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Abstract— We consider the problem of optimally allocating the
base station transmit power in two neighboring cells for a TDMA
wireless cellular system, to maximize the total system throughput
under interference and noise impairments. Employing dynamic
reuse of spectral resources, we impose a peak power constraint
at each base station and allow for coordination between the
base stations. By an analytical derivation we find that the
optimal power allocation then has a remarkably simple nature:
Depending on the noise and channel gains, transmit at full power
only at base station 1 or base station 2, or both.

Utilizing the optimal power allocation we study optimal link
adaptation, and compare to adaptive transmission without power
control. Results show that allowing for power control significantly
increases the overall capacity for an average user pair, in addition
to considerable power savings. Furthermore, we investigate
power adaptation in combination with scheduling of users in
a time slotted system. Specifically, the capacity-optimal single-
cell scheduler [1] is generalized to the two-cell case. Thus, both
power allocation and multiuser diversity are exploited to give
substantial network capacity gains.

I. INTRODUCTION

The need for ever higher spectrum efficiency motivates the

search for system-wide optimization of the wireless resources.

A key example of multicell resource allocation is that of power

control which serves as means for both battery savings at the

mobile, and interference management. Traditional power con-

trol solutions are designed for voice-centric networks, hence

aiming at guaranteeing a target signal to noise and interference

ratio (SNIR) level to the users [2]–[4]. In modern wireless

data networks, adaptive coding and modulation with power

control [5], [6] is implemented, and throughput maximization

becomes a more relevant metric.

The simultaneous optimization of transmission rates and

power with the aim of maximizing the multicell sum capacity

is a difficult problem [7]–[10]. Considering the problem of

optimally allocating the transmit power for N active commu-

nication links, an iterative algorithm to maximize the network

capacity measured in information bits/s/Hz is given in [7].

Unfortunately, this algorithm can converge to a highly subop-

timal solution, thus an approximation to the network capacity

is proposed and a fixed-point iteration solution is derived.

However, this approximation prohibits turning off any base

station, even if this is optimal due to interference.

Under the assumption of an interference limited system, i.e.,

neglecting noise sources, iterative algorithms are proposed to

maximize the network capacity for the case of individual link

power constraints [8] and a sum power constraint [9]. In [10] it

is assumed that each base station, when it transmits, transmits

with maximum power Pmax. Which base stations that should

be active at each time slot is decided according to a rate

maximization objective. However, no proof of optimality is

given for the on/off power allocation.

In [11] transmit power allocation for a downlink two-user

interference channel is studied under a sum transmit power

constraint and the assumption of symmetric interference. The

derived power allocation depends on the level of interference;

when the inference is above a certain threshold the total power

is allocated to the best user. For interference less than the

threshold, the available power is divided among the two users

according to a water-filling principle. However, due to the sum

power constraint and symmetry of interference assumption

these results are not readily applicable for two-cell power

allocation, where it is more reasonable to assume individual

power constraints and that the received interference will be

different for different users.

In this paper we tackle the problem of analytically finding a

closed form solution for power allocation in a simple two-cell

network, without resorting to the restricting assumptions of in-

terference limiting or symmetry. The optimal power allocation

is shown to be remarkably simple; transmit at full power only

at base station 1, or only at base station 2, or both. Using the

derived power allocation scheme, link adaptation with power

control is compared to adaptive transmission without power

control, showing that substantial sum throughput gains can

be achieved by introducing power adaptation for an average

user pair. Further, we combine the derived power allocation

with scheduling of users [1], [12], considering both Round

Robin and generalizations of the single-cell maximum capacity

scheduler [1] to the two-cell case, thus exploiting both power

control and multiuser diversity to achieve increased capacity.

