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ABSTRACT. We study a problem of optimal consumption and portfolio selection in a market
where the logreturns of the uncertain assets are not necessarily normally distributed. The
natural models then involve pure-jump Lévy processes as driving noise instead of Brownian
motion like in the Black and Scholes model. The state constrained optimization problem involves
the notion of local substitution and is of singular type. The associated Hamilton-Jacobi-Bellman
equation is a nonlinear first order integro-differential equation subject to gradient and state
constraints. We characterize the value function of the singular stochastic control problem as
the unique constrained viscosity solution of the associated Hamilton-Jacobi-Bellman equation.
This characterization is obtained in two main steps. First, we prove that the value function
is a constrained viscosity solution of an integro-differential variational inequality. Second, to
ensure that the characterization of the value function is unique, we prove a new comparison
(uniqueness) vesult for the state constraint problem for a class of integro-differential variational
inequalities. In the case of HARA utility, it is possible to determine an explicit solution of our
portfolio-consumption problem. This is, however, the topic of a companion paper [7].

1. INTRODUCTION

We consider a model of optimal consumption and portfolio selection which captures the notion
of local substitution. This optimization problem was first suggested and studied in detail by Hindy
and Huang [16] for diffusion processes using verification theorems. Later, Alvarez [1] studied the
problem in a viscosity solution framework. A viscosity solution approach has also been pursued
by Hindy, Huang, and Zhu [17] for a certain generalization of this problem. The main motivation
for the present paper is to generalize the results by Hindy and Huang [16] and Alvarez [1] to
statistically sound models for the asset price process. _

An agent wants to divide her wealth between an uncertain asset with price S; and a bond B,
with interest rate ». She wants to allocate her wealth and at the same time consume in order to

optimize the functional
E[/ U (v ) at],
0

where m = m; denotes the fraction of wealth allocated in the uncertain investment and C = C;
is the cumulative consumption at time ¢t. This functional describes the agent’s preferences over
consumption patterns. The agent’s utility is described by U, discounted by the rate §. The
special feature of this problem introduced by Hindy and Huang [16] is the process Y; modeling
the average past consumption. This process will be derived from the total consumption up to
time ¢ and a certain weighting factor (see equation (2.7)). This model says that the agent derives
satisfaction from past consumption. In addition, the control problem incorporates the idea of
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local substitution which says that consumption at nearby dates are almost perfect substitutes.
Advancing or delaying consumption has little effect on the consumer’s satisfaction. With this
model of satisfaction, optimal consumption was shown by [16] to be periodic in the sense of a local
time on a boundary. Every time the wealth process hits a boundary, consumption takes place.
We have chosen to consider the case of an agent with infinite investment horizon.

The standard model for stock prices in the Black and Scholes world is the geometric Brownian
motion

_ t4+olV
St = SQC” ',

where p is the expected log-return and ¢ the volatility. This model imposes a normal distribution
on the logreturns of an observed stock price. Empirical work by Eberlein and Keller {14] and
Rydberg [30] shows that the normal distribution poorly fits the logreturn data. Among other
things, the data have heavy tails. They suggest modeling logreturns by generalized hyperbolic
distributions, which are shown to fit data extremely well. Barndorff-Nielsen [6] introduces the
normal inverse Gaussian distribution, which is thoroughly studied on financial time series by
Rydberg [30]. Eberlein and Keller [14] use the hyperbolic distribution. The model for stock prices
becomes

_ L
St—S()e ',

where L; is a Lévy process and L is distributed according to a normal inverse Gaussian law
in [6, 30] and a hyperbolic law in [14]. It is worth noticing that in both cases L; will be a
pure-jump Lévy process, i.e., it does not have any Brownian motion part in its Lévy-Khintchine
representation, Thus the generator of S; will have no second order term and our control problem
— as will be explained later — will be a first order integro-differential variational inequality. We
shall assume here that the stock price is driven by a general pure-jump Lévy process L;.

By the Bellman principle we can associate a Hamilton-Jacobi-Bellman equation (variational
inequality) to our optimization problem. This equation is set in an unbounded domain and
consists of a nonlinear first order integro-differential equation subject to a gradient constraint, a
so-called integro-differential variational inequality (see Section 2). Since we allow for consumption
processes which are not necessarily absolutely continuous with respect to the Lebesgue measure,
we have a so-called singular control problem. These problems give rise to a gradient constraint in
the Hamilton-Jacobi-Bellman equation, see, e.g., Fleming and Soner [15]. In our general set-up,
it is natural to consider the variational problem in the framework of viscosity solutions, as done
by Alvarez [1] for the geometric Brownian motion case. We recall that the notion of viscosity
solutions was introduced by Crandall and Lions [11] for first order equations and by Lions [26, 27]
for second order equations. The notion of viscosity solutions for integro-differential equations was
later pursued by Soner [34, 35] and Sayah [31, 32] for certain problems involving a first order local
operator, and by Alvarez and Tourin [2] and Pham [29] for problems involving a second order
local operator. For control problems and their associated Hamilton-Jacobi-Bellman equations,
this weak solution concept has proven to be extremely useful due to the fact that it allows merely
continuous functions to be solutions of fully nonlinear second order partial differential equations.
We refer to the user’s guide of Crandall, Ishii and Lions [10], the lecture notes in [4], and the
books (3, 5, 15] for an overview of the theory of viscosity solutions and its applications.

For our problem, we need to consider constrained viscosity solutions since we are not allowed
to consume more than the present wealth, e.g., the control cannot push the wealth process into
the negative real line. The notion of constrained viscosity solutions was first introduced by Soner
[33, 34] and later Capuzzo-Dolcetta and Lions [13] for first order equations, see also Lasry and Lions
[24], Lions and Ishii [20], and Katsoulakis 23] for second order equations. In the present paper,
we first prove that the value function of our control problem is a constrained viscosity solution
of the associated integro-differential variational inequality (see Section 4). As observed by Lions
(see, e.g., [27]), the general fact that value functions of control problems can be characterized as
viscosity solutions of certain partial differential equations is a direct consequence of the dynamic
programming principle. For singular control problems, however, the classical approach of Lions
fails because the state process may jump due to the singular control and thus it needs not stay
in a small ball for small . This problem has usually been circumvented by either relying on the
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existence of an optimal control (see, e.g., [12, 17]) or by establishing appropriate estimates for
the state process (see, e.g., [15]). In [1], Alvarez presented a more direct argument showing that
the value function of the singular control problem in [16] is a viscosity solution of the associated
variational inequality. We adopt his argument to our singular control problem (where also the
stock price process can jump) and its associated integro-differential variational inequality.

Qur second result is a comparison principle for the state constraint problem for a class of
integro-differential variational inequalities. This result ensures that the value function is the only
solution of our problem, see Section 4. The first comparison principles (uniqueness results) for
viscosity solutions were given by Crandall and Lions [11] (see also Crandall, Evans, and Lions [9])
for first order equations. Concerning the uniqueness theory for second order equations, important
contributions are due to Jensen [21], Jensen, Lions, and Souganidis [25], Lions and Souganidis [28],
Ishii [19], Jensen [22], and Ishii and Lions [20]. We refer to the user’s guide [10], the lecture notes
of Crandall [8], and the books [3, 5, 15] for an up-to-date overview of the uniqueness machinery
for viscosity solutions.

