
Optimal Pose for Face Recognition

Xiaoming Liu1 Tsuhan Chen2

1Visualization and Computer Vision Lab
General Electric Global Research Center

Schenectady, NY, 12309
{liux,rittsche}@research.ge.com

Jens Rittscher1

2Advanced Multimedia Processing Lab
Carnegie Mellon University

Pittsburgh, PA, 15213
tsuhan@cmu.edu

Abstract

Researchers in psychology have well studied the impact
of the pose of a face as perceived by humans, and concluded
that the so-called 3/4 view, halfway between the front view
and the profile view, is the easiest for face recognition by
humans. For face recognition by machines, while much
work has been done to create recognition algorithms that
are robust to pose variation, little has been done in finding
the most representative pose for recognition. In this paper,
we use a number of algorithms to evaluate face recognition
performance when various poses are used for training. The
result, similar to findings in psychology that the 3/4 view
is the best, is also justified by the discrimination power of
different regions on the face, computed from both the ap-
pearance and the geometry of these regions. We believe our
study is both scientifically interesting and practically bene-
ficial for many applications.

1 Introduction

For decades face recognition has been widely studied in

the computer vision community. Comprehensive surveys of

machine recognition techniques can be found in [22]. Face

recognition research is primarily concerned with handling

variations, such as pose, illumination and expression. Pose

variation is the hardest to model and therefore contributes to

most of the recognition errors [16]. Thus, pose-robust face

recognition is receiving more attention recently [2, 6, 11].

However, although many approaches have been proposed to

achieve better performance in terms of pose-robust recogni-

tion, little work has been done in understanding the intrinsic

capabilities of different poses in the context of face recog-

nition by machines.

The hypothesis of this paper is that the overall capabil-

ity of recognizing a face in an arbitrary pose depends on

Figure 1. Problem setup: Given multiple
poses of a human face, which is the optimal
training pose that will lead to the best pose-
robust recognition performance? Why is it
optimal?

the training pose being chosen, assuming only one pose is

used for training. That is, as shown in Figure 1, among

various poses of the same face, using one of them as the

training pose would lead to better pose-robust recognition

performance than using other poses. This paper suggests

approaches to test this hypothesis, find the optimal training

pose, and provide justification regarding the finding.

Our work is motivated by the research in psychology,

where it is often reported that faces are better recognized

by humans if learned or tested in the 3/4 view, halfway be-

tween the front view and the profile view [12]. Obviously

this topic is composed of two relevant questions. One is

how the use of different poses in learning (or training) af-

fects the test performance, which is called the Optimal Rep-
resentative Pose Problem (ORPP) in this paper. The other

is how the use of different poses as the test data affects

the performance, which is called the Optimal Recognizable
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Pose Problem (OCPP). In the vision community, it is gener-

ally accepted that when the training pose has been chosen,

the amount of angular rotation between the training and test

pose will be the primary factor affecting recognition perfor-

mance. In addition, the question of recognition in the same
pose between the training and test is not actually a pose-

dependent problem, since under the same pose other types

of variations, such as expression or lighting, will affect the

recognition instead of the pose. For these reasons, our pa-

per will focus on ORPP. That is, compared to psychological

findings, what conclusion can we draw on ORPP when the

face is recognized by machines? As a scientific problem,

it is interesting to see whether the conclusion in computer

vision validates or contradicts that of psychology. Similar

to almost all psychology studies [3, 7, 10, 12], only the hor-

izontally rotated poses are studied in this paper.

This study will benefit practical applications in that it of-

fers theoretical support on why faces should be captured at

a certain pose in practice. For example, in law enforcement

applications, mug shots are generally taken at either front or

profile view. Given the fact that mug shots will be used in

face recognition applications, they should preferentially be

taken at the optimal pose, i.e., the 3/4 view, as concluded in

both this paper and prior psychology study.

The paper is organized as follows. Section 2 reviews

literature in both psychology and computer vision. In Sec-

tion 3, an experimental approach is used to find the optimal

training pose for face recognition. In Section 4, we pro-

vide justification on why a certain pose has advantages over

others in recognition. Conclusions are given in Section 5.

2 Previous work

2.1 Psychology

Researchers [7, 12] in psychology have been working on

the role of pose in human face recognition for decades. It

is well established that certain views of objects are easier to

remember and are usually referred as canonical views [15].