The remainder of our paper is organized as follows. We

introduce the wireless system model under investigation in

Section II. In Section III we derive the optimal power alloca-

tion for two-cell capacity maximization. Section IV combines

the derived power allocation scheme with scheduling of users

in order to maximize the system capacity. Numerical results

and plots are presented in Section V. Finally, conclusions and

discussions are given in Section VI.
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Fig. 1. Two-cell wireless system model. Base stations are shown as solid
squares and users as circles. To each link the associated channel gain Gni is
shown.

II. SYSTEM MODEL

We consider a two-cell system in which two neighboring

base stations communicate with mobile terminals over a cov-

erage area as depicted in Fig. 1. Each of the two base stations

transmit different data to two different receiving mobile users

at the same time using the same spectral resource, leading

in general to an interference and noise impaired system. The

communication links may be a combination of up- and down-

links. Although an hexagonal cell layout is shown in Fig. 1,

we emphasize that our analysis is valid for any geometry, even

for non-cellular systems such as ad-hoc networks. For the sake

of presentation, and without loss of generality [13], we focus

on downlink transmission. The data destined for user un is

transmitted with power Pn, n = 1, 2. Each base station is

assumed to operate under a peak power constraint,

0 ≤ Pn ≤ Pmax, n = 1, 2. (1)

Denote by Gni(t) the channel power gain to the selected

mobile user un(t) in cell n from the base station in cell i

at time t. We will suppress the time index from now on,

concentrating on one arbitrary time slot. The channel gains

are assumed to be constant over each such time slot. Note that

the gains Gnn correspond to the desired communication links,

whereas the Gn,i, n 6=i correspond to the unwanted interference

links. Assuming the transmitted symbols to be independent

random variables with zero mean and unit variance, the signal

to noise-plus-interference ratio (SNIR) for each user is given

by,

SNIRu1
=

P1G11

σ2
1 + P2G12

, SNIRu2
=

P2G22

σ2
2 + P1G21

, (2)

where σ2
1 and σ2

2 are the variances of the independent zero-

mean additive white gaussian noise (AWGN) in cell 1 and 2,

respectively.
Under the assumption that capacity-achieving codes for

AWGN channels are employed, the achievable rate (in infor-

mation bits/s/Hz) of user un is given by

Run
= log2(1 + SNIRun

). (3)

From (2) and (3) the total achievable throughput R = Ru1
+

Ru2
is given by

R = log2

(

1 +
P1G11

σ2
1 + P2G12

)

+ log2

(

1 +
P2G22

σ2
2 + P1G21

)

. (4)

Finally, we note that our system model with (possibly

different) noise levels σ2
1 and σ2

2 also facilitates the modeling

of other interfering gaussian sources disturbing the users

differently, contrary to [10], [11].

III. TRANSMIT POWER ANALYSIS

This section presents the general optimal power allocation

scheme (P ∗
1 , P ∗

2 ) which has as inputs the channel gains {Gni},

and the AWGN variances σ2
1 and σ2

2 . We search for the optimal

power allocation by approaching the following optimization

problem,

(P ∗
1 , P ∗

2 ) = arg max
(P1, P2)∈Ω

R, (5)

where Ω = {P1, P2| 0 ≤ P1, P2 ≤ Pmax} is the feasible set

and R is given in (4). Since Ω is a closed and bounded set

and R : Ω → R is continuous, (5) has a solution [14, Theorem

0.3].

A. Trivial solutions

By inspection of (4) we can identify some trivial (not

necessarily unique) solutions of (5). First, if the system is

noise limited, i.e., the interference can be neglected, then

(P ∗
1 , P ∗

2 ) = (Pmax, Pmax). Second, if the communication link

of user 1 is blocked, i.e., G11 = 0, then (P ∗
1 , P ∗

2 ) = (0, Pmax);
vice versa for user 2. Finally, for the case of an interference

limited system, we see that R → ∞ if only one of the two

base stations is turned on. However, in our analysis we will

assume that some noise is present, as in all practical systems.

B. General solutions

In this subsection we assume Gni > 0, ∀n, i. Then in order

to find (P ∗
1 , P ∗

2 ) we first prove the following lemma.