Following the ideas set forth by the general uniqueness theory for viscosity solutions, comparison
principles for integro-differential equations were obtained by Soner [34, 35], Sayah [31, 32], Alvarez
and Tourin [2], and Pham [29]. Under some assumptions, uniqueness results in the class of hounded
uniformly continuous (semiconcave) functions were obtained in [35], see also [34]. The main
result of [31] is a comparison theorem between bounded uniformly continuous subsolutions and
supersolutions, In [32], this result is extended first to semicontinuous and then to unbounded sub-
and supersolutions. In [2], the authors consider nonlinear integro-differential equations of parabolic
type and obtain a comparison principle for semicontinuous, bounded and unbounded sub- and
supersolutions. In [29], a comparison principle is proved for unbounded sub- and supersolutions
of an integro-differential quasi-variational inequality associated with the optimal stopping time

“problem in a finite horizon of a controlled jump-diffusion process.

We consider here a class of integro-differential variational inequalities for which the comparison
results in the literature do not (directly) apply. We prove for this class of variational inequalities a
comparison theorem between unbounded continuous subsolutions and supersolutions. Inspired by
Ishii and Lions [20] in their treatment of general boundary value problems, we handle the gradient
constraint by producing strict supersolutions that are close to the supersolution in question. A
similar approach has also been used in, e.g., [12] for a singular stochastic control problem (without
an integral operator), see also [1]. To handle the state constraint we adapt the proof of Soner
[33, 34], which here consists in building a test function so that the minimum associated with the
supersolution cannot be on the boundary. When dealing with unbounded domains, it is well known
that one has to specify the asymptotic behaviour of the functions being compared. However, due
to the choice of a strict supersolution, it is sufficient to restrict our attention to a bounded domain
when proving the comparison principle. This was also done in [1].

Let us also mention that if we specialize to a utility function of HARA type, it is possible to
construct an explicit solution of the portfolio-consumption problem studied in the present paper.
This is the topic of our companion paper [7]. In that paper, we consider a more general model for
the stock price which takes into account a Brownian component as well. In this case, the associated
Hamilton-Jacobi-Bellman equation is a second order integro-differential variational inequality. In
[7], we characterize the value function as the unique constrained viscosity solution of this equation.

Finally, for an overview of applications of viscosity solutions in mathematical finance, we refer
to the lecture notes by Soner [36] and the references therein.

2. FORMULATION OF THE PROBLEM AND THE MAIN RESULT

Let (Q, P, F) be a probability space and (F;) a given filtration satisfying the usual assumptions.
We consider a financial market consisting of a stock and a bond. Assume that the value of the
stock follows the stochastic process

(2.1) Sy = Spekt,
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where L; is a pure-jump Lévy process with Lévy-I(hintchine decomposition

t t
Lt:,ut—i—/ / zN(ds,dz)—}-/ / z N{ds, dz).
0 J)z|<1 0 J]z|>1

Here p is a constant, N(dt,dz) is Poisson random measure on MRy x IR with intensity measure
dt x v(dz), v(dz) is a o-finite Borel measure on IR\{0} with the property

(2.2) / min(1, z%) v(dz) < oo,
R\{0}

and N (dt,dz) = N(dt,dz)—dt x v(dz) is the compensated Poisson random measure. The measure
v(dz) is called the Lévy measure. We choose to work with the unique cadlag version of L; and
denote this also by L. By Itd’s formula (see, e.g., [18]) we obtain the differential form of S¢:

dS, = (;L+ /|

z|<1

+ Si— / (e =1) N(dt,dz)+ S;_ / (e* — 1) N(dt,dz).
<1 2121

(e* —=1-2) V(dz)) Sy dt
(2.3)

For this differential form to be well defined, we need to impose the following additional integrability
condition on the Lévy measure:

(2.4) /[ 1 le* — 1| v (dz) < oo.

Note that condition (2.4) is effective only when z > 1 due to (2.2), and says essentially that e* is
v(dz) - integrable on {z > 1}. Under condition {2.4), we can rewrite the differential form of S; as

(2.5) dS; = (,u 4 / (ez -1 21|z|<1) y((lz)) St dt + 5S¢ /
IR\{0} R

Note that under condition (2.4), fot E[Ss] ds < 0.
We let the bond have dynamics

(¢* — 1) N(dt,dz).
\{0} ~

dBt = 7"B¢ Clt,

where » > 0 is the interest rate. Assume furthermore that r < /i, where we have introduced the
short-hand notation

(2.6) /lz,u+/ (e —1— z1p,)<1) v(dz).
: R\{0}

Here, 7 < jt means that the expected return of the stock is higher than the return of the bond. In
(2.6), note that e* — 1 — z > 0 for all z € IR. Consider an investor who wants to put her money in
the stock and the bond so as to maximize her utility. Let 7 € [0, 1] be the fraction of her wealth
invested in the stock at time ¢, and assume that there are no transaction costs in the market.

If we denote her cumulative consumption up to time ¢ by Cy, we have the wealth process X ¢
given as

t t
XM =g~ 't—f-/ (r 4 (p —r)yms) X° ds—l—/ WS_X;T;C/ (e* —1) N(ds,dz),
0 0 Rr\{0}

where z is the initial wealth. To incorporate the idea of local substitution, Hindy and Huang [16]
introduce the process th'rr,C modeling the average past consumption. The process has dynamics

(2.7) v = ye Pt +ﬂe—ﬂf/ e?* dCs,
[0,¢]
where y > 0 and @ is a positive weighting factor. We shall frequently use the notation Y; for
Yt’r’c and X; for XZr‘C. The integral is interpreted pathwise in a Lebesgue-Stieltjes sense. The
differential form of Y; is
dY, = —=BY, dt + B dC;.
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The objective of the investor is to find an allocation process 7y and a consumption pattern C7
which optimize the expected discounted utility over an investment horizon. We shall here focus
on an investor with an infinite investment horizon. We define the value function as

(2.8) V(e,y) = sup E[/ (v Oy di],
7,CEALy 0

where § > 0 is the discount factor and A, 4 is a set of admissible controls. Let
D= {(a;,y) ER?: 2> 0,y> 0}.

We say that a pair of controls is admissible for 2,y € D and write 7,C € Ag y 1
(¢;) Cy¢ is an adapted process that is right continuous with left-hand limits (cadlag), nonde-

creasing, with initial value Cy_ = 0 (to allow an initial jump when Cy > 0), and satisfies
E[Ci] < oo for all t > 0.

(cii) m is an adapted cadlag process with values in [0,1].

(¢iis) Xf’c >0, Yt”’C > 0 almost everywhere for all ¢ > 0.

Note that condition (c;;;) introduces a state space constraint into our control problem. The
utility function U : [0, 00) — [0, c0) is assumed to have the following properties:

(u;) U € C([0,00)) is nondecreasing and concave.