For human faces, a 3/4 view is often an obvious candidate

for a canonical view. A number of researchers conclude

that using the 3/4 view at learning leads to superior levels

of recognition [12]. However, there is a lack of consistency

about the advantage of the 3/4 view in the literature [10],

since some studies conclude that there is no noticeable ad-

vantage of using the 3/4 view as the learning pose [3].

As Liu and Chaudhri [10] have pointed out, the reason

for the inconsistency might come from the experimental

methodology undertaken. When a face in the 3/4 view gen-

eralizes better to a profile view than a front view, the effect

is likely contributed by the smaller amount of angular ro-

tation for the 3/4 view. Because with its unique halfway

position between the front and profile view and given the

symmetry of the face, the 3/4 view has, on average, the

smallest amount of angular rotation to all other views. For

this reason, the effect of angular rotation should be seen

more as an extrinsic factor for the 3/4 view advantage. If

the recognition experiments are conducted using all possi-

ble poses, the angular rotation will contribute to the conclu-

sion. Hence another experimental setup is to exclude such

extrinsic factor and focus on potential advantage due to the

intrinsic properties of the 3/4 view, by testing poses only

within the range of certain angular rotation with respect to

the training pose, instead of all possible poses. In this paper,

we will conduct experiments using both methodologies.

2.2 Computer vision

As shown in the recent survey [22], most of the vision

literature in face recognition focuses on proposing new al-

gorithms. However, relatively little work has been done in

understanding the relationship between variation and recog-

nition performance. For example, one type of approach is

to treat the face image under a certain pose as one sample in

a high-dimensional space, and learn the relation between a

training pose image and test pose images by building a map-

ping function between them. Given a test image with an

arbitrary pose, a recognition-by-synthesis approach is ap-

plied. That is, we can either map this test image into the

training view [8], or map each of the training images into

the same pose as the test image [13], based on the learned

mapping function. However, to our knowledge, few stud-

ies have been performed regarding the level of confidence

when each pose is mapped into other poses.

Yacoob and Davis [21] are among the first to investigate

how expression variation affects recognition. They con-

clude that smiling faces should be preferred if a system has a

choice in the selection of faces to use in training and recog-

nition. For pose variation, Graham and Allinson [5] have

done interesting work in analyzing the recognition perfor-

mance under different pairs of training and test poses us-

ing their eigensignatures method. They find that the 40◦
view seems to have the best performance when it is used in

training or test. However, no explanation or other measure-

ment has been provided regarding the results. Lee and Sohn

[9] represent the level of the influence of a given view over

nearby views by using a “quasi-view” size, which is the size

of the projected face model. However, there is no evidence

suggest that the size of the projected face is a dominant fac-

tor for the recognition capability. Weber et al. [19] show

that in their viewpoint-invariant face detection approach, the

best detection performance is achieved by training at 30◦
viewpoint intervals. However, no explicit analysis is per-

formed regarding this finding. Weinshall and Werman [20]

analytically study the view likelihood and stability for gen-

eral objects, and conclude that the most likely and stable
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view is the flattest view of the 3D shape. Their finding is

consistent with our geometry analysis and our analysis is

specific to faces.

3 Experimental approach

As stated in Section 1, we hypothesize that some poses

are more representative than others. Hence if they are used

as the training poses, the recognition performance will be

better. To test this hypothesis, we can conduct recogni-

tion experiments by using a particular face recognition algo-

rithm. Given a face database with ground truth on pose, we

can exhaustively choose each pose as the training data, and

evaluate its corresponding recognition performance using

other poses as the test data. Although this approach is easy

to perform, one concern is that the conclusion drawn from

this approach might depend on the specific face recognition

algorithm being chosen. In order to mitigate this concern,

we choose algorithms from different types of recognition

methods.

Among many existing algorithms for face recognition,

some are generic algorithms and do not take special at-

tention to specific variation, such as pose. Eigenface [18]

and Fisherface [1] are good examples of this type of algo-

rithms. On the other hand, there is another family of algo-

rithms which target pose-robust face recognition [11, 13].

We call them pose-aware algorithms since they are aware

of pose variation and explicitly compensate for it using spe-

cific methods.

In our experimental approach, eigenface is chosen as

an example of the generic algorithms, while the geometry

assisted probabilistic mosaic algorithm (GAPMA) [11] is

used as an example of the pose-aware algorithms.