Lemma 1: The optimal transmit power allocation will have

P1 or P2 equal to Pmax.

Proof: From (4) we have that, for α > 1 and (P1, P2) ∈
Ω:

R(αP1, αP2) =

log2

(

(1 +
P1G11

σ2

1

α
+ P2G12

)

(1 +
P2G22

σ2

2

α
+ P1G21

)
)

> R(P1, P2).

(6)

Hence, the solution of (5) will have P1 or P2 equal to Pmax.

By Lemma 1, the optimal power allocation is found among

the following alternatives:

• Extreme points on the boundaries of Ω: P2 = Pmax

or P1 = Pmax, i.e., P1’s or P2’s corresponding to
∂R(P1,Pmax)

∂P1

= 0 or
∂R(Pmax,P2)

∂P2

= 0, respectively.

• Corner points of Ω: (Pmax, 0), or (0, Pmax), or

(Pmax, Pmax).



Since the logarithm is a monotonically increasing function we

look for extreme points on the boundary by considering

Q(P1, P2) =
(

1 +
P1G11

σ2
1 + P2G12

)(

1 +
P2G22

σ2
2 + P1G21

)

. (7)

Now, by differentiating Q(P1, Pmax) with respect to P1 we

find
∂Q

∂P1
=

CP 2
1 + 2DP1 + E

F
, (8)

where

C = G11G
2
21, (9a)

D = G11G21σ
2
2 , (9b)

E = −PmaxG21G22(σ
2
1 + PmaxG12)

+ G11σ
2
2(σ2

2 + PmaxG22), (9c)

F = (σ2
1 + PmaxG12)(σ

2
2 + P1G21)

2. (9d)

From (9d) F is seen to always be positive, hence P1 such that
∂Q
∂P1

= 0 can be found as the solution to CP 2
1 +2DP1+E = 0,

yielding

P1 =
1

C
(−D ±

√

D2 − CE). (10)

From (10) we are only interested in real-valued P1 ∈ [0, Pmax].
By inspecting (10) we realize that a real and non-negative P1

can only occur for E ≤ 0, since C,D > 0. Denote such a

P1 by P
rp
1 . To see whether P

rp
1 corresponds to a maximum or

minimum for Q(P1, Pmax) we calculate the second derivative
∂2Q

∂P 2

1

,

∂2Q

∂P 2
1

=
2PmaxG22G21(G21σ

2
1 + G21PmaxG12 − G11σ

2
2)

(σ2
1 + PmaxG12)(σ2

2 + P1G21)3
.

(11)
∂2Q

∂P 2

1

is seen to be non-negative if the following inequality is

satisfied:

G21(σ
2
1 + PmaxG12) ≥ G11σ

2
2 . (12)

Now, by inspecting (9c) we see that E ≤ 0 implies that

PmaxG22G21(σ
2
1 + PmaxG12) ≥ G11σ

2
2(σ2

2 + PmaxG22). (13)

Dividing by PmaxG22 on both sides of (13) we obtain

G21(σ
2
1 + PmaxG12) ≥ G11σ

2
2(1 +

σ2
2

PmaxG22
)

≥ G11σ
2
2 ,

(14)

thus showing ∂2Q

∂P 2

1

≥ 0. Q(P1, Pmax) is then convex with

respect to 0 ≤ P1 ≤ Pmax and P
rp
1 is a minimum point for

Q(P1, Pmax). Due to symmetry, the above analysis also hold

for P2, and we conclude that (P ∗
1 , P ∗

2 ) is found in the set of

corner points: ∆Ω = {(Pmax, 0), (0, Pmax), (Pmax, Pmax)}. The

optimal power allocation (also including the trivial solutions

from Section III-A) can then be stated as

(P ∗
1 , P ∗

2 ) = arg max
(P1,P2)∈∆Ω

R(P1, P2). (15)

By inspection of (15) we see that of the two users in

question, the user with the highest signal to noise ratio (SNR),

defined as Gnn

σ2
n

, will always receive transmission at full power

Pmax. For (P1, P2) = (Pmax, Pmax) this is trivially true. Further,

from (4), the choice of (P1, P2) = (Pmax, 0) or (0, Pmax) is

decided by each user’s SNR alone, since there will be no

interference for these power allocations.