(ui;) There exist constants K > 0 and y € (0, 1) such that § > k() and
U(z) < K(1L4 2)7,

for all nonnegative z, where

(2.9) k(y) = max {7(7’ + (g —r)m)+ /
n€0,1) R\{0}
By a Taylor expansion we see that the integral term of k(y) is well-defined in a neighbourhood
of zero. The condition (2.4) ensures that the integral is finite outside this neighbourhood, which
shows that (2.9) is finite for ¥ € (0, 1]. Recall that in the case of no integral operator in (2.9), k(7)
maps [0, 00) onto [0,00) with k(0) = 0 and is increasing, see [1]. This is not the case when the
integral operator is present. Then k(v) : (0,00) — IR can be negative as well as non-monotone.
Moreover, one can easily check that the integral term in (2.9) is nonpositive. Let us also mention
that condition (u;;) guarantees that the value function of the related Merton problem is well-
defined, see [7].
In this paper we will assume that the dynamic programming principle holds: i.e., for any
stopping time 7 and ¢ > 0,

((1 +m(e” —1))7 =1 —m(e” — 1)) V(dz)}.

tAT

(2.10) V(e,y)= sup B / T (Y)Y ds + eIV (XTSRS,
7,CEAz,y 0

where a A b = min(a,b). This intuitive but important principle can be proved by using methods

from, e.g., [37]. The Hamilton-Jacobi-Bellman equation of our optimization problem is a nonlinear

first order integro-differential equation subject to a gradient constraint:

o ma.x{ﬁvy — vy, U(y) — v — Pyvy + ﬂlg[g?i] {(1 + (i — r)m)zV, +
' >+ wx(e® —1),y) —v(e,y) — mevg (2, y)(e” — 1 1z)|p =0in D.
/IR\{O} (v(a, (e ), y) —v(z,y) — Teve (2, y)(e )) u(cz)}} in

Note that @ + wz(e” —1) > 0 for all > 0 and z € IR. In Section 4, we prove that if v is C? and
sublinearly growing, then (2.11) is well-defined. Moreover, if the value function V defined in (2.8)
satisfies these conditions, then by using It6’s formula one can easily prove that V solves (2.11).
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Although (2.11) only contains first order derivatives, the requirement ¥ € C? comes from the fact
that the Lévy measure v(dz) is possibly singular in zero.

In many applications the value function is not necessarily smooth, or it can be very difficult
to prove sufficient regularity. Therefore we introduce an appropriate concept of weak solutions,
namely viscosity solutions. With this concept at hand, we are able to prove that the value
function V is the (only) solution of (2.11), even when it is not necessarily differentiable. However,
if a viscosity solution is sufficiently regular, then, as is well known, it is a solution in the classical
sense. The viscosity solution approach is by now a well established approach to control theory
problems, see, e.g., the books [15, 3].

Our main result is the following theorem, which follows immediately from the results stated
and proved in the Sections 3 and 4:

Theorem 2.1. The value function V is the unique constrained viscosity solution of the integro-
differential variational inequality (2.11), i.e., V is a subsolution of (2.11) in D and a supersolution
of (2.11) in D. The value function V satisfies the growth condition

0<V(z,y) < K(l+2+y)",  Ve,y€D,

and is uniformly continuous in D. Moreover, if for some a € (0,1], 8 > k(a) and U _E_CO'O‘([O, o)),
then V € C%%(D). Finally, if § > k(1+ o) and U € CH2([0,00)), then V € C1*(D).

Before ending this section, we show that the normal inverse Gaussian Lévy process introduced
by Barndorff-Nielsen [6] satisfies the condition in (2.4).

The normal inverse Gaussian distribution. First, recall from [6] and [30] that the normal inverse
Gaussian distribution is a mean-variance mixture of a normal distribution and an inverse Gaussian

with density
’ K 52 r — 11)2

(2.12) nig(a; @, 6, 1,0) = 22 exp (3v/a7 = 77 + Bla — ) “uloavd (- 1)?)

m 02+ (& — pu)?

In (2.12), K7 is the modified Bessel function of the third kind and index 1:
1 o
Ki(y) = 5/ exp(—§y(m +a:_l)) de,  fory >0,
0

where ¢ € IR, t € IR, § > 0, and 0 < |B]| < a. The parameters have the following meaning: «
is the steepness of the distribution, # the asymmetry, p the location and d the scale.! If 8 =0
then the distribution is symmetric. The Lévy-I(hintchine representation for the normal inverse
Gaussian Lévy process takes the form

t . 5’3
Ly = = —_——
r =&t + /0 /]R\{o] z N(dt, dz), E=p+ Jat

In empirical studies one usually centres the data and let g = 0. In this case the Lévy measure
takes the form

'§
v(dz) = %eﬂzm(mzn dz.
For z > 1, we have
(e* = 1) exp(—%az(w + m"l)) < exp(—%(a - Dz(z + m_l)),

since z+x~! > 2 for positive . By adjusting the a - parameter to a—1, we have that (e* —1) v(dz)
for z > 1 is dominated by another Lévy measure coming from a normal inverse Gaussian Lévy
process. On the other hand, when z < —1, we know that |e* — 1] < 1. Since all Lévy measures
integrate 1 for |z| > 1, we have that (2.4) holds whenever @ > 1. In conclusion, when o > 1, the
normal inverse Gaussian Lévy process satisfies (2.4).

IThe parameters y, 3, and § are unrelated to the those used in the control problem. The notation of the
parameters used here are simply chosen to be consistent with the notation in [6, 30].
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We recall from empirical studies by Rydberg [30] that the estimated o for two German and two
Danish stocks were far greater than 1. For instance, the estimated parameters of Deutsche Banlk for
day-to-day ticks in the period October 1st, 1989 to December 29th, 1995 (1562 data points) were
(a, B,8) = (75.49,—4.089,0.012). We conclude that a stock price model S; for Deutsche Bank,
where the logreturns are modelled by a normal inverse Gaussian distribution with the parameters
above, will fit the framework presented in this paper.

3. PROPERTIES OF THE VALUE FUNCTION

In this section we prove that the value function V defined in (2.8) possesses certain growth,
monotonicity, and regularity properties. The proofs of these results are inspired by the proofs of
the corresponding results in {1].

Lemma 3.1. The value function V is well defined in D and satisfies 0 < V(z,y) < K(1+z+y)”
in D. Furthermore, V(z,y) is nondecreasing and concave in D.

Proof. The arguments used to prove that V' is nondecreasing and concave on its convex domain
are classical (see, e.g., [1]) and thus omitted. We concentrate here on the growth condition.

First, observe that for every z,y € D, Ay .y 1s nonempty. This is so because for every m, Xt
is obvlously nonnegative. Moreover, since the associated gain

/ e~ U (ye Pt dt
0

is nonnegative, V' is also nonnegative. The upper bound is established in the following manner.
Let y > 0 and 7,0 € A, . For n > 0, consider the stopping time 7, = inf{t >0: thr,c > n}.
The process

Y
Zt:Xt‘F?t

is bounded away from zero since Y, > ye~Pt. Moreover, Z; is a solution of

dZy = [(r + (fp = r)m) Xy — Y] dt + m_ X / (e = 1) N(dt,dz)
IR\{0}

with initial value z = 'L + y/B. Applying 1t6’s formula, the nonnegativity of X;,Y;, and the
observation that %*, m 2+ 7+ € [0,1], we obtain

B[Z,] = £+ vE[ [z (e =g - v.) as
e[ (e - 0) =z = e = 1) o) ]
_ oy VE[/OMT" 2 ((r+ (- ) e — L) ds]
+E| / " ( /,R - (1 (m 320 = 1) =1 = A(m £2)(e = 1)) w(dz) ) ds]
<o v [ 21 (bt - )

+ /JR\{O} <(1 + (75 %f)(ez —1)" =1 — (n, %)(ez - 1)) y(dz)) ds]

N

< z7 +E[/MT" Z] ds] k(v),
0

where k(7) is defined in (2.9). Gronwall’s lemma now yields E[Z7,, | < 27 eFMt . Letting n — oo,
we have by Fatou’s lemma that