3.1 Face database

We use the CMU PIE database [17] in our study, since

it has a relatively dense sampling of poses, and has label-

ing of the ground truth for each pose. The PIE database

consists of face images of 68 subjects under different pairs

of poses and illuminations. In this paper, we use the pose

subset of this database, which contains 9 pose images for

each of 68 subjects captured under the neutral illumination

conditions. Sample images from one subject are shown in

Figure 2. According to the cameras’ 3D location included

in the meta data, the true pose of these images span ap-

proximately −64◦ to 64◦ horizontally and differ about 16◦
between neighboring poses.

3.2 Eigenface algorithm

Detailed information about the eigenface algorithm can

be found in [18]. We use a PIE subset of 34 subjects each

Figure 2. Sample images of one subject in the
PIE database.

Figure 3. Recognition rate matrix of the
eigenface algorithm for all pairs of training
and test poses. Each element has a value be-
tween 0% and 100%. The diagonal elements
are always 100% since the same training im-
age is used for test.

with 9 poses as the experimental dataset. For each image in

the dataset, we manually crop the face area and normalize

it to 64 by 64 pixels. In order to remove the influence of the

background, we also apply a mask to all images such that

the 4 triangular-shaped corners are filled with zeros.

We iteratively use each of the 9 poses of all subjects as

the training data to generate an eigenspace. The remain-

ing 8 poses from all subjects are then used as the test data.

The nearest neighbor classifier is applied during the test-

ing stage. Since there are 34 training images (34 subjects

each with 1 pose image) in total, it is possible to obtain

an eigenspace whose number of eigenvectors varies from 1

to 33. We test all different numbers of eigenvectors, and

report the one with the best recognition performance. By

assuming the symmetry of the face, the test face is flipped

horizontally whenever its flipped pose has less angular de-

viation from the training pose. The recognition rates for all

pairs of training and test poses are computed as shown in

Figure 3.

Since we are interested in how recognition performance
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Figure 4. Average recognition rate of the
eigenface algorithm with respect to different
training poses. Each point is computed via
an equation similar to (3). In order to exclude
the factor of angular rotation, the test poses
are chosen to be within the range of left &
right 16◦ or 32◦ of the training pose. The fac-
tor of angular rotation contributes to the re-
sults when all test poses are evaluated. In
both cases, the 32◦ training pose provides the
best recognition performance.

changes with different training poses, one simple way to

evaluate performance is to average each row of the recogni-

tion rate matrix. However, as we discussed above, there is

one experimental methodology excluding the factor of an-

gular rotation by only testing the pose that is within a certain

angular rotation of the training pose. Applying this method-

ology is equivalent to horizontally averaging the elements

within a fixed-width strip whose center is the diagonal ele-

ment. Eventually based on the symmetric assumption, the

recognition results of opposite poses are averaged. For ex-

ample, the results of 32◦ and −32◦ are averaged and are

treated as the final result of 32◦. Results from both method-

ologies are shown in Figure 4. Notice that when the averag-

ing range is 32◦, the averaging at 16◦ and 48◦ training poses

are not computed because part of their 4 neighboring poses

within the 32◦ range do not truly span the angular rotation

as 0◦, 32◦, and 64◦ do. From Figure 4, it is obvious that the

32◦ pose leads to better performance than other poses.

3.3 Geometry assisted probabilistic mo-
saic algorithm

The basic idea of GAPMA is to use geometry to com-

pensate for pose variation. As shown in Figure 5, the human

head is approximated with a 3D ellipsoid model. Thus, any

face image is a 2D projection of such a 3D ellipsoid at a

certain pose. In this approach, both training and test images

are back-projected to the surface of the 3D ellipsoid, ac-

cording to their estimated poses, to form the texture maps.

Thus the recognition can be conducted by comparing the

Figure 5. A face image is mapped onto the
surface of a 3D ellipsoid according to the es-
timated mapping parameter X. This mapping
compensates for pose variation.

texture maps instead of the original images, as is done in

traditional face recognition. Furthermore, the texture map

is represented as an array of local patches, which allows the

training of a probabilistic model for comparing correspond-

ing patches. Details of this approach can be found in [11].

Based on the same testing scheme as the eigenface al-

gorithm, we conduct experiments on the PIE database us-

ing GAPMA. A subset of 34 subjects each with 9 poses are

used for experiments. The remaining subjects are used for

training the probabilistic model. Similarly, we iteratively

use each of the 9 poses of all 34 subjects as the training data

and the rest as the test data. The recognition rate matrix

for all pairs of training and test poses is shown in Figure 6.

