1:0, r = 0:05, jjkjj = 0:4, T = 1, �
0
= 1.

Figure 10: Optimal Fraction Invested in Stocks: Buy and Hold Strategy
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This �gure shows the optimal fraction invested in stocks in a buy-and-hold strategy for a loss averse

agent as a function of the Sharpe ratio. The parameters used are 
1
= 

2
= 0:88, A = 2:25, B = 1:0,

W0 = 1:0, � = 1:0, r = 0:05, T = 1.