(3.1) E[Y] < K(z+y)e k(e
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Note that this bound also holds when y = 0 by continuity. The growth condition on the utility
function U then implies that {vecall § > k(v))

Jeoo) ges]
E[/ et U(Y;) dt] < K/ e [1 + (z + y)vek(”t} dt<K(1+z+y)".
0 0
Maximizing over A, , yields the desired upper bound. L]

Theorem 3.1. The value function V is uniformly continuous in D. If for some o € (0,1], we
have § > k(a) and U € C%%([0,00)), then V € C®*(D). Furthermore, if § > k(1 + ) and
U € CL2([0,0)), then V € CH¥(D).
Proof. We first show how to compare admissible trajectories starting from different points. For
(z,9), (2",y) € D, let m,C € A, y and define the stopping time

r=inf{t > 0: X, < 0}.
We use the short-hand notation X for the process starting at @’. When 2’ > 2 we observe that
T = 00. Set
C{ = Cilicr + (AX[™C + X7 + Cr) Lipr,
I, =Cy—C) = (Cy— AXL™C — X176 — C) 145

T

(3.2)

We see that C{ = C; and ', = 0 when 2’ > z. Since
AXI™MC = “AC, +mo X000 (A — 1)
and Xﬂ’c > 0, we can show that
AXITO 4 X[TC 4 C > Crn + (1= me )X 70 > e

We immediately see from this and (3.2) that C! is nondecreasing. Similarly we have that T is
nondecreasing. We now calculate

X" s = X0 = (AXC + XD ) s,
tAT tAT e -
=z’ - C} +/ (r+4 (ft —r)mg) X1 ds -|—/ me_ XiT / (e* — 1) N(ds, dz)
0 ] R\{0}
t
=2’ - C{+ / (r+{p— 1')7r5)X;"’Cls<T ds
0

¢
+/ ﬂs_(X,'”’Cl.Q)S_/ (ez —1) N(ds,dz).
0 R\{0}

of T i
By uniqueness we have X{’r’c =X, "’clt«. This implies that X;W’c > 0 and, when z > @/,
1 4
(X = XOPT = XP0 = X7 = X7C - X[™C1,, >0,

This in particular leads to the conclusion that 7, C" € Ay v and 7, ' € Ajp—y) |y—y|- Note that
this is trivial when 2’ > 2. From the explicit form of Y;, we get

vatvr,C _ Yt”r’CII < |Y _ YII;T,F

and thus

E[/O U (v,C) di SE[/O U () dt] + B / ey (|Y - Y'[F) di

SVEY) twv(le -2y - yl),
where wy denotes a modulus of continuity for . We have used the notation wy for the value

function when we replace U by wy. Maximizing over A, , and exchanging z,y and z’,y’, we
obtain

V(e,y) - V(' )| Swv(le - 2’|, ly - ¢]).
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In the case U € C%([0, 00)), we choose wy(z) = K z* and, since § > k(«), we conclude from (3.1)
that wy < K(z + y)® in D. Hence V € C%%(D). In general, we choose
wU(z) = E]];f(;(&‘ + [&’EZ'Y)
and obtain wy (2) < infeso(e+ K 27) since § > k(). This implies that V' is uniformly continuous.
We now prove the C1'® regularity. Let (2/,y/), (2”,y") € D and define
(z,y) = (A’ + (1= A", Ay + (1 = A)y") for A €(0,1).

Without loss of generality, we assume that 2’ < & < 2”. Let now 7, C € A, ,. Define

A 1
111 — t I\ I\l — I\
t z+—1_/\ t ST
where Cf and T'; are defined in (3.2). By linearity we see that for 7, I' € Ay _p/ |y—y1,
' 1
(x" - x)o = (X~ XNt > 0.

We also find
X/ = X4 AX" - )P >0
Therefore 7, C" € Agn yn and m, 1Y € Ajpr_yn) |y —yn|-
Since U € C**([0,00)), one can show that

U2 + (1= XN2") = XU(Z) — (1 = NU(Z") < M1 = A K|2 — "1t

A straightforward calculation gives th,c = /\Y;"’GI +(1- /\)Yt“ﬁ’cu. Hence,

E[/ e~y (v,7C) dt] V() — (1= AV (", y") < E[/ e“‘”U(Yt’T’C)dt]
0 0

_ /\E[/ e_‘stU(Y}I“’r'C’) (lt] _ (1 B /\)E[/ e—étU(Y;”W‘O”) dt]
0 0

<A1- A)KE[/ e~Ot|y; — Y, |+ dt]
0

<AL= NE (2 ="+ |y —y'])'

The last inequality follows from (3.1) because § > k(14a) by assumption and 7, I € Ajpr_pn jyr—yn.
By maximizing over A, 4 and using the concavity of V we get

0< Vie,y) — AV (2',y) = (1= NV (2",y") <M1= NEK (|2 = &"] + ]y = y"])
This inequality holds for all (z/,y), (2, ") € D and A € (0,1). Hence V € C1*(D).

I Y

4, VISCOSITY SOLUTIONS

In this section we characterise the value function (2.8) as the unique constrained viscosity
solution of the integro-differential variational inequality (2.11). To simplify the presentation, we
will on several occasions employ the following notations: X = (z1,z2) € D, Dx = (Juy, Ous),
G{(Dxv) = fvg, — vy, and

BT (X,v) = / (v(ml +xym(e® — 1), 22) — v(2y, 22) — TV, (X)(e* — 1)) v{dz),
r\{0}

F(X,v, Dxv,B™(X,v)) = U(z2) — dv — Basvy, + m[gu%][(r + (pp — r)m)e1ve, + B7(X, v)] .
e

Then (2.11) takes the following form
(4.1) max(G(DXv);F(X,U,DX'U,B’T(X,'U))) =0in D.
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Recall that the Lévy measure v(dz) is a positive o-finite measure on R\{0} with a possible
singularity in zero so that (2.2) holds. We thus need to be more specific about the meaning of the
integro-differential operator B™. To this end, define the set

) — (T . [#(X)]

For any k € (0,1), X € D, ¢ € C1(D), P = (p1,p2) € IR?, we define
B™*(X,¢,P) = /[ ((]5(&1 +xym(e® — 1), 22) - H(X) - reipr(e® — 1)) v(dz).
zZ| >k
The integrand of B™* (X, ¢, P) is bounded by

Const(X, P, k) - (14 [¢* — 1)

and, thanks to (2.4), the integral is convergent and bounded uniformly in 7 for every positive .
For x € (0,1), X €D, ¢ € C*(D), we define

BT(X,¢) = /| | (e +zim(e — 1), 22) — $(X) = 7229, (X) (e — 1)) w(d2).
z|<k

2
Note that ¢(z1 + a17(e” — 1), 22) = $(X) + ¢, (X) (z17(e? — 1)) + Lu,u, (a, za) (17(e* — 1)),
where a is some point on the line between X and (21 + z1m(e* — 1), z2). Hence the integrand of
BT (X, ¢) is bounded by

Const(X, k) - |e* - 1|2,

and the integral is convergent and bounded uniformly in 7 since every Lévy measure integrates z*
in a neighbourhood of zero, see (2.2). Furthermore,

(4.2) Nl_i}%1+ Bi(X,¢)=0,

We now define for all ¢ € C2(D) N C1(D) the integro-differential operator B™ (X, ¢) by
(4.3) B (X, $) = B (X, ¢, Dx$) + BL(X, 9).