Also, the average recognition rate for each training pose is

shown in Figure 7, computed in the same way as Figure 4.

Together with the results from the eigenface algorithm,

a number of observations can be made. First, for both algo-

rithms, the use of 32◦ as the training pose results in the best

performance in the recognition stage, including or exclud-

ing the factor of angular rotation. Second, the advantage of

32◦ seems more obvious for generic face recognition algo-

rithms, while not dramatic for pose-aware algorithms, es-

pecially when excluding the factor of the angular rotation.

This is natural since the overall influence of pose variation

on face recognition is reduced because the pose-aware al-

gorithms explicitly compensate for pose variation.

4 Why is 32◦ the optimal pose?

We have shown that for both generic and pose-aware al-

gorithms, 32◦ is the optimal training pose that leads to the

best recognition performance. However, one might want

to ask why 32◦ is optimal. Researchers in psychology [10]

have worked on this subject for decades and there is still

no conclusive and convincing explanation on why a cer-

tain pose has advantages over others. O’Toole et al. [14]

conclude that both 3D geometry and 2D surface appearance
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Figure 6. Recognition rate matrix of GAPMA.
The performance is much better than that of
the eigenface (Figure 3).

Figure 7. Average recognition rate of GAPMA.
The 32◦ training pose provides the best
recognition performance, especially when
testing on all possible poses.

contribute to human face recognition across poses. We at-

tempt to justify the optimal pose from the computer vision

point of view, where appearance and geometry are also the

two fundamental factors for object recognition. Our justi-

fication is based on these two factors as well. Essentially,

given each training pose, we will compute its discrimination

power against test poses based on the facial appearance and

geometry.

4.1 Facial appearance evidence

How important is the facial appearance in discriminat-

ing facial identity? The basic assumption is that different

parts/patches of the face contribute differently to face recog-

nition. If we could quantify such differences in terms of

discrimination power for all pairs of training and test poses,

we can find out which pose is more powerful in recogniz-

ing other poses. The Fisher ratio [4] is computed since it is

a conventional way of measuring the discrimination power

[11].

Figure 8. Fisher ratio maps (FRM) for all pairs
of training and test poses. Each pixel, f m,n

i, j , is
the Fisher ratio of the patch (i, j) between the
training pose φm and test pose φn. Brighter
pixels indicate the higher Fisher ratio and
greater contribution to recognition. Vertical
axis corresponds to the training poses from
−64◦ (top) to 64◦ (bottom). Horizontal axis
corresponds to test poses from −64◦ (left) to
64◦ (right). Notice the relatively brighter maps
around the −32◦ (3rd) row and the 32◦ (7th) row.

Given the PIE database of L (L = 68) subjects each with

9 poses, let us introduce how to compute Fisher ratio for

each pair of training and test poses. After performing geom-

etry mapping for each image f(l,φm), where l, φm are the in-

dex of subjects and poses respectively, the resultant texture

map is represented as an array of local patches si, j(l,φm).
Fisher ratio will be computed based on the texture maps,

instead of the original face images.

Suppose we treat one of the 9 poses, φm, as the training

pose, we need to study how the distance measure of cor-

responding patches between φm and all other 8 test poses

changes. This is done by fixing one patch (i, j) and one

particular test pose φn, and calculating the mean square er-

ror (MSE) of one patch between all subjects in the pose φm
and φn. MSE is used here since it is a common way of

computing distance measurement in appearance-based ob-

ject recognition. A distance matrix is generated where each

element indicates the MSE of the same patch (i, j) between

one pair of subjects. The distribution of the diagonal ele-

ments of this distance matrix is an indication of the intra-

subject variations, while that of the off-diagonal elements

is an indication of the inter-subject variations. We explic-

itly model these two distributions as Gaussian distributions,

whose means are computed as:

μm,nsame

i, j =
1

L ∑
l
‖(si, j(l,φm)− si, j(l,φn)‖2

μm,ndiff

i, j =
1

L(L−1) ∑
l �=k

‖(si, j(l,φm)− si, j(k,φn)‖2 (1)
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where μm,nsame

i, j and μm,ndiff

i, j are the mean of intra-subject and

inter-subject variations for the patch (i, j) between the train-

ing pose φm and the test pose φn. In addition, the standard

deviation σm,nsame

i, j and σm,ndiff

i, j of these two distributions are

computed as well. Given two Gaussian distributions, the

Fisher ratio [4] is defined as:

f m,n
i, j =

(μm,ndiff

i, j −μm,nsame

i, j )2

σm,nsame

i, j
2
+σm,ndiff

i, j

2

Note that this Fisher ratio is computed based on one fixed

patch (i, j) and one pair of training and test pose, φm and φn.