Since one of the base stations may be turned off the spec-

trum reuse will be dynamic. From a system perspective, the

power allocation in (15) is intended to be used for two given

users in a given time slot. As such, it is natural to combine this

power allocation scheme with a scheduling algorithm which

we examine in the next section.

IV. SCHEDULING

In this section the optimal power allocation is combined

with scheduling of users in a time-slotted system. The

proposed power allocation can be used with any network

scheduling algorithm. As examples, we consider Round Robin,

maximum SNR scheduling, and the novel two-cell maximum

capacity scheduling.

A. Round Robin Scheduling

Round Robin scheduling [15] is the simplest scheduling

algorithm for users in a wireless system. Users are given time

slots on a turn by turn basis, ensuring resource fair scheduling.

In our two-cell scenario we schedule, at each time slot, one

user from each cell using full power. This will be considered as

the baseline case. To increase the system capacity we introduce

power control at each time slot by solving (5) for each pair

of users supplied by the Round Robin scheduling.

B. Maximum SNR Scheduling

By exploiting the inherent channel variations in wireless

systems, maximum SNR scheduling seeks to maximize the

cell throughput by transmitting to the mobile user with the

best channel in every time slot [1], [16]. Let U1 and U2 denote

the number of users in cell 1 and cell 2, respectively. Then,

as above, by scheduling one user from each cell, users u∗
1 and

u∗
2 are selected if

u∗
1 = arg max

1≤u1≤U1

G11

σ2
1

, (16a)

u∗
2 = arg max

1≤u2≤U2

G22

σ2
2

. (16b)

As above, we can increase the system capacity by applying

the power control (15) to users u∗
1 and u∗

2.

C. Two-Cell Maximum Capacity Scheduling

By taking interference and power control into account, we

generalize the single-cell maximum SNR scheduler [1] to the

two-cell case. The extension is a two-step process, jointly

optimizing the user selection and power levels to maximize

the network capacity. The maximum capacity scheduling al-

gorithm can then be stated as follows. At each time slot s,

1) For each pair of users (u1, u2): Find the optimal power

allocation (P ∗
1 , P ∗

2 ) from (15), and then store corre-

sponding achievable throughput R(u1, u2).



2) Schedule the users (u∗
1, u

∗
2) that have maximum sum

throughput R(u1, u2) and transmit with power levels

(P ∗
1 , P ∗

2 ).

Mathematically the above algorithm can be formulated as

(u∗
1, u

∗
2, P

∗
1 , P ∗

2 ) = arg max
1≤u1≤U1

1≤u2≤U2

(P1,P2)∈∆Ω

R. (17)

Although the exhaustive search in (17) probably will be

too complex for implementation in practical systems, the

maximum capacity scheduling is interesting in that it gives

the optimal combination of power allocation and scheduling,

thus establishing upper performance bounds. Similar to the

single-cell case treated in [1], by using the maximum capacity

scheduling algorithm network throughput is optimized at the

expense of fairness. However, when all users experience the

same average SNR, and on average the same statistic for

the interfering channel gains Gn,i n 6=i, the maximum capacity

scheduling will maintain fairness over a “long enough” time

horizon [16]. Should this not be the case, fairness can be

restored at the price of reduced system capacity by introducing

a modified scheduling policy.
Regarding an extension to systems with more than than two

cells, this is ongoing work. Early results seems to indicate that

the binary power control will no longer be optimal. Finally,

note that a practical use of this two-cell optimization problem

to larger systems, would be to cluster the cells into (carefully

chosen) groups of two cells over which this optimization is

carried out.