Consequently, the Hamilton-Jacobi-Bellman equation (4.1) is well defined for all v € C*D) N
C1(D). However, in many applications the value function defined in (2.8) is not C? or even C*
(see Section 3) and the equation (4.1) should be interpreted in a weaker sense. As discussed
in Section 1, we here suitably adopt the notion of constrained viscosity solutions. Constrained
viscosity solutions are functions that are supersolutions of (2.11) in D and subsolutions of (2.11)
in D. The latter requirement plays the role of a boundary condition, see [33, 34, 13].

The precise definition goes as follows:

Definition 4.1. (i) Let O CD. Any ve C(D) is a viscosity subsolution (supersolution) of (4.1)
in O if and only if we have, for every X € O and ¢ € C*(D) N C1(D) such that X is a global
maximum (minimum) relative to O of v — ¢,

(4.4) 1nax(G(DX¢); P(X,v, Dxé, B™(X, ¢))) > 0(< 0).

(i) Any v € C(D) is a constrained viscosity solution of (4.1) if and only if v is a viscosity
supersolution of (4.1) in D and v is a viscosity subsolution of (4.1) in D.

Hereafter we use the terms subsolution and supersolution instead of viscosity subsolution and
viscosity supersolution. For k > 0, ¢ € C?(D), v € C1(D) let us introduce the function

F(X,v,Dx¢,B7%(X,v, Dx ¢), Bi (X, ¢))
= Ulwa) = 6v = faade, + max [(7’ + (i —r)m)aide, + BV (X, v, Dx¢) + B (X, ¢)]-

Note that B%*(X,v, Dx¢) and BT (X, ¢) are well defined and bounded independently of .
We now have an equivalent formulation of viscosity solutions in C1(D).
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Lemma 4.1. Let v € C1(D) and O C D. Then v is a subsolution (supersolution) of (4.1) in O
if and only if we have, for every ¢ € C*(D) and k > 0,

(4.5) max(G(ngzS);F(X,v,DXqS,B’T"‘(X,v,DX¢)),B,’:(X,</)))> > 0(<0)
whenever X € @ is a global mazimum (minimum) relative to O of v — ¢.

Proof. We prove the statement only for the subsolutions, the supersolution case can be proved
similarly. Suppose v € C1(D) satisfies

(4.6) F(X,v,Dx¢,B™"(X,v,Dx¢),B:(X,¢)) >0,

where X € O is a global maximum relative to @ of v — ¢, ¢ € C*(D) N C1(D). Then, since

X € @ is a global maximum, v(Y) — v(X) < ¢(Y) — ¢(X) for all Y € 0. Consequently, since

B™8(X, ¢, Dx¢) > B™*(X,v, Dx ¢), we can use (4.3) and (4.6) to conclude that
F(X,v,Dx¢,B"(X,¢)) = F(x,v, Dx¢,B""(X, ¢, Dx ), B (X, ¢)) > 0.

This implies that v is a subsolution of (4.1) in @ if (4.5) holds.

Conversely, let v € C1(D) be a subsolution of (4.1) in @ and assume that X € O is a global
maximum relative to @ of v — ¢, ¢ € C?(D). Let x, be a smooth function satisfying 0 < x, <1,
xn(Y)=1for Y €e N(X,z1(e* —1—1))NO, and x,(Y) = 0 for Y € O\(N (X, z1(e" - 1)) N O).

n

Here N (X, R) denotes the open ball centred in X with radius R. Then define the test function
Pa(Y) = xa(V)(Y) + (1= xa (Y))ua (Y) € C*(D) N C1(D),

where v, € C®(D) is such that v, 1 v a.e. in O\(N(X,z1(e" — 1)) N O) as n — co. Observe

that ¥, = ¢ in N(X,z1(e* = 1= £)NO, ¥n = ¢ in N(X,z1(e" — 1)) N O, ¥ = v, in

n

O\(V (X, 21(e" — 1)) N O), and X is a global maximum relative to O of v — 1,. Therefore,
F(X, v, Dxin, B"(X, %)) = F(X, v, Dx¢, B"* (X, 9n, Dxbn), BL (X, ¢n))
— F(X,v, Dx¢, BV*(X,v, Dx ¢), Bi(X, ¢)),
where we have used Lebesgue’s dominated convergence theorem to conclude that
B™* (X, n, Dxn) = B™*(X,vn, Dx¢) = B**(X,v, Dx¢), Bi(X,¥n) = BL(X,4).
This implies that (4.5) holds if v € C1(D) is a subsolution of (4.1) in O. g

It is convenient to use Definition 4.1 when proving existence of a constrained viscosity solution,

whereas the formulation based on Lemma 4.1 is more convenient when proving uniqueness. We

also note that Lemma 4.1 is an adaption of a similar lemma in Soner [33], see also Sayah [31].
The following easy result will be useful when proving Theorem 4.1 below.

Lemma 4.2, If (z',y') € D and (z,y) € D satisfy ' = x —c and y' = y + Be for some ¢ > 0,
then V{z,y) > V(2',v).

We next characterize V as a viscosity solution of the Hamilton-Jacobi-Bellman equation (2.11).
Theorem 4.1. The value function V(z,y) is a constrained viscosity solution of (2.11).

Proof. We first prove that V is a supersolution in D. Let ¢ € C*(D) N C1(D) and (2,y) €D be a
global minimizer of ¥V — ¢. Without any loss of generality we may assume that (V — ¢){z,y) = 0.
For every ¢ € (0,2], we choose Cy = ¢ and ¢ = 0 in the dynamic programming principle (2.10),
which then yields

¢(x,y) = V(z,y) 2 V(e —c,y+Pc) > ¢z — ¢,y + Be).
Dividing by ¢ and sending ¢ — 0, we conclude

(4.7) ¢o(2,y) — By (z,y) 2 0.
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Let 7, be the exit time from the closed ball AV, with radius p and centre at (2,y). By choosing p
small enough, NV, C D. Applying the dynamic programming principle (2.10) with h A 7, m = 7,
Cy = 0, the inequality V > ¢, and 1td’s formula, we obtain

AT, ) .
0 E[/ MU (V) dt+ e NI G(Xiunr, , Yinr, )| — 6(,)

0

v

v
=

[/.h/\r,, E—M{U(Yt) - BYidy + (7, + (/jL — 7w)ﬂ')Xt¢rv + B"((Xt,Yt))‘z’)} dt]

0
— e~ S(hAT,)
o[,

v

inf [U(y) — 8¢ — Bydy + (r+ (i — r)m)eds + B"((2,y), aﬁ)]-

‘Eyy)ENp

By the right continuity of the paths, 7, > 0 a.s. and hence Lebesgue’s dominated convergence

theorem implies limy,_,o E[L—‘;jh/\—r”i]: d. Dividing the above inequality by h, sending h — 0,

and then sending p — 0, we obtain
U(y) — 0V = Bydy + (r + (& — r)m)ade + B ((=,9),¢) <0,

for every m € [0, 1]. Hence, from this and (4.7), we have proven that V is a viscosity supersolution.