By varying the location of the patch across all facial area,

a Fisher ratio map (FRM) is obtained between one pair of

poses. Finally for all pairs of training and test poses, an

array of FRM is generated as shown in Figure 8.

In order to have a quantitative evaluation for the Fisher

ratio of each training pose, we compute the average of

Fisher ratio f m,n over non-empty patches, which are visi-

ble from both training and test views, for each map as in

(2). Then the Fisher ratio for each training pose is averaged

across the test poses, with different ranges r as in (3). We

show the resultant hm,r for m = 1,2, ...,5 and r = 1,2,8 in

Figure 9. It is apparent that when excluding the factor of an-

gular rotation, i.e., the test pose is within the range of 16◦ or

32◦ with respect to the training pose, 32◦ has higher Fisher

ratio than other training poses. Since higher Fisher ratio

implies better recognition performance, this result is consis-

tent with our empirical conclusion in Section 3. However,

when all test poses are considered, all three poses around

32◦ seem to work equally well.

f m,n =
1

∑i, j( f m,n
i, j > 0) ∑

i, j
f m,n
i, j (2)

hm,r =
1

2
(

1

2r

0<|m−n|≤r

∑
n

f m,n +
1

2r

0<|10−m−n|≤r

∑
n

f 10−m,n) (3)

4.2 Geometric evidence

The human face has a unique 3D geometry. If the facial

geometry were a perfect sphere, the optimal training pose

would be only dependent on the facial appearance. Our hy-

pothesis is that because of 3D facial geometry, the 2D face

images projected from different poses will have different

capabilities to infer the face at other poses. Thus, we will

study the inference capability between each pair of training

and test poses based on the 3D geometry. Again this in-

ference capability will depend on the location of the facial

patch, and eventually an inference capability map (ICM)
similar to FRM in Figure 8 will be obtained, which provides

64 48 32 16 0
0.2

0.3

0.4

0.5

Training pose

F
is

h
e

r 
ra

ti
o

Test pose within +/-16 degree

Test pose within +/-32 degree

Test pose within all poses

Figure 9. Average Fisher ratio map (FRM)
with respect to different training poses. The
32◦ view advantage can be seen when exclud-
ing the factor of angular rotation.

Figure 10. Inference capability maps (ICM) for
all pairs of training and test poses. Each
pixel, gm,n

i, j , is computed via (4).

a natural way of integrating the appearance and geometry

information.

Our study is based on a generic 3D face mesh model

M = {tu}, which is composed of a set of triangles tu. Each

triangle is described by three vertices in 3D. The basic ap-

proach is as follows. First, we build the correspondence

between the set of triangles and the array of patches in the

appearance model. This can be achieved by computing the

horizontal and vertical angles of the vector connecting the

center of the 3D face model and the center of the triangle.

Then the angles can be easily converted into the horizontal

and vertical index of the corresponding patch. The result of

this step is a mapping function f (u) = [i, j], which maps the

triangle index u into the index of the corresponding patch

[i, j].
Second, we project the 3D geometry model into the 9

different views used in the PIE database, by assuming an

orthographic camera model. Hence another set of triangles

{tm
u } are obtained for each pose φm on the image plane. Now

given the training pose φm, and the test pose φn, we can find
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the matched triangles between {tm
u } and {tn

u}. One way to

measure the inference capability is to measure the ratio of

the total area of the matched triangles between two poses

that correspond to the same appearance patch, as follows:

gm,n
i, j = ∑ f (u)=[i, j]

u Δ(tm
u )

∑ f (u)=[i, j]
u Δ(tn

u)
(4)

where the numerator and the denominator are the total area

of projected triangles that correspond to the appearance

patch with index [i, j], at the training pose φm and the test

pose φn respectively. It can be seen that the larger the infer-

ence capability gm,n
i, j is, the more downsampling during the

mapping from pose φm to pose φn is. Hence the inference

from φm to φn is more reliable and face recognition should

perform better. On the other hand, if the gm,n
i, j is smaller,

it means more upsampling is conducted during the mapping

and hence the inference is less reliable. The basic reason un-

derlying this conclusion is that high resolution in the train-

ing indicates more confidence in recognition compared to

low resolution in training.