V. NUMERICAL RESULTS

In this section we present numerical results on the achiev-

able network capacities for a two-cell wireless system utilizing

link adaptation both with optimal power control and without

power control. Through computer simulations both an average

user pair scenario, as well as multiuser scheduling algorithms,

are investigated.

A. Simulation Model

Based on the system model described in Section II, we have

considered a cellular system with hexagonal layout, assuming

that the users are uniformly distributed in each cell with a

circumradius of 1000 m. It is assumed that each link undergoes

path loss according to the COST 231 model [17] for a small

to medium-sized city, given by

PL (dB) = 46.3 + 33.9 log10(fc) − 13.82 log10(hb)

− a(hr) + (44.9 − 6.55 log10(hb)) log10(d),
(18)

where fc is the carrier frequency in MHz, d is distance between

the base station and mobile user in km, and hb is the base

station antenna height above the ground level in meters. a(hr)
is a correction factor for the mobile antenna height based on

the size of the coverage area, given by

a(hr) = (1.1 log10(fc)−0.7)hr−(1.56 log10(fc)−0.8), (19)

where hr (in meters) is the mobile user antenna height above

ground level. Additionally, communication is affected by

TABLE I

SIMULATION PARAMETERS

Parameter Value

Cell layout Hexagonal

Carrier frequency 1800 MHz

Pmax 1 W

Cell radius 1000 m

BS antenna gain and height 16 dB, 30 m

User antenna gain and height 6 dB, 1 m

Operating temperature 290 Kelvin

Shadowing st. dev. 10 dB

Equiv. noise BW 1 MHz

log-normal distributed shadowing and multipath fading. The

log-normal shadowing is modeled as a zero-mean gaussian

variable with a 10 dB standard deviation, and the multipath

fading is considered to be Rayleigh distributed. To obtain the

numerical results Monte Carlo simulations are employed with

the simulation parameters listed in Table I.

B. Description of Transmission Schemes

We consider two link adaptation schemes, ideal adaptive

coded modulation with and without power control, (ACMP)

and (ACM) respectively. Using ACM the power at both base

stations is held constant at Pmax. Based on the current received

SNIR level the modulation and coding formats are selected.

Allowing for power control, the ACMP scheme uses adaptive

modulation to transmit at SNIR levels that are optimized

according to (5). According to (5) ACMP could require that

the base station is able to transmit at an infinite (continuous)

number of power levels. However, since the optimal power

allocation (15) has been derived to be an on/off scheme we

avoid an increased complexity in transmitter design.

C. Comparison of ACM and ACMP for An Average User Pair

To obtain the system throughput statistics for an average

user pair, we ran 10000 independent trials, in each trial

drawing user locations and path gain matrix from their corre-

sponding distributions. In Fig. 2 we have shown the system

throughput R from (4) as a function of P1 and P2 for one of

these trials. It is seen that the maximum throughput is obtained

by turning base station 2 off and transmitting at full power

from base station 1, i.e, (P1, P2) = (Pmax, 0), in agreement

with (15).

Fig. 3 depicts the cumulative distribution function (CDF)

of the system throughput for both ACMP and ACM. It is

clear that introducing power control significantly improves the

throughput performance. Specifically, ACMP and ACM have

average throughputs of (both in bits/s/Hz) RACMP = 15.3 and

RACM = 12.3, respectively.

D. Scheduling

We now consider multiple users per cell and study the per-

formance of the scheduling algorithms presented in Section IV.

The number of users per cell is chosen to be the same in both
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average user pair.

cells, i.e., U1 = U2. Based on 10000 independent trials for

each number of users in the cell, Fig. 4 depicts the system

capacity, for the various scheduling algorithms, measured in

bits/s/Hz as a function of the number of users per cell.

This figure shows that Round Robin scheduling with power

control (RR-P) clearly outperforms Round Robin scheduling

without power control (RR). The system capacity for both RR

schemes is independent of the number of users per cell, as

expected. In fact, these scheduling algorithms are equivalent

to the average user pair case treated in Section V-C, and the

maximum capacity scheduling algorithm with one user per

cell.