We now prove that ¥ is a subsolution in D. Let ¢ € C?(D) N C1(D) and (v, y) € D be a global
maximizer of V — ¢. Without any loss of generality we may assume (V — ¢)(x,y) = 0 and that the
maximum is strict. Arguing by contradiction, we suppose that the subsolution inequality (4.4) is
violated. Then, by continuity, there is a nonempty open ball A" centred at (x,y) and € > 0 such
that f¢y — ¢ < 0 and

Uly) — 6V — Bypy, + max [(‘r+ (o = )m)z gy + B ((2,9),¢)| < —ed in N ND,

w€[0,1]

as well as V < ¢ —e on ON' ND. For m,C € Ay, let 7 be the exit time from NND.

Since C; is a singular control with a possible jump at ¢ = 0, the state process (X;,Y;) might
jump out of N’ ND at once. If the control C; alone makes the state process jump out of NNOD,
we know the direction of the jump and, from Lemma 4.2, that V is nonincreasing in this direction.
However, when the Lévy process also contributes to the jump out of NN D, V is not necessarily
nonincreasing in the direction of the jump. To overcome this problem we introduce 7z, the first
time the state process jumps because of the Lévy process, and note that 7, > 0 a.s. Choose
7 = min(rg, 7). If necessary, we truncate this stopping time by a constant in order to make it
finite. Let now A := {77, = 0} and note that this is a set of zero probability.

On the set {7* < 71} N A¢, where A° is the complement of A, we know that the control C; has
made the state process jump out of N’ ND. Let (z',y’) be the intersection between N N D and
the line between (X,+_,Y;+_) and (X;+,Yr+). Note that the slope vector of this line is (~1, 3)
and that ¢ is nonincreasing along this line in A/’ND. Thanks to Lemma 4.2, we also know that
V is nonincreasing along this line in D. Hence we have

V(X7 ,Y50) < V(ﬂil,y') < ¢(m1:y1) —e < H(Xpe o, Yru) —e.
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Using the inequalities above and Itd’s formula for semimartingales, we obtain (with C{ denoting
the continuous part of Ct)
(4.8)
o
/ e U (Y, )dt+e‘5T V(X7e,Yre)
0

*

</ e UV dl+ e G(Xpe_, Yyr ) —ege™®
§]

< ¢w,y) —ee”"

b [T U0 08— BYidy 4 (3= 1)) Kot + B7(X0, Y0, )}

.

+/ e~ (=g, + Boy) dCF

0

+ Z —M( (Xi— = AC Y- + BACY) — d)(Xt_,Yt_)) +/ / ALd ](f(dt’ dz)
o JR\{0}

[0,7%)

< ¢z, y) —ee” —s(l—eT‘)+/ / Ap¢ N(dt,dz)
0 R\{0}

S¢($,y)—5+/ / AL¢N((lt,(lZ),
0 R\{0}

where we have used the short-hand notation
Apg = ¢(Xoo +m-Xe(e” — 1), Vi) — ¢(Xe—, Vi)
On the set {7# > 7.} N A°, we have 7 = 71, and calculate as follows

(4.9)
TL

/ e YY) dt+ eV (XL, Ys,)
0

TL
g/ e UYL dt + e p(X,,, Yy )
0

<Oo)+ [ U0 = 88— BYidy + (1 (3= 7)) Xeg + B7((X0 Y0, )}

+/ = (= + Py ) dCE

+ > e ‘”<¢Xt_—ACt,Y, + BACY) — $(Xe—, Vi) / / Ap¢ N(dt, dz)
R\{0}

fE[O TL]

L 5
§¢($,y)—6(1—e_6TL)+/ / Ap¢ N(dt,dz).
0 IR\{0}

To derive the third inequality in (4.9) from the second, we have assumed that

(Xpo o — AC+, Yoo + BAC) e NND,

In view of Lemma 4.2, we can make such an assumption without loss of generality
Putting the two cases (4.8) and (4.9) together, we get

E[/ MUY dt + TV (X, V)|

4}

*

5E{1,.<TL (/0 e U (V) dt + e~ V(X e, Yo ))}
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TL
+E[1~Zn(/ YY) dt A eV (X, Vi) )]
0
SE[17*<TL(¢(m,y)~e+// Avg N(dt,dz))]
0 R\{0}
L .
4 B[Lesr, (3w ) e =)+ [ [ Apg ()
0 IR\ {0}

< ¢(z,y) — EE[1 — 1,,2TL6—5TL} + E[/OT /]R\{O} AL N(dt,dz)]

< ¢(z,y) — 5E[1 - e“STL].

The proof is now finished after observing that the dynamic programming principle (2.10) gives a
contradiction since (V — ¢)(x,y) = 0. O

Definition 4.2. Let @ C D. Any v E_C(ﬁ) is a strict supersolution of (4.1) in O if and only if
we have, for every X € @ and ¢ € C*(D) N C1(D) such that X is a global minimum relative to O
of v — ¢,

(4.10) max(G(Dx); F(X,v, Dxd, B(X, #)) < -v,

for some constant v > 0. Repeating the proof of Lemma 4.1, we can equivalently replace the

left-hand side of (4.10) by the left-hand side of (4.5) (provided v € C1(D) and ¢ € C*(D)).

We next demonstrate that it is possible to construct strict supersolutions of (4.1) in any bounded
subset of D. To simplify the presentation, we employ the notations provided by (4.1).

Lemma 4.3, For 4 > 0 such that § > k(v'), let v € Cy/(D) be a supersolution of (4.1) in D.
Choose ¥ > max(y,v') such that § > k(¥), and let

w=K+x7, x(X)=1+e+353)
Then for K large enough, w € C®(D) N Cx(D) is a strict supersolution of (4.1) in any bounded
set O C D. Moreover, for 8 € (0,1}, the function
v = (1 - 0)v + 0w € C5(D)
is a strict supersolution of (4.1) in any bounded set O C D.
Proof. We first claim that
(4.11) nlax(G(DXw);F(X,w,DX'w,B”(X,w))) < —f,

for some f € C(D) that is strictly positive in any bounded subset of D. Notice that (4.11) implies
the first part of Lemma 4.3.
To prove (4.11), observe first that

G(Dxw) = fwe, — wy, = _g/\ﬁ—l,

Next, exploiting that %L, w% € [0, 1], we have

F(Xw, Dxw, B(X,w)) =U(zz) — 6(K +x7) — %mZT,\ﬁ—l + 111[3‘ g
TE

(e menlet = 1) = X7 = e e < 1)) vide)]
Ir\{o}

70+ (& = r)man™

=U(zs) — 6K — Layyx 7' + (—5 + wlgl[oa)i] {7(7’ + (g —r)m)

¥

* /,R\{O} (L4 mea(e = 1)1 =Tz (e = 1)) w(dz)| )7

<U(zq) — 0K + (—(5 + lé][g)i] {77(71 + (it —r)m)
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+ /IR\{O} ((1+m(e” — 1))7— 1-7m(e?® — 1)> I/((IZ)])X:Y—

= Uws) = 6K + ((7) = )X < -1

by choosing, e.g.,
K =1+ sup[U(mg) - (6 - k(?)),\ﬁ] .
)
Note that K < oo since § > k(¥) and ¥ > . Consequently, our claim (4.11) holds provided we
set 3
f=min(1, %,\/7“1).