By using different pairs of training and test poses, an

array of ICM is generated in Figure 10. We can combine

it with the Fisher ratio map, such that we have an overall

discrimination power map (DPM) pm,n
i, j . This is done using

element-by-element multiplication of gm,n
i, j and f m,n

i, j . Based

on pm,n
i, j , we can compute the discrimination power for each

training pose similar to (2) and (3). Figure 11 shows both

the Fisher ratio and discrimination power results. We can

see that by integrating the geometry information, the dis-

crimination power augments the advantage of the 32◦ pose.

This shows that a 32◦ pose has advantages from geometric

point of view, i.e., relatively less upsampling is done when

we infer from 32◦ pose to other poses.

Figure 12 shows the DPM overlaid on the projected tri-

angles for all poses. Basically, for each pose φm, we assign

the intensity of the projected triangle tm
u as the discrimina-

tion power pm
i, j of its corresponding appearance patch. pm

i, j
is simply the average of pm,n

i, j along all test poses φn. On

average, the intensity of the 32◦ and −32◦ poses is brighter

than other poses, as indicated by the curve ”DPM: test pose

within all poses” in Figure 11. This shows the advantage of

the 32◦ pose in recognition. Furthermore, this plot shows

that for each training pose, which patch contributes more

to the recognition. Interestingly we see that the facial fea-

tures, such as the mouth and nose, seem to contribute less to

recognition than the cheek. In part this is because that it is

relatively hard to register the facial features across multiple

poses of the same subject due to geometry variation. There-

fore, these parts will have relatively larger intra-subject vari-

ation, which lowers the Fisher ratio.
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n
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DPM: test pose within +/-16 degree

DPM: test pose within +/-32 degree

DPM: test pose within all poses

FRM: test pose within +/-16 degree

FRM: test pose within +/-32 degree

FRM: test pose within all poses

Figure 11. Average discrimination power map
(DPM) and average Fisher ratio map (FRM)
with respect to different training poses. DPM
augments the advantage of 32◦ over FRM.

5 Conclusions and discussion

If a face recognition system has the freedom to select

any pose as the training data, which pose should be cho-

sen in order to achieve the best pose-robust recognition per-

formance? This is both a scientifically interesting and a

practically beneficial question. This paper attempts to an-

swer this question and provides justification regarding the

answer. First, we conclude that 32◦ is the optimal train-

ing pose by using an experimental approach, where differ-

ent types of face recognition algorithms are employed and

consistent results are observed. Second, we analyze the dis-

crimination power of each pose against all other poses using

both appearance and geometry information.

To compare our conclusion with that from psychology,

we suggest the two conclusions are somewhat similar. Be-

cause both agree that the 3/4 view of learning leads to bet-

ter recognition than the front and profile views, even though

we did not test on exactly 45◦, which could be interpreted

from nearby 48◦ and 32◦. The two conclusions disagree

partly due to the discrete sampling of poses. For example,

normally only very coarse poses (such as front, 3/4 or pro-

file view) are studied in psychology. Another reason is the

inherent difference between the mechanism of human face

recognition and machine face recognition.

Due to limited pose sampling in the database, we con-

sider only discrete poses while looking for the optimal pose.

A closer-to-continuous conclusion might be obtained with

a database having denser sampling of poses, or synthesized

views. One of the future direction might be to rely the anal-

ysis more on generic facial geometry information, which is

not limited by a particular face database.

We are aware that the optimal training pose of 32◦ is con-

cluded based on the assumption that the test poses are uni-

formly distributed. In practical applications, this assump-
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Figure 12. For each training pose, projected triangle mesh overlaid with DPM containing both ap-
pearance and geometry information. The brighter regions contribute more to face recognition.

tion might not be true. The actual distribution will depend

on the application domain, the position of the camera, etc.

However, once the distribution is obtained based on the do-

main knowledge, the optimal training pose can be found by

multiplying each row in Figure 6 with the distribution.

With this paper, we hope to stimulate research into

optimal single-instance recognition (or opportunistic face

recognition [21]). There are many relevant problems along

this direction, such as which lighting is the best for face

recognition, which gaze is the best for personal identifica-

tion. These problems are interesting themselves and can

help us better understand the intrinsic mechanism of object

recognition. On the other hand, these topics have practical

values, especially for applications such as Biometrics.
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