Furthermore, for two-cell maximum capacity scheduling

both with power control (MAX-CAP-P) and without power

control (MAX-CAP), the system capacity is an increasing

function of the number of users per cell. The marked increase

of capacity is due to the effects of multiuser diversity [1].

Similar observations also hold for power controlled maximum

SNR scheduling (MAX-SNR-P), as well as without power

control (MAX-SNR). The MAX-CAP schemes show signifi-

cantly higher spectral efficiencies compared to the MAX-SNR

schemes, which is because the MAX-CAP schemes search
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Fig. 4. System capacity in bits/s/Hz for both Round Robin and maximum
capacity scheduling, as a function of the number of users per cell.

both cells simultaneously to find the best pair of users.

For a small number of users per cell the MAX-CAP-P

scheme outperforms MAX-CAP. However, for an increasing

number of users, these schemes have almost identical perfor-

mance. This result is expected and can be explained as follows.

From (4), ideally we want to schedule two users at full power

that have good communication links and are not too affected

by interference. Then, with an increasing number of users,

the probability of finding two such users increases rapidly.

This can be seen from Fig. 5 where the frequency of solutions

to (5), when employing MAX-CAP-P scheduling, is plotted as

a function of number of users per cell. We see that for 1 user

per cell all three solutions are equiprobable in this particular

simulation setting. As each cell is populated by more users

the maximum capacity scheduling algorithm finds two users

which receive communication emanating from base stations 1
and 2 with power Pmax, with probability close to one.

Finally, Fig. 6 shows the average power consumption for

the MAX-SNR(-P) and MAX-CAP(-P) scheduling schemes,

plotted as a function of the number of users. It is seen

that, in addition to increasing system capacity, power control

also reduces the average power consumed for both schemes,

especially when the number of users in a cell is low. For an

average user pair, corresponding to 1 user per cell in Fig. 6,

the average power consumption is lowered by 33%.

VI. CONCLUSIONS AND DISCUSSION

We have analyzed transmit power allocation for a two-cell

wireless system, under a sum-capacity maximization criterion

and peak power constraints at each base station. Given the

channel gain information the proposed power scheme max-

imizes the network capacity. The optimal power allocation

for two-cell capacity maximization is found to be surprisingly

simple, transmit at full power at base station 1, or base station

2, or both.

An ideal link adaptation scheme with the proposed power

control is compared to a similar transmission scheme without

power control, for an average user pair. Our results show
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that introducing power adaptation significantly increases the

total throughput compared to constant power transmission.

Furthermore, we study the problem of joint power control and

scheduling of users from a network perspective. For Round

Robin scheduling, power control substantially increases the

network capacity, and at the same time reduces the average

power consumption. Introducing the two-cell maximum ca-

pacity scheduling algorithm, extending the maximum SNR

scheduler [1] to the two-cell case, we show that the system

capacity is an increasing function of the number of users per

cell. Exploiting multiuser diversity, going from 1 to 12 users

per cell doubles the capacity for link adaptation with power

control. For systems of more than two cells, we can apply

the results presented in this paper by clustering groups of two

cells, over which optmization would be effected.

In this paper we have assumed that an infinite number of

rates is available. In practice however, this will not be the case.

A topic for further research is to optimally design discrete

rate cellular systems, following the ideas of [5], [6]. We are

also currently working on extending the results to more than

two cells, as well as taking into account quality of service

constraints for individual users.

VII. ACKNOWLEDGEMENT

This work was carried out when Anders Gjendemsjø was

at INRIA, Sophia Antipolis, France, with financial support

from NTNU, TOTAL E&P, and the Network of Excellence

NEWCOM.