Next, we claim that v? is a strict supersolution of (4.1) in D. Note that for any ¢ € C*, X € D is
a global minimum of v—¢ if and only if X is a global minimum of v? —¢? where ¢° = (1-8)¢p+0w.
First, since v is a supersolution of (4.1) in D, we have G(Dx ¢) = fbz, — ¢, <0 and hence

G(DX¢9) = (1 - 9)(IB¢L2 - ¢L1) + g(ﬁw:vz - ‘LU,;I) < “92/\/—7——1-

Letting 7* € [0, 1] be a maximizer of (r + (i — r)m)2z14%, + BT (X, ¢?), we can calculate as follows
F(X,v?, Dx¢? B™(X,v%)) = (1 - 0)U(z2) — (1 — O)v — Baz(L — 0) o,
+(r+ (3= r)m )i (1= O)ge, + (1 - 0)B™ (X, ¢)
+ 60U (x2) — 60w — Pasbwy, + (r + (& — )" )z 10wy, + 0B™ (X, w)
<(1-0)F(X,v,Dx¢,B"(X,$))+ 0F(X,w, Dxw, B" (X, w)) < —0f.
Summing up, we have just shown that
1nax(G(DX¢9);F(X,ve,Dxcf)g,B"(X,cj)(’)) < —4y.

This concludes the proof of the lemma. O

Following the general viscosity solution technique [11, 9, 10], we next present a comparison
principle for constrained viscosity solutions of our integro-differential variational inequality (2.11).
This comparison principle immediately implies that the value function defined in (2.8) is the
only solution of (2.11). For orientation, we mention once more that the comparison results in
[34, 35, 31, 32, 2, 29] do not apply in our context. Having said this, we do not hesitate to point
ont that our comparison principle is nevertheless inspired by these results.

To handle the gradient constraint, we use Lemma 4.3 to produce strict supersolutions that are
close to the supersolution being compared. Although in the proof of Lemma 4.3, the right-hand side
f = f(z) is continuous and strictly positive on bounded subsets of D, it is not uniformly bounded
away from zero as @ — co. However, this will not cause problems as we manage to reduce the
comparison proof to analysis in a bounded set. To handle the state constraint boundary condition,

we adapt an idea of Soner [33, 34].
In what follows, we use again the notations provided by (4.1) to simplify the presentation.

Theorem 4.2. Let v' > 0 be such that § > k(y'). Assume y € Cy(D) is a subsolution of (4.1)

in D and v € C:(D) is a supersolution of (4.1) in D. Then v <7 in D.
Proof. Choose § > +' such that § > k() and then introduce the function
w:f&'—|—(1+ml+;—'ﬁ)?. N
Now choose K so large that, by Lemma 4.3,
7’ = (1 - 0)7 + fw, 6 € (0,1],

is a strict supersolution of (4.1) in any bounded subset of D. Instead of comparing v and v, we
will compare v and 7°. Then by simply sending 6 — 0+, we obtain the desired comparison result
v < v in D. Observe that

(4.12) v(X) =7 (X) < Const - (14 2; + mz)vl —0(1 42 + 3—;)7—) -0 as X — 0.
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In view of (4.12), we can choose R > 0 so large that v < @’ in {z1,z2 > R}. Although D is
unbounded, we can then nevertheless restrict our attention to the bounded domain

(4.13) K= { (21,22) : 0 < 21 < R+ Re', O<12<R}

and prove that v < ¥ in K. To this end, assume to the contrary that

(4.14) M = m%l.x(y ~7) = (w-9")(Z) >0

for some Z € K. Observe that we have only the two cases Z € (0,R) x (0, R) and Z € T'sc to
consider, where

(4.15) Fsc = {(121,.’112) 21 =0,0<23<Ror0<a; <R, ze= 0}

is the state constraint boundary restricted by R.

Case I: Let us first consider the case Z € I'sc. The construction presented below is a suitable
adaption of the construction of Soner [33, 34]. Since OK is piecewise linear there exist constants
ho, k > 0 and a uniformly continuous map 7 : K — IR? satisfying

(4.16) N (X + hn(X), he) C K for all X € K and h € (0, ho),

where N {z,p) denotes the ball with radius p and centre z. For any o > 1 and 0 < ¢ < 1, define
the function ®(X,Y) on K x K by

(4.17) B(X,Y) =v(X) =T (Y) ~ |a(X = Y) +en(Z)]? —e|lX — Z]%.

Let

My =max®(X,Y).
KxK

We then have My > 0 for any o > 1 and € < eo, where £ is some fixed small number. Let
(X, Yy) € K x K be a maximizer of ®, i.e., My = ®(Xq, Ya). By (4.16), we assume that « is so
large that Z + £n(Z) € K. The 1nequahty

O(Xo, Ya) 2 0(2, 2 + 50(2))
reads
o (Xa = Yo) +en(2) [ + el Xa — 2]
< o(Xa) =T (Va) = (= T)(7) + 77 + £0(2)) - (2).
Since v, —° are bounded on K, it follows that IQ(XQ —~ Y,)| is bounded uniformly in «. Hence
Xa—Yy —0asa— ocoand hma_,oo( (Xo) — (Ya)) < M. Sending o — oo in (4.18) and using

the uniform continuity of v, 7 in K, we then conclude that a(Xo—=Ye)+en(Z2) -0, Xo, Yo = 7,
and M, — M. Therefore, using the uniform continuity of »,

Yo = Xa+ 0(Z) +0(%) = Xa+ £n(Xa) + 0(%)
and we thus use {4.16) to get Y, € K for o large enough. In fact, since Z € I'sc, we must have
(4.19) X €[0,R) % [0, R), Yo € (0,R) x (0, R),
for « large enough. Now define
YY) = u(Xao) = |a(Xa = Y) +en(2)]* — | Xa - 21,
$(X) =¥ (Ya) + [a(X — Yo) +en(2)* + | Xo — 2|

(4.18)

and set
P =Dx¢(Xq) = 20[a(Xoq — Vo) + en(2)] + 26(Xa — Z),
Q@ = Dy ¢(Yy) = 2a[a(Xe — Ya) +en(2)).
Since 7° — ¢ takes its minimum at Y, € K and @ is a strict supersolution in K, G(Q) < —8f and

F(Ye,?,Q,B™(Ya,¥)) < —0f. Repeating the proof of Lemma 4.1, we see that the latter strict
inequality implies

(4.20) F(Ya, v, Q, B (Ya,v",Q), B (Ya, $)) < —0F.
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We next claim that G(P) < 0. Assume to the contrary that G(P) > 0. Then it follows that
—0f > G(Q) — G(P) = Blgz — p2) — (01 — 1) = —2P(waz — 22) — 26(Ba1 — 21),

which tends to zero as a — oo, a contradiction to the fact that f is strictly positive on K. Thus
our claim holds. Then since v — ¢ takes its maximum at X, € K and v i1s a subsolution in £,
F(Xuo,v, P,B™"(X4,¢)) > 0. This in turn implies that

(4.21) F(Xa,v, P, B (Xa,v, P), B} (Xa, 9)) 2 0.
Using (4.20) alid (4.21), we can calculate as follows
0 < F(Xa,u, P,B™"(Xa,2, P), Bi(Xa, ) = F(Ya, 7, Q, B"*(Ya, 7, Q), BE (Y, ¥))
< [U(zaz) = Ulyaz)] = 8[0(Xa) = 7 (Ya)] = Bl2a2dus(Xa) = Yarthys (Ya)]
(4.22) + max [+ (7 = 1)) [2arden (Xa) = Yarthy, (Ye)]

w€[0,1]
n [BW,R(X&,Q,P) — Br,n(Ya,va,Q)] + [B:(Xa, ¢) — B;T(Ya,'l/))]].

Let us start by estimating the integral terms. To this end, observe first that, thanks to (4.2),
B (X, ¢) and BI(Yq, 1) both tend to zero as £ — 0 (for any finite o). Next, for simplicity of
presentation, introduce the short-hand notation T7(z; X) = (z1 + m21(e® — 1), 22) and note that
(for fixed X) |T7(z; X)| grows like | — 1| as z — co. Then

BFYN(XQ)E)P) - BW’N(Y'LHEH)Q) = [1 + 12)
where, for A} = {k < |z| < 1} and Ay = {|z] > 1},

e = / ([o(T™ (2 Xa)) = 9 (T (23 Ya))] — [0(Xa) = 7 (¥2)]

— [2a1tey (Xa) — Va1 ¥y, (Ya)] (67 — 1)) v(dz), (=1,2.
We consider first the term I,. Observe that, for i = 1,2,
[2aite, (Xa) = Yaithy, (Ya)]
= (Lai = Yai)20[a(Zai — Yoi) + €01 (2)] + 2620i(Tai — 2)] = wi (L),

Q

(4.23)

(4.24)

for some continuity modulus wy. Since (4.13) and (4.14) obviously imply
(v —-7°)(X) < M forall X € D,

we get

s /|. (8 4+ (T (23 X)) = 07 (17 (23 Ya) - Ma
z|>21
— [2a162,(Xa) = Yarty, (Ya)] (e* - 1)) v(dz)

< (M~ My) /| o lw(dz) + /[ |>1(§9(TW(2;X@)) —#(T”(z;YJ)) v(dz)

+w1($)/ le* — 1 v(dz) — 0 as a — oo,
lz[>1

where we have exploited that M, — M as o — oo, (2.2), continuity of %, (4.24), and (2.4)
We next estimate I;. To this end, notice that (4.19) implies 77 (z; Xq), T (2;Ye) € K for
z € (—1,1) and thus

(4.25) B(T™(2; X4o), T (7, Ya)) — ®(Xa, Ya) < 0.

A calculation reveals that the integrand of /7 equals

®(T™(2; Xa), T™(2; Ya)) — ®(Xa, Ya) + <7r2[a(wa1 — yar)? gn%fﬂ) (e* —1)%,
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which, thanks to (4.25), is less than or equal to

(lo(at = ya))? + ey ) (e = 1),
Hence

< (lélea — v esd) [ e = 1) wa2)

k<]z|<1

Note that the integral is convergent since every Lévy measure integrates z% in a neighbourhood of
zero, see (2.2). Since a(Za1 — Ya1) = —€N1(Z) as o — oo, we conclude that

lim lim 7; <0.

e—+0a—c0

Finally, in view of the estimates derived above, we send (in that order) a — oo, € — 0, and
t — 0 in (4.22) to obtain the desired contradiction

(4.26) §[v(2) -7°(2)] <.

Case 1I: Let us now consider the case Z € (0, R) x (0, R). For any a > 1 and 0 <e <1, define
the function ®(X,Y) on £ x K by
O(X,Y) =v(X) -7 (V) - ¢|X - Y%

Let My = maxg, g ®(X,Y). We then have Mo > M > 0 for all @ > 1. Let (Xq,Ys) be a
maximizer so that M, = ®(X,,Y,) and note that the inequality

B( X, Xo) + P(Ya, Vo) < 20(Xq, Ya)
implies

(4.27) o)X = Yol? < v(Xa) = 0(Ya) +7° (Xa) — 7 (Ya).

Consequently, we have the estimate | Xo — Yo| < I \/:i—' , where K > 0 is a constant that depends
on supg v and supf(—~59). Hence, if (Xa, Ya) — (X, f’) as @ — 0o, we have X = Y. Inserting the
above estimate into (4.27) and using the uniform continuity of v, 70 in K, we get o] Xq — Yal? = 0
as o — oo. Moreover, using M < M,, it then follows that

0= lim $|X0 = Yal® < Jim {u(Xa) =7 (V) - M} =u(X) - 7(X) - M <0,

and we conclude that M, = M as a — co.
Since (4.14) holds and, thanks to Case I, v < 7 on 9{(0, R) x (0, R)}, we conclude that any
limit point of (X4, Ys) belongs to (0, R) x (0, R). Hence for large enough a,

Xa,Ys € (0,R) x (0, R).
Following the classical viscosity theory, let
(4.28) YY) = 0(Xa) = $lXa— VP, 9(X) =7 (Ya) + £IX ~ Val”
Finally, set
P =Dx¢(Xa) = a(Xa — Ya), Q = Dy (Vo) = a(Xo — Ya).

Since 7¥ — 9 takes its minimum at Y, and 7 is a strict supersolution, we have G(Q) < —8f
and F (Y, 7%, Q, B™ (Yo, ¥) < —0f, which also implies
(4.29) F(Ya,@,Q, B (Ya,?,Q), BE(Ya,¥)) < —07.

Assume that G/(P) > 0. Then it follows that —0f > G(Q) — G(P) = 0, which is a contra-
diction. Thus, G(P) < 0. Now since v — ¢ takes its maximum at X, and v is a subsolution,
F(Xa,v, P,B¢) > 0, which also implies

(430) F(XO.‘;E) P, BN‘K.(XG)Q)P)7B:(XOU¢)) .>_ 0




PORTFOLIO SELECTION AND INTEGRO-DIFFERENTIAL VARIATIONAL INEQUALITIES 19

Using (4.29) and (4.30), we get (consult Case I)

(4.31)
0 < F(XCUQ) Pv BWYH(AXL\W!) P))B:(<YCU¢)) - F(YC\WD—GVQ)BW'R(K\'va)Q))B:(KI)'l/’))

< [L[(;UL\‘E) - U(yaﬂ)] - O[Q(Xa) ~ (Ya)] - /6[$02¢4U3(XQ) = Ya2ty, (Ya)]
e [0 (= )7 [ (Xo) =ty (Ya)] + 1+ Ja o+ [BE X, 0) = B (Yo, 0)] |

T€e[0

where [y, I are defined in (4.23) with ¢, defined in (4.28).
Observe that in the present case, (4.24) reads

[waid’x;(xa) - yai'l,[)y,-(ya)] = a’(mai - yai)z = WS(%% i=1,2,
for some continuity modulus w3. Appealing once more to (4.2), we know that Bf (X4, ¢) and

BT (Yo, ) tend to zero as k — 0. Moreover, limg—eo Iz < 0 (consult Case I). To estimate the
integral [, we note that the integrand equals

S(T™(2; X)), T™(2;Ya)) — ®(Xa, Vo) + 72 (21 — yar1)?(e* — 1)%.
Obviously, T"(z; X4 ), T™(2; Ys) € K and thus
B(T™(2; Xa), T (2; Ya)) — ®(Xa, Ya) < 0.

Since a|Xq — Ya|? = 0 as o — 0o, we obtain

I < §(xa1 — ya1)2/ (e* —=1)?v(dz) = 0 as a — 0.
£<|zl<1

Sending (in that order) o — oo and £ — 0 in (4.31), we obtain as in Case 1 the contradiction
(4.26). This concludes the proof of the theorem. O

Remark 4.1. We remark that Theorem 4.2 also holds for a class of second order integro-differential
variational inequalities, see [7] for details.
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