REFERENCES

[1] R. Knopp and P. Humblet, “Information capacity and power control
in single-cell multiuser communications,” in Proc. IEEE International

Conference on Communications, Seattle, WA, June 1995, pp. 331–335.
[2] J. Zander, “Performance of optimum transmitter power control in cellular

radio systems,” IEEE Transactions on Vehicular Technology, vol. 41,
no. 1, pp. 57–62, Feb. 1992.

[3] G. J. Foschini and Z. Miljanic, “A simple distributed autonomous power
control algorithm and its convergence,” IEEE Transactions on Vehicular

Technology, vol. 42, no. 4, pp. 641–646, Nov. 1993.
[4] Y.-H. Lin and R. L. Cruz, “Power control and scheduling for interfering

links,” in Proc. IEEE Information Theory Workshop, San Antonio, TX,
Oct. 2004, pp. 288–291.

[5] A. Gjendemsjø, G. E. Øien, and H. Holm, “Optimal power control for
discrete-rate link adaptation schemes with capacity-approaching coding,”
in Proc. IEEE Global Telecommunications Conference, St. Louis, MO,
Nov.-Dec. 2005, pp. 3498–3502.

[6] A. Gjendemsjø, G. E. Øien, and P. Orten, “Optimal discrete-level
power control for adaptive coded modulation schemes with capacity-
approaching component codes,” to appear in Proc. IEEE International
Conference on Communications, Istanbul, Turkey, 2006.

[7] X. Qiu and K. Chawla, “On the performance of adaptive modulation
in cellular systems,” IEEE Transactions on Communications, vol. 47,
no. 6, pp. 884–895, June 1999.

[8] A. Babaei and B. Abolhassani, “A new iterative method for joint power
and modulation adaptation in cellular systems,” in Proc. IFIP Interna-

tional Conference on Wireless and Optical Communications Networks,
Dubai, United Arab Emirates, Mar. 2005, pp. 94–97.

[9] K. L. Baum, T. A. Kostas, P. J. Sartori, and B. K. Classon, “Perfor-
mance characteristics of cellular systems with different link adaptation
strategies,” IEEE Transactions on Vehicular Technology, vol. 52, no. 6,
pp. 1497–1507, Nov. 2003.

[10] S. Das, H. Wiswanathan, and G. Rittenhouse, “Dynamic load balancing
through coordinated scheduling in packet data systems,” in Proc. IEEE

Conference on Computer Communications, San Francisco, CA, Mar.-
Apr. 2003, pp. 786–796.

[11] T. Park, J. Jang, O.-S. Shin, and K. B. Lee, “Transmit power allocation
for a downlink two-user interference channel,” IEEE Communication

Letters, vol. 9, no. 1, pp. 13–15, Jan. 2005.
[12] A. Bedekar, S. Borst, K. Ramanan, P. Whitting, and E. Yeh, “Downlink

scheduling in CDMA data networks,” in Proc. IEEE Global Telecommu-

nications Conference, Rio de Janeiro, Brazil, Dec. 1999, pp. 2653–2657.
[13] J. Zander and M. Frodigh, “Comment on “Performance of optimum

transmitter power control in cellular radio systems”,” IEEE Transactions

on Vehicular Technology, vol. 43, no. 3, p. 636, Aug. 1994.
[14] J. L. Troutman, Variational calculus and optimal control: Optimization

with elementary convexity, 2nd ed. New York: Springer-Verlag, 1996.
[15] D. Arora and P. Agathoklis, “Multiuser scheduling for downlink in multi-

antenna wireless systems,” in Proc. IEEE International Symposium on

Circuits and Systems, Kobe, Japan, May 2005, pp. 1718–1721.
[16] D. Gesbert and M.-S. Alouini, “Selective multi-user diversity,” in Inter-

national Symposium on Signal Processing and Information Technology,
Darmstadt, Germany, Dec. 2003, pp. 162–165.

[17] COST Action 231, “Digital mobile radio towards future generation
systems, final report,” European Communities, EUR 18957, Tech. Rep.,
1999.


